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Rasterization and ray casting are two 
algorithms for solving the same problem: 

determining “visibility from a camera”
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Recall triangle visibility:

Question 1: what samples does the triangle overlap? 
(“coverage”)

Question 2: what triangle is closest to the 
camera in each sample? (“occlusion”)

Sample
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The visibility problem
▪ What scene geometry is visible at each screen sample? 

- What scene geometry projects into a screen pixel? (coverage) 

- Which geometry is visible from the camera at that pixel? (occlusion)
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Basic rasterization algorithm
Sample = 2D point 
Coverage: 2D triangle/sample tests  (does projected triangle cover 2D sample point) 
Occlusion: depth buffer
initialize	z_closest[]	to	INFINITY													//	store	closest-surface-so-far	for	all	samples		
initialize	color[]																													//	store	scene	color	for	all	samples	
for	each	triangle	t	in	scene:																		//	loop	1:	triangles	
				t_proj	=	project_triangle(t)	
				for	each	2D	sample	s	in	frame	buffer:						//	loop	2:	visibility	samples	
								if	(t_proj	covers	s)		
												compute	color	of	triangle	at	sample	
												if	(depth	of	t	at	s	is	closer	than	z_closest[s])	
																update	z_closest[s]	and	color[s]

“Given a triangle, find the samples it covers” 
(finding the samples is relatively easy since they are 
distributed uniformly on screen) 

Recall: modern rasterization algorithms are hierarchical. 
(for each tile of image, if triangle overlaps tile, check all 
samples in tile)
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The visibility problem (described differently)
▪ In terms of casting rays from the camera: 

- What scene primitive is hit by a ray originating from a point on the virtual 
sensor and traveling through the aperture of the pinhole camera? (coverage) 

- What primitive is the first hit along that ray? (occlusion)
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Basic ray casting algorithm
Sample = a ray in 3D 
Coverage: 3D ray-triangle intersection tests  (does ray “hit” triangle) 
Occlusion: closest intersection along ray
initialize	color[]																																	//	store	scene	color	for	all	samples	
for	each	sample	s	in	frame	buffer:																	//	loop	1:	visibility	samples	(rays)	
				r	=	ray	from	s	on	sensor	through	pinhole	aperture	
				r.min_t	=	INFINITY																													//	only	store	closest-so-far	for	current	ray	
				r.tri	=	NULL;	
				for	each	triangle	tri	in	scene:																		//	loop	2:	triangles	
								if	(intersects(r,	tri))	{																				//	3D	ray-triangle	intersection	test	
												if	(intersection	distance	along	ray	is	closer	than	r.min_t)	
																update	r.min_t	and	r.tri	=	tri;	
								}	
				color[s]	=	compute	surface	color	of	triangle	r.tri	at	hit	point		

Compared to rasterization approach: just a reordering of the loops!  (+ math in 3D) 
“Given a ray, find the closest triangle it hits” 

The brute force “for each triangle” loop is typically implemented using a search acceleration 
structure.  (A rasterizer’s “for each sample” inner loop is not just a loop over all screen 
samples either.)
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Recall: rendering as a triple for-loop
Naive “rasterizer”:
initialize	z_closest[]	to	INFINITY													//	store	closest-surface-so-far	for	all	samples		
initialize	color[]																													//	store	scene	color	for	all	samples	
for	each	triangle	t	in	scene:																		//	loop	1:	triangles	
				t_proj	=	project_triangle(t)	
				for	each	sample	s	in	frame	buffer:									//	loop	2:	visibility	samples	
								if	(t_proj	covers	s)		
												for	each	light	l	in	scene:											//	loop	3:	lights	
																accumulate	contribution	of	light	l	to	surface	appearance	
												if	(depth	of	t	at	s	is	closer	than	z_closest[s])	
																update	z_closest[s]	and	color[s]

