Lecture 5:

Texturing

Visual Computing Systems
CMU 15-869, Fall 2013

Today: texturing!

m Texture filtering
- A texture access is not just a 2D array lookup ;-)

B Memory-system implications of texture mapping operations

- Texture caching
- Memory layout of texture data
- Prefetching and multi-threading

CMU 15-869, Fall 2013

Last time

Rasterizer samples triangle-screen coverage (four samples per pixel shown here)
Z-buffer algorithm used to determine occlusion at these sample points

CMU 15-869, Fall 2013

Generating fragments via “multi-sampling”

Last class: one fragment per covered visibility sample (if multiple samples per pixel: “supersampling”)
Today:
- One fragment per covered pixel (if any visibility sample in a pixel is covered, generate fragment) **
- Surface attributes for fragment shading [typically] sampled at pixel centers

** As we'll discuss later in this lecture: a GPU actually generates a 2x2 block of fragments if any visibility sample in the 2x2 block is covered (MU 15-869, Fall 2013

Shading a fragment

HLSL shader program: defines behavior of fragment processing stage

sampler mySampler;

Texture2D<float3> myTex;
float3 lightDir;

float4 diffuseShader(float3 norm, float2 uv)

{

float3 kd;

kd = myTex.Sample(mySampler, uv);

kd *= clamp(dot(-lightDir, norm), 0.0, 1.0);
return float4(kd, 1.0);

Let:
lightDir = [-1, -1, -1]

myTex =

V

U

myTexX is a function defined on [0,1]2 domain:
myTex : [0,1]2— float3
(represented by 2048x2048 image)

mySampler defines how to sample from
texture to generate value at (u,v)

CMU 15-869, Fall 2013

Texture coordinates

Mapping from point on surface to point (uv) in texture domain

In this example, scene geometry is defined by 2D parametric surface patches

Red channel = u
Green channel =v
So uv=(0,0) is black, uv=(1,1) is yellow

* Texture coordinates are also often writtenas (s,t) (uv is typically the parametric coordinates of the surface) (MU 15-869, Fall 2013

Shaded result

L

e =7, S idda R
7 |

J = R R e e e
;oA A - 7 4 > AL \\ \\ \ =

CMU 15-869, Fall 2013

Another example: Sponza

Red channel = u
Green channel =v
So uv=(0,0) is black, uv=(1,1) is yellow

CMU 15-869, Fall 2013

CMU 15-869, Fall 2013

o
N
. e
Q
.
Ve’
&
L
S
—
o
>
M

Examples of textures used in Sponza

1-

s
|
< . 2
— .= —
(R
RS gt id

-

—

CMU 15-869, Fall 2013

Texture space

V
Positions of surface appearance samples in screen space Positions of corresponding texture samples in
(graphics pipeline samples triangle’s appearance at texture space (texture is sampled at these

these locations) locations as part of shading)

CMU 15-869, Fall 2013

Aliasing due to undersampling

No pre-filtering of texture data Rendering using pre-filtered texture data
(resulting image exhibits aliasing)

V

V

(MU 15-869, Fall 2013

Aliasing due to undersampling

No pre-filtering of texture data Rendering using pre-filtered texture data

(resulting image exhibits aliasing)

V

vV

CMU 15-869, Fall 2013

Filtering textures

B Minification:

- Area of texel corresponds to far less than a pixel on screen
- Area of screen pixel maps to large region of texture (filtering required -- averaging)

Magnification

- Example: when scene object is very far away

m Magnification:

- Area of texel maps to many screen pixels
- Area of screen pixel maps to tiny region of texture (interpolation required)
- Example: when camera is very close to scene object (need higher resolution texture map)

Figure credit: Akeley and Hanrahan

Texture

PN

a

CMU 15-869, Fall 2013

Filtering textures

_Uu,

Actual texture: 700x700

Texture minification

v
u

Actual texture: 64x64

Texture magnification
(MU 15-869, Fall 2013

Mipmap (L. Williams 83)

Level 0 =128x128 Level 1 = 64x64 Level 2 =32x32 Level 3 =16x16

Level 4 = 8x8 Level 5 =4x4 Level 6 = 2x2 Level 7 = 1x1

Idea: prefilter texture data to removal high frequencies
(texels at higher levels store integral of the texture function over a region of texture space)

CMU 15-869, Fall 2013

Mipmap (L. Williams 83)

|_B J /7
R'G: | / /

R G

Williams’ original proposed

mip-map layout “Mip hierarchy”

level =d

Slide credit: Akeley and Hanrahan CMU 15-869, Fall 2013

Constant-time filtering

o ®
" 1-fd ©
®td
@ ®
]-ft
@ ud o
fs]-fs

lerp(t,v,,v,) =V, +t(v,— V)

Bilinear interpolation: 3 lerps (3 mul + 6 add)

Trilinear interpolation: 7 lerps (7 mul + 14 add)

