
Visual Computing Systems
CMU 15-869, Fall 2013

Lecture 2:

Parallelizing Graphics Pipeline Execution
(+ Basics of Characterizing a Rendering Workload)
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Today
▪ Finishing up from last time

▪ Brief discussion of graphics workload metrics

▪ Strategies for parallelizing the graphics pipeline
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The graphics pipeline (last time)

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Primitive Processing

Vertices

Primitives

Fragments

Pixels Output image Buffer

Memory

1 in / 1 out

3 in / 1 out
(for tris)

1 in / small N out

1 in / N out

1 in / 1 out Uniform
data

Texture
buffers

Uniform
data

Texture
buffers

Uniform
data

Texture
buffers

1 in / 0 or 1 out
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Programming the pipeline (last time)
▪ Issue draw commands                  output image contents change

Bind shaders, textures, uniforms
Draw using vertex buffer for object 1
Bind new uniforms
Draw using vertex buffer for object 2 
Bind new shader
Draw using vertex buffer for object 3 

CommandCommand Type

State change

Change depth test function 
Bind new shader 
Draw using vertex buffer for object 4 

Draw
State change
Draw
State change
Draw
State change
State change
Draw

Note: efficiently managing stage changes is a major challenge in implementations
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A series of graphics pipeline commands

State change  (set “red” shader)

Draw

State change  (set “blue” shader)

State change (change blend mode)

State change (set “yellow” shader

Draw

Draw

Draw

Draw
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Using the pipeline to create feedback loops
▪ Issue draw commands                  output image contents change

Bind contents of output image as texture 1
Draw using vertex buffer for object 5
Draw using vertex buffer for object 6 

CommandCommand Type

State change
Draw
Draw

...

Key idea for:
shadows
environment mapping
post-processing effects

Modern games: 1000-1500 draw calls per frame
(source: Johan Andersson, DICE -- circa 1998)

Draw using vertex buffer for object 5Draw
Draw using vertex buffer for object 6 Draw
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Feedback loop: save intermediate geometry
▪ Issue draw commands                  save intermediate geometry

Primitive Generation

Vertex Generation

Vertex Processing

Primitive Processing

Vertices

Primitives

Memory

1 in / 1 out

3 in / 1 out
(for tris)

1 in / small N out
Uniform

data
Texture
buffers

Uniform
data

Texture
buffers

output vertex buffer
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Graphics pipeline characteristics
▪ Level of abstraction

- Imperative abstraction, not declarative
(Application says “draw these triangles, using this fragment shader, with 
depth testing on” rather than “draw a cow made of marble on a sunny day”)

- Programmable stages give large amount of application "exibility
(e.g., to implement wide variety of materials and lighting techniques)

- Con#gurable (but not programmable) pipeline structure: turn stages on 
and off, create feedback loops

- Abstraction low enough to allow application to implement many 
techniques, but high enough to abstract over radically different GPU 
implementations
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Orthogonality of abstractions
▪ All vertices treated the same regardless of primitive type

- Vertex programs oblivious to primitive types
- The same vertex program works for triangles and lines

▪ All primitives are converted into fragments for per-pixel shading 
and frame-buffer operations
- Fragment programs oblivious to primitive type and the behavior of the 

vertex program *
- Z-buffer is a common representation used to perform occlusion for any 

primitive that can be converted into fragments

* Almost oblivious.  Vertex shader must make sure it passes along all inputs required by the fragment shader
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What the pipeline DOES NOT do (non-goals)
▪ Pipeline has no concept of lights, materials, modeling transforms

- Only vertices, primitives, fragments, pixels, and STATE
(state examples: buffers, shaders, and con#g parameters)

- Applications use these basic abstractions to implement lights, materials, etc.

▪ Pipeline has no concept of a scene

▪ No I/O or OS window management 



 CMU 15-869, Fall 2013

Perspective from Kurt Akeley

▪ Does the system meet original design goals, and then do 
much more than was originally imagined?

- Simple, orthogonal concepts often yield an ampli#er effect 

▪ Often you’ve done a good job if neither system implementers 
nor system users are perfectly happy ;-)
(of course, you still have to meet design goals)
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Analyzing a 3D Graphics Workload
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Where is most of the work done?

