
Visual Computing Systems
CMU 15-869, Fall 2013

Lecture 4:

Visibility
(coverage and occlusion using rasterization and the Z-buffer)
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Visibility
▪ Very imprecise de"nition: computing what scene geometry is 

visible within each screen pixel 
- What scene geometry projects into a screen pixel? (screen coverage)
- Which geometry is actually visible from the camera at that pixel? (occlusion)

Screen

Camera



Then given a projected triangle...

For each vertex, compute its projected position 
(and other surface attributes, like normal, color)...

Image synthesis using the graphics pipeline
(As taught in graphics 101)



Rasterization converts the projected triangle into fragments.

Issue 1: determining coverage (what fragments should be generated?)
Issue 2: attribute interpolation (how to compute the value of surface attributes for each fragment?)

struct	
  my_fragment	
  
{
	
  	
  	
  //	
  application-­‐defined	
  attributes	
  (opaque	
  to	
  pipeline)

	
  	
  	
  float3	
  normal;	
  	
  	
  	
  	
  	
  	
  	
  	
  //	
  surface	
  normal	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  float2	
  texcoord1;	
  	
  	
  	
  	
  	
  //	
  texture	
  coordinate	
  for	
  texture	
  1
	
  	
  	
  float2	
  texcoord2;	
  	
  	
  	
  	
  	
  //	
  texture	
  coordinate	
  for	
  texture	
  2
	
  	
  	
  float3	
  worldPosition;	
  	
  //	
  world-­‐space	
  position	
  of	
  surface
	
  	
  	
  	
  
	
  	
  	
  //	
  pipeline-­‐interpreted	
  fields:

	
  	
  	
  int	
  x,	
  y;	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  //	
  screen	
  pixel	
  position	
  of	
  fragment
	
  	
  	
  float	
  depth;	
  	
  	
  	
  	
  	
  	
  //	
  triangle	
  depth	
  for	
  fragment
};

Image synthesis using the graphics pipeline
(As taught in graphics 101)



Z-buffer algorithm is used to determine the “closest” fragment at each pixel

bool	
  pass_depth_test(float	
  a,	
  float	
  b)	
  {
	
  	
  	
  return	
  a	
  <	
  b;	
  	
  	
  	
  //	
  less-­‐than	
  predicate	
  (the	
  predicate	
  is	
  configurable	
  in	
  a	
  modern	
  pipeline)
}	
  

//	
  “depth	
  test”
if	
  (pass_depth_test(input_frag.depth,	
  zbuffer[input_frag.x][input_frag.y])
{
	
  	
  	
  zbuffer[input_frag.x][input_frag.y]	
  =	
  input_frag.depth;
	
  	
  	
  ***	
  UPDATE	
  COLOR	
  BUFFER	
  HERE	
  AS	
  WELL	
  ***
}

Let depth of new triangle = 

Depth buffer before processing 
fragments from new triangle

Depth buffer after processing 
fragments from new triangle

Near values =          Far values = 

Image synthesis using the graphics pipeline
(As taught in graphics 101)
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What does it mean for a pixel to be covered by a triangle?
Question: which triangles “cover” this pixel?

Pixel

1

2

3

4
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One option: analytically compute fraction of pixel covered by triangle

10%

35%

60%

85%

15%
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Analytical schemes get tricky when considering occlusion

Two regions of [1] contribute to pixel.  One of 
these regions is not even convex.

1
2 2

1

2

1

Interpenetration: even worse



 CMU 15-869, Fall 2013

The rasterizer estimates triangle-screen coverage using 
point sampling  (this is the de"nition of when to generate a fragment in the spec)

Pixel (x,y)

1

2

3

4

Example:
“coverage sample point” 
positioned at pixel center

= triangle covers sample, fragment generated for pixel

= triangle does not cover sample, no fragment generated 

(x+0.5, y+0.5)
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Edge cases (literally)
Is fragment generated for triangle 1? for triangle 2?

