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The course so far
The real-time graphics pipeline abstraction

Principle graphics abstractions
Algorithms and modern high performance implementations of those abstractions
Workload characteristics

Today... deferred shading

SPMD Programming abstractions
Shading languages: extending the pipeline with application de!ned shading functions
General purpose SPMD programming (“compute mode” abstractions)
The GPU processor core implementation and how these abstractions map to these processors

An alternative pipeline structure (and one use of the compute mode abstraction)
We are about to cover several alternative rendering pipelines/algorithms
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Deferred shading
▪ Idea: restructure the rendering pipeline to perform shading 

after all occlusions have been resolved

▪ Not a new idea: implemented in several classic graphics 
systems, but not directly supported by most high-end GPUs
- But modern graphics pipeline provides mechanisms to allow application to implement 

deferred shading efficiently
- Is natively implemented by mobile GPUs 
- Classic hardware-supported implementations:

- [Deering et al. 88]
- UNC PixelFlow [Molnar et al. 92]

▪ Popular algorithm for rendering in modern games
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The graphics pipeline

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Primitive Processing

Frame Buffer

“Forward rendering”
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Deferred shading pipeline

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Geometry pass-through

Frame-Buffer Ops

Primitive Processing

“G-buffer”

Shading

Frame buffer

Two pass approach:

Do not use traditional pipeline to generate RGB image. 

Fragment shader outputs surface properties (shader inputs)
(e.g., position, normal, material diffuse color, specular color)

Rendering output is a screen-size 2D buffer representing information 
about the surface geometry visible at each pixel
(This buffer is called the “g-buffer”, for geometry buffer) 

After all geometry has been rendered, execute shader for each 
sample in the G-buffer, yielding RGB values

(shading is deferred until all geometry processing -- including all 
occlusion computations -- is complete)



 CMU 15-869, Fall 2013

G-buffer = geometry buffer

Image Credit: J. Klint, “Deferred Rendering in Leadworks Engine” 

Albedo (Re#ectance) Depth

SpecularNormal
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Example G-buffer layout
Graphics pipeline con"gured to render to four RGBA output buffers (32-bits per pixel, per buffer)

Implementation on modern GPUs:
- Application binds “multiple render targets” (RT0, RT1, RT2, RT3 in "gure) to pipeline
- Rendering geometry outputs to depth buffer + multiple color buffers

More intuitive to consider G-buffer as one big buffer with “fat” pixels
In the example above: 32 x 5 = 20 bytes per pixel  

Source: W. Engel, “Light-Prepass Renderer Mark III” SIGGRAPH 2009 Talks
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Two-pass deferred shading algorithm
▪ Pass 1: geometry pass

- Render scene geometry using traditional pipeline
- Write visible geometry information to G-buffer

▪ Pass 2: shading pass
For each G-buffer sample, compute shading

- Read G-buffer data for current sample
- Accumulate contribution of all lights
- Output !nal surface color for sample

Image Credit: J. Klint, “Deferred Rendering in Leadworks Engine” 

Final Image 

Note: Deferred shading produces same result* as a 
forward rendering approach, but the order of 
computation is different. 

* Up to order of #oating-point operations
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Motivation: why deferred shading?

▪ Shading is expensive: shade only visible fragments
- Deferred shading has same effect as perfect early occlusion culling
- But is triangle order invariant (will only shade visible fragments, regardless 

of application’s triangle submission order)

▪ Forward rendering shades small triangles inefficiently
- Recall quad-fragment shading granularity: multiple fragments generated for 

pixels along triangle edges
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Recall: forward shading shades multiple fragments at pixels 
containing triangle boundaries

Shading computations per pixel

8 +
7
6
5
4
3
2
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Motivation: why deferred shading?

▪ Shade only visible surface fragments 

▪ Forward rendering shades small triangles inefficiently (quad-
fragment granularity)

▪ Increasing complexity of lighting computations
- Growing interest in scaling scenes to many light sources
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1000 lights

[J. Andersson, SIGGRAPH 2009 Beyond Programmable shading course talk]
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Lights

Dcutoff
Omnidirectional point light
(with distance cutoff)

Directional spotlight 

Environment light 

Shadowed light

Many different kinds of lights

For efficiency, lights often specify 
!nite volume of in#uence
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Forward rendering: many-light shader (naive)
struct	
  LightDefinition	
  {

	
  	
  int	
  type;

	
  	
  ...

