
Visual Computing Systems
CMU 15-869, Fall 2013

Lecture 1:

Course Intro +
The Real-Time Graphics Pipeline

 CMU 15-869, Fall 2013

Many applications driving the need for high efficiency
computing involve visual computing tasks.

 CMU 15-869, Fall 2013

Record/play HD Video 2D and 3D rendering:
games, browsers, maps

Many applications driving the need for high efficiency
computing involve visual computing tasks

Oculus Rift VR display
(presents new graphics system requirements)

 CMU 15-869, Fall 2013

Computational photography:
Current focus is to achieve high-quality pictures with a lower-quality smart phone
lenses/sensors through the use of image analysis and processing.

Automatic panorama:
High dynamic range (HDR) imaging:

Traditional photograph: part of image is
saturated due to overexposure

Lighting/color/tone adjustment:

Remove camera shake:

HDR image: image detail in both
light and dark areas is preserved

 CMU 15-869, Fall 2013

Nokia Lumina smartphone camera: 41 megapixel (MP) sensor Nexus 10 Tablet: 2560 x 1600 pixel display (~ 4MP)

(higher pixel count than 27’’ Apple display on my desk)

High pixel count sensors and displays

 CMU 15-869, Fall 2013

Auto-tagging, face (and smile) detection

Kinect: character pose estimation

Google Goggles: search by image

Image interpretation and understanding:
(extracting value from images recorded by ubiquitous image sensors)

Collision anticipation, obstacle detection

 CMU 15-869, Fall 2013

Enabling current and future visual computing
applications requires heavy focus on system efficiency

A systems architect must meet challenging application goals within speci"c design
constraints.

Example goals:
Real-time rendering of a 1M polygon scene on high resolution display
Interactive user feedback when acquiring a panorama
HD video recording for 1 hour per phone charge

Example constraints:
Chip die area (chip cost)
System design complexity
Preserve easy application development effort
Backward compatibility for existing software
Power

 CMU 15-869, Fall 2013

Parallelism and specialization in HW design
Example: NVIDIA Tegra 4 system-on-a-chip

Other modern examples:
Apple A6X
Qualcomm Snapdragon

Four high-performance ARM CPU cores

One low performance (low power) ARM CPU core

72 GPU shader processors (run shader programs)

Chimera ISP (image/video processing for camera)

Fixed-function HW blocks for 3D graphics and
image compression

Design philosophy:
Run important workloads on the most efficient
hardware for the job.

 CMU 15-869, Fall 2013

Hardware specialization increases efficiency

[Chung et al. MICRO 2010]
lg2(N) (data set size)

FPGA
GPUs

FPGA
GPUs

lg2(N) (data set size)

ASIC delivers same performance as
one CPU core with ~ 1/1000th the
chip area.

GPU cores: ~ 5-7 times more area
efficient than CPU cores.

ASIC delivers same performance as
one CPU core with only ~ 1/100th
the power.

 CMU 15-869, Fall 2013

Limits on chip power consumption
▪ General rule: the longer a task runs the less power it can use

- Processor’s power consumption (think: performance) is limited by heat
generated (efficiency is required for more than just maximizing battery life)

Po
we

r

Time

Electrical limit: max power that can be supplied to chip

Die temp: (junction temp -- Tj): chip becomes unreliable above this temp
(chip can run at high power for short period of time before chip heats to Tj)

Case temp: mobile device gets too hot for user to comfortably hold
(chip is at suitable operating temp, but heat is dissipating into case)

Battery life: chip and case are cool, but want to reduce power
consumption to sustain long battery life for given task

Credit: slide adopted by original slide from M. Shebanow

iPhone 5 battery: 5.4 watt-hours
4th gen iPad battery: 42.5 watt-hours
15in Macbook Pro: 95 watt-hours

 CMU 15-869, Fall 2013

Bene"t of increasing efficiency
▪ Run faster for a "xed period of time

- Run at higher clock, use more cores (reduce latency of critical task)
- Do more at once

▪ Run at a "xed level of performance for longer
- e.g., video playback
- Achieve “always-on” functionality that was previously impossible

iPhone 5:
Siri activated by button
press or holding phone
up to ear

Moto X:
Always listening for “ok,
google now”

Device contains special
ASIC for detecting this
audio pattern.

