
Visual Computing Systems
CMU 15-869, Fall 2013

Lecture 9:

Deferred Shading

 CMU 15-869, Fall 2013

The course so far
The real-time graphics pipeline abstraction

Principle graphics abstractions
Algorithms and modern high performance implementations of those abstractions
Workload characteristics

Today... deferred shading

SPMD Programming abstractions
Shading languages: extending the pipeline with application de!ned shading functions
General purpose SPMD programming (“compute mode” abstractions)
The GPU processor core implementation and how these abstractions map to these processors

An alternative pipeline structure (and one use of the compute mode abstraction)
We are about to cover several alternative rendering pipelines/algorithms

 CMU 15-869, Fall 2013

Deferred shading
▪ Idea: restructure the rendering pipeline to perform shading

after all occlusions have been resolved

▪ Not a new idea: implemented in several classic graphics
systems, but not directly supported by most high-end GPUs
- But modern graphics pipeline provides mechanisms to allow application to implement

deferred shading efficiently
- Is natively implemented by mobile GPUs
- Classic hardware-supported implementations:

- [Deering et al. 88]
- UNC PixelFlow [Molnar et al. 92]

▪ Popular algorithm for rendering in modern games

 CMU 15-869, Fall 2013

The graphics pipeline

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Primitive Processing

Frame Buffer

“Forward rendering”

 CMU 15-869, Fall 2013

Deferred shading pipeline

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Geometry pass-through

Frame-Buffer Ops

Primitive Processing

“G-buffer”

Shading

Frame buffer

Two pass approach:

Do not use traditional pipeline to generate RGB image.

Fragment shader outputs surface properties (shader inputs)
(e.g., position, normal, material diffuse color, specular color)

Rendering output is a screen-size 2D buffer representing information
about the surface geometry visible at each pixel
(This buffer is called the “g-buffer”, for geometry buffer)

After all geometry has been rendered, execute shader for each
sample in the G-buffer, yielding RGB values

(shading is deferred until all geometry processing -- including all
occlusion computations -- is complete)

 CMU 15-869, Fall 2013

G-buffer = geometry buffer

Image Credit: J. Klint, “Deferred Rendering in Leadworks Engine”

Albedo (Re#ectance) Depth

SpecularNormal

 CMU 15-869, Fall 2013

Example G-buffer layout
Graphics pipeline con"gured to render to four RGBA output buffers (32-bits per pixel, per buffer)

Implementation on modern GPUs:
- Application binds “multiple render targets” (RT0, RT1, RT2, RT3 in "gure) to pipeline
- Rendering geometry outputs to depth buffer + multiple color buffers

More intuitive to consider G-buffer as one big buffer with “fat” pixels
In the example above: 32 x 5 = 20 bytes per pixel

Source: W. Engel, “Light-Prepass Renderer Mark III” SIGGRAPH 2009 Talks

 CMU 15-869, Fall 2013

Two-pass deferred shading algorithm
▪ Pass 1: geometry pass

- Render scene geometry using traditional pipeline
- Write visible geometry information to G-buffer

▪ Pass 2: shading pass
For each G-buffer sample, compute shading

- Read G-buffer data for current sample
- Accumulate contribution of all lights
- Output !nal surface color for sample

Image Credit: J. Klint, “Deferred Rendering in Leadworks Engine”

Final Image

Note: Deferred shading produces same result* as a
forward rendering approach, but the order of
computation is different.

* Up to order of #oating-point operations

 CMU 15-869, Fall 2013

Motivation: why deferred shading?

