
Visual Computing Systems
CMU 15-769, Fall 2016

Lecture 22:

High-Performance
Ray Tracing

 CMU 15-769, Fall 2016

Rasterization and ray casting are two
algorithms for solving the same problem:

determining “visibility from a camera”

 CMU 15-769, Fall 2016

Recall triangle visibility:

Question 1: what samples does the triangle overlap?
(“coverage”)

Question 2: what triangle is closest to the
camera in each sample? (“occlusion”)

Sample

 CMU 15-769, Fall 2016

The visibility problem
▪ What scene geometry is visible at each screen sample?

- What scene geometry projects into a screen pixel? (coverage)

- Which geometry is visible from the camera at that pixel? (occlusion)

Pinhole
Camera

(0,0)
Virtual
Sensor

(x,z)

x/z
-z axis

x-axis

 CMU 15-769, Fall 2016

Basic rasterization algorithm
Sample = 2D point
Coverage: 2D triangle/sample tests (does projected triangle cover 2D sample point)
Occlusion: depth buffer
initialize	z_closest[]	to	INFINITY													//	store	closest-surface-so-far	for	all	samples		
initialize	color[]																													//	store	scene	color	for	all	samples	
for	each	triangle	t	in	scene:																		//	loop	1:	triangles	
				t_proj	=	project_triangle(t)	
				for	each	2D	sample	s	in	frame	buffer:						//	loop	2:	visibility	samples	
								if	(t_proj	covers	s)		
												compute	color	of	triangle	at	sample	
												if	(depth	of	t	at	s	is	closer	than	z_closest[s])	
																update	z_closest[s]	and	color[s]

“Given a triangle, find the samples it covers”
(finding the samples is relatively easy since they are
distributed uniformly on screen)

Recall: modern rasterization algorithms are hierarchical.
(for each tile of image, if triangle overlaps tile, check all
samples in tile)

 CMU 15-769, Fall 2016

The visibility problem (described differently)
▪ In terms of casting rays from the camera:

- What scene primitive is hit by a ray originating from a point on the virtual
sensor and traveling through the aperture of the pinhole camera? (coverage)

- What primitive is the first hit along that ray? (occlusion)

Pinhole
Camera

(0,0)
Virtual
Sensor

(x,z)

o,do,d

 CMU 15-769, Fall 2016

Basic ray casting algorithm
Sample = a ray in 3D
Coverage: 3D ray-triangle intersection tests (does ray “hit” triangle)
Occlusion: closest intersection along ray
initialize	color[]																																	//	store	scene	color	for	all	samples	
for	each	sample	s	in	frame	buffer:																	//	loop	1:	visibility	samples	(rays)	
				r	=	ray	from	s	on	sensor	through	pinhole	aperture	
				r.min_t	=	INFINITY																													//	only	store	closest-so-far	for	current	ray	
				r.tri	=	NULL;	
				for	each	triangle	tri	in	scene:																		//	loop	2:	triangles	
								if	(intersects(r,	tri))	{																				//	3D	ray-triangle	intersection	test	
												if	(intersection	distance	along	ray	is	closer	than	r.min_t)	
																update	r.min_t	and	r.tri	=	tri;	
								}	
				color[s]	=	compute	surface	color	of	triangle	r.tri	at	hit	point		

Compared to rasterization approach: just a reordering of the loops! (+ math in 3D)
“Given a ray, find the closest triangle it hits”

The brute force “for each triangle” loop is typically implemented using a search acceleration
structure. (A rasterizer’s “for each sample” inner loop is not just a loop over all screen
samples either.)

 CMU 15-769, Fall 2016

Recall: rendering as a triple for-loop
Naive “rasterizer”:
initialize	z_closest[]	to	INFINITY													//	store	closest-surface-so-far	for	all	samples		
initialize	color[]																													//	store	scene	color	for	all	samples	
for	each	triangle	t	in	scene:																		//	loop	1:	triangles	
				t_proj	=	project_triangle(t)	
				for	each	sample	s	in	frame	buffer:									//	loop	2:	visibility	samples	
								if	(t_proj	covers	s)		
												for	each	light	l	in	scene:											//	loop	3:	lights	
																accumulate	contribution	of	light	l	to	surface	appearance	
												if	(depth	of	t	at	s	is	closer	than	z_closest[s])	
																update	z_closest[s]	and	color[s]