}

sampler	
  mySamp;

Texture2D<float3>	
  myTex;

Texture2D<float>	
  myEnvMaps[MAX_NUM_LIGHTS];	
  

Texture2D<float>	
  myShadowMaps[MAX_NUM_LIGHTS];

LightDefinition	
  lightList[MAX_NUM_LIGHTS];

int	
  numLights;

float4	
  shader(float3	
  norm,	
  float2	
  uv)

{

	
  	
  float3	
  kd	
  =	
  myTex.Sample(mySamp,	
  uv);

	
  	
  float4	
  result	
  =	
  float4(0,	
  0,	
  0,	
  0);

	
  	
  for	
  (int	
  i=0;	
  i<numLights;	
  i++)

	
  	
  {

	
  	
  	
  	
  	
  	
  if	
  (this	
  fragment	
  is	
  illuminated	
  by	
  current	
  light)

	
  	
  	
  	
  	
  	
  {

	
  	
  	
  	
  	
  	
  	
  	
  	
  result	
  +=	
  //	
  eval	
  contribution	
  of	
  light	
  to	
  surface	
  reflectance	
  here

	
  	
  	
  	
  	
  	
  }	
  	
  

    }

	
  	
  	
  return	
  result;

}

Execution divergence:
1.Different outcomes for “is illuminated” 

predicate

2.Different logic to perform test
(based on light type)

3.Different logic in loop body (based on 
light type, shadowed/unshadowed, etc.)  

Work inefficient:
Predicate evaluated for each fragment/
light pair:
O(FL) work

F = number of fragments
L = nubmer of lights

(spatial coherence in predicate result 
should exist)

Large footprint:
Assets for all lights (shadow maps, 
environment maps, etc.) must be 
allocated and bound to pipeline
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Forward rendering: techniques for scaling to many lights

▪ Application maintains light lists
- Each object stores lists lights that illuminate it
- CPU computes list each frame by intersecting light volumes with scene geometry

(note, light-geometry interactions computed per light-object pair, not light-fragment pair)
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Light lists

L1

L2

L3

L4

Obj 1

Obj 2
Obj 3

Obj 4
Obj 5

Obj 1: L1, L2

Obj 2: L2
Obj 3: L2

Obj 4: L2, L4

Example: compute lists based on conservative bounding volumes 
for lights and scene objects

Resulting per-object lists:

Obj 5: L3, L4
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Forward rendering: techniques for scaling to many lights
▪ Application maintains light lists

- Computed conservatively per frame

▪ Option 1: draw scene in small batches
- First generate data structures for all lights: e.g., shadow maps
- Before drawing each object, only bind data for relevant lights
- Precompile shader variants for different sets of bound lights (4-light version, 8-light version...)

- Low execution divergence during fragment shading
- Many graphics state changes, small draw batch sizes (draw call = single object) *

▪ Option 2: multi-pass rendering
- Compute per-light lists (for each light, compute illuminated objects)
- For each light:

- Compute necessary data structures (e.g., shadow maps)
- Render scene with additive blending (only render geometry illuminated by light)

- Minimal footprint for light data
- Low execution divergence during fragment shading
- Signi!cant overheads: redundant geometry processing, many frame-buffer accesses, redundant 

execution of common shading sub-expressions in fragment shader

Stream 
over 

scene 
geometry 

Stream 
over 

lights

* Optimized applications will sort geometry by number of lights in list in order to minimize total number of graphics pipeline state changes 
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Many-light deferred shading
Generate	
  G	
  buffer
For	
  each	
  light:

Generate/bind	
  light’s	
  shadow/environment	
  maps
For	
  each	
  G-­‐buffer	
  sample:	
  	
  //	
  Compute	
  light’s	
  contribution	
  for	
  each	
  G-­‐buffer	
  sample

Load	
  G-­‐buffer	
  data
Evaluate	
  light	
  contribution	
  	
  //	
  may	
  be	
  zero	
  if	
  light	
  doesn’t	
  illuminate	
  surface	
  sample
Accumulate	
  contribution	
  into	
  frame	
  buffer

▪ Good
- Only process scene geometry once (stream over geometry)
- Avoids divergent execution in shader
- Outer loop is over lights: avoids light data footprint issues (stream over lights)
- Recall other deferred bene!ts: only shade visibility samples (and no more)

▪ Bad?
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Many-light deferred shading
Generate	
  G	
  buffer	
  
For	
  each	
  light:

Generate/bind	
  light’s	
  shadow/environment	
  maps
For	
  each	
  G-­‐buffer	
  sample:	
  	
  //	
  Compute	
  light’s	
  contribution	
  for	
  each	
  G-­‐buffer	
  sample

Load	
  G-­‐buffer	
  data
Evaluate	
  light	
  contribution	
  	
  //	
  may	
  be	
  zero	
  if	
  light	
  doesn’t	
  illuminate	
  surface	
  sample
Accumulate	
  contribution	
  into	
  frame	
  buffer

▪ Bad
- High G-buffer footprint costs: G-buffer has large footprint

- Especially when G-buffer is supersampled!

- High bandwidth costs (reload G-buffer each pass, output to frame-buffer)
- Also, color compression techniques may not work as well for shader input values

- One shade per frame-buffer sample
- Does not support transparency (need multiple fragments per pixel)
- Challenging to implement MSAA efficiently (more on this to come)
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Reducing deferred shading bandwidth costs
▪ Process multiple lights in each accumulation pass

- Amortize G-buffer load and frame-buffer write across lighting computations for multiple lights

▪ Only perform shading computations for G-buffer samples illuminated by light
- Technique 1: rasterize geometry of light volume, (will only generate fragments for covered G-buffer samples)

(light-fragment interaction predicate is evaluated by rasterizer)

- Technique 2: CPU computes screen-aligned quad covered by light volume, renders quad

- Many other techniques for culling light/G-buffer sample interactions

Light volume geometry
If volume is convex and only front-facing triangles are rendered, 
rasterizer will only generate fragments in the yellow region 
(these are the only samples that can be effected by the light)
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Visualization of light-sample interaction count

Number of lights evaluated per G-buffer sample
(scene contains 1024 point lights) 

Image Credit: A. Lauritzen

Per-light culling performed using screen-aligned quad per light
(depth of quad is nearest point in light volume: early Z will cull fragments behind scene geometry) 
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Tile-based deferred shading
▪ Main idea: exploit coherence in light-sample interactions

- Compute set of lights that in#uence a small tile of G-buffer samples, then 
compute contribution of lights to samples in the tile

▪ Efficient implementation enabled by compute shader
- Amortize G-buffer load, frame-buffer write across all lights
- Amortize light data load across tile samples
- Amortize light-sample culling across samples in a tile

[Andersson 09]
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Tile-based deferred shading [Andersson 09]

LightDescription	
  tileLightList[MAX_LIGHTS];	
  	
  //	
  stored	
  in	
  group	
  shared	
  memory

All	
  threads	
  cooperatively	
  compute	
  Z-­‐min,	
  Zmax	
  for	
  current	
  tile	
  

barrier;

for	
  each	
  light:	
  	
  //	
  parallel	
  across	
  threads	
  in	
  thread	
  group	
  (parallel	
  over	
  lights)
	
  	
  	
  if	
  (light	
  volume	
  intersects	
  tile	
  frustum)
	
  	
  	
  	
  	
  	
  append	
  light	
  to	
  tileLightList	
  //	
  stored	
  in	
  shared	
  memory

barrier;

for	
  each	
  sample:	
  	
  //	
  parallel	
  across	
  threads	
  in	
  group	
  (parallel	
  over	
  samples)
	
  	
  	
  result	
  =	
  float4(0,0,0,0)
	
  	
  	
  load	
  G-­‐buffer	
  data	
  for	
  sample
	
  	
  	
  for	
  each	
  light	
  in	
  tileLightList:	
  	
  //	
  no	
  divergence	
  across	
  samples
	
  	
  	
  	
  	
  	
  	
  result	
  +=	
  evaluate	
  contribution	
  of	
  light

	
  	
  	
  store	
  result	
  to	
  appropriate	
  position	
  in	
  frame	
  buffer	
  

Each compute shader thread group is responsible for shading a 16x16 sample tile of the G-buffer (256 threads per group)

Load depth buffer once

Cull lights at tile granularity

Read G-buffer once

Write to frame buffer once
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Tiled-based light culling
Yellow boxes: screen-aligned light volume bonding boxes
Blue boxes: screen tile boundaries

Image credit: HMREngine: http://www.hmrengine.com/blog/?p=399

http://www.hmrengine.com/blog/?p=399
http://www.hmrengine.com/blog/?p=399
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Tile-based deferred shading: good light culling efficiency
16x16 granularity of light culling is visible