▪ Shading is expensive: shade only visible fragments
- Deferred shading has same effect as perfect early occlusion culling
- But is triangle order invariant (will only shade visible fragments, regardless

of application’s triangle submission order)

▪ Forward rendering shades small triangles inefficiently
- Recall quad-fragment shading granularity: multiple fragments generated for

pixels along triangle edges

 CMU 15-869, Fall 2013

Recall: forward shading shades multiple fragments at pixels
containing triangle boundaries

Shading computations per pixel

8 +
7
6
5
4
3
2
1

 CMU 15-869, Fall 2013

Recall: forward shading shades multiple fragments at pixels
containing triangle boundaries

Shading computations per pixel

8 +
7
6
5
4
3
2
1

 CMU 15-869, Fall 2013

Motivation: why deferred shading?

▪ Shade only visible surface fragments

▪ Forward rendering shades small triangles inefficiently (quad-
fragment granularity)

▪ Increasing complexity of lighting computations
- Growing interest in scaling scenes to many light sources

 CMU 15-869, Fall 2013

1000 lights

[J. Andersson, SIGGRAPH 2009 Beyond Programmable shading course talk]

 CMU 15-869, Fall 2013

Lights

Dcutoff
Omnidirectional point light
(with distance cutoff)

Directional spotlight

Environment light

Shadowed light

Many different kinds of lights

For efficiency, lights often specify
!nite volume of in#uence

 CMU 15-869, Fall 2013

Forward rendering: many-light shader (naive)
struct	
 LightDefinition	
 {

	
 	
 int	
 type;

	
 	
 ...

}

sampler	
 mySamp;

Texture2D<float3>	
 myTex;

Texture2D<float>	
 myEnvMaps[MAX_NUM_LIGHTS];	

Texture2D<float>	
 myShadowMaps[MAX_NUM_LIGHTS];

LightDefinition	
 lightList[MAX_NUM_LIGHTS];

int	
 numLights;

float4	
 shader(float3	
 norm,	
 float2	
 uv)

{

	
 	
 float3	
 kd	
 =	
 myTex.Sample(mySamp,	
 uv);

	
 	
 float4	
 result	
 =	
 float4(0,	
 0,	
 0,	
 0);

	
 	
 for	
 (int	
 i=0;	
 i<numLights;	
 i++)

	
 	
 {

	
 	
 	
 	
 	
 	
 if	
 (this	
 fragment	
 is	
 illuminated	
 by	
 current	
 light)

	
 	
 	
 	
 	
 	
 {

	
 	
 	
 	
 	
 	
 	
 	
 	
 result	
 +=	
 //	
 eval	
 contribution	
 of	
 light	
 to	
 surface	
 reflectance	
 here

	
 	
 	
 	
 	
 	
 }	
 	

 }

	
 	
 	
 return	
 result;

}

Execution divergence:
1.Different outcomes for “is illuminated”

predicate

2.Different logic to perform test
(based on light type)

3.Different logic in loop body (based on
light type, shadowed/unshadowed, etc.)

Work inefficient:
Predicate evaluated for each fragment/
light pair:
O(FL) work

F = number of fragments
L = nubmer of lights

(spatial coherence in predicate result
should exist)

Large footprint:
Assets for all lights (shadow maps,
environment maps, etc.) must be
allocated and bound to pipeline

 CMU 15-869, Fall 2013

Forward rendering: techniques for scaling to many lights

▪ Application maintains light lists
- Each object stores lists lights that illuminate it
- CPU computes list each frame by intersecting light volumes with scene geometry

(note, light-geometry interactions computed per light-object pair, not light-fragment pair)

 CMU 15-869, Fall 2013

Light lists

L1

L2

L3

L4

Obj 1

Obj 2
Obj 3

Obj 4
Obj 5

Obj 1: L1, L2

Obj 2: L2
Obj 3: L2

Obj 4: L2, L4

Example: compute lists based on conservative bounding volumes
for lights and scene objects

Resulting per-object lists:

Obj 5: L3, L4

 CMU 15-869, Fall 2013

Forward rendering: techniques for scaling to many lights
▪ Application maintains light lists

- Computed conservatively per frame

▪ Option 1: draw scene in small batches
- First generate data structures for all lights: e.g., shadow maps
- Before drawing each object, only bind data for relevant lights
- Precompile shader variants for different sets of bound lights (4-light version, 8-light version...)