Naive “ray caster”:
initialize	color[]																																	//	store	scene	color	for	all	samples	
for	each	sample	s	in	frame	buffer:																	//	loop	1:	visibility	samples	(rays)	
				ray	r	=	ray	from	s	through	pinhole	aperture	out	into	scene	
				r.closest	=	INFINITY																											//	only	store	closest-so-far	for	current	ray	
				r.triangleId	=	NULL;	
				for	each	triangle	t	in	scene:																		//	loop	2:	triangles	
								if	(intersects(r,	t))	{																				//	3D	ray-triangle	intersection	test	
												if	(intersection	distance	along	ray	is	closer	than	r.closest)	
																update	r.closest	and	r.triangleId	=	t;	
								}	
				for	each	light	l	in	scene:																					//	loop	3:	lights	
								accumulate	contribution	of	light	l	to	appearance	of	intersected	surface	r.triangleId		
				color[s]	=	surface	color	of	r.triangleId	at	hit	point;		

 CMU 15-769, Fall 2016

Basic rasterization vs. basic ray casting
▪ Basic rasterization:

- Stream over triangles in order (never have to store in entire scene, naturally
supports unbounded size scenes)

- Store depth buffer (random access to regular structure of fixed size)

▪ Ray casting:
- Stream over screen samples

- Never have to store closest depth so far for the entire screen (just current ray)
- Natural order for rendering transparent surfaces (process surfaces in the order

the are encountered along the ray: front-to-back or back-to-front)
- Must store entire scene (random access to irregular structure of variable size:

depends on complexity and distribution of scene)

▪ Modern high-performance implementations of rasterization
and ray-casting embody very similar techniques
- Hierarchies of rays/samples
- Hierarchies of geometry

 CMU 15-769, Fall 2016

Ray-scene intersection is a general visibility primitive
What object is visible along this ray?

Virtual
Sensor

(x,z)

What object is visible to the camera?

What light sources are visible from a point
on a surface (Is a surface in shadow?)

What reflection is visible on a surface?

 CMU 15-769, Fall 2016

Recent push towards real-time ray tracing

Image credit: NVIDIA (this ray traced image can be rendered at interactive rates on modern GPUs)

 CMU 15-769, Fall 2016

Sampling light paths

Image credit: Wann Jensen, Hanrahan

 CMU 15-769, Fall 2016

Ray tracing primitive is used in many contexts

▪ Camera rays (a.k.a., eye rays, primary rays)
- Common origin, similar direction

▪ Shadow rays
- Point light source: common destination, similar direction

- Area light source: similar destination, similar direction (ray “coherence” breaks down
as light source increases in size: e.g., consider entire sky as an area light source)

▪ Indirect illumination rays
- Mirror surface (coherent rays bounce in similar direction)

- Glossy surface

- Diffuse surface (rays bounce randomly)

Mirror Surface

Glossy Surface

Diffuse Surface

Point light
Area Light

 CMU 15-769, Fall 2016

Another way to think about rasterization
▪ Rasterization is an optimized visibility algorithm for batches

of rays with specific properties
- Assumption 1: Rays have the same origin

- Assumption 2: Rays are uniformly distributed (across image plane… not
uniformly distributed in angle)

1. Rays have same origin:
- Optimization: project triangles to reduce ray-triangle intersection to 2D

point-in-polygon tests

- Simplifies math (2D point-in-triangle test rather than 3D intersection)

- Allows use of fixed-point math (clipping establishes precision bounds)

 CMU 15-769, Fall 2016

Shadow mapping: ray origin need not be the
scene’s camera position
- Place ray origin at position of a point light source
- Render scene to compute depth to closest object to light along uniformly

distributed “shadow rays” (answer stored in depth buffer)
- Store precomputed shadow ray intersection results in a texture

Image credits: Segal et al. 92, Cass Everitt

Shadow rays
“Shadow map” = depth map from perspective of a point light.
(Store closest intersection along each shadow ray in a texture map)

[Williams 78]

 CMU 15-769, Fall 2016

Result of shadow texture lookup approximates
visibility result when shading fragment at x’

x

x’

x’’ Shadow rays shown in red:
Distance to closest object in scene is precomputed
and stored in texture map (“shadow map”)

 CMU 15-769, Fall 2016Image credit: Johnson et al. TOG 2005

Shadows computed using shadow map

Correct hard shadows
(result from computing v(x’,x’’) directly using ray tracing)

Shadow aliasing due to shadow map undersampling

 CMU 15-769, Fall 2016

Rasterization: ray origin need not be camera position
Environment mapping:
place ray origin at reflective object

Yields approximation to true
reflection results. Why?

