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Today
m Some “GPGPU" history

m The CUDA (or OpenCL) programming model

m GRAMPS: an attempt to create a programmable graphics pipeline
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Early GPU-based scientific computation

Dense matrix-matrix multiplication

Kx N texture 0

Note: this work followed [Percy 00], which modeled OpenGL with

M

C

M

M x K texture 1

M x N frame buffer

Set frame buffer blend mode to ADD

fork=0to K
Set texture coords

Render 1 full-screen quadrilateral

multi-texturing as a SIMD processor for multi-pass rendering
(we discussed this last time in the shade-tree example)

[Larson and McAllister, SC2001]
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“GPGPU" 2002-2003

Sparse Matrix Solvers [Bolz 03]

Ray Tracing on Programmable Graphics Hardware [Purcell 02]
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Brook for GPUs s

B New language (C extensions) that abstracting GPU as a stream processor

- Streams: 1D, 2D arrays of data
- Kernels: per-element processing of stream data **

- Reductions: stream --> scalar

B [nfluences

- Data-parallel programing from scientific computing: ZPL, Nesl|
- Stream programming: StreaMIT, Stream(/Kernel

m Brook language runtime generated appropriate OpenGL calls

kernel void scale(float amount, float a<>, out float b<>)

{
Note: _» b = amount * a;
No loops, array indexing, or — }

explicit parallelism in code.

// note: omitting initialization
< of float scale_amount;
Semantics of kernel call are float input_stream<1000>;

to invoke kernel once per float output_stream<1000>;

output stream element
// map kernel onto streams

scale(scale amount, input_stream, output_stream);
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Stream programming (“pure”)

Streams

- Encapsulate per-element parallelism (every element can be processed in parallel)
- Encapsulate producer-consumer locality

Kernels

- Side-effect-free functions

- Encapsulate locality (kernel’s working set defined by inputs, outputs, and
temporaries)

- Encapsulate instruction-stream coherence (same kernel applied to each stream
element)

Modern implementations (e.g., StreaMIT, Stream(/Kernel() relied on static scheduling by
compiler to achieve high performance
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NVI D IA CU DA [lan Buck at NVIDIA, 2007]

m Alternative programming interface to Tesla-class GPUs

- “Compute mode”

- Recall: Tesla was first “unified shading” GPU

Vertex work
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m Low level abstraction, reflects capabilities of hardware
= Recall arguments in Cg paper

- Combines some elements of streaming and multi-threading (like HW does)

m (Open standards embodiment of this programming model is
OpenCL (Microsoft embodiment is Compute Shader)
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CUDA constructs (the kernel)

// CUDA kernel definition
__global  void scale(float amount, float* a, float* b)

{
int 1 = threadIdx.x; // CUDA builtin: get thread id

b[i] = amount * a[i];

}

// note: omitting initialization via cudaMalloc()
float scale_amount;

float* input_array;

float* output_array;

// launch N threads, each thread executes kernel ‘scale’
scale<<1,N>>(scale_amount, input_array, output_array);

Bulk thread launch: logically spawns N threads
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What is the behavior of this kernel?

// CUDA kernel definition
__global  void scale(float amount, float* a, float* b)

{
int 1 = threadIdx.x; // CUDA builtin: get thread id

b[@] = amount * a[i];

}

// note: omitting initialization via cudaMalloc()
float scale_amount;

float* input_array;

float* output_array;

// launch N threads, each thread executes kernel ‘scale’
scale<<1,N>>(scale_amount, input_array, output_array);

Bulk thread launch: logically spawns N threads

CMU 15-869, Fall 2013



Can system discover producer-consumer locality?