Slide credit: Akeley and Hanrahan

mip-map level d+1 texels

mip-map level d texels

CMU 15-869, Fall 2013

Computing d

Take differences between texture coordinate values for neighboring fragments

Screen space Texture space

CMU 15-869, Fall 2013

Computing d

Take differences between texture coordinate values of neighboring fragments

du/dx = u19-Uoo
du/dy = uo1-uoo

dv/dx = V10-Voo
dv/dy = vo1-voo

L = max

2 (2 2 o (&

mip-map d = log(L)

|

2)

/

CMU 15-869, Fall 2013

Pixel area may not map to isotropic region in texture space

Notice overblurring
in u direction

' l
| i
e A
J s‘

L:max’J(d_u)l(@)z (@)Z(@)”

g] lll\ g] lll\ \ dx dx ’ dy dy /
\ T e N mip-map d = log>(L
miem| C /mmom| prmap @ = loga(l)

N

Trilinear (Isotropic) Filtering Anisotropic Filtering
CMU 15-869, Fall 2013

GPUs shade quad fragments

(2x2 fragment block is the minimum granularity of rasterization output and shading)

Enables cheap computation of

texture coordinate differentials

(cheap: derivative computation leverages
shading work that must be done by adjacent
fragment anyway)

O | O
O

All quad-fragments are shaded
independently

(communication is between fragmentsina
quad-fragment, no communication required
between quad-fragments)

CMU 15-869, Fall 2013

Multiple fragments shaded for pixels near triangle boundaries

Shading computations per pixel

Small triangles result in extra shading

Shaded quad-fragments per pixel

(early-z is enabled + scene rendered in approximate front-to-back order to minimize extra shading due to overdraw)

100 pixel-area triangles 10 pixel-area triangles 1 pixel-area triangles

-+

- N W H U1 O N O

Want to sample appearance approximately once per surface per pixel (assuming correct texture filtering)
But graphics pipeline generates at least one appearance sample per triangle per pixel (actually more, considering quad-fragments)

(MU 15-869, Fall 2013

Multi-sample anti-aliasing (MSAA)

4. shading results 5. multi-sample color 6. final image pixels

Main idea: decouple shading sampling rate from visibility sampling rate

- Depth buffer: stores depth per sample
- Color buffer: stores color per sample
- Resample color buffer to get final image pixel values (need one sample per display pixel)

(MU 15-869, Fall 2013

Principle of texture thrift

[Peachey 90]

Given a scene consisting of textured 3D surfaces, the amount of
texture information minimally required to render an image of the
scene is proportional to the resolution of the image and is
independent of the number of surfaces and the size of the textures.

CMU 15-869, Fall 2013

Summary: texture filtering using the mip map

m Small storage overhead
- Mipmap is 4/3 the size of original texture image

m For each texture filtering request
- Constant filtering cost (independent of d)

- Constant number of texels accessed (independent of d)

m Bilinear/trilinear filtering is isotropic: must “overblur” to

avoid aliasing

- Anisotropic texture filtering provides higher image quality, but also higher
compute and memory bandwidth cost

CMU 15-869, Fall 2013

Summary: a texture fetch

For each texture fetch in a shader program:

1. Compute du/dx, du/dy, dv/dx, dv/dy differentials from quad fragment
. Computed

. Convert normalized texture coordinate uv to texel coordinates tu,tv
Compute required texels **

Load texture data in filter footprint (need eight texels for trilinear) ****

o v oA W N

Result = perform tri-linear interpolation according to (tu,tv,d)

A texture fetch involves a significant amount of math: all modern GPUs have dedicated
fixed-function hardware support for texture sampling

** May involve wrap, clamp, etc. of texel coordinates according to sampling mode configuration
**¥* May involve memory fetch and decompression of texture data into texture cache

CMU 15-869, Fall 2013

Texture system block diagram

GPU programmable core
(executes fragment shaders)

Texture request
(e.g., uv, d, trilerp)

>

<

Texture response

(e.g., fp32 rgba)

Texture Processor
(fixed-function)

Texture data cache

Decompress

GPU DRAM

CMU 15-869, Fall 2013

Consider memory

m Texture data footprint
- Modern games: large textures: 10s-100s of MB

- Film rendering: GBs to TBs of textures in scene DB

B Texture bandwidth
- 8 texels per tri-linear fetch (assume 4 bytes/texel)

- Modern GPU: billions of fragments/sec
(NVIDIA GTX 580: ~40 billion/sec)

m Performant graphics systems need:
- Texture caching

- Texture compression
- Latency hiding solution

CMU 15-869, Fall 2013

Review: the role of caches in C(PUs

B Reduce latency of data access

m Reduce off-chip bandwidth requirements (caches service
requests that would require DRAM access)

