
Visual Computing Systems
CMU 15-769, Fall 2016

Lecture 23:

Shading Languages
(+ mapping shader programs to GPU processor cores)

 CMU 15-769, Fall 2016

The course so far

So far in this section of the course: focus has
been on non-programmable parts of the
graphics pipeline

- Geometry processing operations

- Visibility (coverage, occlusion)

- Texturing

I’ve said very little about about materials,
lights, etc.

And hardly mentioned programmable GPUs

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Primitive Processing

Vertices

Primitives

Fragments

Pixels

Basic Graphics Pipeline

 CMU 15-769, Fall 2016

Review: the rendering equation * [Kajiya 86]

* Note: using notation from Hanrahan 90 (to match reading)

x

x’

i(x,x’)

i(x,x’) = Radiance (energy along a ray) from point x’ in direction of point x
v(x,x’) = Binary visibility function (1 if ray from x’ reaches x, 0 otherwise)
l(x,x’) = Radiance emitted from x’ in direction of x (if x’ is an emitter)
r(x,x’,x’’) = BRDF: fraction of energy arriving at x’ from x’’ that is reflected in direction of x

x’’

 CMU 15-769, Fall 2016

Categories of reflection functions
▪ Ideal specular

▪ Ideal diffuse

▪ Glossy specular

▪ Retro-reflective

Diagrams illustrate how incoming light energy from
given direction is reflected in various directions.

Perfect mirror

Uniform reflection in all directions

Reflects light back toward source

Majority of light distributed in
reflection direction

[Slide credit: Stanford 348b / Pat Hanrahan]

 CMU 15-769, Fall 2016

Materials: diffuse

[Slide credit: Matt Pharr]

 CMU 15-769, Fall 2016

Materials: plastic

[Slide credit: Matt Pharr]

 CMU 15-769, Fall 2016

Materials: red semi-gloss paint

[Slide credit: Matt Pharr]

 CMU 15-769, Fall 2016

Materials: mirror

[Slide credit: Matt Pharr]

 CMU 15-769, Fall 2016

Materials: gold

[Slide credit: Matt Pharr]

 CMU 15-769, Fall 2016

Materials

[Image credit: Jakob et al. 2014]

 CMU 15-769, Fall 2016

More complex materials

[Images from Lafortune et al. 97]

Fresnel reflection: reflectance is a function of viewing angle (notice higher reflectance near grazing angles)

[Images from Westin et al. 92]

Anisotropic reflection: reflectance depends on azimuthal angle
(e.g., oriented microfacets in brushed steel)

Isotropic Anisotropic

 CMU 15-769, Fall 2016

Subsurface scattering materials

▪ Account for scattering inside surface

▪ Light exits surface from different location it enters

- Very important to appearance of translucent materials (e.g., skin, foliage, marble)

BRDF
BSSRDF

[Wann Jensen et al. 2001]

 CMU 15-769, Fall 2016

More materials

Images from Matusik et al. SIGGRAPH 2003

Tabulated BRDFs

 CMU 15-769, Fall 2016

Simplification of the rendering equation
▪ All light sources are point sources (light i emits from point xli)
▪ Lights emit equally in all directions: radiance from light i:
▪ Direct illumination only: illumination of x’ comes directly from light sources

x

x’

i(x,x’)

i=0,1,2

0

1 2xl1

 CMU 15-769, Fall 2016

▪ Attenuated omnidirectional point light
(emits equally in all directions, intensity falls off with distance: 1/R2 falloff)

▪ Spot light
(does not emit equally in all directions)

More light types

ɵ

 CMU 15-769, Fall 2016

▪ Environment light
(not a point light source: defines incoming light from all directions)

More sophisticated lights

Environment Map
(Grace cathedral)

Rendering using environment map
(pool balls have varying material properties)

[Ramamoorthi et al. 2001]

 CMU 15-769, Fall 2016

Parameterized materials and lighting in early
OpenGL (prior to programmable shading)

▪ glLight(light_id,	parameter_id,	parameter_value)	

- 10 parameters (e.g., ambient/diffuse/specular color, position, direction,
attenuation coefficient)

▪ glMaterial(face,	parameter_id,	parameter_value)	

- Face specifies front or back facing geometry

- Parameter examples (ambient/diffuse/specular reflectance, shininess)

- Material value could be modulated by texture data

▪ Parameterized shading function evaluated at each vertex

- Summation over all enabled lights

- Resulting per-vertex color modulated by result of texturing

 CMU 15-769, Fall 2016

Precursor to shading languages: shade trees

*
+

*

+

Material:
specular reflection coeff Albedo texture:

(multiple textures used
to define albedo)

Diffuse reflectance (N dot L) Specular reflectance

*

[Cook 84]

Note: shade tree is a
declarative abstraction!