// CUDA kernel definition

__global _ void scale(float amount, float* a, float* b)

{

int i = threadIdx.Xx; // CUDA builtin: get thread id

b[i] = amount * a[i];

}

// note: omitting initialization via cudaMalloc()

float scale_amount;
float* input_array;
float* output_array;
float* tmp_array;

scale<<1,N>>(scale_amount, input_array, tmp_array);
scale<<1,N>>(scale_amount, tmp _array, output_array);

&

Kernel (scale)

J &

t
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CUDA constructs (the kernel)

// CUDA kernel definition
__global  void scale(float amount, float* a, float* b)

{
int 1 = threadIdx.x; // CUDA builtin: get thread id

b[i] = amount * a[i];

}

// note: omitting initialization via cudaMalloc()
float scale_amount;

float* input_array;

float* output_array;

// launch N threads, each thread executes kernel ‘scale’
scale<<1,N>>(scale_amount, input_array, output_array);

Bulk thread launch: logically spawns N threads

Question: What should N be?
Question: Do you normally think of “threads” this way?
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CUDA constructs (the kernel)

// CUDA kernel definition Given this implementation: each invocation
{_global_ void scale(float amount, float* a, float* b) of scale kernel is independent.

int 1 = threadIdx.x; // CUDA builtin: get thread id

b[i] = amount * a[i]; (bulk thread launch semantics no different
} than sequential semantics)

// note: omitting initialization via cudaMalloc()

float scale_amount; CUDA system has flexibility to parallelize any

float* input_array; wav it pleases
float* output_array; yiep :

// launch N threads, each thread executes kernel ‘scale’
scale<<1,N>>(scale_amount, input_array, output_array);

In many cases, thinking about a CUDA kernel as a stream processing kernel,
and CUDA arrays as streams is perfectly reasonable.

(programmer just has to do a little indexing in the kernel to get a reference
to stream inputs/outputs)
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Convolution example

// assume len(A) = len(B) + 2
__global _ void convolve(float* a, float* b)

{

// ignore

int 1 = threadIdx.x;

b[i] = a[i] + a[i+1] + a[i+2];
}

Note “adjacent” threads load same data.
Here: 3x input reuse (reuse increases with width of convolution filter)

AlO] | | A[1]| | Al2]| | AI3] | | AI4]
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CUDA thread hierarchy

#define BLOCK SIZE 4

__global  void convolve(float* a, float* b)

{
__shared__ float input[BLOCK_SIZE + 2];

int bi
int ti

blockIdx.x;
threadIdx.Xx;

input[bi] = A[ti];
if (bi < 2)
{

}

input[BLOCK _SIZE+bi] = A[ti+BLOCK_SIZE];

__syncthreads(); // barrier

b[ti] = input[bi] + input[bi+l] + input[bi+2];
}

// allocation omitted
// assume len(A) = N+2, len(B)=N
float* A, *B;

convolve<<BLOCK_SIZE, N/BLOCK_SIZE>>(A, B);

CUDA threads are grouped into thread blocks

Threads in a block are not independent.
They can cooperate to process shared data.

1. Threads communicate through
__shared__ variables

2. Threads barriervia __syncthreads()

'

“shared” scratch storage: float input[6]

----------------------------------
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CUDA thread hierarchy

// this code will launch 96 threads
// 6 blocks of 16 threads each

dim2 threadsPerBlock(4,4);
dim2 blocks(3,2);
myKernel<<blocks, threadsPerBlock>>();

Thread blocks (and the overall “grid” of blocks) can be 1D, 2D, 3D
(Convenience: many CUDA programs operate on n-D grids)

Thread blocks represent independent execution

Threads in a thread block executed simultaneously on same
GPU core

Why on the same core?

Why simultaneously?

