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What a Liszt program does

val	Position	=	FieldWithConst[Vertex,Float3](0.f,	0.f,	0.f)	
val	Temperature	=	FieldWithConst[Vertex,Float](0.f)	
val	Flux	=	FieldWithConst[Vertex,Float](0.f)	
val	JacobiStep	=	FieldWithConst[Vertex,Float](0.f)

Color key: 
Fields
Mesh entity H

F

E

C

B

D G
1

5

8

10

11
7

3 

0

2

4
69

A

A Liszt program is run on a mesh 
A Liszt program defines, and compute the value of, fields defined on the mesh

Notes: 
Fields are a higher-kinded type 
(special function that maps a type to a new type)

Position is a field defined at each mesh vertex. 
The field’s value is represented by a 3-vector. 



Liszt program: heat conduction on mesh

var	i	=	0;
while	(	i	<	1000	)	{
		Flux(vertices(mesh))	=	0.f;
		JacobiStep(vertices(mesh))	=	0.f;
		for	(e	<-	edges(mesh))	{
				val	v1	=	head(e)
				val	v2	=	tail(e)
				val	dP	=	Position(v1)	-	Position(v2)
				val	dT	=	Temperature(v1)	-	Temperature(v2)
				val	step	=	1.0f/(length(dP))
				Flux(v1)	+=	dT*step
				Flux(v2)	-=	dT*step
				JacobiStep(v1)	+=	step
				JacobiStep(v2)	+=	step
		}	
		i	+=	1
}
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Program computes the value of fields defined on meshes

Color key: 
Fields
Mesh
Topology functions
Iteration over set

Set flux for all vertices to 0.f;

Independently, for each 
edge in the mesh

Access value of field 
at mesh vertex v2Given edge, loop body accesses/modifies field 

values at adjacent mesh vertices



Liszt’s topological operators
Used to access mesh elements relative to some input vertex, edge, face, etc. 
Topological operators are the only way to access mesh data in a Liszt program 
Notice how many operators return sets (e.g., “all edges of this face”)
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Liszt programming
▪ A Liszt program describes operations on fields of an abstract mesh 

representation  

▪ Application specifies type of mesh (regular, irregular) and its topology 

▪ Mesh representation is chosen by Liszt (not by the programmer) 

- Based on mesh type, program behavior, and target machine 

Well, that’s interesting.  I write a program, and the compiler decides what data 
structure it should use based on what operations my code performs.



Statically analyze code to find stencil of each top-level for loop 
- Extract nested mesh element reads 
- Extract field operations

for	(e	<-	edges(mesh))	{
		val	v1	=	head(e)
		val	v2	=	tail(e)
		val	dP	=	Position(v1)	-	Position(v2)
		val	dT	=	Temperature(v1)	-	Temperature(v2)
		val	step	=	1.0f/(length(dP))
		Flux(v1)	+=	dT*step
		Flux(v2)	-=	dT*step
		JacobiStep(v1)	+=	step
		JacobiStep(v2)	+=	step
}
…	

e in 
edges(mesh)

head(e) tail(e)

Write Flux, JacobiStep Write Flux, JacobiStep
Read Position,Temperature Read Position, Temperature

vertices(mesh)

Read/Write Flux

Write Temperature
Read/Write JacobiStep

Liszt is constrained to allow dependency analysis 
Lizst infers “stencils”: “stencil” = mesh elements accessed in an iteration of loop 

                   = dependencies for the iteration
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Edge 6’s read stencil is D and F



Restrict language for dependency analysis
Language restrictions: 

- Mesh elements are only accessed through built-in topological functions: 

cells(mesh),	…
- Single static assignment: 

val	v1	=	head(e)

- Data in fields can only be accessed using mesh elements: 
								 Pressure(v)	

- No recursive functions 

Restrictions allow compiler to automatically infer stencil for a loop iteration. 

(Same idea as constraints that enable bounds analysis in Halide.)



Portable parallelism: use dependencies to implement 
different parallel execution strategies

I’ll discuss two strategies… 

Strategy 1: mesh partitioning 

Strategy 2: mesh coloring
Owned Cell

Ghost Cell

1 58 1011 73 0 24 9

Batch 4Batch 3Batch 2Batch 1

Schedule set of nonconflicting threads per color



Distributed memory implementation of Liszt 
Mesh + Stencil → Graph → Partition
for(f	<-	faces(mesh))	{	
		rhoOutside(f)	=			
				calc_flux(f,	rho(outside(f)))	+	
				calc_flux(f,	rho(inside(f)))	
}

Initial Partition 
(by ParMETIS)

Consider distributed memory implementation 
Store region of mesh on each node in a cluster 
(Note: ParMETIS is a tool for partitioning meshes)



Ghost 
Cells

Each processor also needs data for neighboring cells to 
perform computation (“ghost cells”) 
Listz allocates ghost region storage and emits required 
communication to implement topological operators.
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Imagine compiling a Lizst program to a GPU
(single address space, many tiny threads)



GPU implementation: parallel reductions

Threads 1 edge assigned to 1 thread

Memory

Force
Field: 

1 5 8 10 11730 2 4 6 9

A C E F HGDB

for	(e	<-	edges(mesh))	{	
		…	
		Flux(v1)	+=	dT*step	
		Flux(v2)	-=	dT*step	
		…	
}

Different edges share a vertex: requires 
atomic update of per-vertex field data

In previous example, one region of mesh assigned per processor (or node in MPI cluster) 
On GPU, natural parallelization is one edge per CUDA thread

Threads (each edge assigned to 1 CUDA thread)

Flux field values (per vertex)



GPU implementation: conflict graph
Threads 1 edge assigned to 1 thread

Memory

Force
Field: 

1 5 8 10 11730 2 4 6 9

A C E F HGDB

1 5 8 10

11730

2 4 6 9

Identify mesh edges with colliding writes 
(lines in graph indicate presence of collision) 

Can simply run program once to get this 
information. 
(results valid for subsequent executions 
provided mesh does not change)

Threads (each edge assigned to 1 CUDA thread)

Flux field values (per vertex)



Threads 1 edge assigned to 1 thread

Memory

Force
Field: 

1 5 8 10 11730 2 4 6 9

A C E F HGDB

1 5 8 10

11730

2 4 6 9

GPU implementation: conflict graph

“Color” nodes in graph such that no 
connected nodes have the same color 

Can execute on GPU in parallel, without 
atomic operations, by running all nodes with 
the same color in a single CUDA launch. 

Threads (each edge assigned to 1 CUDA thread)

Flux field values (per vertex)



Cluster performance of Lizst program
256 nodes, 8 cores per node (message-passing implemented using MPI)
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Important: performance portability! 
Same Liszt program also runs with high efficiency on GPU (results not shown here). 
But uses a different algorithm when compiled to GPU! (graph coloring)
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Liszt summary
▪ Productivity: 

- Abstract representation of mesh: vertices, edges, faces, fields (concepts that a scientist 
thinks about already!) 

- Intuitive topological operators 

▪ Portability 
- Same code runs on large cluster of CPUs (MPI) and GPUs (and combinations thereof!) 

▪ High-performance 
- Language is constrained to allow compiler to track dependencies 
- Used for locality-aware partitioning in distributed memory implementation 
- Used for graph coloring in GPU implementation 
- Compiler knows how to chooses different parallelization strategies for different 

platforms 
- Underlying mesh representation can be customized by system based on usage and 

platform (e.g, don’t store edge pointers if code doesn’t need it, choose struct of arrays 
vs. array of structs for per-vertex fields) 
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Class discussion on Ebb 
(Bernstein et al. SIGGRAPH 16)


