
Visual Computing Systems
CMU 15-769, Fall 2016

Lecture 24:

Lizst Language Notes

Slide acknowledgments:
Pat Hanrahan, Zach Devito (Stanford University)

What a Liszt program does

val	Position	=	FieldWithConst[Vertex,Float3](0.f,	0.f,	0.f)	
val	Temperature	=	FieldWithConst[Vertex,Float](0.f)	
val	Flux	=	FieldWithConst[Vertex,Float](0.f)	
val	JacobiStep	=	FieldWithConst[Vertex,Float](0.f)

Color key:
Fields
Mesh entity H

F

E

C

B

D G
1

5

8

10

11
7

3

0

2

4
69

A

A Liszt program is run on a mesh
A Liszt program defines, and compute the value of, fields defined on the mesh

Notes:
Fields are a higher-kinded type
(special function that maps a type to a new type)

Position is a field defined at each mesh vertex.
The field’s value is represented by a 3-vector.

Liszt program: heat conduction on mesh

var	i	=	0;
while	(i	<	1000)	{
		Flux(vertices(mesh))	=	0.f;
		JacobiStep(vertices(mesh))	=	0.f;
		for	(e	<-	edges(mesh))	{
				val	v1	=	head(e)
				val	v2	=	tail(e)
				val	dP	=	Position(v1)	-	Position(v2)
				val	dT	=	Temperature(v1)	-	Temperature(v2)
				val	step	=	1.0f/(length(dP))
				Flux(v1)	+=	dT*step
				Flux(v2)	-=	dT*step
				JacobiStep(v1)	+=	step
				JacobiStep(v2)	+=	step
		}	
		i	+=	1
}

H

F

E

C

B

D G
1

5

8

10

11
7

3

0

2

4
69

A

Program computes the value of fields defined on meshes

Color key:
Fields
Mesh
Topology functions
Iteration over set

Set flux for all vertices to 0.f;

Independently, for each
edge in the mesh

Access value of field
at mesh vertex v2Given edge, loop body accesses/modifies field

values at adjacent mesh vertices

Liszt’s topological operators
Used to access mesh elements relative to some input vertex, edge, face, etc.
Topological operators are the only way to access mesh data in a Liszt program
Notice how many operators return sets (e.g., “all edges of this face”)

 CMU 15-769, Fall 2016

Liszt programming
▪ A Liszt program describes operations on fields of an abstract mesh

representation

▪ Application specifies type of mesh (regular, irregular) and its topology

▪ Mesh representation is chosen by Liszt (not by the programmer)

- Based on mesh type, program behavior, and target machine

Well, that’s interesting. I write a program, and the compiler decides what data
structure it should use based on what operations my code performs.

Statically analyze code to find stencil of each top-level for loop
- Extract nested mesh element reads
- Extract field operations

for	(e	<-	edges(mesh))	{
		val	v1	=	head(e)
		val	v2	=	tail(e)
		val	dP	=	Position(v1)	-	Position(v2)
		val	dT	=	Temperature(v1)	-	Temperature(v2)
		val	step	=	1.0f/(length(dP))
		Flux(v1)	+=	dT*step
		Flux(v2)	-=	dT*step
		JacobiStep(v1)	+=	step
		JacobiStep(v2)	+=	step
}
…	

e in
edges(mesh)

head(e) tail(e)

Write Flux, JacobiStep Write Flux, JacobiStep
Read Position,Temperature Read Position, Temperature

vertices(mesh)

Read/Write Flux

Write Temperature
Read/Write JacobiStep

Liszt is constrained to allow dependency analysis
Lizst infers “stencils”: “stencil” = mesh elements accessed in an iteration of loop

 = dependencies for the iteration

H

F

E

C

B

D G
1

5

8

10

11
7

3

0

2

4
69

A

Edge 6’s read stencil is D and F

Restrict language for dependency analysis
Language restrictions:

- Mesh elements are only accessed through built-in topological functions:

cells(mesh),	…
- Single static assignment:

val	v1	=	head(e)

- Data in fields can only be accessed using mesh elements:
								 Pressure(v)	

- No recursive functions

Restrictions allow compiler to automatically infer stencil for a loop iteration.