- Low execution divergence during fragment shading
- Many graphics state changes, small draw batch sizes (draw call = single object) *

▪ Option 2: multi-pass rendering
- Compute per-light lists (for each light, compute illuminated objects)
- For each light:

- Compute necessary data structures (e.g., shadow maps)
- Render scene with additive blending (only render geometry illuminated by light)

- Minimal footprint for light data
- Low execution divergence during fragment shading
- Signi!cant overheads: redundant geometry processing, many frame-buffer accesses, redundant

execution of common shading sub-expressions in fragment shader

Stream
over

scene
geometry

Stream
over

lights

* Optimized applications will sort geometry by number of lights in list in order to minimize total number of graphics pipeline state changes

 CMU 15-869, Fall 2013

Many-light deferred shading
Generate	
 G	
 buffer
For	
 each	
 light:

Generate/bind	
 light’s	
 shadow/environment	
 maps
For	
 each	
 G-­‐buffer	
 sample:	
 	
 //	
 Compute	
 light’s	
 contribution	
 for	
 each	
 G-­‐buffer	
 sample

Load	
 G-­‐buffer	
 data
Evaluate	
 light	
 contribution	
 	
 //	
 may	
 be	
 zero	
 if	
 light	
 doesn’t	
 illuminate	
 surface	
 sample
Accumulate	
 contribution	
 into	
 frame	
 buffer

▪ Good
- Only process scene geometry once (stream over geometry)
- Avoids divergent execution in shader
- Outer loop is over lights: avoids light data footprint issues (stream over lights)
- Recall other deferred bene!ts: only shade visibility samples (and no more)

▪ Bad?

 CMU 15-869, Fall 2013

Many-light deferred shading
Generate	
 G	
 buffer	

For	
 each	
 light:

Generate/bind	
 light’s	
 shadow/environment	
 maps
For	
 each	
 G-­‐buffer	
 sample:	
 	
 //	
 Compute	
 light’s	
 contribution	
 for	
 each	
 G-­‐buffer	
 sample

Load	
 G-­‐buffer	
 data
Evaluate	
 light	
 contribution	
 	
 //	
 may	
 be	
 zero	
 if	
 light	
 doesn’t	
 illuminate	
 surface	
 sample
Accumulate	
 contribution	
 into	
 frame	
 buffer

▪ Bad
- High G-buffer footprint costs: G-buffer has large footprint

- Especially when G-buffer is supersampled!

- High bandwidth costs (reload G-buffer each pass, output to frame-buffer)
- Also, color compression techniques may not work as well for shader input values

- One shade per frame-buffer sample
- Does not support transparency (need multiple fragments per pixel)
- Challenging to implement MSAA efficiently (more on this to come)

 CMU 15-869, Fall 2013

Reducing deferred shading bandwidth costs
▪ Process multiple lights in each accumulation pass

- Amortize G-buffer load and frame-buffer write across lighting computations for multiple lights

▪ Only perform shading computations for G-buffer samples illuminated by light
- Technique 1: rasterize geometry of light volume, (will only generate fragments for covered G-buffer samples)

(light-fragment interaction predicate is evaluated by rasterizer)

- Technique 2: CPU computes screen-aligned quad covered by light volume, renders quad

- Many other techniques for culling light/G-buffer sample interactions

Light volume geometry
If volume is convex and only front-facing triangles are rendered,
rasterizer will only generate fragments in the yellow region
(these are the only samples that can be effected by the light)

 CMU 15-869, Fall 2013

Visualization of light-sample interaction count

Number of lights evaluated per G-buffer sample
(scene contains 1024 point lights)

Image Credit: A. Lauritzen

Per-light culling performed using screen-aligned quad per light
(depth of quad is nearest point in light volume: early Z will cull fragments behind scene geometry)

 CMU 15-869, Fall 2013

Tile-based deferred shading
▪ Main idea: exploit coherence in light-sample interactions

