
Visual Computing Systems
CMU 15-869, Fall 2013

Lecture 5:

Texturing

 CMU 15-869, Fall 2013

Today: texturing!

▪ Texture !ltering
- A texture access is not just a 2D array lookup ;-)

▪ Memory-system implications of texture mapping operations
- Texture caching
- Memory layout of texture data
- Prefetching and multi-threading

 CMU 15-869, Fall 2013

Last time
Rasterizer samples triangle-screen coverage (four samples per pixel shown here)
Z-buffer algorithm used to determine occlusion at these sample points

 CMU 15-869, Fall 2013

Generating fragments via “multi-sampling”
Last class: one fragment per covered visibility sample (if multiple samples per pixel: “supersampling”)
Today:

- One fragment per covered pixel (if any visibility sample in a pixel is covered, generate fragment) **
- Surface attributes for fragment shading [typically] sampled at pixel centers

** As we’ll discuss later in this lecture: a GPU actually generates a 2x2 block of fragments if any visibility sample in the 2x2 block is covered

 CMU 15-869, Fall 2013

Shading a fragment

sampler	
 mySampler;
Texture2D<float3>	
 myTex;
float3	
 lightDir;

float4	
 diffuseShader(float3	
 norm,	
 float2	
 uv)
{
	
 	
 float3	
 kd;
	
 	
 kd	
 =	
 myTex.Sample(mySampler,	
 uv);
	
 	
 kd	
 *=	
 clamp(dot(-­‐lightDir,	
 norm),	
 0.0,	
 1.0);
	
 	
 return	
 float4(kd,	
 1.0);	
 	
 	

}	

HLSL shader program: de!nes behavior of fragment processing stage

Let:

lightDir	
 =	
 [-­‐1,	
 -­‐1,	
 -­‐1]

myTex	
 =	

myTex is a function de!ned on [0,1]2 domain:
myTex : [0,1]2 → #oat3
(represented by 2048x2048 image)

mySampler de!nes how to sample from
texture to generate value at (u,v)

 CMU 15-869, Fall 2013

Texture coordinates
Mapping from point on surface to point (uv) in texture domain

In this example, scene geometry is de!ned by 2D parametric surface patches
Red channel = u
Green channel = v
So uv=(0,0) is black, uv=(1,1) is yellow

* Texture coordinates are also often written as (s,t) (uv is typically the parametric coordinates of the surface)

 CMU 15-869, Fall 2013

Shaded result

 CMU 15-869, Fall 2013

Another example: Sponza

Red channel = u
Green channel = v
So uv=(0,0) is black, uv=(1,1) is yellow

 CMU 15-869, Fall 2013

Textured Sponza

 CMU 15-869, Fall 2013

Examples of textures used in Sponza

 CMU 15-869, Fall 2013

Texture space

Positions of surface appearance samples in screen space
(graphics pipeline samples triangle’s appearance at

these locations)

Positions of corresponding texture samples in
texture space (texture is sampled at these

locations as part of shading)

u

v

 CMU 15-869, Fall 2013

Aliasing due to undersampling

Rendering using pre-!ltered texture dataNo pre-!ltering of texture data
(resulting image exhibits aliasing)

 CMU 15-869, Fall 2013

Aliasing due to undersampling

Rendering using pre-!ltered texture dataNo pre-!ltering of texture data
(resulting image exhibits aliasing)

 CMU 15-869, Fall 2013

Filtering textures

Figure credit: Akeley and Hanrahan

▪ Mini!cation:
- Area of texel corresponds to far less than a pixel on screen
- Area of screen pixel maps to large region of texture (!ltering required -- averaging)
- Example: when scene object is very far away

▪ Magni!cation:
- Area of texel maps to many screen pixels
- Area of screen pixel maps to tiny region of texture (interpolation required)
- Example: when camera is very close to scene object (need higher resolution texture map)

 CMU 15-869, Fall 2013

Filtering textures

Actual texture: 64x64

Actual texture: 700x700

...
...

Texture mini!cation

Texture magni!cation

 CMU 15-869, Fall 2013

Mipmap (L. Williams 83)

Level 2 = 32x32 Level 3 = 16x16

Level 4 = 8x8 Level 5 = 4x4

Level 1 = 64x64Level 0 = 128x128

Level 6 = 2x2 Level 7 = 1x1

Idea: pre!lter texture data to removal high frequencies
(texels at higher levels store integral of the texture function over a region of texture space)

 CMU 15-869, Fall 2013

Mipmap (L. Williams 83)

Williams’ original proposed
mip-map layout “Mip hierarchy”

level = d

u

v

Slide credit: Akeley and Hanrahan

 CMU 15-869, Fall 2013

Constant-time !ltering

mip-map level d texels

mip-map level d+1 texels

Bilinear interpolation: 3 lerps (3 mul + 6 add)