1

2

Pixel
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Edge rules
▪ Direct3D rules: when edge falls directly on sample, sample classi"ed as within triangle 

if the edge is a “top edge” or “left edge”
- Top edge: horizontal edge that is above all other edges
- Left edge:  an edge that is not exactly horizontal and is on the left side of the 

triangle. (triangle can have one or two left edges)

Source: Direct3D Programming Guide, Microsoft



Results of sampling



Results of sampling (red dots = covered)



Reconstructing signal with a box "lter



Reconstruction with box "lter (aliased edges)
(consider this the displayed result: not actually true since a “pixel” on a display is not square)



Problem: aliasing

▪ Undersampling high frequency signal results in aliasing

- “Jaggies” in a single image

- “Roping” or “shimmering” in an animation



Supersampling: increase rate of 
sampling to more accurately 
reconstruct high frequencies in 
triangle coverage signal

The high frequencies in coverage 
signal are created by triangle edges



Strati"ed sampling using four 
samples per pixel



Resample to display’s pixel rate (using box "lter)
(Why? Because a screen displays one sample value per screen pixel... that’s the de!nition of a pixel)



Resample to display’s pixel rate (using box "lter)



Resample to display’s pixel rate (using box "lter)



Displayed result (note anti-aliased edges)

100% 0%

50%

50%

100%

25%100%



Sampling coverage

▪ What we really want is the actual displayed intensity of a 
region of the physical screen to closely approximate the 
exact intensity of that region as measured by the scene’s 
virtual camera. 

▪ So we want to produce values to send to display that 
approximate the integral of scene radiance for the region 
illuminated by a display pixel (supersampling is used to 
estimate this integral)



Fragment generation

▪ Supersampling: generate one fragment for each covered sample

▪ Multi-sampling: general one fragment per pixel if any sample 
point within the pixel is covered

▪ Today, let’s assume that the number of samples per pixel is one.
(thus, both of the above schemes are equivalent) 
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Point-in-triangle test

P0

P1

P2
Pi = (xi /wi, yi /wi, zi /wi) = (Xi, Yi, Zi)

dXi = Xi+1 - Xi
dYi = Yi+1 - Yi

Ei (x, y)  = (x - Xi) dYi  - (y - Yi) dYi
     = Ai x + Bi y + Ci

Ei (x, y) =  0  : point on edge
              > 0  : outside edge
              < 0  : inside edge
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Point-in-triangle test

P0

P1
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Point-in-triangle test
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Point-in-triangle test

P0

P1

P2
Sample point s = (sx, sy) is inside the 
triangle if it is inside all three edges.

inside(sx,sy) =
E0 (sx,sy) < 0 &&
E1 (sx,sy) < 0 &&
E2 (sx,sy) < 0;

Note: actual implementation of 
inside(sx,sy) involves ≤ checks based on 
pipeline rasterizer’s edge rules.

Sample points inside triangle are highlighted red.
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Pi = (xi /wi, yi /wi, zi /wi) = (Xi, Yi, Zi)

dXi = Xi+1 - Xi
dYi = Yi+1 - Yi

Ei (x, y)  = (x - Xi) dYi  - (y - Yi) dYi
     = Ai x + Bi y + Ci

Ei (x, y)  = 0  : point on edge
              > 0  : outside edge
              < 0  : inside edge

Incremental triangle traversal

P0

P1

P2

Note incremental update:

dEi (x+1,y) = Ei (x,y) + dYi = Ei (x,y) + Ai
dEi (x,y+1) = Ei (x,y) + dXi = Ei (x,y) + Bi

Incremental update saves computation:
One addition per edge, per sample test

Note: many traversal orders are possible: backtrack, zig-zag, Hilbert/Morton curves (locality maximizing)



 CMU 15-869, Fall 2013

Modern hierarchical traversal

P0

P1

P2Traverse triangle similar to incremental update 
approach, but in blocks

Test all samples in block against triangle in parallel
(e.g., data-parallel hardware implementation)

Can be implemented as multi-level hierarchy.

Advantages:
- Simplicity of wide parallel execution 

overcomes cost of extra point-in-triangle tests 
(recall: most triangles cover many samples, 
especially when super-sampling coverage)

- Can skip sample testing work: entire block not 
in triangle (early out), entire block entirely 
within triangle (early ins)

- Important for early out based on occlusion cull 
(later in this lecture)
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Attribute assignment
▪ How are fragment attributes (color, normal, texcoords) computed?