Naive “ray caster”:
initialize	color[]																																	//	store	scene	color	for	all	samples	
for	each	sample	s	in	frame	buffer:																	//	loop	1:	visibility	samples	(rays)	
				ray	r	=	ray	from	s	through	pinhole	aperture	out	into	scene	
				r.closest	=	INFINITY																											//	only	store	closest-so-far	for	current	ray	
				r.triangleId	=	NULL;	
				for	each	triangle	t	in	scene:																		//	loop	2:	triangles	
								if	(intersects(r,	t))	{																				//	3D	ray-triangle	intersection	test	
												if	(intersection	distance	along	ray	is	closer	than	r.closest)	
																update	r.closest	and	r.triangleId	=	t;	
								}	
				for	each	light	l	in	scene:																					//	loop	3:	lights	
								accumulate	contribution	of	light	l	to	appearance	of	intersected	surface	r.triangleId		
				color[s]	=	surface	color	of	r.triangleId	at	hit	point;		
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Basic rasterization vs. basic ray casting
▪ Basic rasterization: 

- Stream over triangles in order (never have to store in entire scene, naturally 
supports unbounded size scenes) 

- Store depth buffer (random access to regular structure of fixed size) 

▪ Ray casting: 
- Stream over screen samples 

- Never have to store closest depth so far for the entire screen (just current ray) 
- Natural order for rendering transparent surfaces (process surfaces in the order 

the are encountered along the ray: front-to-back or back-to-front) 
- Must store entire scene (random access to irregular structure of variable size: 

depends on complexity and distribution of scene) 

▪ Modern high-performance implementations of rasterization 
and ray-casting embody very similar techniques 
- Hierarchies of rays/samples 
- Hierarchies of geometry
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Ray-scene intersection is a general visibility primitive 
What object is visible along this ray?

Virtual 
Sensor

(x,z)

What object is visible to the camera? 

What light sources are visible from a point 
on a surface (Is a surface in shadow?) 

What reflection is visible on a surface?



 CMU 15-769, Fall 2016

Recent push towards real-time ray tracing

Image credit: NVIDIA (this ray traced image can be rendered at interactive rates on modern GPUs)
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Sampling light paths

Image credit: Wann Jensen, Hanrahan
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Ray tracing primitive is used in many contexts

▪ Camera rays (a.k.a., eye rays, primary rays) 
- Common origin, similar direction 

▪ Shadow rays 
- Point light source: common destination, similar direction 

- Area light source: similar destination, similar direction (ray “coherence” breaks down 
as light source increases in size: e.g., consider entire sky as an area light source) 

▪ Indirect illumination rays 
- Mirror surface (coherent rays bounce in similar direction) 

- Glossy surface 

- Diffuse surface (rays bounce randomly)

Mirror Surface

Glossy Surface

Diffuse Surface

Point light
Area Light
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Another way to think about rasterization
▪ Rasterization is an optimized visibility algorithm for batches 

of rays with specific properties 
- Assumption 1: Rays have the same origin 

- Assumption 2: Rays are uniformly distributed (across image plane… not 
uniformly distributed in angle) 

1. Rays have same origin: 
- Optimization: project triangles to reduce ray-triangle intersection to 2D 

point-in-polygon tests 

- Simplifies math (2D point-in-triangle test rather than 3D intersection) 

- Allows use of fixed-point math (clipping establishes precision bounds)
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Shadow mapping: ray origin need not be the 
scene’s camera position
- Place ray origin at position of a point light source 
- Render scene to compute depth to closest object to light along uniformly 

distributed “shadow rays” (answer stored in depth buffer) 
- Store precomputed shadow ray intersection results in a texture

Image credits: Segal et al. 92, Cass Everitt 

Shadow rays
“Shadow map” = depth map from perspective of a point light. 
(Store closest intersection along each shadow ray in a texture map)

[Williams 78]
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Result of shadow texture lookup approximates 
visibility result when shading fragment at x’

x

x’

x’’ Shadow rays shown in red: 
Distance to closest object in scene is precomputed 
and stored in texture map (“shadow map”) 
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Shadows computed using shadow map 

Correct hard shadows 
(result from computing v(x’,x’’) directly using ray tracing)

Shadow aliasing due to shadow map undersampling
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Rasterization: ray origin need not be camera position
Environment mapping: 
place ray origin at reflective object 

Yields approximation to true 
reflection results. Why?