 CMU 15-769, Fall 2016

Shading languages
▪ Goal: support wide diversity in materials and lighting

conditions

▪ Idea: allow application to extend graphics pipeline by
providing a programmatic definition of shading function logic

 CMU 15-769, Fall 2016

Tension: flexibility vs. performance
▪ Graphics pipeline provides highly optimized implementations of

specific visibility operations
- Examples: clipping, culling, rasterization, z-buffering

- Highly optimized implementations on a few canonical data structures
(triangles, fragments, and pixels)

- Recall how much the implementation of these functions was deeply
intertwined with overall pipeline scheduling/parallelization decisions

▪ Impractical for rendering system to constrain application to use a
single parametric model for surface definitions, lighting, and shading
- Must allow applications to define these behaviors programmatically

- Shading language is the interface between application-defined surface,
lighting, material reflectance functions and the graphics pipeline

 CMU 15-769, Fall 2016

GPU shading languages today: e.g., HLSL

sampler	mySampler;	
Texture2D<float3>	myTex;	
float3	lightDir;	

float4	diffuseShader(float3	norm,	float2	uv)	
{	
		float3	kd;	
		kd	=	myTex.Sample(mySampler,	uv);	
		kd	*=	clamp(dot(-lightDir,	norm),	0.0,	1.0);	
		return	float4(kd,	1.0);				
}	

HLSL shader program: defines logic of fragment processing stage

Sample surface
albedo from texture

Modulate surface albedo by
incident irradiance

Shader returns surface
reflectance (float4)

Varying “per-fragment”
arguments

“Uniform” (same for all
fragments) arguments

Note: Imperative abstraction for defining logic within a shader!

 CMU 15-769, Fall 2016

Shading typically has very high arithmetic intensity
sampler	mySamp;

Texture2D<float3>	myTex;	

float3	ks;	

float		shinyExp;

float3	lightDir;

float3	viewDir;	

float4	phongShader(float3	norm,	float2	uv)

{

		float	result;	

		float3	kd;

		kd	=	myTex.Sample(mySamp,	uv);	

		float	spec	=	dot(viewDir,	2	*	dot(-lightDir,	norm)	*	norm	+	lightDir);

		result	=	kd	*	clamp(dot(lightDir,	norm),	0.0,	1.0);	

		result	+=	ks	*	exp(spec,	shinyExp);	

		return	float4(result,	1.0);			

}

3 scalar float operations + 1 exp()
8 float3 operations + 1 clamp()
1 texture access

Vertex processing often has higher arithmetic intensity than fragment processing
(less use of texturing)

Image credit: http://caig.cs.nctu.edu.tw/course/CG2007

 CMU 15-769, Fall 2016

Efficiently mapping of shading
computations to GPU hardware

 CMU 15-769, Fall 2016

Review: fictitious throughput processor

▪ Processor decodes one instruction per clock

▪ Instruction controls all eight SIMD execution units
- SIMD = “single instruction multiple data”

▪ “Explicit” SIMD:
- Vector instructions manipulate contents of 8x32-bit (256 bit) vector registers
- Execution is all within one hardware execution context

▪ “Implicit” SIMD (SPMD, “SIMT”):
- Hardware executes eight unique execution contexts in “lockstep”
- Program binary contains scalar instructions manipulating 32-bit registers

Fetch/
Decode

ALU 1 ALU 2 ALU 3 ALU 4 ALU 5 ALU 6 ALU 7 ALU 8

 CMU 15-769, Fall 2016

Mapping fragments to execution units:
Map fragments to “vector lanes” within one execution context (explicit SIMD parallelism)
or to unique contexts that share an instruction stream (parallelization by hardware)

Fetch/
Decode ALU ALU ALU ALU ALU ALU ALU ALU

V0

V1

VN
256 bits

Group of
fragments

Single
processor
execution

context
(with vector

registers)

Decode vector
instructions on
vector registers

Fetch/
Decode ALU ALU ALU ALU ALU ALU ALU ALU

V0

V1

VN

Group of
fragments

Eight processor
execution
contexts

(with 32-bit
scalar regs)

Decode scalar
instructions operating

on scalar registers

32
bits

 CMU 15-769, Fall 2016

GLSL/HLSL shading languages employ a
SPMD programming model

▪ SPMD = single program, multiple data
- Programming model used in writing GPU shader programs

- What’s the program?