- Point sample attributes as well. (e.g., evaluated attributes at sample point)

- Must compute  A(x,y)  for all attributes

Computing a plane equation for an attribute:

Let  A0, A1, A2  be attribute values at the three triangle vertices
Let projected screen-space positions of vertices be (X0, Y0), (X1, Y1), (X2, Y2)
Linear interpolation of vertex attributes, so A(x,y) = ax + by + c    (attribute plane equation)

A0 = aX0 + bY0 + c
A1 = aX1 + bY1 + c
A2 = aX2 + bY2 + c

3 equations, 3 unknowns.  Solve for a,b,c  ** 

** Discard zero-area triangles before getting here (recall we computed area in back-face culling)
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Perspective-correct interpolation
Attribute values should be interpolated linearly on triangle in 3D object space.  Due to 
projection interpolation is not linear in screen XY  

Screen

Camera

A0

A1

(A0 + A1) / 2
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Perspective-correct interpolation

Linear screen interpolation of (u,v) Perspective-correct interpolation of (u,v)

[images from Heckbert and Moreton 1991]
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Perspective correct interpolation
Attribute values are linear on triangle in 3D, but not linear in projected screen XY  

But... projected attribute values (A/w) are linear in screen XY!
For each generated fragment:

Evaluate 1/w (x,y)                                                       (from precomputed plane equation for 1/w)
Reciprocate result to get w(x,y)

For each triangle attribute:
 Evaluate A/w (x,y)                                              (from precomputed plane equation for A/w)
 Multiply result by w(x,y) to get A(x,y)
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Key optimization:
store plane equations separate from fragments
(very effective for large triangles)

Rasterization

Attributes: N, texcoord

pixel xy
sample screen xy 
depth
tri_id: 2

1

2

1/w plane eq
N/w plane eq
texcoord/w plane eq

...

1/w plane eq
N/w plane eq
texcoord/w plane eq

Fragment buffer
(many fragments)

Triangle buffer
(far fewer triangles 
than fragments)

tri 2

tri 1
“”

tri_id: 1

“”

tri_id: 1

“”

tri_id: 1

Note: rasterizer actually does not need to evaluate 
attributes, it only needs to produce plane 
equations.

Evaluate attributes for a fragment on demand 
during fragment shading. 

Attributes: N, texcoord
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Modern GPU rasterization
▪ Triangle setup:

- Transform clip space vertex positions to screen space
- Convert vertex positions to "xed point (Direct3D requires 8 bits of subpixel precision**)
- Compute triangle edge equations
- Compute plane equations for all vertex attributes, 1/w, and Z

▪ Traverse triangle in blocks:
- Attempt to trivially accept/reject block using edge tests on block corners
- Identify covered samples using edge tests (wide data-parallelism in implementation)
- Generate and emit fragments  (also emit per-triangle data as necessary)

** Note 1: limited precision can be a good thing: really acute triangles snap to 0 area and get discarded 
** Note 2: limited precision can be a bad thing: precision limits in (x,y) can limit precision in Z  (see Akeley and Su, 2006)
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Depth-buffer for fragment occlusion
▪ Depth-buffer stores depth of scene at each coverage sample point

- Per sample, not per pixel! 
- In practice, depth buffer usually stores  z/w

▪ Triangles are planar
- Each triangle has exactly one depth* at each sample point (so there is a well-

de"ned ordering of fragments at each sample point) 

▪ Occlusion check using Z-buffer algorithm
- Constant-time occlusion test per fragment
- Constant space per coverage sample
- Constant space per depth-buffer

* Assumes edge-on triangles have been discarded

✓

✓
✓

✓
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Depth-buffer for occlusion
▪ High bandwidth requirements (particularly when super-sampling)

- Number of Z-buffer reads/writes depends on:
- Depth complexity of the scene
- The order triangles are provided to the graphics pipeline

(if depth test fails, don’t write to depth buffer or rgba)

▪ Bandwidth estimate: 
- 60 Hz x 2 MP image x avg. depth complexity 4  (assume replace 50% of time, 32-bit Z) = 2.8 GB/s

- If super-sampling at 4 times per pixel, multiply by 4

- Consider "ve shadow maps per frame (1 MPixel, not super-sampled): additional 8.6 GB/s

- Note: this is just depth accesses. It does not include color-buffer bandwidth

▪ Modern GPUs implement caching and lossless compression of both 
color and depth buffers
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Early occlusion culling
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Early occlusion-culling (“early Z”)

Rasterization

Fragment Processing

Frame-Buffer Ops Pipeline generates, shades, and 
depth tests orange triangle 

fragments in this region although 
they do not contribute to "nal 

image.  (they are occluded by the 
blue triangle)

Graphics pipeline 
speci"es that depth test 
is performed here!