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Primitive Processing

Vertices

Primitives

Fragments

Pixels Frame Buffer

Memory

1 in / 1 out

3 in / 1 out
(for tris)

1 in / small N out

1 in / N out

1 in / 1 out Uniform
data

Texture
buffers

Uniform
data

Texture
buffers

Uniform
data

Texture
buffers

1 in / 0 or 1 out



Triangle size
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[source: NVIDIA] Note: tessellation is triggering a reduction in triangle size



Credit: Pro Evolution Soccer 2010 (Konami)
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Graphics pipeline 
with tessellation
(OpenGL 4, Direct3D 11)

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Primitive Processing

Vertices

Primitives

Fragments

Pixels

1 in / 1 out

3 in / 1 out
(for tris)

1 in / small N out

1 in / N out

1 in / 1 out

1 in / 0 or 1 out

Fine Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Fine Primitive Processing

Coarse Vertices

Fine Primitives

Fragments

Pixels

1 in / 1 out

3 in / 1 out
(for tris)

1 in / small N out

1 in / N out

1 in / 1 out

1 in / 0 or 1 out

Fine Vertex Processing

Tessellation
Fine Vertices

Coarse Primitive ProcessingCoarse Primitives
1 in / 1 out

1 in / 1 out

1 in / N out



 CMU 15-869, Fall 2013

Tessellation
▪ Generate #ne triangle mesh from coarse mesh representation 

[Image credit: NVIDIA]
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Fine Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Fine Primitive Processing

Coarse Vertices

Fine Primitives

Fragments

Pixels

1 in / 1 out

3 in / 1 out
(for tris)

1 in / small N out

1 in / N out

1 in / 1 out

1 in / 0 or 1 out

Fine Vertex Processing

Tessellation
Fine Vertices

Coarse Primitive ProcessingCoarse Primitives
1 in / 1 out

1 in / 1 out

1 in / N out

Amount of data generated
(size of stream between 
stages) Compact geometric model 

High-resolution mesh 

Fragments

Frame buffer pixels

“Diamond” structure of 
graphics workload 
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Key 3D graphics workload metrics
▪ Data ampli#cation from stage to stage

- Triangle size (ampli#cation in rasterizer)
- Expansion by geometry shader (if enabled)
- Tessellation factor (if tessellation enabled)

▪ [Vertex/fragment] shader cost (how many instructions?)

▪ Scene depth complexity
- Determines number of Z/color buffer writes
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Scene depth complexity

Very rough approximation: TA = SD
T = # triangles
A = average triangle area
S = pixels on screen
D = average depth complexity 

[Imagination Technologies] 
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Graphics pipeline workload changes rapidly
▪ Triangle size is scene and frame dependent

- Move far away from an object, triangles get smaller
- Even object-dependent within a frame (characters: higher resolution meshes)

▪ Varying complexity of materials, different number of lights illuminating surfaces
- No such thing as an “average” shader
- Tens to several hundreds of instructions per shader

▪ Stages can be disabled
- Shadow map creation = NULL fragment shader
- Post-processing effects = no vertex work

▪ Recall: thousands of draw calls per frame 

Example: rendering a “depth map” requires vertex 
shading but no fragment shading 
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Parallelizing the Graphics Pipeline

Select slides credit Kurt Akeley and Pat Hanrahan 
(Stanford CS448 Spring 2007)
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Reminder: requirements + workload challenges
▪ Immediate mode interface: pipeline accepts sequence of commands

- Draw commands
- State modi#cation commands

▪ Processing of commands has sequential semantics
- Effects of command A must be visible before those of command B

▪ Relative cost of pipeline stages changes frequently and unpredictably 
(e.g., triangle size)

▪ Ample opportunities for parallelism
- Few dependencies (most notable: order, R-M-W frame-buffer update)
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Parallelism and communication

▪ Parallelism - using multiple execution units to process work in parallel

▪ Communication - parallel execution units must synchronize and 
communicate to cooperatively perform a rendering task
- Communication between execution units
- Communication between execution units and memory

▪ Big issues:
- Correctness (preserving sequential semantics)
- Achieving good workload balance (using all processors)
- Minimizing communication/synchronization
- Avoiding unnecessary work
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Opportunities for parallelism in graphics
▪ Data parallelism