Image credit: http://en.wikipedia.org/wiki/Cube_mapping

Scene rendered 6 times, with ray 
origin at center of reflective box 
(produces “cube-map”)

Center of projection

Cube map: 
stores results of approximate mirror reflection rays 

(Question: how can a glossy surface be rendered 
using the cube-map)
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Summary: rasterization as a visibility algorithm
▪ Rasterization is an optimized visibility algorithm for specific batches of rays 

- Assumption 1: Rays have the same origin 
- Assumption 2: Rays are uniformly distributed on image plane 

1. Same origin: projection of triangles reduces ray-triangle intersection to cheap/
efficient 2D point-in-polygon test 
- GPUs have specialized fixed-function hardware for this computation. It’s called the 

rasterizer.  

2. Uniform sample distribution: given polygon, it is easy (a.k.a. efficient) to “find” 
samples covered by polygon 
- Frame buffer: constant time sample lookup, update, edit  
- Sample search leverages 2D screen coherence 

- Amortize operations over tile of samples (can think of tiled frame buffer as a two-
level hierarchy on samples) 

- No need for complex acceleration structures to accelerate a search over samples (a basic 
tiled rasterizer requires no acceleration structures for coverage testing) *

* One could make an argument that hi-Z uses an acceleration structure (precomputed min/max Z) 
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Rasterization: performance
▪ Stream over scene geometry (regular/predictable data access), 

but arbitrarily access frame-buffer data (per-sample data) 
- Unpredictable access to sample data is manageable since it’s a regular, fixed-size data 

structure (color/Z-buffer caching, compression, etc.)  

▪ Z-buffered occlusion 
- Fixed number of samples (determined by screen resolution, sampling rate) 
- Known sample data structure 
- Implication: efficient to find samples covered by polygon (highly optimized fixed-

function implementations of both coverage computation and frame-buffer update) 

▪ Scales to high scene complexity 
- Stream over geometry: so required memory footprint in graphics pipeline is 

independent of the number of triangles in the scene
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Why real-time ray tracing?



 CMU 15-769, Fall 2016

Potential real-time ray tracing motivations

Image Credit: Pixar (Cars)

Many shadowed lights (pain to manage hundreds of 
shadow maps) 

Accurate reflections from curved surfaces
VR may demand more flexible control over what pixels 
are drawn. (e.g., row-based display rather than frame-
based, higher resolution where eye is looking, correct 
for distortion of optics) 

Other indirect illumination effects? 
(unclear if ray tracing is best real-time 

solution for low frequency effects)

Reduce content creation and game engine development time: 
single general solution rather than a specialized technique for 
each effect.
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Challenge: rendering via non-planar projection
Recall: rasterization-based graphics is based on perspective projection to plane 

- Reasonable for modest FOV, but distorts image under high FOV 
- VR rendering spans wide FOV

Pixels span larger angle in center of image 
(lowest angular resolution in center)

Image credit: Cass Everitt

Future investigations may consider: curved displays, ray casting to achieve uniform angular resolution, 
rendering with piecewise linear projection plane (different plane per tile of screen)
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Oculus Rift DK2 headset

Image credit: ifixit.com
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Requirement: wide field of view

100°

Lens introduces distortion 
- Pincushion distortion 
- Chromatic aberration 

(different wavelengths of light 
refract by different amount)

Image credit: Cass Everitt

View of checkerboard through Oculus Rift lens

Icon credit: Eyes designed by SuperAtic LABS from the thenounproject.com
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Rendered output must compensate for 
distortion of lens in front of display

Step 1: render scene using traditional graphics pipeline at full resolution for each eye 
Step 2: warp images and composite into frame rendering is viewed correctly after lens distortion 

(Can apply unique distortion to R, G, B to approximate correction for chromatic aberration) 

5 Getting Started

Your developer kit is unpacked and plugged in. You have installed the SDK, and you are ready to go. Where
is the best place to begin?

If you haven’t already, take a moment to adjust the Rift headset so that it’s comfortable for your head and
eyes. More detailed information about configuring the Rift can be found in the Oculus Rift Hardware Setup
section of this document.

After your hardware is fully configured, the next step is to test the development kit. The SDK comes with a
set of full-source C++ samples designed to help developers get started quickly. These include:

• OculusWorldDemo - A visually appealing Tuscany scene with on-screen text and controls.