(Same idea as constraints that enable bounds analysis in Halide.)

Portable parallelism: use dependencies to implement
different parallel execution strategies

I’ll discuss two strategies…

Strategy 1: mesh partitioning

Strategy 2: mesh coloring
Owned Cell

Ghost Cell

1 58 1011 73 0 24 9

Batch 4Batch 3Batch 2Batch 1

Schedule set of nonconflicting threads per color

Distributed memory implementation of Liszt
Mesh + Stencil → Graph → Partition
for(f	<-	faces(mesh))	{	
		rhoOutside(f)	=			
				calc_flux(f,	rho(outside(f)))	+	
				calc_flux(f,	rho(inside(f)))	
}

Initial Partition
(by ParMETIS)

Consider distributed memory implementation
Store region of mesh on each node in a cluster
(Note: ParMETIS is a tool for partitioning meshes)

Ghost
Cells

Each processor also needs data for neighboring cells to
perform computation (“ghost cells”)
Listz allocates ghost region storage and emits required
communication to implement topological operators.

 CMU 15-769, Fall 2016

Imagine compiling a Lizst program to a GPU
(single address space, many tiny threads)

GPU implementation: parallel reductions

Threads 1 edge assigned to 1 thread

Memory

Force
Field:

1 5 8 10 11730 2 4 6 9

A C E F HGDB

for	(e	<-	edges(mesh))	{	
		…	
		Flux(v1)	+=	dT*step	
		Flux(v2)	-=	dT*step	
		…	
}

Different edges share a vertex: requires
atomic update of per-vertex field data

In previous example, one region of mesh assigned per processor (or node in MPI cluster)
On GPU, natural parallelization is one edge per CUDA thread

Threads (each edge assigned to 1 CUDA thread)

Flux field values (per vertex)

GPU implementation: conflict graph
Threads 1 edge assigned to 1 thread

Memory

Force
Field:

1 5 8 10 11730 2 4 6 9

A C E F HGDB

1 5 8 10

11730

2 4 6 9

Identify mesh edges with colliding writes
(lines in graph indicate presence of collision)

Can simply run program once to get this
information.
(results valid for subsequent executions
provided mesh does not change)

Threads (each edge assigned to 1 CUDA thread)

Flux field values (per vertex)

Threads 1 edge assigned to 1 thread

Memory

Force
Field:

1 5 8 10 11730 2 4 6 9

A C E F HGDB

1 5 8 10

11730

2 4 6 9

GPU implementation: conflict graph

“Color” nodes in graph such that no
connected nodes have the same color

Can execute on GPU in parallel, without
atomic operations, by running all nodes with
the same color in a single CUDA launch.

Threads (each edge assigned to 1 CUDA thread)

Flux field values (per vertex)

Cluster performance of Lizst program
256 nodes, 8 cores per node (message-passing implemented using MPI)

32

128

256

512

1024

32 128 256 512 1024

Sp
ee

du
p

Cores

Euler
23M cell mesh

Liszt
C++

32

128

256

512

1024

32 128 256 512 1024
Cores

Navier-Stokes
21M cell mesh

Liszt
C++

Important: performance portability!
Same Liszt program also runs with high efficiency on GPU (results not shown here).
But uses a different algorithm when compiled to GPU! (graph coloring)

 CMU 15-769, Fall 2016

Liszt summary
▪ Productivity:

- Abstract representation of mesh: vertices, edges, faces, fields (concepts that a scientist
thinks about already!)

- Intuitive topological operators

▪ Portability
- Same code runs on large cluster of CPUs (MPI) and GPUs (and combinations thereof!)

▪ High-performance
- Language is constrained to allow compiler to track dependencies
- Used for locality-aware partitioning in distributed memory implementation
- Used for graph coloring in GPU implementation
- Compiler knows how to chooses different parallelization strategies for different

platforms
- Underlying mesh representation can be customized by system based on usage and

platform (e.g, don’t store edge pointers if code doesn’t need it, choose struct of arrays
vs. array of structs for per-vertex fields)

 CMU 15-769, Fall 2016

Class discussion on Ebb
(Bernstein et al. SIGGRAPH 16)