Grid

Block (0, 0)

Block (1, 0)

Block (2, 0)

Block (0, 1)

Block (1,1)

‘Block (2, 1)

Block (1, 1)

Source: CUDA Programming Manual
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The common way to think about CUDA

(thread centric)

m  CUDAis a multi-threaded programming model

m Threads are logically grouped together into blocks and gang scheduled
onto cores

m  Threads in a block are allowed to synchronize and communicate through
barriers and shared local memory

B Note: Lack of communication between threads in different blocks gives
scheduler some flexibility (can “stream” blocks through the system)**

** Global memory atomic operations provide a form of inter-thread block communication (more on this in a second)
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Another way to think about CUDA

(like a streaming system: thread block centric)

®m  CUDAis a stream programming model (recall Brook)

- Stream elements are now blocks of data

- Kernels are thread blocks (larger workingsets)\»

B Kernel invocations independent, but are multi-threaded

- Multi-threading exposed additional fine-grained parallelism
B Think: Implicitly parallel across thread blocks (kernels)

B Think: Explicitly parallel within a block

Canonical CUDA thread block program:

r

~N

Threads cooperatively load block of
data from input arrays into shared mem

__syncThreads(); // barrier

Threads perform computation,
accessing shared mem
__syncThreads(); // barrier

Threads cooperatively write block of
data to output arrays
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Choosing thread-block sizes

Question: how many threads should be in a thread block?

Recall from GPU core lecture:

How many threads per core?

How much shared local memory per core?
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CUDA programming style: “persistent” threads

®  Nosemblance of streaming at all any more

B Programmer is always thinking explicitly parallel, and writing code that is
specific to the number of processors in the machine

B Threads use atomic global memory operations to cooperate

// Persistent thread: Run until work is done, processing multiple work
// elements, rather than just one. Terminates when no more work is available
__global _ void persistent(int* ahead, int* bhead, int count, float* a, float* b)

{
int in_index;
while ( (in_index = read_and_increment(ahead)) < count)

{ // load a[in_index];
// do work
int out_index = read_and_increment(bhead);
// write result to b[out index]

}

}

// launch exactly enough threads to fill up machine
// (to achieve sufficient parallelism and latency hiding)
persistent<<numBlocks,blockSize>>(ahead addr, bhead addr, total count, A, B);
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Questions:

What does CUDA system do for the programmer?

How does it compare to OpenGL?

M

U 15-869, Fa
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Quick aside: why was CUDA successful?

(Kayvon’s personal opinion)

1. Provides access to a cheap, very fast machine (modern GPU)

2. SPMD abstraction allows programmer to write scalar code, have it

(almost trivially) mapped to wide SIMD hardware

- Compilers for generating explicit vector code easily for CPUs remain shockingly
immature, even in 2013 (see Intel’s ISPC for a useful tool)

3. More like thread programming than streaming: arbitrary in-kernel array
indexing (+ GPU hardware multi-threading to hide memory latency)

- More familiar, convenient, and flexible in comparison to more principled data-

parallel or streaming systems
[Stream(/KernelC, StreamMIT, ZPL, Nesl, synchronous data-flow, and many others]

- The first program written is often pretty good

- 1-to-1 with hardware behavior
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Modern CUDA/OpenCL: DAGs of kernel launches

Kernel 1 Kernel 2

Block (0, 0) Block (1,0) Block (2, 0) Block (0, 0) Block (1, 0)

M R

Block (0,1) Block(1,1) Block(2, 1) Block (0,1) Block(1,1)

R N

Kernel 3

Block (1, 0)

Block (1, 1)

Kernel 4

Block (0,0) Block(1,0) Block(2,0)

M

Block (0,1) Block(1,1) Block (2, 1)

i

Note: arrows are specified dependencies
between batch thread launches

Think of each launch like a draw()
command in OpenGL (but application
can turn off order, removing
dependency on previous launch)
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Part ll:
Programmable Graphics Pipelines

(Programmable Pipeline Structure, Not Programmable Stages)
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A unique (undesirable?) property of GPU design

m The fixed-function components on a GPU control the operation
of the programmable components

- Fixed function logic generates work (e.g., input assembler, tessellator, rasterizer
all generate elements for processing by programmable cores)

- Programmable logic processes elements

m |n other words... application-programmable logic forms the
inner loops of the rendering computation, not the outer loops!

m Ongoing research question: can we flip this design around?