Image credit: http://en.wikipedia.org/wiki/Cube_mapping

Scene rendered 6 times, with ray
origin at center of reflective box
(produces “cube-map”)

Center of projection

Cube map:
stores results of approximate mirror reflection rays

(Question: how can a glossy surface be rendered
using the cube-map)

 CMU 15-769, Fall 2016

Summary: rasterization as a visibility algorithm
▪ Rasterization is an optimized visibility algorithm for specific batches of rays

- Assumption 1: Rays have the same origin
- Assumption 2: Rays are uniformly distributed on image plane

1. Same origin: projection of triangles reduces ray-triangle intersection to cheap/
efficient 2D point-in-polygon test
- GPUs have specialized fixed-function hardware for this computation. It’s called the

rasterizer.

2. Uniform sample distribution: given polygon, it is easy (a.k.a. efficient) to “find”
samples covered by polygon
- Frame buffer: constant time sample lookup, update, edit
- Sample search leverages 2D screen coherence

- Amortize operations over tile of samples (can think of tiled frame buffer as a two-
level hierarchy on samples)

- No need for complex acceleration structures to accelerate a search over samples (a basic
tiled rasterizer requires no acceleration structures for coverage testing) *

* One could make an argument that hi-Z uses an acceleration structure (precomputed min/max Z)

 CMU 15-769, Fall 2016

Rasterization: performance
▪ Stream over scene geometry (regular/predictable data access),

but arbitrarily access frame-buffer data (per-sample data)
- Unpredictable access to sample data is manageable since it’s a regular, fixed-size data

structure (color/Z-buffer caching, compression, etc.)

▪ Z-buffered occlusion
- Fixed number of samples (determined by screen resolution, sampling rate)
- Known sample data structure
- Implication: efficient to find samples covered by polygon (highly optimized fixed-

function implementations of both coverage computation and frame-buffer update)

▪ Scales to high scene complexity
- Stream over geometry: so required memory footprint in graphics pipeline is

independent of the number of triangles in the scene

 CMU 15-769, Fall 2016

Why real-time ray tracing?

 CMU 15-769, Fall 2016

Potential real-time ray tracing motivations

Image Credit: Pixar (Cars)

Many shadowed lights (pain to manage hundreds of
shadow maps)

Accurate reflections from curved surfaces
VR may demand more flexible control over what pixels
are drawn. (e.g., row-based display rather than frame-
based, higher resolution where eye is looking, correct
for distortion of optics)

Other indirect illumination effects?
(unclear if ray tracing is best real-time

solution for low frequency effects)

Reduce content creation and game engine development time:
single general solution rather than a specialized technique for
each effect.

 CMU 15-769, Fall 2016

Challenge: rendering via non-planar projection
Recall: rasterization-based graphics is based on perspective projection to plane

- Reasonable for modest FOV, but distorts image under high FOV
- VR rendering spans wide FOV

Pixels span larger angle in center of image
(lowest angular resolution in center)

Image credit: Cass Everitt

Future investigations may consider: curved displays, ray casting to achieve uniform angular resolution,
rendering with piecewise linear projection plane (different plane per tile of screen)

 CMU 15-769, Fall 2016

Oculus Rift DK2 headset

Image credit: ifixit.com

 CMU 15-769, Fall 2016

Requirement: wide field of view

100°

Lens introduces distortion
- Pincushion distortion
- Chromatic aberration

(different wavelengths of light
refract by different amount)

Image credit: Cass Everitt

View of checkerboard through Oculus Rift lens

Icon credit: Eyes designed by SuperAtic LABS from the thenounproject.com

 CMU 15-769, Fall 2016

Rendered output must compensate for
distortion of lens in front of display

Step 1: render scene using traditional graphics pipeline at full resolution for each eye
Step 2: warp images and composite into frame rendering is viewed correctly after lens distortion

(Can apply unique distortion to R, G, B to approximate correction for chromatic aberration)

5 Getting Started

Your developer kit is unpacked and plugged in. You have installed the SDK, and you are ready to go. Where
is the best place to begin?

If you haven’t already, take a moment to adjust the Rift headset so that it’s comfortable for your head and
eyes. More detailed information about configuring the Rift can be found in the Oculus Rift Hardware Setup
section of this document.

After your hardware is fully configured, the next step is to test the development kit. The SDK comes with a
set of full-source C++ samples designed to help developers get started quickly. These include:

• OculusWorldDemo - A visually appealing Tuscany scene with on-screen text and controls.

• OculusRoomTiny - A minimal C++ sample showing sensor integration and rendering on the Rift
(only available for D3DX platforms as of 0.4. Support for GL platforms will be added in a future
release).

We recommend running the pre-built OculusWorldDemo as a first-step in exploring the SDK. You can find a
link to the executable file in the root of the Oculus SDK installation.