• OculusRoomTiny - A minimal C++ sample showing sensor integration and rendering on the Rift
(only available for D3DX platforms as of 0.4. Support for GL platforms will be added in a future
release).

We recommend running the pre-built OculusWorldDemo as a first-step in exploring the SDK. You can find a
link to the executable file in the root of the Oculus SDK installation.

5.1 OculusWorldDemo

Figure 4: Screenshot of the OculusWorldDemo application.

12

Image credit: Oculus VR developer guide



 CMU 15-769, Fall 2016

Efficient ray traversal algorithms
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How do we organize scene primitives to 
enable fast ray-scene intersection queries?
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Simple case
o,d

o,d

Ray misses bounding box of all primitives in scene 
O(1) cost: requires 1 ray-box test
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Another (should be) simple case
o,d

o,d
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Bounding volume hierarchy (BVH)
▪ Interior nodes: 

- Represents subset of primitives in scene 
- Stores aggregate bounding box for all primitives in subtree 

▪ Leaf nodes: 
- Contain list of primitives
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Left: two different BVH 
organizations of the same 
scene containing 22 primitives.  

Is one BVH better than the 
other?
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Another BVH example 
▪ BVH partitions each node’s primitives into disjoints sets 

- Note: The sets can still be overlapping in space (below: child 
bounding boxes may overlap in space) 

A

B

C

A

B C
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Ray-scene intersection using a BVH
struct	BVHNode	{	
			bool	leaf;	
			BBox	bbox;	
			BVHNode*	child1;	
			BVHNode*	child2;	
			Primitive*	primList;	
};	

struct	ClosestHitInfo	{	
			Primitive	prim;	
			float	min_t;	
};	

void	find_closest_hit(Ray*	ray,	BVHNode*	node,	ClosestHitInfo*	closest)	{	

			if	(!intersect(ray,	node->bbox)	||	(closest	point	on	box	is	farther	than	closest.min_t))	
						return;	

			if	(node->leaf)	{	
						for	(each	primitive	p	in	node->primList)	{	
									(hit,	t)	=	intersect(ray,	p);	
									if	(hit	&&	t	<	closest.min_t)	{	
												closest.prim	=	p;	
												closest.min_t	=	t;	
									}	
						}	
			}	else	{	

	find_closest_hit(ray,	node->child1,	closest);	
						find_closest_hit(ray,	node->child2,	closest);	
			}	
}

How could this occur?

node

child1
child2
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Improvement: “front-to-back” traversal

void	find_closest_hit(Ray*	ray,	BVHNode*	node,	ClosestHitInfo*	closest)	{	

			if	(node->leaf)	{	
						for	(each	primitive	p	in	node->primList)	{	
									(hit,	t)	=	intersect(ray,	p);	
									if	(hit	&&	t	<	closest.min_t)	{	
												closest.prim	=	p;	
												closest.min_t	=	t;	
									}	
						}	
			}	else	{	
						(hit1,	min_t1)	=	intersect(ray,	node->child1->bbox);	
						(hit2,	min_t2)	=	intersect(ray,	node->child2->bbox);	

						NVHNode*	first	=	(min_t1	<=	min_t2)	?	child1	:	child2;	
						NVHNode*	second	=	(min_t1	<=	min_t2)	?	child2	:	child1;	

						find_closest_hit(ray,	first,	closest);	
						if	(second	child’s	min_t	is	closer	than	closest.min_t)			
									find_closest_hit(ray,	second,	closest);	
			}	
}

“Front to back” traversal. Traverse to 
closest child node first. Why? 

node

child1

child2

Invariant: only call find_closest_hit() if ray intersects bbox 
of node.
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Another type of query: any hit
Sometimes it’s useful to know if the ray hits ANY primitive in the 
scene at all (don’t care about distance to first hit)

bool	find_any_hit(Ray*	ray,	BVHNode*	node)	{	

			if	(!intersect(ray,	node->bbox))	
						return	false;	

			if	(node->leaf)	{	
						for	(each	primitive	p	in	node->primList)	{	
									(hit,	t)	=	intersect(ray,	p);	
									if	(hit)	
												return	true;	
			}	else	{	

	return	(	find_closest_hit(ray,	node->child1,	closest)	||	
														find_closest_hit(ray,	node->child2,	closest)	);	
			}	
}

Interesting question of which child to enter 
first. How might you make a good decision? 
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For a given set of primitives, there are 
many possible BVHs 

(~2N ways to partition N primitives into two groups) 

How do we build a high-quality BVH?
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How would you partition these triangles 
into two groups?
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What about these?
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Intuition about a “good” partition?