- What’s the data?

- Also adopted by CUDA, Intel’s ISPC

▪ How do we implement a SPMD program on SIMD hardware?

 CMU 15-769, Fall 2016

Example 1: shader with a conditional
sampler	mySamp;

Texture2D<float3>	myTex;	

float4	fragmentShader(float3	norm,	float2	st,	float4	frontColor,	float4	backColor)

{	
		float4	tmp;	
		if	(norm[2]	<	0)		//	sidedness	check	(direction	of	Z	component	of	normal)	
		{	
					tmp	=	backColor;			
		}	
		else	
		{	
					tmp	=	frontColor;	
					tmp	*=	myTex.sample(mySamp,	st);

		}

		return	tmp;	
}	

 CMU 15-769, Fall 2016

Example 2: predicate is uniform expression
sampler	mySamp;

Texture2D<float3>	myTex;	
float	myParam;						//	uniform	value	
float	myLoopBound;	

float4	fragmentShader(float3	norm,	float2	st,	float4	frontColor,	float4	backColor)

{	
			float4	tmp;	
			if	(myParam	<	0.5)	
	{	
			float	scale	=	myParam	*	myParam;	
			tmp	=	scale	*	frontColor;	

	}	
	else	
	{			
				tmp	=	backColor;	
	}	

			return	tmp;	
}

Notice:
predicate is uniform expression
(same result for all fragments)

 CMU 15-769, Fall 2016

Improved efficiency: processor executes uniform
instructions using scalar execution units

Fetch/
Decode

1 scalar or 1 vector

ALU 1 ALU 2 ALU 3 ALU 4 ALU 5 ALU 6 ALU 7 ALU 8

Scalar

Logic shared across all “vector lanes” need only be performed once (not
repeated by every vector ALU)
- Scalar logic identified at compile time (compiler generates different instructions)

float3	lightDir[MAX_NUM_LIGHTS];	

int	numLights;	

float4	multiLightFragShader(float3	norm,	float4	surfaceColor)

{	

			float4	outputColor;	

			for	(int	i=0;	i<num_lights;	i++)	{	

					outputColor	+=	surfaceColor	*	clamp(0.0,	1.0,	dot(norm,	lightDir[i]));	

	}	

}

 CMU 15-769, Fall 2016

Improving the fictitious throughput processor

▪ Now decode two instructions per clock
- How should we organize the processor to execute those instructions?

Fetch/
Decode

ALU 1 ALU 2 ALU 3 ALU 4 ALU 5 ALU 6 ALU 7 ALU 8Fetch/
Decode

Scalar

Hardware’s decode throughput:
two instructions per clock

Hardware’s execution throughput:
one scalar operation + 8-wide vector operation per clock

 CMU 15-769, Fall 2016

Three possible organizations

▪ Execute two instructions (one scalar, one vector) from same execution context
- One execution context can fully utilize the processor’s resources, but requires instruction-level-parallelism

in instruction stream

▪ Execute unique instructions in two different execution contexts
- Processor needs two runnable execution contexts (twice as much parallel work must be available)
- But no ILP in any instruction stream is required to run machine at full throughput

▪ Execute two SIMD operations in parallel (e.g., two 4-wide operations)
- Significant change: must modify how ALUs are controlled: no longer 8-wide SIMD
- Instructions could be from same execution context (ILP) or two different ones

Fetch/
Decode

ALU 1 ALU 2 ALU 3 ALU 4 ALU 5 ALU 6 ALU 7 ALU 8Fetch/
Decode

Scalar

Hardware’s decode throughput:
two instructions per clock

Hardware’s execution throughput:
one scalar operation + 8-wide vector operation per clock

 CMU 15-769, Fall 2016

NVIDIA GTX 680 (2012)
NVIDIA Kepler GK104 architecture SMX unit (one “core”)

= SIMD function unit,
 control shared across 32 units
 (1 MUL-ADD per clock)

Fetch/
Decode

Fetch/
Decode

Warp Selector

Fetch/
Decode

Fetch/
Decode

Warp Selector

Fetch/
Decode

Fetch/
Decode

Warp Selector

Fetch/
Decode

Fetch/
Decode

Warp Selector

“Shared” memory
or L1 data cache

(64 KB)

Warp execution
contexts
(256 KB)

Warp 0
Warp 1
Warp 2

. . .