- Compute set of lights that in#uence a small tile of G-buffer samples, then
compute contribution of lights to samples in the tile

▪ Efficient implementation enabled by compute shader
- Amortize G-buffer load, frame-buffer write across all lights
- Amortize light data load across tile samples
- Amortize light-sample culling across samples in a tile

[Andersson 09]

 CMU 15-869, Fall 2013

Tile-based deferred shading [Andersson 09]

LightDescription	
 tileLightList[MAX_LIGHTS];	
 	
 //	
 stored	
 in	
 group	
 shared	
 memory

All	
 threads	
 cooperatively	
 compute	
 Z-­‐min,	
 Zmax	
 for	
 current	
 tile	

barrier;

for	
 each	
 light:	
 	
 //	
 parallel	
 across	
 threads	
 in	
 thread	
 group	
 (parallel	
 over	
 lights)
	
 	
 	
 if	
 (light	
 volume	
 intersects	
 tile	
 frustum)
	
 	
 	
 	
 	
 	
 append	
 light	
 to	
 tileLightList	
 //	
 stored	
 in	
 shared	
 memory

barrier;

for	
 each	
 sample:	
 	
 //	
 parallel	
 across	
 threads	
 in	
 group	
 (parallel	
 over	
 samples)
	
 	
 	
 result	
 =	
 float4(0,0,0,0)
	
 	
 	
 load	
 G-­‐buffer	
 data	
 for	
 sample
	
 	
 	
 for	
 each	
 light	
 in	
 tileLightList:	
 	
 //	
 no	
 divergence	
 across	
 samples
	
 	
 	
 	
 	
 	
 	
 result	
 +=	
 evaluate	
 contribution	
 of	
 light

	
 	
 	
 store	
 result	
 to	
 appropriate	
 position	
 in	
 frame	
 buffer	

Each compute shader thread group is responsible for shading a 16x16 sample tile of the G-buffer (256 threads per group)

Load depth buffer once

Cull lights at tile granularity

Read G-buffer once

Write to frame buffer once

 CMU 15-869, Fall 2013

Tiled-based light culling
Yellow boxes: screen-aligned light volume bonding boxes
Blue boxes: screen tile boundaries

Image credit: HMREngine: http://www.hmrengine.com/blog/?p=399

http://www.hmrengine.com/blog/?p=399
http://www.hmrengine.com/blog/?p=399

 CMU 15-869, Fall 2013

Tile-based deferred shading: good light culling efficiency
16x16 granularity of light culling is visible

Number of lights evaluated per G-buffer sample
(scene contains 1024 point lights)

Image Credit: A. Lauritzen

 CMU 15-869, Fall 2013

Culling inefficiency near silhouettes

Tile screen boundaries + tile (zmin, zmax) de"ne a frustum
Depth bounds are not tight when tile contains an object silhouette

Image Credit: A. Lauritzen

 CMU 15-869, Fall 2013

Tiled vs. conventional deferred shading

[Lauritzen 2009]

Deferred shading rendering performance: 1920x1080 resolution

 CMU 15-869, Fall 2013

“Forward plus” rendering
▪ Tile based light culling is not speci"c to deferred shading
▪ “Forward+” rendering:

▪ Achieves light culling bene"ts of tiled-deferred approach in a
forward renderer
- Primary difference is how shading is scheduled:

- Forward+ recomputes shading inputs using a second geometry pass.
(“rematerialization”). Rasterizer generates shading work.

- Tiled-deferred stores shading inputs in G-buffer. Application iterates over
samples using compute shader to generate shading work.