- Note: alternatively, you can think about caches as bandwidth amplifiers
(data path between cache and ALUs is usually wider than that to DRAM)

m (onvert fine-grained memory requests from processors into
large (cache-line sized) requests than can be serviced
efficiently by wide memory bus and DRAM

CMU 15-869, Fall 2013

Texture caching thought experiment
Iﬁcheline—l Assume:

Row-major raster order

Horizontal texels contiguous in memory
Texture cache line = 4 texels

I same cache line I

mip-map level d+1 texels

same aache IinE same cEche IinI

same aache IinE same cEche IinI

—_— ——————
@ @ @ @

_— —m—,—mmm—m——

mip-map level d texels CMU 15-869, Fall 2013

Now rotate triangle on screen
Iﬁcheline—l Assume:

° Row-major raster order

Horizontal texels contiguous in memory
Cache line =4 texels

| O same cache line I

mip-map level d+1 texels

same ;Iache IinE same cEche IinI

same aache IinE same cEche IinI

I'—II—I

_— —m—,——mmm—
@

mip-map level d texels CMU 15-869, Fall 2013

same cache line

Ssaime ¢

che line

mip-map level d+1 texels

same cdche line | same cache line
O

mip-map level d texels

Assume:
Row-major raster order

4 D b I OCkl n g (texture is 2D array of 2D blocks: robust to triangle orientation)

2D blocks of texels contiguous in memory

Cache line =4 texels

CMU 15-869, Fall 2013

Tiled rasterization increases reuse

same cache line

Ssaime ¢

che line

mip-map level d+1 texels

same cdche line | same cache line

mip-map level d texels

Assume:

Blocked raster order
2D blocks of texels contiguous in memory
Cache line =4 texels

CMU 15-869, Fall 2013

6D blocking further reduces conflicts

S
AN NN AN

EmjEEEppEm

ey

Blocked texture formats

m Render-to-texture challenge:
- Frame-buffer has a preferred memory layout

- Texture buffers has a preferred memory layout

- Costly to convert buffers between formats when render target is subsequently
bound as a texture for a later rendering pass

B Modern graphics APIs:

- Declare usage for buffers at allocation in API
- In general, standard blocking schemes across the board

CMU 15-869, Fall 2013

What type of data reuse does a texture cache capture?

m Spatial locality, not temporal locality

- Many of the same texels are accessed by texture fetches from adjacent fragments
(due to overlap of filter support regions)

- There s essentially no temporal locality within a fragment shader (little reason
for a shader does to access the same part of the texture map twice)

CMU 15-869, Fall 2013

Key metric

m Unique texel to fragment ratio

= Number of unique texels accessed when rendering a scene divided by number of
fragments processed [see Igeny reading for stats: often less than < 1]

- What is the worst case assuming trilinear filtering?

- How can incorrect computation of texture miplevel (d) affect this?

m |n reality, caching behavior is good, but not CPU workload good

- [Montrym & Moreton 95] design for 90% hits
- Why? only so much spatial locality

- Graphics pipeline requires high memory bandwidth for texture

CMU 15-869, Fall 2013

Memory latency

B Processor requests texture data — processor waits for hundreds of cycles
(Very bad)

B Recall: GPUs will miss the cache more often than (PUs (fundamental to the
streaming workload)

® Solution prior to programmable cores on GPUs: texture prefetching
- Seetoday’s reading: Igehy et al. Prefetching in a Texture Cache Architecture

B Solution in modern GPUs: multi-threaded programmable cores
- Subject of a later lecture

CMU 15-869, Fall 2013

Large fragment FIFOs

Rasterizer

|

FIFO

Request
FIFO

Reorder
Buffer

Texture
Filter

|

Texture Apply

|

1

Texture
Memory

Note: This diagram does not contain a texture cache. See reading for implementation

of prefetching with caching.

Slide credit: Akeley and Hanrahan

CMU 15-869, Fall 2013

Texture summary

B Pre-filtering texture data reduces aliasing
- Mip-mapping fundamental to texture system design

- Avoid aliasing under minification
- Improve cache behavior under minification

B Atexture lookup is a lot more than a 2D array access
- Significant computational expense, implemented in specialized fixed-function hardware

B GPU texture caches:

- Primarily serve to amplify limited DRAM bandwidth
- Not to reduce latency to off-chip memory
- Small in size, multi-ported (e.g., need to access 8 texels simultaneously)

B Tiled rasterization order, tiled texture layout serve to increase cache hits

B Texture access latency is hidden by prefetching (in the old days) and multi-

threading (in modern GPUs)
- The design of a modern GPU processing core is influenced heavily by the need to hide texture
access latency

CMU 15-869, Fall 2013

Readings

m 7. Hakura and a. Gupta, The Design and Analysis of a Cache Architecture for Texture
Mapping. ISCA 97

m H.lgehy etal., Prefetching in a Texture Cache Architecture. Graphics Hardware 1998

CMU 15-869, Fall 2013