- Maintain efficiency of heterogeneous hardware implementation, but give
programmers control of how hardware is used and managed.
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Graphics pipeline pre Direct3D 10

=9 Pixel Ops
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Graphics pipeline circa 2007 Blythe, Direct3D 10

vertices
IIIIEIII—>

triangles triangles fragments
- I+ - 11111~ Rasterlzatlon »DEB»M-»M-» Pixel Ops

Memory

Added new stage

Added ability to dump intermediate results out to memory for reuse
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Pipeline circa 2010 Direct3D 11, OpenGL4

smd Compute

|

Memory

Added three new stages (new data flows needed to support high-quality surfaces)

Forked off a separate 1-stage pipeline (a.k.a.“0pencL/cuDA)
(with relaxed data-access and communication/sync rules)
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Modern graphics pipeline: highly configurable structure

R R R B W
o D e Em

oD e 2= om e
e

D == e e
== 3 e
=

—

—

Data-Parallel
Compute

Direct3D 11, OpenGL 4 pipeline configurations

CMU 15-869, Fall 2013



Current realities / trends in interactive graphics

m  Rapid parallel algorithm development in community
B [ncreasing machine performance
- “Traditional” discrete GPU designs
- Emerging hybrid CPU + GPU platforms (“accelerated” many-core cpus)

!

Space of candidate algorithms for future real-time use is growing rapidly
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Example: global illumination algorithms

Credit: NVIDIA

Ray tracing:
for accurate reflections, shadows

Credit: Ingo Wald
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Alternative shading structures cuereressmading:
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For more efficient scaling to many lights (1000 lights, [Andersson 09])
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Game physics / simulation
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Challenge

B Future interactive systems — broad application scope
- Nota great fit for current pipeline structure

- Pipeline structure could be extended further, but complexity is growing
unmanageable

m Must retain high efficiency of current systems

- Future hardware platforms (especially CPU+accelerator hybrids) will be
designed to run these workloads well

- Continue to leverage fixed-function processing when appropriate

Option 1: discard pipeline structure, drop to lower-level frameworks

I Data-Parallel
Compute

CUDA / OpenCL/ ComputeShader
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Challenge

B Future interactive systems — broad application scope
- Not a great fit for current pipeline structure

=  Pipeline structure could be extended further, but complexity is growing
unmanageable

m Must retain high efficiency of current systems

=  Future hardware platforms (especially CPU+accelerator hybrids) will be
designed to run these workloads well

= Continue to leverage fixed-function processing when appropriate

Strategy: make the structure of the pipeline programmable

(MU 15-869, Fall 2013



GRAMPS programming system: goals

m Enable development of application-defined graphics pipelines

- Producer-consumer locality is important
- Accommodate heterogeneity in workload

- Many algorithms feature both reqgular data parallelism and irreqular
parallelism (recall: current graphics pipelines encapsulate irregularity in non-
programmable parts of pipeline)

m High performance: target future CPU+GPUs (embrace heterogeneity)

- Throughput (“accelerator”) processing cores

- Traditional CPU-like processing cores

- Fixed-function units
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GRAMPS overview

m Programs are graphs of stages and queues

- Expose program structure

- Leave stage internals largely unconstrained

('

Shader

GRAMPS primitives

Thread Stage » 0

Queue Queue Set
o
Custom HW Push Queue
Stage
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Writing a GRAMPS program

1. Design application graph and queues
2. Implement the stages
3. Instantiate graph and launch

) Jertex
[ wy H[ jertex M W H ;!‘;J!)lll't’ll! W pld?'t):}l %
A S = > < x

n I N |

Vertex buffers Light descriptions Frame buffer

Memory

Custom HW- Push Queue :
l Stage l 5 (MU 15-869, Fall 2013



Queues

B Bounded size, operate at granularity of “packets” (structs)