= “special” SIMD function unit,
 control shared across 32 units
 (operations like sin, cos, exp)

= SIMD load/store unit
 (handles warp loads/stores, gathers/scatters)

Core executes two independent
instructions from four warps in a clock
(eight total instructions / clock)

 CMU 15-769, Fall 2016

NVIDIA GTX 680 (2012)
NVIDIA Kepler GK104 architecture SMX unit (one “core”)

= SIMD function unit,
 control shared across 32 units
 (1 MUL-ADD per clock)

= “special” SIMD function unit,
 control shared across 32 units
 (operations like sin, cos, exp)

= SIMD load/store unit
 (handles warp loads/stores, gathers/scatters)

▪ SMX core resource limits:
- Maximum warp execution contexts: 64 (2,048 total CUDA threads)

▪ Why storage for 64 warp execution contexts if only four can execute at once?
- Multi-threading to hide memory access latency (in graphics, this is often latency of texture

access!)

 CMU 15-769, Fall 2016

NVIDIA GTX 680 (2012)
NVIDIA Kepler GK104 architecture SMX unit (one “core”)

= SIMD function unit,
 control shared across 32 units
 (1 MUL-ADD per clock)

= “special” SIMD function unit,
 control shared across 32 units
 (operations like sin, cos, exp)

= SIMD load/store unit
 (handles warp loads/stores, gathers/scatters)

▪ SMX programmable core operation each clock:
- Select up to four runnable warps from up to 64 resident on core (thread-level parallelism)
- Select up to two runnable instructions per warp (instruction-level parallelism)
- Execute instructions on available groups of SIMD ALUs, special-function ALUs, or LD/ST units

▪ SMX texture unit throughput:
- 16 filtered texels per clock

 CMU 15-769, Fall 2016

NVIDIA GTX 680 (2012)
NVIDIA Kepler GK104 architecture

- 1 GHz clock
- Eight SMX cores per chip
- 8 x 192 = 1,536 SIMD mul-add ALUs

 = 3 TFLOPs
- Up to 512 interleaved warps per chip

(16,384 CUDA threads/chip)
- TDP: 195 watts

L2 cache
(512 KB)

shared+L1
(64 KB)

shared/L1
(64 KB)

shared+L1
(64 KB)

shared+L1
(64 KB)

shared+L1
(64 KB)

shared+L1
(64 KB)

shared+L1
(64 KB)

shared+L1
(64 KB)

Memory
256 bit interface

DDR5 DRAM

192 GB/sec

 CMU 15-769, Fall 2016

Shading languages summary
▪ Convenient/simple abstraction:

- Wide application scope: implement any logic within shader function subject to input/output constraints.

- Independent per-element SPMD programming model (no loops over elements, no explicit parallelism)

- Built-in primitives for texture mapping

▪ Facilitate high-performance implementation:
- SPMD shader programming model exposes parallelism (independent execution per element)

- Shader programming model exposes texture operations (can be scheduled on specialized HW)

▪ GPU implementations:
- Wide SIMD execution (shaders feature coherent instruction streams)

- High degree of multi-threading (multi-threading to avoid stalls despite large texture access latency)

- e.g., NVIDIA Kepler: 16 times more warps (execution contexts) than can be executed per clock

- Fixed-function hardware implementation of texture filtering (efficient, performant)

- High performance implementations of transcendentals (sin, cos, exp) -- common operations in shading

 CMU 15-769, Fall 2016

One important thought

 CMU 15-769, Fall 2016

Recall: modern GPU is a heterogeneous processor

Cmd Processor /Vertex Generation

Frame Buffer Ops

Frame Buffer Ops

Frame Buffer Ops

Frame Buffer Ops

High-speed interconnect

Programmable
Core

Texture

Programmable
Core

Programmable
Core

Programmable
Core

Rasterizer

Tessellation

Programmable
Core

Texture

Programmable
Core

Programmable
Core

Programmable
Core

Rasterizer

Tessellation

Programmable
Core

Texture

Programmable
Core

Programmable
Core

Programmable
Core

Rasterizer

Tessellation

Programmable
Core

Texture

Programmable
Core

Programmable
Core

Programmable
Core

Rasterizer

Tessellation Work Distributor/Scheduler

Vertex Queue

Primitive Queue

Fragment Queue

. . .

 CMU 15-769, Fall 2016

A unique (odd) aspect of GPU design
▪ The fixed-function components on a GPU control the

operation of the programmable components
- Fixed-function logic generates work (input assembler, tessellator, rasterizer

generate elements)

- Programmable logic defines how to process generated elements

▪ Application-programmable logic forms the inner loops of the
rendering computation, not the outer loops!