5.1 OculusWorldDemo

Figure 4: Screenshot of the OculusWorldDemo application.

12

Image credit: Oculus VR developer guide

 CMU 15-769, Fall 2016

Efficient ray traversal algorithms

 CMU 15-769, Fall 2016

How do we organize scene primitives to
enable fast ray-scene intersection queries?

 CMU 15-769, Fall 2016

Simple case
o,d

o,d

Ray misses bounding box of all primitives in scene
O(1) cost: requires 1 ray-box test

 CMU 15-769, Fall 2016

Another (should be) simple case
o,d

o,d

 CMU 15-769, Fall 2016

Bounding volume hierarchy (BVH)
▪ Interior nodes:

- Represents subset of primitives in scene
- Stores aggregate bounding box for all primitives in subtree

▪ Leaf nodes:
- Contain list of primitives

1 2

3

4 5

6 7

8 9

10 11

12 13

14 15

16 17

18 19

20 21

22

A

B

C

D E

F G

A

B C

D E F G
1,2,3

4,5
6,7,8,

9,10,11
12,13,14,
15, 16,17

18,19,20,
21,22

1 2

3

4 5

6 7

8 9

10 11

12 13

14 15

16 17

18 19

20 21

22

AB C

D E

F G

A

B C

D F E G
1,2,3

4,5
6,7,8,

9,10,11
12,13,14,
15,16,17

18,19,20,
21,22

Left: two different BVH
organizations of the same
scene containing 22 primitives.

Is one BVH better than the
other?

 CMU 15-769, Fall 2016

Another BVH example
▪ BVH partitions each node’s primitives into disjoints sets

- Note: The sets can still be overlapping in space (below: child
bounding boxes may overlap in space)

A

B

C

A

B C

 CMU 15-769, Fall 2016

Ray-scene intersection using a BVH
struct	BVHNode	{	
			bool	leaf;	
			BBox	bbox;	
			BVHNode*	child1;	
			BVHNode*	child2;	
			Primitive*	primList;	
};	

struct	ClosestHitInfo	{	
			Primitive	prim;	
			float	min_t;	
};	

void	find_closest_hit(Ray*	ray,	BVHNode*	node,	ClosestHitInfo*	closest)	{	

			if	(!intersect(ray,	node->bbox)	||	(closest	point	on	box	is	farther	than	closest.min_t))	
						return;	

			if	(node->leaf)	{	
						for	(each	primitive	p	in	node->primList)	{	
									(hit,	t)	=	intersect(ray,	p);	
									if	(hit	&&	t	<	closest.min_t)	{	
												closest.prim	=	p;	
												closest.min_t	=	t;	
									}	
						}	
			}	else	{	

	find_closest_hit(ray,	node->child1,	closest);	
						find_closest_hit(ray,	node->child2,	closest);	
			}	
}

How could this occur?

node

child1
child2

 CMU 15-769, Fall 2016

Improvement: “front-to-back” traversal

void	find_closest_hit(Ray*	ray,	BVHNode*	node,	ClosestHitInfo*	closest)	{	

			if	(node->leaf)	{	
						for	(each	primitive	p	in	node->primList)	{	
									(hit,	t)	=	intersect(ray,	p);	
									if	(hit	&&	t	<	closest.min_t)	{	
												closest.prim	=	p;	
												closest.min_t	=	t;	
									}	
						}	
			}	else	{	
						(hit1,	min_t1)	=	intersect(ray,	node->child1->bbox);	
						(hit2,	min_t2)	=	intersect(ray,	node->child2->bbox);	

						NVHNode*	first	=	(min_t1	<=	min_t2)	?	child1	:	child2;	
						NVHNode*	second	=	(min_t1	<=	min_t2)	?	child2	:	child1;	

						find_closest_hit(ray,	first,	closest);	
						if	(second	child’s	min_t	is	closer	than	closest.min_t)			
									find_closest_hit(ray,	second,	closest);	
			}	
}

“Front to back” traversal. Traverse to
closest child node first. Why?

node

child1

child2

Invariant: only call find_closest_hit() if ray intersects bbox
of node.

 CMU 15-769, Fall 2016

Another type of query: any hit
Sometimes it’s useful to know if the ray hits ANY primitive in the
scene at all (don’t care about distance to first hit)

bool	find_any_hit(Ray*	ray,	BVHNode*	node)	{	

			if	(!intersect(ray,	node->bbox))	
						return	false;	

			if	(node->leaf)	{	
						for	(each	primitive	p	in	node->primList)	{	
									(hit,	t)	=	intersect(ray,	p);	
									if	(hit)	
												return	true;	
			}	else	{	

	return	(find_closest_hit(ray,	node->child1,	closest)	||	
														find_closest_hit(ray,	node->child2,	closest));	
			}	
}

Interesting question of which child to enter
first. How might you make a good decision?