Trilinear interpolation: 7 lerps (7 mul + 14 add)

Slide credit: Akeley and Hanrahan

 CMU 15-869, Fall 2013

Computing d

Screen space Texture space

Take differences between texture coordinate values for neighboring fragments

u

v

 CMU 15-869, Fall 2013

Computing d
Take differences between texture coordinate values of neighboring fragments

du/dx = u10-u00
du/dy = u01-u00

dv/dx = v10-v00
dv/dy = v01-v00

(u,v)00 (u,v)10

(u,v)01

L

mip-map d = log2(L)

u

v
L

 CMU 15-869, Fall 2013

Pixel area may not map to isotropic region in texture space

mip-map d = log2(L)

u

v

L

v=.25

v=.5
v=.75

u=.25 u=.75u=.25
L

Trilinear (Isotropic) Filtering Anisotropic Filtering

Notice overblurring
in u direction

 CMU 15-869, Fall 2013

GPUs shade quad fragments
(2x2 fragment block is the minimum granularity of rasterization output and shading)

Enables cheap computation of
texture coordinate differentials
(cheap: derivative computation leverages
shading work that must be done by adjacent
fragment anyway)

All quad-fragments are shaded
independently
(communication is between fragments in a
quad-fragment, no communication required
between quad-fragments)

 CMU 15-869, Fall 2013

Multiple fragments shaded for pixels near triangle boundaries

Shading computations per pixel

8 +
7
6
5
4
3
2
1

 CMU 15-869, Fall 2013

Small triangles result in extra shading

8 +
7
6
5
4
3
2
1

1 pixel-area triangles10 pixel-area triangles100 pixel-area triangles

Shaded quad-fragments per pixel
(early-z is enabled + scene rendered in approximate front-to-back order to minimize extra shading due to overdraw)

Want to sample appearance approximately once per surface per pixel (assuming correct texture !ltering)
But graphics pipeline generates at least one appearance sample per triangle per pixel (actually more, considering quad-fragments)

 CMU 15-869, Fall 2013

Multi-sample anti-aliasing (MSAA)

Main idea: decouple shading sampling rate from visibility sampling rate
- Depth buffer: stores depth per sample
- Color buffer: stores color per sample
- Resample color buffer to get !nal image pixel values (need one sample per display pixel)

 CMU 15-869, Fall 2013

Principle of texture thrift

Given a scene consisting of textured 3D surfaces, the amount of
texture information minimally required to render an image of the
scene is proportional to the resolution of the image and is
independent of the number of surfaces and the size of the textures.

[Peachey 90]

 CMU 15-869, Fall 2013

Summary: texture !ltering using the mip map
▪ Small storage overhead

- Mipmap is 4/3 the size of original texture image

▪ For each texture !ltering request
- Constant !ltering cost (independent of d)
- Constant number of texels accessed (independent of d)

▪ Bilinear/trilinear !ltering is isotropic: must “overblur” to
avoid aliasing
- Anisotropic texture !ltering provides higher image quality, but also higher

compute and memory bandwidth cost

 CMU 15-869, Fall 2013

Summary: a texture fetch
For each texture fetch in a shader program:

1. Compute du/dx, du/dy, dv/dx, dv/dy differentials from quad fragment
2. Compute d
3. Convert normalized texture coordinate uv to texel coordinates tu,tv
4. Compute required texels **
5. Load texture data in "lter footprint (need eight texels for trilinear) ****
6. Result = perform tri-linear interpolation according to (tu,tv,d)

** May involve wrap, clamp, etc. of texel coordinates according to sampling mode con!guration
**** May involve memory fetch and decompression of texture data into texture cache

A texture fetch involves a signi"cant amount of math: all modern GPUs have dedicated
"xed-function hardware support for texture sampling

 CMU 15-869, Fall 2013

Texture system block diagram

GPU programmable core
(executes fragment shaders)

Texture Processor
(!xed-function)

Texture data cache

Texture request
(e.g., uv, d, trilerp)

Texture response
(e.g., fp32 rgba)

GPU DRAMDecompress

 CMU 15-869, Fall 2013

Consider memory
▪ Texture data footprint

- Modern games: large textures: 10s-100s of MB
- Film rendering: GBs to TBs of textures in scene DB

▪ Texture bandwidth
- 8 texels per tri-linear fetch (assume 4 bytes/texel)
- Modern GPU: billions of fragments/sec

(NVIDIA GTX 580: ~40 billion/sec)

▪ Performant graphics systems need:
- Texture caching
- Texture compression
- Latency hiding solution

 CMU 15-869, Fall 2013

Review: the role of caches in CPUs
▪ Reduce latency of data access

▪ Reduce off-chip bandwidth requirements (caches service
requests that would require DRAM access)
- Note: alternatively, you can think about caches as bandwidth ampli"ers