- Simultaneously execute same operation on different data
- Object space entities (vertices, primitives, etc.)
- Image space entities (fragments, pixels)

▪ Pipeline task parallelism
- Simultaneously execute different tasks on similar (or different) data
- Vertex processing, rasterization, fragment processing
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Simple parallelization (pipelined)

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Primitive Processing

Separate hardware unit for each stage

Speedup?
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Simpli#ed pipeline

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Primitive Processing

Geometry

Application

Display

For now: just consider all 
geometry processing work 
(vertex/primitive processing, 
tessellation, etc.) as 
“geometry” processing.
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Simpli#ed pipeline

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Application

Display

Geometry Processing
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Scaling “wide”

Application

Display

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing
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Sorting taxonomy

Application

Display

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Sort #rst

Sort middle

Sort last fragment

Sort last image 
composition 
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Sort #rst
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Sort #rst
Application

Display

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Assign each hardware pipeline a region of the render target
Do minimal amount of work to determine which region(s) input primitive overlaps 

Sort!
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Sort #rst work partitioning
(partition the primitives)

1 2

3 4
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Sort #rst

▪ Good:
- Bandwidth scaling (small amount of sync/communication, simple point-to-point)
- Computation scaling (more parallelism = more performance)
- Simple: just replicate rendering pipeline (order maintained within each)
- Easy early #ne occlusion cull (“early z”)

Application

Display

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Sort!
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Sort #rst

▪ Bad:
- Potential for workload imbalance (one part of screen contains most of scene)
- Extra cost of triangle “pre-transformation” (do some vertex work twice)
- “Tile spread”: as screen tiles get smaller, primitives cover more tiles

(duplicate geometry processing across the parallel pipelines)

Application

Display

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Sort!
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Sort-#rst examples
▪ WireGL/Chromium* (parallel rendering with a cluster of GPUs)
- “Front-end” sorts primitives to machines
- Each GPU is a full rendering pipeline

▪ Pixar’s RenderMan (implementation of REYES)
- Multi-core software renderer
- Sort surfaces into tiles prior to tessellation

(sort the surfaces, not all the little “micropolygons” )

* Chromium can also be con#gured as a sort-last image composition system 
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Sort middle
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Sort middle
Application

Display

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Assign each rasterizer a region of the render target
Distribute primitives to pipelines (e.g., round-robin distribution)
Sort after geometry processing based on screen space projection of primitive vertices

Sort!

Distribute
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Interleaved mapping of screen
▪ Decrease chance of one rasterizer processing most of scene
▪ Most triangles overlap multiple screen regions (often overlap all) 

Interleaved mapping Tiled mapping

1 2 1 2

2 1 2 1



 CMU 15-869, Fall 2013

Interleaving in NVIDIA Fermi

Fine granularity interleaving Coarse granularity interleaving

Notice anything interesting about these patterns?

[Image source: NVIDIA]
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Sort middle interleaved
Application

Display

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Sort! - BROADCAST

Distribute

▪ Good:
- Workload balance: both for geometry work AND onto rasterizers (due to interleaving)
- Computation scaling
- Easy #ne early occlusion cull
- Does not duplicate geometry processing for each overlapped screen region
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Sort middle interleaved
Application

Display

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Sort! - BROADCAST

Distribute

▪ Bad:
- Bandwidth scaling: sort is implemented as a broadcast

(each triangle goes to many/all rasterizers)
- If tessellation is enabled, must communicate many more primitives than sort #rst
- Duplicated per triangle setup work across rasterizers
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SGI RealityEngine [Akeley 93] 

Sort-middle interleaved design 
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Sort middle tiled
▪ Sort does not require broadcast

- Point-to-point communication
- Better bandwidth scaling
- Less duplicated triangle setup

▪ Risks workload imbalance among rasterizers
- NVIDIA term: “camping” -- when a triangle falls entirely 

within a tile mapped to one rasterizer, causing imbalance
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Sort middle tiled (chunked)
Application

Display

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Sort!