 CMU 15-869, Fall 2013

▪ For a hardware architect
- Power efficiency

- Maximize performance given power budget
- Reduce cost (simpler heat dissipation mechanism)

- Chip area efficiency (smaller chip = lower cost)

▪ For a software developer: enable new applications!
- Achieve real-time rates for new classes of problems
- Scale applications to much bigger datasets
- Deploy applications in new settings (mobile, always on)

Efficiency matters in desktop/server
contexts as well

[Hayes 2007]

[Kim 2013]

 CMU 15-869, Fall 2013

What this course is about

VISUAL COMPUTING
WORKLOADS

(3D graphics, image processing, etc.)

MACHINE
ORGANIZATION

Parallelism, heterogeneity
throughput processing

The role of "xed-function HW

mapping/scheduling

Parallelism
Exploiting locality

Communication

DESIGN OF ABSTRACTIONS
(e.g., the real-time graphics pipeline)

choice of primitives
level of abstraction

1. The characteristics/requirements of important visual computing workloads
2. Techniques used to achieve efficient system implementations

 CMU 15-869, Fall 2013

What this course is NOT about

▪ This is not an [OpenGL, CUDA, OpenCL] programming course

- But we will be analyzing and critiquing the design of these
abstractions in detail

Many excellent references...

 CMU 15-869, Fall 2013

Major course themes/topics
▪ Three major application areas

1. Real-time 3D rendering: the real-time graphics pipeline and trends in interactive
rendering techniques

2. Image processing: the digital camera pipeline and basic computational photography
workloads

3. Image retrieval and visual data mining: systems for managing billions of images

▪ Reoccurring course themes
- Understanding key computational characteristics of workloads
- Understanding constraints of modern parallel machine architectures
- End-to-end thinking: workloads in"uencing hardware design, and parallel hardware

constraints in"uencing the design of algorithms
- De#ning good abstractions: identifying fundamental system primitives and operations
- Tensions between maximizing efficiency and retaining programmability

 CMU 15-869, Fall 2013

Course Logistics

 CMU 15-869, Fall 2013

Logistics
▪ Course web site:

- 15869.courses.cs.cmu.edu

▪ Announcements will go out via Piazza
- https://piazza.com/cmu/fall2013/15869/home

▪ Office hours: drop in or by appointment (EDSH 225)

▪ I hope to have a number of Friday (noon-1:20pm) sessions

 CMU 15-869, Fall 2013

Grades / expectations
▪ 30% readings and summaries (approximately one required paper per class)

- Everyone is expected to come to class and participate in discussions

▪ 25% mini-assignments (2-3 programming assignments + 1 written)
- Will also release optional assignments that undergrads may perform as

part of their project component

▪ 45% self-selected "nal project
- Start talking to me now

 CMU 15-869, Fall 2013

What is an architecture?

 CMU 15-869, Fall 2013

Aspects of an architecture (system abstraction)

▪ Entities (things)
- Registers, buffers, vectors, triangles, lights, pixels, images

▪ Operations (that manipulate things)
- Add registers, copy buffer, multiply vectors, blur image, draw triangle

▪ Mechanisms for instantiating entities and expressing operations
- Execute machine instruction, make C++ API call, express logic in programming

language

Notice different levels of granularity/abstraction in examples
Key course theme: choosing the right level of abstraction for system’s needs

Choice impacts system’s expressiveness/scope and its suitability for efficient implementation.

 CMU 15-869, Fall 2013

3D rendering problem

Image credit: Henrik Wann Jensen

Input: model of a scene
3D surface geometry (e.g., triangle mesh)

surface materials
lights

camera

Output: image

How does each mesh triangle contribute to each pixel in the image, given
model’s description of surface properties and lighting conditions.

 CMU 15-869, Fall 2013

The real-time graphics pipeline architecture
(A review of the OpenGL graphics pipeline from a systems perspective)

 CMU 15-869, Fall 2013

Real-time graphics pipeline (entities)

Vertices Primitives
(triangles, points, lines)

Fragments Pixels

1

2

3

4

 CMU 15-869, Fall 2013

Real-time graphics pipeline (operations)

Primitive Generation

Vertex Generation

Vertex Processing

Fragment Generation
(Rasterization)

Fragment Processing

Pixel Operations

Primitive Processing

Vertex stream

Vertex stream

Primitive stream

Primitive stream

Fragment stream

Fragment stream

Vertices

Primitives

Fragments

Pixels

Triangles positioned on screen

Fragments (one per pixel covered by triangle *)