 CMU 15-769, Fall 2016

For a given set of primitives, there are
many possible BVHs

(~2N ways to partition N primitives into two groups)

How do we build a high-quality BVH?

 CMU 15-769, Fall 2016

How would you partition these triangles
into two groups?

 CMU 15-769, Fall 2016

What about these?

 CMU 15-769, Fall 2016

Intuition about a “good” partition?

Partition into child nodes with equal numbers of primitives

Better partition
Intuition: want small bounding boxes (minimize overlap between children, avoid empty space)

 CMU 15-769, Fall 2016

What are we really trying to do?
A good partitioning minimizes the cost of finding the closest
intersection of a ray with primitives in the node.

If a node is a leaf node (no partitioning):

C =
NX

i=1

Cisect(i) = NCisect

C =
NX

i=1

Cisect(i) = NCisect

C =
NX

i=1

Cisect(i) = NCisectWhere is the cost of ray-primitive
intersection for primitive i in the node.

(Common to assume all primitives have the same cost)

 CMU 15-769, Fall 2016

Cost of making a partition
The expected cost of ray-node intersection, given that the node’s
primitives are partitioned into child sets A and B is:

C = Ctrav + pACA + pBCB

C = Ctrav + pACA + pBCB

is the cost of traversing an interior node (e.g., load data, bbox check)C = Ctrav + pACA + pBCB

and C = Ctrav + pACA + pBCB are the costs of intersection with the resultant child subtrees

C = Ctrav + pACA + pBCBand C = Ctrav + pACA + pBCBare the probability a ray intersects the bbox of the child nodes A and B

C = Ctrav + pANACisect + pBNBCisect

Primitive count is common approximation for child node costs:

NA = |A|, NB = |B|Where:

 CMU 15-769, Fall 2016

Estimating probabilities
▪ For convex object A inside convex object B, the probability

that a random ray that hits B also hits A is given by the ratio
of the surface areas SA and SB of these objects.

P (hitA|hitB) =
SA

SB

Surface area heuristic (SAH):

Assumptions of the SAH (may not hold in practice):
- Rays are randomly distributed
- Rays are not occluded

C = Ctrav +
SA

SN
NACisect +

SB

SN
NBCisect

 CMU 15-769, Fall 2016

Implementing partitions
▪ Constrain search for good partitions to axis-aligned spatial partitions

- Choose an axis
- Choose a split plane on that axis
- Partition primitives by the side of splitting plane their centroid lies
- 2N-2 possible splitting positions for node with N primitives. (Why?)

 CMU 15-769, Fall 2016

Efficiently implementing partitioning
▪ Efficient modern approximation: split spatial extent of

primitives into B buckets (B is typically small: B < 32)

b0 b1 b2 b3 b4 b5 b6 b7

For	each	axis:	x,y,z:	
			initialize	buckets	
			For	each	primitive	p	in	node:	
						b	=	compute_bucket(p.centroid)	
						b.bbox.union(p.bbox);	
						b.prim_count++;	
			For	each	of	the	B-1	possible	partitioning	planes	evaluate	SAH	
Execute	lowest	cost	partitioning	found	(or	make	node	a	leaf)

 CMU 15-769, Fall 2016

Troublesome cases

All primitives with same centroid (all
primitives end up in same partition)

All primitives with same bbox (ray
often ends up visiting both partitions)

 CMU 15-769, Fall 2016

Building a low-quality BVH quickly

00 01

10 11

B=1 B=2

B=3 B=4

1. Discretize each dimension of scene into 2B cells
2. Compute index of centroid of bounding box of each primitive:

(c_i, c_j, c_k)
3. Interleave bits of c_i, c_j, c_k to get 3B bit-Morton code
4. Sort primitives by Morton code (primitives now ordered with high

locality in 3D space: in a space-filling curve!)
- O(N) radix sort

Partition(int i, primitives):
 node.bbox = bbox(primitives)
 (left, right) = partition primitives by bit i
if there are more bits:
 Partition(left, i+1);
 Partition(right, i+1);
else:
 make a leaf node

2D Morton Order

Simple, highly parallelizable BVH build:

 CMU 15-769, Fall 2016

Modern, fast BVH construction schemes
▪ Combine greedy “top-down” divide-and-conquer build with “bottom up”

construction techniques

▪ Build low-quality BVH quickly using Morton Codes

▪ Use initial BVH to accelerate construction of high-quality BVH

▪ Example: [Kerras 2013]

For all treelets of size < N in original “low
quality” BVH: (in parallel)

 try all possible trees, keeping “optimal”
 topology that minimizes SAH for treelet

 CMU 15-769, Fall 2016

Primitive-partitioning acceleration structures
vs. space-partitioning structures
▪ Primitive partitioning (bounding

volume hierarchy): partitions node’s
primitives into disjoint sets (but sets
may overlap in space)

▪ Space-partitioning (grid, K-D tree)
partitions space into disjoint regions
(primitives may be contained in
multiple regions of space)

 CMU 15-769, Fall 2016

K-D tree
▪ Recursively partition space via axis-aligned partitioning planes

- Interior nodes correspond to spatial splits (still correspond to spatial volume)
- Node traversal can proceed in front-to-back order (unlike BVH, can terminate

search after first hit is found).
- Intuition: partitions curve out empty space (construction of K-D tree may produce

more tree nodes than primitives depending on ratio of and)

B

A

A

B C

C

D

E F

D E

F

C = Ctrav +
SA

SN
NACisect +

SA

SN
NBCisectC = Ctrav +

SA

SN
NACisect +

SA

SN
NBCisect

 CMU 15-769, Fall 2016

Accelerating ray-scene queries using a BVH
Simplifications in today’s discussion:

Will not discuss how to make BVH construction fast (we assume acceleration structure is given)
Assume scene acceleration structure is read-only: (no on-demand build, no on-demand tessellation)

 CMU 15-769, Fall 2016

High-throughput ray tracing
▪ Want work-efficient algorithms (do less)

- High-quality acceleration structures (minimize ray-box, ray-primitive tests)

- Smart traversal algorithms (early termination, etc.)

▪ Implementations for existing parallel hardware (CPUs/GPUs):
- High multi-core, SIMD execution efficiency

- Help from fixed-function processing?

▪ Bandwidth-efficient implementations:
- How to minimize bandwidth requirements?

Same issues we’ve talked about all class!
Tension between employing most work-efficient algorithms, and using

available execution and bandwidth resources well.

 CMU 15-769, Fall 2016

Parallelizing ray-triangle tests?

 CMU 15-769, Fall 2016

Parallelize ray-box, ray-triangle intersection

▪ Given one ray and one bounding box, there are opportunities for
SIMD processing
- Can use 3 of 4 vector lanes (e.g., xyz work, multiple point-plane tests, etc.)

▪ Similar SIMD parallelism in ray-triangle test at BVH leaf

▪ If BVH leaf nodes contain multiple triangles, can parallelize ray-
triangle intersection across these triangles

 CMU 15-769, Fall 2016

Parallelize over BVH child nodes

▪ Idea: use wider-branching BVH (test single ray against multiple child
node bboxes in parallel)
- Empirical result: BVH with branching factor 4 has similar work efficiency to

branching factor 2
- BVH with branching factor 8 or 16 is less work efficient (diminished benefit of

leveraging SIMD execution)

[Wald et al. 2008]

 CMU 15-769, Fall 2016

Parallelize across rays
▪ Simultaneously intersect multiple rays with scene

 CMU 15-769, Fall 2016

Simple ray tracer (using a BVH)
//	stores	information	about	closest	hit	found	so	far	
struct	ClosestHitInfo	{	
			Primitive	primitive;	
			float	distance;	
};	

trace(Ray	ray,	BVHNode	node,	ClosestHitInfo	hitInfo)	
{	
			if	(!intersect(ray,	node.bbox)	||	(closest	point	on	box	is	farther	than	hitInfo.distance))	
						return;	

			if	(node.leaf)	{	
						for	(each	primitive	in	node)	{	
									(hit,	distance)	=	intersect(ray,	primitive);	
									if	(hit	&&	distance	<	hitInfo.distance)	{	
												hitInfo.primitive	=	primitive;	
												hitInfo.distance	=	distance;	
									}	
						}	
			}	else	{	

trace(ray,	node.leftChild,	hitInfo);	
					trace(ray,	node.rightChild,	hitInfo);	
			}	
}