— Packets have one of two formats:
1. Blob of data: completely opaque to system
2. Header + array of opaque elements

m Queues are optionally FIFOs (to preserve ordering)

Accamhliv /eriex
[ 33wy H | M Rasterizer H -ragment ﬁ[ PIxel Ops m
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“Thread” and custom HW stages

B Preemptible, long-lived and stateful (think pthreads)

— Threads orchestrate computation: merge, compare repack inputs
®  Manipulate queues via in-place reserve/commit

m  Custom HW stages are logically just threads, but implemented by HW

[mu;u mp] —— 9
Queue Queue Set
[.n«yl-u "u'y% ::
[ Custom HW Push Queue .
Stage E (MU 15-869, Fall 2013




“Shader” stages

B Anticipate data-parallel execution
— Defined per element (like graphics shaders today)

— Automatically instanced and parallelized by GRAMPS

B Non-preemptible, stateless
— System has preserved queue storage for inputs/outputs

B Push: can output variable number of elements to output queue

— GRAMPS coalesces output into full packets (of header + array type)

Accamhbiv Jeriex
[ de.lJ.L'Jj/ H o M ﬁtﬂﬂjhﬂj H -fagment W C1Xel Ups %

(L5 e ©OP
Queue Queue Set
[.n«yl-u "u'}u% [
[ Custom HW Push Queue
Stage
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Queue sets (for mutual exclusion)

B Like N independent serial subqueues (but attached to a single instanced stage)
— Subqueues created statically or on first output
— (Can be sparsely indexed (can think of subqueue index as a key)

1 a . Y “'. ,?A
[ Assembly H Jertex M Rasterizer H ‘ragment W PIxel Ops %
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Graphics pipelines in GRAMPS

Rasterization Pipeline (with ray tracing extension)

Frame Buffer

Vertex Buffers

ﬁ—/

Ray Tracing Extension

Ray Tracing Graph

o
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Simple scheduler

m Use graph structure to set simple stage priorities

- Could do some dynamic re-prioritization based on queue lengths

m Only preempt Thread Stages on reserve/commit operations

[Frame Buffer]
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GRAMPS recap

m  Key abstraction is the computation graph: typed stages and queues

- Thread, custom HW, and “shader” stages

- Afew types of queues

m  Key underlying ideas:
- Enforcing structure on computations is useful for system optimization
- Embrace heterogeneity in application and machine architecture

- Interesting graphics applications have tightly coupled irreqular parallelism
and reqular data parallelism (should be encoded in structure)

B Alternative to current design of CUDA/OpenCL

- Gives up almost all structure, it does not providing
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GRAMPS from a graphics perspective

m We set out to make the graphics pipeline structure programmable

B We ended up with a lower level abstraction than today’s pipeline:
GRAMPS lost domain knowledge of graphics (graphics pipelines are
implemented on top of GRAMPS)

- Good: now programmable logic controls the fixed-function logic
(in the current graphics pipeline it is the other way around)

- Good: system remains aware of program’s overall structure (GRAMPS graph)

m  Reality: mapping graphics abstractions to GRAMPS abstractions
efficiently requires a near expert graphics programmer

- Coming up with the right graph is hard (setting packet sizes, queue sizes has
some machine dependence, some key optimizations are global)
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Graphics abstractions today

B Real-time graphics pipeline is still hanging in there (Direct3D 11/ 0OpenGL 4)

B Butlots of algorithm development in OpenCL/Direct3D compute shader/CUDA

- Good: makes GPU compute power accessible. Triggering re-evaluation of
best practices in field

- Bad: community shifting too-far toward only thinking about current GPU-
style data-parallelism

B (PU+GPU fusion is begging for alternative high-level frameworks for
interactive graphics

- Example: NVIDIA Optix: new framework for ray tracing

- Application provides key kernels, Optix compiler/runtimes schedules
= Built on top of CUDA
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