▪ Ongoing debate: can we flip this design around?
- Maintain efficiency of heterogeneous hardware implementation, but give

software control of how pipeline is mapped to hardware resources

Think: contrast this design
to video decode interfaces
on a SoC

 CMU 15-769, Fall 2016

Class discussion:
RSL and Cg

Differences in design goals?
How do these differences manifest in different design decisions?

 CMU 15-769, Fall 2016

Shading language design questions

▪ Design issue: programmer convenience vs. application scope
- Should we adopt high-level (graphics-specific) or low-level (more general

and flexible) abstractions?

- e.g., Should graphics concepts such as materials and lights be first-class
primitives in the programming model?

▪ Design issue: preserving high performance
- Abstractions must permit wide data-parallel implementation of

fragment shader stage (to utilize many programmable cores)

- Abstractions must permit use of fixed-function hardware for key shading
operations (e.g., texture filtering, triangle attribute interpolation)

 CMU 15-769, Fall 2016

Renderman shading language (RSL)

▪ High-level, domain-specific language
- Domain: describing propagation of light through scene

▪ Developed as interface to Pixar’s Renderman renderer

[Hanrahan and Lawson 90]

 CMU 15-769, Fall 2016

RSL programming model

▪ Structures shading computations using two types of
functions: surface shaders and light shaders

▪ Structure of shaders corresponds to structure of the rendering
equation:
- Surface shaders integrate incoming light and compute the reflectance

(from a surface point) in the direction of the camera

- Light shaders compute emitted light in the direction of surface point

 CMU 15-769, Fall 2016

Key RSL abstractions
▪ Shaders: surface shaders and light shaders

- Surface shaders:
- Define surface reflection function (BRDF)
- Integrate contribution of light from all light sources

- Light shaders: define directional distribution of energy emitted from lights
- Multiple computation rates:

- uniform: independent of surface position (per surface)
- varying: change with position (per shading sample)

▪ First-class color and point data types

▪ First-class texture sampling functions

▪ Light shader’s illuminate construct

▪ Surface shader’s illuminance loop (integrate reflectance over all lights)

 CMU 15-769, Fall 2016

Recall: rendering equation

x

x’

i(x,x’)

Surface shader integrates contribution to reflection from all lights

Light shader computes i(x’,x’’)
(accessed as L in RSL surface shader
illuminance loop)

i(x’’,x’)

x’’

 CMU 15-769, Fall 2016

Shading objects in RSL

Surface shader object

compiled code
(e.g., plastic material)

current transforms

bound parameters
kd = 0.5
ks = 0.3

Light shader objects
(bound to scene surface)

compiled code
(spotlight)

current transforms

bound parameters
intensity =0.75

color = (1.0, 1.0, 0.5)
position = (5,5,10)
axis = (1.0, 1.0, 0)

angle = 35

compiled code
(point light)

current transforms

bound parameters
position = (5,5,5)

intensity =0.75
color = (1.0, 1.0, 0.5)

compiled code
(point light)

current transforms

bound parameters
position = (20,20,100)

intensity =0.5
color = (0.0, 0.0, 1.0)

Shaders are closures:
Shading function code +
bound parameter values

 CMU 15-769, Fall 2016

RSL surface shaders

illuminance	(position,	axis,	angle)	
{	
						
}

Example: computing diffuse reflectance

surface	diffuseMaterial(color	Kd)	
{	
			Ci	=	0;	

			//	integrate	light	from	all	lights	(over	hemisphere	of	directions)	
			illuminance	(P,	Nn,	PI/2)	
			{	
						Ci	+=	Kd	*	Cl	*	(Nn	.	normalize(L));	
			}	
}

L = Vector from light position (recall light_pos
argument to light shader’s illuminate) to
surface position being shaded (see P argument to
illuminance)

Cl = Value computed by light shader

Surface shader computes Ci

Key abstraction: illuminance loop — iterate over illumination sources (but no explicit
enumeration of sources: surface definition is agnostic to what lights are linked)

 CMU 15-769, Fall 2016

RSL light shaders

PsL

illuminate	(light_pos,	axis,	angle)	
{	
			//	recall:	L	is	RSL	built-in	light	shader	variable					
			//	that	is	vector	from	light	to	surface	point	
		Cl	=	my_light_color	/	(L	.	L)	
}

light_pos

axis angle

Example: attenuating spot-light (no area fall off)

Key abstraction: illuminate block
illuminate	(light_pos,	axis,	angle)	
{	

}