 CMU 15-769, Fall 2016

Ray packet tracing
Program explicitly intersects a collection of rays against BVH at once
RayPacket	
{	
				Ray	rays[PACKET_SIZE];	
				bool	active[PACKET_SIZE];	
};	

trace(RayPacket	rays,	BVHNode	node,	ClosestHitInfo	packetHitInfo)	
{	
			if	(!ANY_ACTIVE_intersect(rays,	node.bbox)	||	
							(closest	point	on	box	(for	all	active	rays)	is	farther	than	hitInfo.distance))	
						return;	

			update	packet	active	mask	

			if	(node.leaf)	{	
						for	(each	primitive	in	node)	{	
									for	(each	ACTIVE	ray	r	in	packet)	{	
												(hit,	distance)	=	intersect(ray,	primitive);	
												if	(hit	&&	distance	<	hitInfo.distance)	{	
															hitInfo[r].primitive	=	primitive;	
															hitInfo[r].distance	=	distance;	
												}	
									}	
						}	
			}	else	{	
					trace(rays,	node.leftChild,	hitInfo);	
					trace(rays,	node.rightChild,	hitInfo);	
			}	
}

[Wald et al. 2001]

 CMU 15-769, Fall 2016

Ray packet tracing

1

2
3

4

5

C E

F

D

B

B

C D

E F

1 2

3 4 5

6

G
6

A

A

G

Blue = active rays after node box test

r0
r1 r2 r3 r4 r5 r6

r7

Note: r6 does not pass node F box test due to closest-
so-far check, and thus does not visit F

 CMU 15-769, Fall 2016

Performance advantages of packets
▪ Wide SIMD execution

- One vector lane per ray

▪ Amortize BVH data fetch: all rays in packet visit node at same time
- Load BVH node once for all rays in packet (not once per ray)
- Note: there is value to making packets bigger than SIMD width! (e.g., size = 64)

▪ Amortize work (packets are hierarchies over rays)
- Use interval arithmetic to conservatively test entire set of rays against node bbox

(e.g., think of a packet as a beam)
- Further arithmetic optimizations possible when all rays share origin
- Note: there is value to making packets much bigger than SIMD width!

 CMU 15-769, Fall 2016

Disadvantages of packets

B

C D

E F

1 2

3 4 5

G
6

A

Blue = active ray after node box test

▪ If any ray must visit a node, it drags all
rays in the packet along with it)

▪ Loss of efficiency: node traversal,
intersection, etc. amortized over less
than a packet’s worth of rays

▪ Not all SIMD lanes doing useful work

 CMU 15-769, Fall 2016

Ray packet tracing: incoherent rays

1

2
3

4

5

C E

F

D

B

B

C D

E F

1 2

3 4 5

6

G
6

A

A

G

Blue = active ray after node box test

r0

r1

r3

r3

r4

r5

r6

r7

When rays are incoherent, benefit of packets can decrease
significantly. This example: packet visits all tree nodes.
(So all eight rays visit all tree nodes! No culling benefit!)

 CMU 15-769, Fall 2016

Incoherent rays
Incoherence is a property of both the rays and the scene

Random rays are “coherent” with respect to the BVH if the scene is one big triangle!

 CMU 15-769, Fall 2016

Incoherent rays
Incoherence is a property of both the rays and the scene

Camera rays become “incoherent” with respect to lower nodes in the BVH if
a scene is overly detailed

(Side note: this suggests the importance of choosing the right geometric level of detail)

 CMU 15-769, Fall 2016

Improving packet tracing with ray reordering

16-ray packet: 7 of 16 rays active

Reorder rays
Recompute intervals/bounds for active rays

Continue tracing with 8-ray packet:
7 of 8 rays active

Example: consider 8-wide SIMD processor and 16-ray packets
(2 SIMD instructions required to perform each operation on all rays in packet)

Idea: when packet utilization drops below threshold, resort rays and
continue with smaller packet

- Increases SIMD utilization

- Amortization benefits of smaller packets, but not large packets

[Boulos et al. 2008]

 CMU 15-769, Fall 2016

Packet tracing best practices
▪ Use large packets for eye/reflection/point light shadow rays

or higher levels of BVH
- Ray coherence always high at the top of the tree

▪ Switch to single ray (intra-ray SIMD) when packet utilization
drops below threshold
- For wide SIMD machine, a branching-factor-4 BVH works well for both packet

traversal and single ray traversal

▪ Can use packet reordering to postpone time of switch
- Reordering allows packets to provide benefit deeper into tree
- Not often used in practice due to high implementation complexity

[Benthin et al. 2011]

[Wald et al. 2007]

[Boulos et al. 2008]

 CMU 15-769, Fall 2016

SPMD ray tracing

stack<BVHNode>	tovisit;	
tovisit.push(root);	
while	(ray	not	terminated)	