Shaded fragments

Output image (pixels)

Vertices in positioned on screen

Vertices in 3D space1

2

3
4

* Imprecise de#nition: will give precise de#nition in later lecture

 CMU 15-869, Fall 2013

Real-time graphics pipeline (state)

Primitive Generation

Vertex Generation

Fragment Generation
(Rasterization)

Pixel Operations

Output image buffer

Vertex stream

Vertex stream

Primitive stream

Primitive stream

Fragment stream

Fragment stream

Vertices

Primitives

Fragments

Pixels

Vertex data buffers1

2

3
4

Memory Buffers (system state)

Buffers, textures
Vertex transform matrices

Buffers, textures

Buffers, textures

Vertex Processing

Fragment Processing

Primitive Processing

 CMU 15-869, Fall 2013

3D graphics system stack
Application

(e.g, a computer game)

Scene graph
(application’s database representing the scene: geometry, materials, lights, etc.)

Graphics pipeline
(OpenGL/Direct3D)

Graphics pipeline implementation
(software driver + GPU)

the abstraction we
are discussing now

implements the
abstraction

clients to the system
(use the abstraction)

 CMU 15-869, Fall 2013

Issues to keep in mind

▪ Level of abstraction

▪ Orthogonality of abstractions

▪ How is it designed for performance/scalability?

▪ What a system does and DOES NOT do

 CMU 15-869, Fall 2013

The graphics pipeline

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Primitive Processing

Vertices

Primitives

Fragments

Pixels

Output image buffer

Memory

 CMU 15-869, Fall 2013

“Assembling vertices”

Vertex Generation

Vertex Processing

V0 V1 VN-1

glBindBuffer(GL_ARRAY_BUFFER, my_vtx_buffer);
glDrawArrays(GL_TRIANGLES, 0, N);

glBindBuffer(GL_ARRAY_BUFFER, my_vtx_buffer);
glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT,
 my_vtx_indices);

V0 V1 VN-1

1 3 2 1 5 6

Indexed Version (gather)

Contiguous Version

my_vtx_buffer

my_vtx_indices

my_vtx_buffer

 CMU 15-869, Fall 2013

“Assembling vertices”

Vertex Generation

Vertex Processing

XYZ0 XYZ1 XYZN-1

Contiguous Version

UV0 UV1 UVN-1

N0 N1 NN-1

Current pipelines set limit of 16 "oat4 (128 bit) attributes per vertex.

 CMU 15-869, Fall 2013

Vertex stage inputs

Vertex Generation

Vertex Processing

Memory

Uniform
data

Uniform data: constant read-only data provided as
input to every instance of the vertex shader
e.g., vertex transform matrix

 CMU 15-869, Fall 2013

Vertex stage inputs

Vertex Processing

Memory

Uniform
data

struct	
 input_vertex
{
	
 	
 	
 float3	
 pos;	
 	
 //	
 object	
 space	

};	

struct	
 output_vertex
{
	
 	
 	
 float3	
 pos;	
 //	
 NDC	
 space
};	

uniform	
 mat4	
 my_transform;

output_vertex	
 my_vertex_program(input_vertex	
 in)
{
	
 	
 	
 	
 output_vertex	
 out;
	
 	
 	
 	
 out.pos	
 =	
 my_transform	
 *	
 in.pos;	
 //	
 matrix-­‐vector	
 mult
	
 	
 	
 	
 return	
 out;
}

(* Note: for clarity, this is not valid GLSL syntax)

Vertex Shader Program *

1 input vertex 1 output vertex
independent processing of each vertex

 CMU 15-869, Fall 2013

Vertex processing example: lighting

Per vertex data: surface normal, surface color

Uniform data: light direction, light color

Per-vertex lighting computation Per-vertex normal computation, per pixel lighting

 CMU 15-869, Fall 2013

Vertex processing example: skinning

Image credit: http://www.okino.com/conv/skinning.htm

Per-vertex data: base vertex position (Vbase) + blend coefficients (wb)
Uniform data: “bone” matrices (Mb) for current animation frame

 CMU 15-869, Fall 2013

The graphics pipeline

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Primitive Processing

Vertices

Primitives

Fragments

Pixels

Output image buffer

Memory

Uniform
data

1 in / 1 out

3 in / 1 out
(for tris)