Number of lights evaluated per G-buffer sample
(scene contains 1024 point lights) 

Image Credit: A. Lauritzen
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Culling inefficiency near silhouettes

Tile screen boundaries + tile (zmin, zmax) de"ne a frustum
Depth bounds are not tight when tile contains an object silhouette 

Image Credit: A. Lauritzen
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Tiled vs. conventional deferred shading

[Lauritzen 2009]

Deferred shading rendering performance: 1920x1080 resolution
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“Forward plus” rendering
▪ Tile based light culling is not speci"c to deferred shading
▪ “Forward+” rendering:

▪ Achieves light culling bene"ts of tiled-deferred approach in a 
forward renderer
- Primary difference is how shading is scheduled:

- Forward+ recomputes shading inputs using a second geometry pass. 
(“rematerialization”). Rasterizer generates shading work.

- Tiled-deferred stores shading inputs in G-buffer.  Application iterates over 
samples using compute shader to generate shading work. 

Phase	
  1:	
  Render	
  Z-­‐prepass	
  to	
  populate	
  depth	
  buffer
Phase	
  2:	
  In	
  compute	
  shader:	
  compute	
  zmin/zmax	
  for	
  all	
  tiles,	
  compute	
  light	
  lists
Phase	
  3:	
  Render	
  scene	
  with	
  shading	
  enabled:

	
  	
  	
  Fragment	
  shader	
  determines	
  tile	
  containing	
  fragment
	
  	
  	
  Shader	
  uses	
  tile’s	
  light	
  list	
  when	
  computing	
  surface	
  illumination.
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Review: MSAA

Main idea: decouple shading sampling rate from visibility sampling rate
Depth buffer: stores depth per sample
Color buffer: stores color per sample
Resample color buffer to get !nal image pixel values
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MSAA  in a deferred shading system
▪ Challenge: deferred shading shades exactly once per G-buffer sample *

▪ MSAA: shades once per triangle contributing coverage to samples in a pixel
- For pixels in interior of projected triangle: one shading computation per pixel
- Extra shading occurs at pixels along triangle boundaries

- This is desirable: extra shading necessary to anti-alias object silhouettes
- Undesirable consequence is extra shading when two adjacent triangles from the same 

surface surface meet.

* This is also why transparency is challenging in a deferred shading system
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Two anti-aliasing solutions for deferred shading 
▪ Super-sample G-buffer

- Generate super-sampled G-buffer
- Shade at G-buffer resolution
- Resample shaded results to get !nal frame-buffer pixels
- Problems:

- Increased G-buffer footprint (store “fat pixels” at super-sampled resolution
- 1900 x 1200 x 4spp x 20 bytes per sample = 173 MB frame-buffer

- Increased shading cost (shade at visibility rate, not once per pixel!)

▪ Intelligently !lter aliased shading results
- Does not increase G-buffer footprint or shading cost, produces artifacts

- Current popular technique: morphological anti-aliasing (MLAA)
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Morphological anti-aliasing (MLAA)
Detect careful designed patterns in image
Blend neighboring pixels according to a few simple rules

[Reshetov 09]
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Morphological anti-aliasing (MLAA)

Aliased image
(one shading sample per pixel)

After !ltering using MLAAZoomed views
(top: aliased, bottom: after MLAA)

[Reshetov 09]
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Anti-aliasing solutions for deferred shading 
▪ Super-sample G-buffer, super-sample shading

- Increases G-buffer footprint and shading cost

▪ Intelligently !lter aliases shading results (MLAA popular choice)
- Does not increase G-buffer footprint or shading costs, but may produce artifacts (hallucinates edges/detail)

▪ Application implements MSAA on its own
- Render super-sampled G-buffer
- Launch one shader instance for each G-buffer pixel, not each sample
- Shader implementation:

Detect	
  if	
  pixel	
  contains	
  an	
  edge	
  	
  //	
  how	
  might	
  this	
  be	
  done	
  without	
  geometry	
  information?