			//	ray	is	traversing	interior	nodes	
			while	(not	reached	leaf	node)	
					traverse	node	//	pop	stack,	perform	
																			//	ray-box	test,	push	
																			//	children	to	stack	

			//	ray	is	now	at	leaf	
			while	(not	done	testing	tris	in	leaf)	
					ray-triangle	test

stack<BVHNode>	tovisit;	
tovisit.push(root);	
while	(ray	not	terminated)	
			node	=	tovisit.pop();	
			if	(node	is	not	a	leaf)	
						traverse	node	//	perform	ray-box	test,	
																				//	push	children	to	stack	

			else	(not	done	testing	tris	in	leaf)	
						ray-triangle	test

Algorithm 1 Algorithm 2

No packets!
Each work item (e.g., CUDA thread) carried out processing for one ray.

 CMU 15-769, Fall 2016

Data access challenges
▪ Recall data access patterns in rasterization

- Stream through scene geometry
- Arbitrary, direct access to frame-buffer samples (accelerated by specialized GPU

implementations)

▪ Ray tracer data access patterns
- Frame-buffer access is minimal (once per ray)
- But access to BVH nodes is frequent and unpredictable

- Not predictable by definition (or the BVH is low quality. Why?)
- Packets amortize cost of fetching BVH node data, but technique’s utility

diminishes under divergent conditions.

▪ Incoherent ray traversal suffers from poor cache behavior
- Rays require different BVH nodes during traversal
- Ray-scene intersection becomes bandwidth bound for incoherent rays

- E.g., soft shadows, indirect diffuse bounce rays

 CMU 15-769, Fall 2016

Let’s stop and think
▪ One strong argument for high-performance ray tracing is to produce

advanced effects that are difficult or inefficient to compute given
the single point of projection and uniform sampling constraints of
rasterization
- e.g., soft shadows, diffuse interreflections

▪ But these phenomenon create situations of high ray divergence!
(where packet- and SIMD-optimizations are less effective)

 CMU 15-769, Fall 2016

Emerging hardware for ray tracing

 CMU 15-769, Fall 2016

Emerging hardware for ray tracing
▪ Modern academic/announced industry implementations:

- Trace single rays, not ray packets (assume most rays are incoherent rays…)

▪ Two areas of focus:
- Custom logic for accelerating ray-box and ray-triangle tests

- MIMD designs: wide SIMD execution not beneficial

- Support for efficiently reordering ray-tracing computations to maximize
memory locality (ray scheduling)

 CMU 15-769, Fall 2016

Global ray reordering
Idea: dynamically batch up rays that must traverse the same part of the
scene. Process these rays together to increase locality in BVH access

Partition BVH into treelets
(treelets sized for L1 or L2 cache)

1. When ray (or packet) enters treelet, add rays
to treelet queue

2. When treelet queue is sufficiently large,
intersect enqueued rays with treelet
(amortize treelet load over all enqueued rays)

Buffering overhead to global ray reordering: must
store per-ray “stack” (need not be entire call stack,
but must contain traversal history) for many rays.

Per-treelet ray queues sized to fit in caches (or in
dedicated ray buffer SRAM)

[Pharr 1997, Navratil 07, Alia 10]

 CMU 15-769, Fall 2016

PowerVR GR6500 ray tracing GPU

 CMU 15-769, Fall 2016

Summary

 CMU 15-769, Fall 2016

Visibility summary
▪ Visibility problem: determine which scene geometry contributes

to the appearance of which screen pixels
- “Basic” rasterization: given polygon, find samples(s) it overlaps

- “Basic” ray tracing: given ray, find triangle(s) that it intersects

▪ In practice, optimized versions of both algorithms are not as
different as you might think

▪ They are just different ways to solve the problem of finding
interacting pairs between two hierarchies
- Hierarchy over point samples (tiles, ray packets)

- Hierarchy over geometry (BVHs)

 CMU 15-769, Fall 2016

Consider performant, modern solutions for
primary-ray visibility
▪ “Rasterizer”

- Hierarchical rasterization (uniform grid over samples)
- Hierarchical depth culling (quad-tree over samples)
- Application scene graph, hierarchy over geometry

- Modern games perform conservative coarse culling, only submit potentially
visible geometry to the rendering pipeline
(in practice, rasterization not linear in amount of geometry in scene)

▪ “Ray tracer”
- BVH: hierarchy over geometry
- Packets form hierarchy over samples (akin to frame buffer tiles). Breaking packets

into small packets during traversal adds complexity to the hierarchy
- Wide packet traversal, high-branching BVH: decrease work efficiency for better

machine utilization
(in practice, significant constants in front of that lg(N))