Idea: discard fragments that will not contribute to image as quickly as 
possible in the pipeline
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Early occlusion-culling (“early Z”)

Rasterization

Fragment Processing

Frame-Buffer Ops

A GPU implementation detail:  not re#ected in the graphics pipeline abstraction

Key assumption: occlusion results do not depend on fragment shading
- Example operations that prevent use of early Z optimization: alpha test enabled, fragment shader 

modi"es fragment’s Z value

Note: early Z only provides bene"t if closer triangle is rendered by application "rst
(application developers are encouraged to submit geometry in front-to-back order if possible) 

Rasterization

Fragment Processing

Frame-Buffer Ops

Optimization: reorder 
pipeline operations: 
perform depth test 
immediately following 
rasterization and before 
fragment shading

Graphics pipeline 
speci"es that depth test 
is performed here!
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Summary: early occlusion culling
▪ Idea: can reorder pipeline operations without impacting correctness: perform 

depth test prior to fragment shading

▪ Bene!t: reduces fragment processing work
- Effectiveness of optimization dependent on triangle ordering
- Ideal geometry submission order: front-to-back order

▪ Does not reduce depth-buffer bandwidth
- The same depth-buffer reads and writes still occur (they just occur earlier)

▪ Implementation-speci!c optimization, but programmers know it is there
- Commonly used two-pass technique in graphics applications: “Z-prepass”

- Pass 1: render all scene geometry, with fragment shading and color buffer writes disabled 
(initialize depth buffer is now in its end-of-rendering state)

- Pass 2: re-render scene with shading enabled and with depth test predicate less than-or-equal
- Overhead: must process scene geometry twice
- Bene"t: minimizes expensive fragment shading work
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Recall hierarchical traversal during rasterization

Hierarchical early occlusion culling: “hi-Z”

P0

P1

P2Z-Max culling:
For each screen tile, compute farthest value in the 
depth-buffer:  z_max

During traversal, for each tile:
1. Compute closest point on triangle in tile: 

tri_min (using Z plane equation)
2. If tri_min > z_max, then triangle is completely 

occluded in this tile.  (The depth test will fail for 
all samples in the tile.) Proceed to next tile 
without performing triangle coverage tests for 
individual samples.

Z-Min optimization:
Depth-buffer also stores z_min for each tile.
If tri_max < z_min, then all depth tests for fragments in 
tile will pass. (No need to perform depth test on 
individual fragments.)
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Hierarchical Z + early Z-culling

Rasterization

Fragment Processing

Frame-Buffer Ops

Depth-buffer

Zmin/max tile buffer

Per tile values: compact, possibly on-chip

Feedback: must update zmin/zmax 
tiles on depth-buffer update

Remember: these are GPU implementation 
optimizations. They are invisible to the programmer 
and not re#ected in the graphics pipeline abstraction
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Summary: hierarchical Z
▪ Idea: perform depth test at coarse tile granularity prior to sampling coverage

▪ ZMax culling bene!ts:
- Reduces rasterization work
- Reduces depth-testing work (don’t process individual depth samples)
- Reduces depth-buffer bandwidth (don’t need to read individual depth samples)
- Does not reduce fragment processing work more than early Z (hierarchical Z is a conservative 

optimization: will discard a subset of the fragments early Z does)

▪ ZMin bene!ts:
- Reduces depth-testing work (don’t need to test individual depth samples)
- Reduces depth-buffer bandwidth (don’t need to read individual samples, but still must write)

▪ Costs:
- Overhead of hierarchical tests
- Must maintain per-tile Zmin/Zmax values
- Complex: must update per-tile values frequently to be effective (early Z system feeds results 

back to hierarchical Z system)  
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Fast Z clear
▪ Formerly an important optimization: less important in modern GPU 

architectures
- Add “cleared” bit to tile descriptor
- glClear(GL_DEPTH_BUFFER) sets these bits
- First write to depth sample in tile clears bit

▪ Bene!ts
- Reduces depth-buffer write bandwidth: avoid frame-buffer write on frame-buffer clear
- Reduces depth-buffer read bandwidth by skipping "rst read: if “cleared” bit for tile set, GPU 

can initialize tile’s contents in cache without reading data (a form of lossless compression) 
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Frame-buffer compression
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Depth-buffer compression
▪ Motivation: reduce bandwidth required for depth-buffer accesses

- Worst-case (uncompressed) buffer allocated in DRAM
- Conserving memory footprint is a non-goal

(Need for real-time guarantees in graphics applications 
requires application to plan for worse case anyway)

▪ Lossless compression
- Q. Why not lossy?