If	
  pixel	
  contains	
  edge:

Shade	
  all	
  G-­‐buffer	
  samples	
  for	
  pixel	
  (sequentially	
  in	
  shader)

Combine	
  results	
  into	
  single	
  per	
  pixel	
  color	
  output

else:

Shade	
  one	
  G-­‐buffer	
  sample,	
  store	
  result

- Increases G-buffer footprint, approximately same shading cost as MSAA
- Some additional BW cost (to detect edges) + potential execution divergence in shader



 CMU 15-869, Fall 2013

Handling divergence when implementing MSAA 
in a shader

Red pixels = shader determines these pixels 
contain edges (require additional shading)

Adaptive shading rate increases divergence in 
shader execution
(recall eliminating shading divergence was one of 
the motivations of deferred shading)

Can apply standard gamut of data-parallel programming solutions:

e.g., multi-pass solution:
- Phase 1: categorize pixels, set stencil buffer
- Phase 2: shade pixels requiring 1 shading computation
- Phase 3: #ip stencil value, shade pixels requiring N shading computations

This solution is a common bandwidth vs. execution coherence trade-off!
(recall earlier in lecture: same principle applied when sorting geometry draw calls by active lights) 
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Deferred shading in mobile GPUs
▪ Energy-efficient rendering

- Philosophy: aggressive cull unnecessary work to conserve energy

▪ Implementation of OpenGL ES graphics pipeline by imagination PowerVR 
GPUs is sort-middle tiled (just like assignment 1) with deferred shading
- Note: this is deferred shading implemented by the system, not on top of the graphics pipeline 

by the application

- Tiled rendering implementation can circumvent problem of large G-buffer footprint

Phase 2 implementation of tiled renderer: (bin processing)
For	
  each	
  bin:

	
  For	
  each	
  triangle	
  in	
  bin’s	
  triangle	
  list:
	
  	
  	
  	
  Rasterize	
  triangle	
  (also	
  store	
  triangle	
  id	
  per	
  sample	
  in	
  frame	
  buffer)
	
  
	
  //	
  Determine	
  quad-­‐fragments	
  that	
  contribute	
  to	
  frame	
  buffer
	
  For	
  each	
  sample	
  in	
  tile:
	
  	
  	
  	
  Given	
  triangle	
  id,	
  compute	
  quad	
  fragment	
  that	
  contributed	
  to	
  sample
	
  	
  	
  	
  Add	
  quad-­‐fragment	
  to	
  list	
  of	
  quad	
  fragments	
  to	
  shade	
  (if	
  not	
  in	
  list	
  already)

	
  //	
  Shade	
  only	
  quad-­‐fragments	
  that	
  contribute	
  coverage
	
  For	
  each	
  required	
  quad-­‐fragment:
	
  	
  	
  	
  Shade	
  quad-­‐fragment	
  and	
  contribute	
  results	
  into	
  frame-­‐buffer



 CMU 15-869, Fall 2013

Deferred shading summary
▪ Main idea: perform shading calculations after all geometry processing operations 

(rasterization, occlusions) are complete

▪ Modern motivations
- Scaling scenes to complex lighting conditions (many lights, diverse lights)
- High geometric complexity (due to tessellation) increases overhead of Z-prepass
- Yet another motivation: tiny triangles increase overhead of quad-fragment-based forward shading

▪ Computes (more-or-less) the same result as forward rendering; reorder key 
rendering loops to change schedule of computation
- Key loops: for all lights, for all drawing primitives
- Different footprint characteristics

- Trade light data footprint for G-buffer footprint

- Different bandwidth characteristics

- Different execution coherence characteristics
- Traditionally deferred shading has traded bandwidth for increased batch sizes and coherence
- Tile-based methods improve bandwidth requirements considerably
- MSAA changes bandwidth, execution coherence equation yet again

▪ Keep in mind: not used for transparent surfaces
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Final comments
▪ Which is better, forward or deferred shading?

- Depends on context
- Is geometric complexity high? (prepass might be costly)
- Are triangles small? (forward shading has overhead)
- Is multi-sample anti-aliasing desired? (G-buffer footprint might be too large)
- Is there signi"cant divergence impacting lighting computations?

▪ Common tradeoff: bandwidth vs. execution coherence
- Another example of relying on high bandwidth to achieve high ALU utilization
- In graphics: typically manifest as multi-pass algorithms

▪ One lesson from today: when considering new techniques or a new system 
design, be cognizant of interoperability with existing features and 
optimizations
- Deferred shading is not compatible with hardware-accelerated MSAA implementations 

(application must role its own version of MSAA... and still takes a large G-buffer footprint hit)
- Deferred shading does not support transparent surfaces
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Reading
▪ A Sort-Based Deferred Shading Architecture for Decoupled Sampling. P. Clarberg et al. 

SIGGRAPH 2013