 CMU 15-869, Fall 2013

Primitive processing

Primitive Generation

Vertex Generation

Vertex Processing

Primitive Processing

Memory

Uniform
data

Uniform
data

input vertices for 1 prim output vertices for N prims *
independent processing of each INPUT primitive

* PIpeline caps output at 1024 $oats of output

 CMU 15-869, Fall 2013

The graphics pipeline

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Primitive Processing

Vertices

Primitives

Fragments

Pixels

Memory

Uniform
data

1 in / 1 out

3 in / 1 out
(for tris)

Uniform
data1 in / small N out

Output image buffer

 CMU 15-869, Fall 2013

Rasterization

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Primitive Processing

1 input prim N output fragments

N is unbounded
(size of triangles varies greatly)

struct	
 fragment	
 //	
 note	
 similarity	
 to	
 output_vertex	
 from	
 before
{
	
 	
 	
 float	
 	
 x,y;	
 	
 //	
 screen	
 pixel	
 coordinates	
 (sample	
 point	
 location)
	
 	
 	
 float	
 	
 z;	
 	
 	
 	
 //	
 depth	
 of	
 triangle	
 at	
 sample	
 point

	
 	
 	
 float3	
 normal;	
 	
 	
 	
 //	
 interpolated	
 application-­‐defined	
 attribs	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 float2	
 texcoord;	
 	
 //	
 (e.g.,	
 texture	
 coordinates,	
 surface	
 normal)

}	

 CMU 15-869, Fall 2013

Rasterization

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Primitive Processing

Compute covered pixels
Sample vertex attributes once per
covered pixel

struct	
 fragment	
 //	
 note	
 similarity	
 to	
 output_vertex	
 from	
 before
{
	
 	
 	
 float	
 	
 x,y;	
 	
 //	
 screen	
 pixel	
 coordinates	
 (sample	
 point	
 location)
	
 	
 	
 float	
 	
 z;	
 	
 	
 	
 //	
 depth	
 of	
 triangle	
 at	
 sample	
 point

	
 	
 	
 float3	
 normal;	
 	
 	
 	
 //	
 interpolated	
 application-­‐defined	
 attribs	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 float2	
 texcoord;	
 	
 //	
 (e.g.,	
 texture	
 coordinates,	
 surface	
 normal)

}	

 CMU 15-869, Fall 2013

The graphics pipeline

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Primitive Processing

Vertices

Primitives

Fragments

Pixels

screen space

Object/world/camera space

Output image buffer

 CMU 15-869, Fall 2013

The graphics pipeline

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Primitive Processing

Vertices

Primitives

Fragments

Pixels

Memory

Uniform
data

1 in / 1 out

3 in / 1 out
(for tris)

Uniform
data1 in / small N out

1 in / N out

Output image buffer

 CMU 15-869, Fall 2013

Fragment processing

Fragment Processing

Memory

Uniform
data

struct	
 input_fragment
{
	
 	
 	
 float	
 	
 x,y;	
 	

	
 	
 	
 float	
 	
 z;	
 	
 	
 	

	
 	
 	
 float3	
 normal;	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 float2	
 texcoord;	

};

struct	
 output_fragment
{
	
 	
 	
 int	
 	
 	
 	
 x,y;	
 //	
 pixel	
 	

	
 	
 	
 float	
 	
 z;	
 	
 	
 	

	
 	
 	
 float4	
 color;	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

};	

Texture Buffer 0

Texture Buffer N

...

texture	
 my_texture;

output_vertex	
 my_fragment_program(input_fragment	
 in)
{
	
 	
 	
 	
 output_fragment	
 out;
	
 	
 	
 	
 float4	
 material_color	
 =	
 sample(my_texture,	
 in.texcoord);

	
 	
 	
 	
 for	
 (each	
 light	
 L	
 in	
 scene)
	
 	
 	
 	
 {
	
 	
 	
 	
 	
 	
 	
 	
 out.color	
 +=	
 shade(L)	
 //	
 compute	
 reflectance	
 towards	
 camera	
 due	
 to	
 L
	
 	
 	
 	
 }
	
 	
 	
 	
 return	
 out;
}

 CMU 15-869, Fall 2013

Many uses for textures
Provide surface color/re"ectance

Slide credit: Pat Hanrahan

Modulate surface color/re"ectance

 CMU 15-869, Fall 2013

Bump mapping

[Image credit: Wikipedia]