Partition into child nodes with equal numbers of primitives

Better partition 
Intuition: want small bounding boxes (minimize overlap between children, avoid empty space)
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What are we really trying to do?
A good partitioning minimizes the cost of finding the closest 
intersection of a ray with primitives in the node.

If a node is a leaf node (no partitioning):

C =
NX

i=1

Cisect(i) = NCisect

C =
NX

i=1

Cisect(i) = NCisect

C =
NX

i=1

Cisect(i) = NCisectWhere                            is the cost of ray-primitive 
intersection for primitive i in the node.                

(Common to assume all primitives have the same cost)
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Cost of making a partition
The expected cost of ray-node intersection, given that the node’s 
primitives are partitioned into child sets A and B is:

C = Ctrav + pACA + pBCB

C = Ctrav + pACA + pBCB

is the cost of traversing an interior node (e.g., load data, bbox check)C = Ctrav + pACA + pBCB

and C = Ctrav + pACA + pBCB are the costs of intersection with the resultant child subtrees

C = Ctrav + pACA + pBCBand C = Ctrav + pACA + pBCBare the probability a ray intersects the bbox of the child nodes A and B

C = Ctrav + pANACisect + pBNBCisect

Primitive count is common approximation for child node costs:

NA = |A|, NB = |B|Where: 
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Estimating probabilities
▪ For convex object A inside convex object B, the probability 

that a random ray that hits B also hits A is given by the ratio 
of the surface areas SA and SB of these objects.

P (hitA|hitB) =
SA

SB

Surface area heuristic (SAH):

Assumptions of the SAH (may not hold in practice): 
- Rays are randomly distributed 
- Rays are not occluded

C = Ctrav +
SA

SN
NACisect +

SB

SN
NBCisect
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Implementing partitions
▪ Constrain search for good partitions to axis-aligned spatial partitions 

- Choose an axis 
- Choose a split plane on that axis 
- Partition primitives by the side of splitting plane their centroid lies 
- 2N-2 possible splitting positions for node with N primitives. (Why?)
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Efficiently implementing partitioning
▪ Efficient modern approximation: split spatial extent of 

primitives into B buckets (B is typically small: B < 32) 

b0 b1 b2 b3 b4 b5 b6 b7

For	each	axis:	x,y,z:	
			initialize	buckets	
			For	each	primitive	p	in	node:	
						b	=	compute_bucket(p.centroid)	
						b.bbox.union(p.bbox);	
						b.prim_count++;	
			For	each	of	the	B-1	possible	partitioning	planes	evaluate	SAH	
Execute	lowest	cost	partitioning	found	(or	make	node	a	leaf)
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Troublesome cases

All primitives with same centroid (all 
primitives end up in same partition)

All primitives with same bbox (ray 
often ends up visiting both partitions) 
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Building a low-quality BVH quickly

00 01

10 11

B=1 B=2

B=3 B=4

1. Discretize each dimension of scene into 2B cells 
2. Compute index of centroid of bounding box of each primitive: 

(c_i, c_j, c_k) 
3. Interleave bits of c_i, c_j, c_k to get 3B bit-Morton code 
4. Sort primitives by Morton code (primitives now ordered with high 

locality in 3D space: in a space-filling curve!) 
- O(N) radix sort

Partition(int i, primitives): 
 node.bbox = bbox(primitives) 
 (left, right) = partition primitives by bit i 
if there are more bits: 
   Partition(left, i+1); 
   Partition(right, i+1); 
else: 
   make a leaf node

2D Morton Order

Simple, highly parallelizable BVH build:
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Modern, fast BVH construction schemes
▪ Combine greedy “top-down” divide-and-conquer build with “bottom up” 

construction techniques 

▪ Build low-quality BVH quickly using Morton Codes 

▪ Use initial BVH to accelerate construction of high-quality BVH 

▪ Example: [Kerras 2013]