Phase	
 1:	
 Render	
 Z-­‐prepass	
 to	
 populate	
 depth	
 buffer
Phase	
 2:	
 In	
 compute	
 shader:	
 compute	
 zmin/zmax	
 for	
 all	
 tiles,	
 compute	
 light	
 lists
Phase	
 3:	
 Render	
 scene	
 with	
 shading	
 enabled:

	
 	
 	
 Fragment	
 shader	
 determines	
 tile	
 containing	
 fragment
	
 	
 	
 Shader	
 uses	
 tile’s	
 light	
 list	
 when	
 computing	
 surface	
 illumination.

 CMU 15-869, Fall 2013

Review: MSAA

Main idea: decouple shading sampling rate from visibility sampling rate
Depth buffer: stores depth per sample
Color buffer: stores color per sample
Resample color buffer to get !nal image pixel values

 CMU 15-869, Fall 2013

MSAA in a deferred shading system
▪ Challenge: deferred shading shades exactly once per G-buffer sample *

▪ MSAA: shades once per triangle contributing coverage to samples in a pixel
- For pixels in interior of projected triangle: one shading computation per pixel
- Extra shading occurs at pixels along triangle boundaries

- This is desirable: extra shading necessary to anti-alias object silhouettes
- Undesirable consequence is extra shading when two adjacent triangles from the same

surface surface meet.

* This is also why transparency is challenging in a deferred shading system

 CMU 15-869, Fall 2013

Two anti-aliasing solutions for deferred shading
▪ Super-sample G-buffer

- Generate super-sampled G-buffer
- Shade at G-buffer resolution
- Resample shaded results to get !nal frame-buffer pixels
- Problems:

- Increased G-buffer footprint (store “fat pixels” at super-sampled resolution
- 1900 x 1200 x 4spp x 20 bytes per sample = 173 MB frame-buffer

- Increased shading cost (shade at visibility rate, not once per pixel!)

▪ Intelligently !lter aliased shading results
- Does not increase G-buffer footprint or shading cost, produces artifacts

- Current popular technique: morphological anti-aliasing (MLAA)

 CMU 15-869, Fall 2013

Morphological anti-aliasing (MLAA)
Detect careful designed patterns in image
Blend neighboring pixels according to a few simple rules

[Reshetov 09]

 CMU 15-869, Fall 2013

Morphological anti-aliasing (MLAA)

Aliased image
(one shading sample per pixel)

After !ltering using MLAAZoomed views
(top: aliased, bottom: after MLAA)

[Reshetov 09]

 CMU 15-869, Fall 2013

Anti-aliasing solutions for deferred shading
▪ Super-sample G-buffer, super-sample shading

- Increases G-buffer footprint and shading cost

▪ Intelligently !lter aliases shading results (MLAA popular choice)
- Does not increase G-buffer footprint or shading costs, but may produce artifacts (hallucinates edges/detail)

▪ Application implements MSAA on its own
- Render super-sampled G-buffer
- Launch one shader instance for each G-buffer pixel, not each sample
- Shader implementation:

Detect	
 if	
 pixel	
 contains	
 an	
 edge	
 	
 //	
 how	
 might	
 this	
 be	
 done	
 without	
 geometry	
 information?

If	
 pixel	
 contains	
 edge:

Shade	
 all	
 G-­‐buffer	
 samples	
 for	
 pixel	
 (sequentially	
 in	
 shader)

Combine	
 results	
 into	
 single	
 per	
 pixel	
 color	
 output

else:

Shade	
 one	
 G-­‐buffer	
 sample,	
 store	
 result

- Increases G-buffer footprint, approximately same shading cost as MSAA
- Some additional BW cost (to detect edges) + potential execution divergence in shader

 CMU 15-869, Fall 2013

Handling divergence when implementing MSAA
in a shader

Red pixels = shader determines these pixels
contain edges (require additional shading)

Adaptive shading rate increases divergence in
shader execution
(recall eliminating shading divergence was one of
the motivations of deferred shading)

Can apply standard gamut of data-parallel programming solutions:

e.g., multi-pass solution:
- Phase 1: categorize pixels, set stencil buffer
- Phase 2: shade pixels requiring 1 shading computation
- Phase 3: #ip stencil value, shade pixels requiring N shading computations