▪ Designed for "xed-point numbers ("xed-point math in rasterizer)
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Depth-buffer compression is tile-based
▪ Main idea: exploit locality of values within a screen tile

Figure credit: [Hasselgren et al. 2006]

On tile evict:
1. Compute zmin/zmax (needed for 

hierarchical culling and/or compression)
2. Attempt to compress
3. Update tile table
4. Store tile to memory

On tile load:
1. Check tile table for compression scheme
2. Load required bits from memory
3. Decompress into tile cache
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DDPCM: differential pulse code modulation 
▪ Recall: z/w is interpolated linearly in screen space
▪ Compute "rst and second-order differentials for tile data

Image credit: Steve Morein 

▪ Example scheme:
For an 8x8 sample tile, store:
- 32 bit reference value
- 2 x 33 bit DX and DY values
- 61 x 2 bit {-1,0,1} values for 2nd order 

differentials
- 220 bits per 64-sample tile

(round up to 256 yields 8-to-1 ratio vs 
uncompressed 8x8x32 bits)

1D DDPCM Example: Input = 8 depth values
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Anchor encoding
▪ Choose anchor value and compute DX, DY from adjacent pixels (!ts a plane 

to the data, similar to DDCPM)

▪ Use plane to predict depths at other pixels, store offset d from prediction at 
each pixel

▪ Scheme (for 24-bit depth buffer)
- Anchor:  24 bits (full resolution)
- DX, DY: 15 bits
- Per-sample offsets: 5 bits

[Van Dyke and Margeson]
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Depth-offset compression
▪ Assume depth values have low dynamic range relative to tile’s 

zmin and zmaz (assume two surfaces)
▪ Store zmin/zmax (needed to anyway for hierarchical Z)
▪ Store low-precision (8-12 bits) offset value for each sample

- MSB encodes if offset is from zmin or zmax

[Morein and Natali]
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▪ Do not attempt to infer prediction plane, just get the plane equation 
directly from the rasterizer
- Store plane equation in tile (values must be stored with high precision: to match 

exact math performed by rasterizer)
- Store bit per sample indicating coverage

▪  Simple extension to multiple triangles per tile:
- Store up to N plane equations in tile
- Store log2(N) bit id per depth sample indicating which triangle it belongs to

▪ When new triangle contributes coverage to tile:
- Add new plane equation if storage is available, else decompress

▪ To decompress:
- For each sample, evaluate Z(x,y) for appropriate plane 

Plane-encoding

0  0  0  0  0  1  1  1
0  0  0  0  0  1  1  1
0  0  0  0  1  1  1  1
0  0  0  0  1  1  1  1
0  0  0  0  1  1  1  1
0  0  0  1  1  1  1  1
0  0  0  1  1  1  1  1
0  0  0  1  1  1  1  1
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Summary: depth-buffer bandwidth reduction
▪ Tile caching: access memory less

▪ Hierarchical Z techniques (zmin/zmax culling): access 
individual samples less

▪ Data compression: reduce number of bits that must be read 
from memory

▪ Color buffer is also compressed using similar techniques
- Depth-buffer typically achieves higher compression ratios than color 

buffer. Why? 
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Visibility/culling relationships
▪ Hierarchical traversal during rasterization

- Leveraged to reduce coverage testing and occlusion work
- Tile size likely coupled to hierarchical Z granularity
- May also be coupled to compression tile granularity

▪ Hierarchical culling and plane-based buffer compression are 
most effective when triangles are reasonably large
(recall triangle size discussion in lecture 2) 
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Stochastic rasterization
▪ Accurate camera simulation in real-time rendering

- Visibility algorithms discussed today simulate image formation by virtual pinhole camera, 
with in"nite shutter

- Real cameras have "nite apertures, "nite exposure duration
- Visibility computation requires integration over time and lens aperture (high computational 

cost + diminished spatial coherence) 

Time integration: motion blur

Lens aperture integration: defocus blur
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Readings
▪ M. Abrash, Rasterization on Larrabee, Dr. Dobbs Portal.  May 

1, 2009

▪ A. R. Smith, A Pixel is Not a Little Square, a Pixel is Not a Little 
Square, a Pixel is Not a Little Square! (and a Voxel is Not a Little 
Cube) Microsoft Technical Memo, 1995