For all treelets of size < N in original “low 
quality” BVH: (in parallel) 

 try all possible trees, keeping “optimal” 
 topology that minimizes SAH for treelet



 CMU 15-769, Fall 2016

Primitive-partitioning acceleration structures 
vs. space-partitioning structures
▪ Primitive partitioning (bounding 

volume hierarchy): partitions node’s 
primitives into disjoint sets (but sets 
may overlap in space) 

▪ Space-partitioning (grid, K-D tree) 
partitions space into disjoint regions 
(primitives may be contained in 
multiple regions of space) 
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K-D tree
▪ Recursively partition space via axis-aligned partitioning planes 

- Interior nodes correspond to spatial splits (still correspond to spatial volume) 
- Node traversal can proceed in front-to-back order (unlike BVH, can terminate 

search after first hit is found). 
- Intuition: partitions curve out empty space (construction of K-D tree may produce 

more tree nodes than primitives depending on ratio of                 and                 )

B

A

A

B C

C

D

E F

D E

F

C = Ctrav +
SA

SN
NACisect +

SA

SN
NBCisectC = Ctrav +

SA

SN
NACisect +

SA

SN
NBCisect
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Accelerating ray-scene queries using a BVH
Simplifications in today’s discussion: 

Will not discuss how to make BVH construction fast (we assume acceleration structure is given) 
Assume scene acceleration structure is read-only: (no on-demand build, no on-demand tessellation)  
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High-throughput ray tracing
▪ Want work-efficient algorithms  (do less)  

- High-quality acceleration structures (minimize ray-box, ray-primitive tests) 

- Smart traversal algorithms (early termination, etc.) 

▪ Implementations for existing parallel hardware (CPUs/GPUs): 
- High multi-core, SIMD execution efficiency 

- Help from fixed-function processing? 

▪ Bandwidth-efficient implementations:  
- How to minimize bandwidth requirements?

Same issues we’ve talked about all class! 
Tension between employing most work-efficient algorithms, and using 

available execution and bandwidth resources well.
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Parallelizing ray-triangle tests?
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Parallelize ray-box, ray-triangle intersection

▪ Given one ray and one bounding box, there are opportunities for 
SIMD processing 
- Can use 3 of 4 vector lanes (e.g., xyz work, multiple point-plane tests, etc.) 

▪ Similar SIMD parallelism in ray-triangle test at BVH leaf 

▪ If BVH leaf nodes contain multiple triangles, can parallelize ray-
triangle intersection across these triangles 
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Parallelize over BVH child nodes

▪ Idea: use wider-branching BVH (test single ray against multiple child 
node bboxes in parallel) 
- Empirical result: BVH with branching factor 4 has similar work efficiency to 

branching factor 2 
- BVH with branching factor 8 or 16 is less work efficient (diminished benefit of 

leveraging SIMD execution) 

[Wald et al. 2008]
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Parallelize across rays
▪ Simultaneously intersect multiple rays with scene
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Simple ray tracer (using a BVH)
//	stores	information	about	closest	hit	found	so	far	
struct	ClosestHitInfo	{	
			Primitive	primitive;	
			float	distance;	
};	

trace(Ray	ray,	BVHNode	node,	ClosestHitInfo	hitInfo)	
{	
			if	(!intersect(ray,	node.bbox)	||	(closest	point	on	box	is	farther	than	hitInfo.distance))	
						return;	

			if	(node.leaf)	{	
						for	(each	primitive	in	node)	{	
									(hit,	distance)	=	intersect(ray,	primitive);	
									if	(hit	&&	distance	<	hitInfo.distance)	{	
												hitInfo.primitive	=	primitive;	
												hitInfo.distance	=	distance;	
									}	
						}	
			}	else	{	

trace(ray,	node.leftChild,	hitInfo);	
					trace(ray,	node.rightChild,	hitInfo);	
			}	
}
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Ray packet tracing
Program explicitly intersects a collection of rays against BVH at once 
RayPacket	
{	
				Ray	rays[PACKET_SIZE];	
				bool	active[PACKET_SIZE];	
};	