Bump mapping:
Displace surface in direction of
normal (for lighting calculations)

 CMU 15-869, Fall 2013

Normal mapping
Modulate interpolated surface normal

Slide credit: Pat Hanrahan

Modulate surface color/re"ectance

 CMU 15-869, Fall 2013

Many uses for textures
Store precomputed lighting

Slide credit: Pat Hanrahan

Modulate surface color/re"ectance

 CMU 15-869, Fall 2013

The graphics pipeline

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Primitive Processing

Vertices

Primitives

Fragments

Pixels

Memory

1 in / 1 out

3 in / 1 out
(for tris)

1 in / small N out

1 in / N out

** 1 in / 1 out Uniform
data

Texture
buffers

Uniform
data

Texture
buffers

Uniform
data

Texture
buffers

** can be 0 out

Output image buffer

 CMU 15-869, Fall 2013

Frame-buffer operations

Pixel Operations

Frame Buffer

Memorystruct	
 output_fragment
{
	
 	
 	
 int	
 	
 	
 	
 x,y;	
 	

	
 	
 	
 float	
 	
 z;	
 	
 	
 	

	
 	
 	
 float4	
 color;	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

};	

 CMU 15-869, Fall 2013

Frame-buffer operations

Stencil Buffer

Memorystruct	
 output_fragment
{
	
 	
 	
 int	
 	
 	
 	
 x,y;	
 	

	
 	
 	
 float	
 	
 z;	
 	
 	
 	

	
 	
 	
 float4	
 color;	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

};	

Alpha Test

Stencil test

Depth test

Update target

Z Buffer

Color Buffer 0

Color Buffer N

...

if	
 (fragment.z	
 <	
 zbuffer[fragment.x][fragment.y])
{
	
 	
 	
 	
 zbuffer[fragment.x][fragment.y]	
 =	
 fragment.z;
	
 	
 	
 	
 color_buffer[fragment.x][fragment.y]	
 =	
 blend(color_buffer[fragment.x][fragment.y],	
 fragment.color);
}	

Depth test (hidden surface removal)

 CMU 15-869, Fall 2013

Frame-buffer operations

if	
 (fragment.z	
 <	
 zbuffer[fragment.x][fragment.y])
{
	
 	
 	
 	
 zbuffer[fragment.x][fragment.y]	
 =	
 fragment.z;
	
 	
 	
 	
 color_buffer[fragment.x][fragment.y]	
 =	
 blend(color_buffer[fragment.x][fragment.y],	
 fragment.color);
}	

Depth test (hidden surface removal)

 CMU 15-869, Fall 2013

The graphics pipeline

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Primitive Processing

Vertices

Primitives

Fragments

Pixels

Memory

1 in / 1 out

3 in / 1 out
(for tris)

1 in / small N out

1 in / N out

1 in / 1 out Uniform
data

Texture
buffers

Uniform
data

Texture
buffers

Uniform
data

Texture
buffers

1 in / 0 or 1 out Output image buffer

 CMU 15-869, Fall 2013

Programming the graphics pipeline
▪ Issue draw commands output image contents change

Bind shaders, textures, uniforms
Draw using vertex buffer for object 1
Bind new uniforms
Draw using vertex buffer for object 2
Bind new shader
Draw using vertex buffer for object 3

CommandCommand Type

State change

Change depth test function
Bind new shader
Draw using vertex buffer for object 4

Draw
State change
Draw
State change
Draw
State change
State change
Draw

Note: efficiently managing stage changes is a major challenge in implementations

 CMU 15-869, Fall 2013

Using the pipeline to create feedback loops
▪ Issue draw commands output image contents change

Bind contents of output image as texture 1
Draw using vertex buffer for object 5
Draw using vertex buffer for object 6

CommandCommand Type

State change
Draw
Draw

...