Distribute

bucket 
0 ...bucket 

1
bucket 

2
bucket 

3
bucket 

N
Buckets stored in off-chip 

memory

Partition screen into many small tiles (many more tiles than physical rasterizers)
Sort geometry by tile into buckets (one bucket per tile of screen) 
After all geometry complete, rasterizers process buckets (think: work queue of buckets) 
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Sort middle tiled (chunked)
▪ Two phase approach:

- Phase 1: place triangles into buckets
- Phase 2: rasterize contents of buckets (independently for each bucket)

▪ Requires off-chip storage of triangle lists for each bucket
▪ Good:

- Sort requires point-to-point traffic (assuming each triangle only touches a 
few buckets)

- Good load balance (distribute buckets onto rasterizers)
- Low bandwidth requirements (why?)

▪ Recent examples:
- Intel Larrabee
- NVIDIA CUDA software rasterizer
- Many mobile GPUs (ARM MALI, Imagination)
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Sort last
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Sort last fragment
Application

Display

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Distribute primitives to top of pipelines (e.g., round robin)
Sort after fragment processing based on (x,y) position of fragment

Distribute

Sort! - point-to-point
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Sort last fragment
Application

Display

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Distribute

Sort! - point-to-point

▪ Good:
- No redundant work (geometry processing or in rasterizers)
- Point-to-point communication during sort
- Interleaved pixel mapping results in good workload balance for frame-buffer ops
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Sort last fragment
Application

Display

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Distribute

Sort! - point-to-point

▪ Bad:
- Workload imbalance due to primitives of varying size
- Bandwidth scaling: many more fragments than triangles 
- Hard to implement early occlusion cull (more bandwidth challenges)
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Sort last image composition
Application

Display

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Distribute

Each pipeline renders some part of the frame (color buffer + depth buffer)
Combine the color buffers, according to depth into the #nal image 

frame buffer 0 frame buffer 1 frame buffer 3 frame buffer 4

Merge
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Sort last image composition
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Sort last image composition
▪ Cannot maintain sequential semantics 

▪ Simple: N separate rendering pipelines
- Can use off-the-shelf GPUs to build a massive rendering system
- Coarse-grained communication

▪ Similar load imbalance problems as sort-last fragment

▪ Bandwidth requirements compared to sort-last fragment depend on 
scene depth complexity
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Sort everywhere
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Redistribute- point-to-point

Pomegranate
Application

Display

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Command Processing

Rasterization

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Distribute primitives to top of pipelines
Redistribute after geometry processing (e.g, round robin)
Sort after fragment processing based on (x,y) position of fragment

Distribute

Sort! - point-to-point

[Eldridge 00] 
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Fine Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Fine Primitive Processing

Coarse Vertices

Fine Primitives

Fragments

Pixels

1 in / 1 out

3 in / 1 out
(for tris)

1 in / small N out

1 in / N out

1 in / 1 out

1 in / 0 or 1 out

Fine Vertex Processing

Tessellation
Fine Vertices

Coarse Primitive ProcessingCoarse Primitives
1 in / 1 out

1 in / 1 out

1 in / N out

Recall: modern OpenGL 
4/Direct3D 11 pipeline
Five programmable stages 

Including tessellation

Programmable stages feature data-dependent 
control "ow in shaders (unpredictable per 
vertex/per fragment run-time)
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Modern GPUs
Cmd Processor /Vertex Generation

Programmable 
Core

Texture

Programmable 
Core

Programmable 
Core

Programmable 
Core

Programmable 
Core

Texture

Programmable 
Core

Programmable 
Core

Programmable 
Core

Programmable 
Core

Texture

Programmable 
Core

Programmable 
Core

Programmable 
Core

Programmable 
Core

Texture

Programmable 
Core

Programmable 
Core

Programmable 
Core

Rasterizer Rasterizer

Rasterizer Rasterizer

Frame Buffer Ops

Frame Buffer Ops

Frame Buffer Ops

Frame Buffer Ops

Frame Buffer Ops

Frame Buffer Ops

Hardware is a heterogeneous collection of resources
Programmable resources are time-shared by vertex/primitive/fragment processing work
Must keep programmable cores busy: sort everywhere

High-speed Interconnect
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Readings

▪ Eldridge et al. Pomegranate: A Fully Scalable Graphics Architecture. SIGGRAPH 2000

▪ Molnar et al. A Sorting Classi#cation of Parallel Rendering. IEEE Graphics and 
Applications 1994