trace(RayPacket	rays,	BVHNode	node,	ClosestHitInfo	packetHitInfo)	
{	
			if	(!ANY_ACTIVE_intersect(rays,	node.bbox)	||	
							(closest	point	on	box	(for	all	active	rays)	is	farther	than	hitInfo.distance))	
						return;	

			update	packet	active	mask	

			if	(node.leaf)	{	
						for	(each	primitive	in	node)	{	
									for	(each	ACTIVE	ray	r	in	packet)	{	
												(hit,	distance)	=	intersect(ray,	primitive);	
												if	(hit	&&	distance	<	hitInfo.distance)	{	
															hitInfo[r].primitive	=	primitive;	
															hitInfo[r].distance	=	distance;	
												}	
									}	
						}	
			}	else	{	
					trace(rays,	node.leftChild,	hitInfo);	
					trace(rays,	node.rightChild,	hitInfo);	
			}	
}

[Wald et al. 2001]
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Ray packet tracing
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Performance advantages of packets
▪ Wide SIMD execution 

- One vector lane per ray 

▪ Amortize BVH data fetch: all rays in packet visit node at same time 
- Load BVH node once for all rays in packet (not once per ray) 
- Note: there is value to making packets bigger than SIMD width! (e.g., size = 64) 

▪ Amortize work (packets are hierarchies over rays) 
- Use interval arithmetic to conservatively test entire set of rays against node bbox 

(e.g., think of a packet as a beam) 
- Further arithmetic optimizations possible when all rays share origin  
- Note: there is value to making packets much bigger than SIMD width!
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Disadvantages of packets
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▪ If any ray must visit a node, it drags all 
rays in the packet along with it) 

▪ Loss of efficiency: node traversal, 
intersection, etc. amortized over less 
than a packet’s worth of rays 

▪ Not all SIMD lanes doing useful work
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Ray packet tracing: incoherent rays
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When rays are incoherent, benefit of packets can decrease 
significantly.  This example: packet visits all tree nodes. 
(So all eight rays visit all tree nodes! No culling benefit!) 
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Incoherent rays
Incoherence is a property of both the rays and the scene

Random rays are “coherent” with respect to the BVH if the scene is one big triangle!
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Incoherent rays
Incoherence is a property of both the rays and the scene

Camera rays become “incoherent” with respect to lower nodes in the BVH if 
a scene is overly detailed 

(Side note: this suggests the importance of choosing the right geometric level of detail)
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Improving packet tracing with ray reordering

16-ray packet: 7 of 16 rays active

Reorder rays 
Recompute intervals/bounds for active rays

Continue tracing with 8-ray packet: 
7 of 8 rays active

Example: consider 8-wide SIMD processor and 16-ray packets 
(2 SIMD instructions required to perform each operation on all rays in packet)

Idea: when packet utilization drops below threshold, resort rays and 
continue with smaller packet 

- Increases SIMD utilization 

- Amortization benefits of smaller packets, but not large packets 

[Boulos et al. 2008]
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Packet tracing best practices
▪ Use large packets for eye/reflection/point light shadow rays 

or higher levels of BVH 
- Ray coherence always high at the top of the tree 

▪ Switch to single ray (intra-ray SIMD) when packet utilization 
drops below threshold 
- For wide SIMD machine, a branching-factor-4 BVH works well for both packet 

traversal and single ray traversal 

▪ Can use packet reordering to postpone time of switch 
- Reordering allows packets to provide benefit deeper into tree  
- Not often used in practice due to high implementation complexity

[Benthin et al. 2011]

[Wald et al. 2007]

[Boulos et al. 2008]
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SPMD ray tracing

stack<BVHNode>	tovisit;	
tovisit.push(root);	
while	(ray	not	terminated)	

			//	ray	is	traversing	interior	nodes	
			while	(not	reached	leaf	node)	
					traverse	node	//	pop	stack,	perform	
																			//	ray-box	test,	push	
																			//	children	to	stack	

			//	ray	is	now	at	leaf	
			while	(not	done	testing	tris	in	leaf)	
					ray-triangle	test

stack<BVHNode>	tovisit;	
tovisit.push(root);	
while	(ray	not	terminated)	
			node	=	tovisit.pop();	
			if	(node	is	not	a	leaf)	
						traverse	node	//	perform	ray-box	test,	
																				//	push	children	to	stack	

			else	(not	done	testing	tris	in	leaf)	
						ray-triangle	test

Algorithm 1 Algorithm 2

No packets! 
Each work item (e.g., CUDA thread) carried out processing for one ray. 