Key idea for:
shadows
environment mapping
post-processing effects

Modern games: 1000-1500 draw calls per frame
(source: Johan Andersson, DICE -- circa 1998)

Draw using vertex buffer for object 5Draw
Draw using vertex buffer for object 6 Draw

 CMU 15-869, Fall 2013

Feedback loop: store intermediate geometry
▪ Issue draw commands save intermediate geometry

Primitive Generation

Vertex Generation

Vertex Processing

Primitive Processing

Vertices

Primitives

Memory

1 in / 1 out

3 in / 1 out
(for tris)

1 in / small N out
Uniform

data
Texture
buffers

Uniform
data

Texture
buffers

output vertex buffer

 CMU 15-869, Fall 2013

OpenGL state diagram (OGL 1.1)

 CMU 15-869, Fall 2013

Graphics pipeline
with tessellation
(OpenGL 4, Direct3D 11)

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Primitive Processing

Vertices

Primitives

Fragments

Pixels

1 in / 1 out

3 in / 1 out
(for tris)

1 in / small N out

1 in / N out

1 in / 1 out

1 in / 0 or 1 out

Fine Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Fine Primitive Processing

Coarse Vertices

Fine Primitives

Fragments

Pixels

1 in / 1 out

3 in / 1 out
(for tris)

1 in / small N out

1 in / N out

1 in / 1 out

1 in / 0 or 1 out

Fine Vertex Processing

Tessellation
Fine Vertices

Coarse Primitive ProcessingCoarse Primitives
1 in / 1 out

1 in / 1 out

1 in / N out

 CMU 15-869, Fall 2013

Graphics pipeline characteristics
▪ Level of abstraction

- Imperative abstraction, not declarative
(Application says “draw these triangles, using this fragment shader, with
depth testing on” rather than “draw a cow made of marble on a sunny day”)

- Programmable stages give large amount of application "exibility
(e.g., to implement wide variety of materials and lighting techniques)

- Con#gurable (but not programmable) pipeline structure: turn stages on
and off, create feedback loops

- Abstraction low enough to allow application to implement many
techniques, but high enough to abstract over radically different GPU
implementations

 CMU 15-869, Fall 2013

Orthogonality of abstractions
▪ All vertices treated the same regardless of primitive type

- Vertex programs oblivious to primitive types
- The same vertex program works for triangles and lines

▪ All primitives are converted into fragments for per-pixel shading
and frame-buffer operations
- Fragment programs oblivious to primitive type and the behavior of the

vertex program *
- Z-buffer is a common representation used to perform occlusion for any

primitive that can be converted into fragments

* Almost oblivious. Vertex shader must make sure it passes along all inputs required by the fragment shader

 CMU 15-869, Fall 2013

Pipeline design facilitates performance/scalability
▪ [Reasonably] low level: low abstraction distance to implementation
▪ Constraints on pipeline structure:

- Constrained data "ow between stages
- Fixed-function stages for common and difficult to parallelize tasks
- Shaders: independent processing of each data element (enables parallelism)

▪ Provide frequencies of computation (per vertex, per primitive, per fragment)
- Application can choose to perform work at the rate required

▪ Keep it simple:
- Only a few common intermediate representations

- Triangles, points, lines
- Fragments, pixels

- Z-buffer algorithm computes visibility for any primitive type
▪ “Immediate mode system”: pipeline processes primitives as it receives them

(as opposed to buffering the entire scene)
- Leave global optimization of how to render scene to the application

 CMU 15-869, Fall 2013

What the pipeline DOES NOT do (non-goals)
▪ Pipeline has no concept of lights, materials, modeling transforms

- Only vertices, primitives, fragments, pixels, and STATE
(such as buffers, shaders, and con"g parameters)

- Applications use these basic abstractions to implement lights, materials, etc.

▪ Pipeline has no concept of a scene
▪ No I/O or OS window management

 CMU 15-869, Fall 2013

Perspective from Kurt Akeley

▪ Does the system meet original design goals, and then do
much more than was originally imagined?

- Simple, orthogonal concepts produce ampli"er effect

▪ Often you’ve done a good job if neither system implementers
nor system users are perfectly happy ;-)
(of course, you still have to meet design goals)

 CMU 15-869, Fall 2013

Readings
▪ Required

- D. Blythe. The Direct10 System. SIGGRAPH 2006

▪ Suggested:
- Chapter 2 and 3 of Real-Time Rendering, Third Edition (see link on course site)
- D. Blythe, Rise of the Graphics Processor. Proceedings of the IEEE, 2008
- M. Segal and K. Akeley. The Design of the OpenGL Graphics Interface

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15869-f11/www/readings/blythe08_riseofgpu.pdf
http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15869-f11/www/readings/blythe08_riseofgpu.pdf