This solution is a common bandwidth vs. execution coherence trade-off!
(recall earlier in lecture: same principle applied when sorting geometry draw calls by active lights)

 CMU 15-869, Fall 2013

Deferred shading in mobile GPUs
▪ Energy-efficient rendering

- Philosophy: aggressive cull unnecessary work to conserve energy

▪ Implementation of OpenGL ES graphics pipeline by imagination PowerVR
GPUs is sort-middle tiled (just like assignment 1) with deferred shading
- Note: this is deferred shading implemented by the system, not on top of the graphics pipeline

by the application

- Tiled rendering implementation can circumvent problem of large G-buffer footprint

Phase 2 implementation of tiled renderer: (bin processing)
For	
 each	
 bin:

	
 For	
 each	
 triangle	
 in	
 bin’s	
 triangle	
 list:
	
 	
 	
 	
 Rasterize	
 triangle	
 (also	
 store	
 triangle	
 id	
 per	
 sample	
 in	
 frame	
 buffer)
	

	
 //	
 Determine	
 quad-­‐fragments	
 that	
 contribute	
 to	
 frame	
 buffer
	
 For	
 each	
 sample	
 in	
 tile:
	
 	
 	
 	
 Given	
 triangle	
 id,	
 compute	
 quad	
 fragment	
 that	
 contributed	
 to	
 sample
	
 	
 	
 	
 Add	
 quad-­‐fragment	
 to	
 list	
 of	
 quad	
 fragments	
 to	
 shade	
 (if	
 not	
 in	
 list	
 already)

	
 //	
 Shade	
 only	
 quad-­‐fragments	
 that	
 contribute	
 coverage
	
 For	
 each	
 required	
 quad-­‐fragment:
	
 	
 	
 	
 Shade	
 quad-­‐fragment	
 and	
 contribute	
 results	
 into	
 frame-­‐buffer

 CMU 15-869, Fall 2013

Deferred shading summary
▪ Main idea: perform shading calculations after all geometry processing operations

(rasterization, occlusions) are complete

▪ Modern motivations
- Scaling scenes to complex lighting conditions (many lights, diverse lights)
- High geometric complexity (due to tessellation) increases overhead of Z-prepass
- Yet another motivation: tiny triangles increase overhead of quad-fragment-based forward shading

▪ Computes (more-or-less) the same result as forward rendering; reorder key
rendering loops to change schedule of computation
- Key loops: for all lights, for all drawing primitives
- Different footprint characteristics

- Trade light data footprint for G-buffer footprint

- Different bandwidth characteristics

- Different execution coherence characteristics
- Traditionally deferred shading has traded bandwidth for increased batch sizes and coherence
- Tile-based methods improve bandwidth requirements considerably
- MSAA changes bandwidth, execution coherence equation yet again

▪ Keep in mind: not used for transparent surfaces

 CMU 15-869, Fall 2013

Final comments
▪ Which is better, forward or deferred shading?

- Depends on context
- Is geometric complexity high? (prepass might be costly)
- Are triangles small? (forward shading has overhead)
- Is multi-sample anti-aliasing desired? (G-buffer footprint might be too large)
- Is there signi"cant divergence impacting lighting computations?

▪ Common tradeoff: bandwidth vs. execution coherence
- Another example of relying on high bandwidth to achieve high ALU utilization
- In graphics: typically manifest as multi-pass algorithms

▪ One lesson from today: when considering new techniques or a new system
design, be cognizant of interoperability with existing features and
optimizations
- Deferred shading is not compatible with hardware-accelerated MSAA implementations

(application must role its own version of MSAA... and still takes a large G-buffer footprint hit)
- Deferred shading does not support transparent surfaces

 CMU 15-869, Fall 2013

Reading
▪ A Sort-Based Deferred Shading Architecture for Decoupled Sampling. P. Clarberg et al.

SIGGRAPH 2013