 CMU 15-769, Fall 2016

Data access challenges
▪ Recall data access patterns in rasterization 

- Stream through scene geometry 
- Arbitrary, direct access to frame-buffer samples (accelerated by specialized GPU 

implementations) 

▪ Ray tracer data access patterns 
- Frame-buffer access is minimal (once per ray) 
- But access to BVH nodes is frequent and unpredictable 

- Not predictable by definition (or the BVH is low quality. Why?) 
- Packets amortize cost of fetching BVH node data, but technique’s utility 

diminishes under divergent conditions. 

▪ Incoherent ray traversal suffers from poor cache behavior 
- Rays require different BVH nodes during traversal 
- Ray-scene intersection becomes bandwidth bound for incoherent rays 

- E.g., soft shadows, indirect diffuse bounce rays
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Let’s stop and think
▪ One strong argument for high-performance ray tracing is to produce 

advanced effects that are difficult or inefficient to compute given 
the single point of projection and uniform sampling constraints of 
rasterization 
- e.g., soft shadows, diffuse interreflections 

▪ But these phenomenon create situations of high ray divergence! 
(where packet- and SIMD-optimizations are less effective)
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Emerging hardware for ray tracing
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Emerging hardware for ray tracing
▪ Modern academic/announced industry implementations: 

- Trace single rays, not ray packets (assume most rays are incoherent rays…) 

▪ Two areas of focus: 
- Custom logic for accelerating ray-box and ray-triangle tests 

- MIMD designs: wide SIMD execution not beneficial 

- Support for efficiently reordering ray-tracing computations to maximize 
memory locality (ray scheduling)
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Global ray reordering
Idea: dynamically batch up rays that must traverse the same part of the 
scene.  Process these rays together to increase locality in BVH access

Partition BVH into treelets 
(treelets sized for L1 or L2 cache) 

1. When ray (or packet) enters treelet, add rays 
to treelet queue 

2. When treelet queue is sufficiently large, 
intersect enqueued rays with treelet 
(amortize treelet load over all enqueued rays) 

Buffering overhead to global ray reordering: must 
store per-ray “stack” (need not be entire call stack, 
but must contain traversal history) for many rays. 

Per-treelet ray queues sized to fit in caches (or in 
dedicated ray buffer SRAM)

[Pharr 1997, Navratil 07, Alia 10]
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PowerVR GR6500 ray tracing GPU
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Summary
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Visibility summary
▪ Visibility problem: determine which scene geometry contributes 

to the appearance of which screen pixels 
- “Basic” rasterization: given polygon, find samples(s) it overlaps 

- “Basic” ray tracing: given ray, find triangle(s) that it intersects 

▪ In practice, optimized versions of both algorithms are not as 
different as you might think 

▪ They are just different ways to solve the problem of finding 
interacting pairs between two hierarchies 
- Hierarchy over point samples (tiles, ray packets) 

- Hierarchy over geometry (BVHs)
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Consider performant, modern solutions for 
primary-ray visibility
▪ “Rasterizer” 

- Hierarchical rasterization (uniform grid over samples) 
- Hierarchical depth culling (quad-tree over samples) 
- Application scene graph, hierarchy over geometry 

- Modern games perform conservative coarse culling, only submit potentially 
visible geometry to the rendering pipeline 
(in practice, rasterization not linear in amount of geometry in scene) 

▪ “Ray tracer” 
- BVH: hierarchy over geometry 
- Packets form hierarchy over samples (akin to frame buffer tiles).  Breaking packets 

into small packets during traversal adds complexity to the hierarchy 
- Wide packet traversal, high-branching BVH: decrease work efficiency for better 

machine utilization 
(in practice, significant constants in front of that lg(N))