(data path between cache and ALUs is usually wider than that to DRAM)

▪ Convert !ne-grained memory requests from processors into
large (cache-line sized) requests than can be serviced
efficiently by wide memory bus and DRAM

 CMU 15-869, Fall 2013

Texture caching thought experiment

mip-map level d texels

mip-map level d+1 texels

Assume:
Row-major raster order
Horizontal texels contiguous in memory
Texture cache line = 4 texels

same cache line

same cache line

same cache line

same cache line

same cache line

same cache line u

v

 CMU 15-869, Fall 2013

Now rotate triangle on screen

mip-map level d texels

mip-map level d+1 texels

Assume:
Row-major raster order
Horizontal texels contiguous in memory
Cache line = 4 texels

same cache line

same cache line

same cache line

same cache line

same cache line

same cache line

u

v

 CMU 15-869, Fall 2013

4D blocking (texture is 2D array of 2D blocks: robust to triangle orientation)

mip-map level d texels

mip-map level d+1 texels

Assume:
Row-major raster order
2D blocks of texels contiguous in memory
Cache line = 4 texels

u

v

same cache line

same cache line

same cache line

same cache line

 CMU 15-869, Fall 2013

Tiled rasterization increases reuse

mip-map level d texels

mip-map level d+1 texels

Assume:
Blocked raster order
2D blocks of texels contiguous in memory
Cache line = 4 texels

u

v

same cache line

same cache line

same cache line

same cache line

 CMU 15-869, Fall 2013

6D blocking further reduces con#icts

same cache line

contiguous cache-sized block

 CMU 15-869, Fall 2013

Blocked texture formats
▪ Render-to-texture challenge:

- Frame-buffer has a preferred memory layout
- Texture buffers has a preferred memory layout
- Costly to convert buffers between formats when render target is subsequently

bound as a texture for a later rendering pass

▪ Modern graphics APIs:
- Declare usage for buffers at allocation in API
- In general, standard blocking schemes across the board

 CMU 15-869, Fall 2013

What type of data reuse does a texture cache capture?

▪ Spatial locality, not temporal locality
- Many of the same texels are accessed by texture fetches from adjacent fragments

(due to overlap of "lter support regions)
- There is essentially no temporal locality within a fragment shader (little reason

for a shader does to access the same part of the texture map twice)

 CMU 15-869, Fall 2013

Key metric
▪ Unique texel to fragment ratio

- Number of unique texels accessed when rendering a scene divided by number of
fragments processed [see Igeny reading for stats: often less than < 1]

- What is the worst case assuming trilinear "ltering?
- How can incorrect computation of texture miplevel (d) affect this?

▪ In reality, caching behavior is good, but not CPU workload good
- [Montrym & Moreton 95] design for 90% hits
- Why? only so much spatial locality
- Graphics pipeline requires high memory bandwidth for texture

 CMU 15-869, Fall 2013

Memory latency
▪ Processor requests texture data → processor waits for hundreds of cycles

(Very bad)

▪ Recall: GPUs will miss the cache more often than CPUs (fundamental to the
streaming workload)

▪ Solution prior to programmable cores on GPUs: texture prefetching
- See today’s reading: Igehy et al. Prefetching in a Texture Cache Architecture

▪ Solution in modern GPUs: multi-threaded programmable cores
- Subject of a later lecture

 CMU 15-869, Fall 2013

Large fragment FIFOs

Note: This diagram does not contain a texture cache. See reading for implementation
of prefetching with caching.

Slide credit: Akeley and Hanrahan

 CMU 15-869, Fall 2013

Texture summary
▪ Pre-"ltering texture data reduces aliasing

- Mip-mapping fundamental to texture system design
- Avoid aliasing under mini!cation
- Improve cache behavior under mini!cation

▪ A texture lookup is a lot more than a 2D array access
- Signi!cant computational expense, implemented in specialized !xed-function hardware

▪ GPU texture caches:
- Primarily serve to amplify limited DRAM bandwidth
- Not to reduce latency to off-chip memory
- Small in size, multi-ported (e.g., need to access 8 texels simultaneously)

▪ Tiled rasterization order, tiled texture layout serve to increase cache hits

▪ Texture access latency is hidden by prefetching (in the old days) and multi-
threading (in modern GPUs)
- The design of a modern GPU processing core is in#uenced heavily by the need to hide texture

access latency

 CMU 15-869, Fall 2013

Readings
▪ Z. Hakura and a. Gupta, The Design and Analysis of a Cache Architecture for Texture

Mapping. ISCA 97

▪ H. Igehy et al., Prefetching in a Texture Cache Architecture. Graphics Hardware 1998

