
Visual Computing Systems
CMU 15-769, Fall 2016

Lecture 21:

Deferred Shading

 CMU 15-769, Fall 2016

Deferred shading
▪ Popular algorithm used by many modern real-time renderers

▪ Idea: restructure the rendering pipeline to perform shading
after all occlusions have been resolved

▪ Not a new idea: present in several classic graphics systems,
but not directly implemented by modern GPU-accelerated
graphics pipeline
- However, modern graphics pipeline provides mechanisms to allow application to

implement deferred shading efficiently

- Natively implemented by PowerVR mobile GPUs

- Classic hardware-supported implementations:

- [Deering et al. 88]

- UNC PixelFlow [Molnar et al. 92]

 CMU 15-769, Fall 2016

The graphics pipeline

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Primitive Processing

Frame Buffer

“Feed-forward” rendering

Early Z

Typical use of fragment processing stage: evaluate
application-defined function from surface inputs to
surface color (reflectance)

 CMU 15-769, Fall 2016

Deferred shading pipeline

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Geometry pass-through

Frame-Buffer Ops

Primitive Processing

“G-buffer”

Two pass approach:

Do not use traditional pipeline to generate RGB image.

Fragment shader outputs surface properties (shader inputs)
(e.g., position, normal, material diffuse color, specular color)

Rendering output is a screen-size 2D buffer representing information
about the surface geometry visible at each pixel (called a “g-buffer”, for
geometry buffer)

Albedo (Reflectance) Depth

SpecularNormal

 CMU 15-769, Fall 2016

G-buffer = “geometry” buffer

Image Credit: J. Klint, “Deferred Rendering in Leadworks Engine”

Albedo (Reflectance) Depth

SpecularNormal

 CMU 15-769, Fall 2016

Example G-buffer layout
Graphics pipeline configured to render to four RGBA output buffers (32-bits per pixel, per buffer)

Implementation on modern GPUs:
- Application binds “multiple render targets” (RT0, RT1, RT2, RT3 in figure) to pipeline
- Rendering geometry outputs to depth buffer + multiple color buffers

More intuitive to consider G-buffer as one big buffer with “fat” pixels
In the example above: 32 x 5 =160 bits = 20 bytes per pixel

96-160 bits per pixel is common in games

Source: W. Engel, “Light-Prepass Renderer Mark III” SIGGRAPH 2009 Talks

 CMU 15-769, Fall 2016

Compressed G-buffer layout

▪ Material information compressed using indirection
- Store material ID in G-buffer

- Material parameters other than albedo (specular shape/roughness/color) stored in table
indexed by material ID

DS

RT0

RT1

G-buffer layout in Bungie’s Destiny (2014)

Source: N Tatarchuk: SIGGRAPH 2014 Courses

 CMU 15-769, Fall 2016

“Two pass” deferred shading

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Geometry pass-through

Frame-Buffer Ops

Primitive Processing

“G-buffer”

Shading

Frame buffer

Two pass approach:

Do not use traditional pipeline to generate RGB image.

Fragment shader outputs surface properties (shader inputs)
(e.g., position, normal, material diffuse color, specular color)

Rendering output is a screen-size 2D buffer representing information about the
surface geometry visible at each pixel (called a “g-buffer”, for geometry buffer)

After all geometry has been rendered, execute shader for each sample in the G-buffer:
shader reads geometry information for sample, computes RGB output

(shading is deferred until all geometry processing -- including all occlusion
computations -- is complete)

 CMU 15-769, Fall 2016

Two-pass deferred shading algorithm
▪ Pass 1: G-buffer generation pass

- Render scene geometry using traditional pipeline
- Write visible geometry information to G-buffer

▪ Pass 2: shading/lighting pass
For each G-buffer sample, compute shading
- Read G-buffer data for current sample
- Accumulate contribution of all lights
- Output final surface color for sample

Image Credit: J. Klint, “Deferred Rendering in Leadworks Engine”

Final Image

 CMU 15-769, Fall 2016

Motivation: why deferred shading?

▪ Shading is expensive: shade only visible fragments
- Deferred shading amounts to perfect early occlusion culling
- Deferred shading is triangle order invariant (will only shade visible

fragments, regardless of application’s triangle submission order)
- Also has nice property that the number of shaded fragments is independent

of scene complexity (predictable shading performance)

▪ Recall: forward rendering shades small triangles inefficiently
- Recall shading granularity is quad fragments: multiple fragments generated

for pixels along triangle edges

 CMU 15-769, Fall 2016

Recall: forward shading shades multiple fragments at pixels
containing triangle boundaries

Shading computations per pixel

8 +

7

6

5

4

3

2

1

 CMU 15-769, Fall 2016

Shading computations per pixel

8 +

7

6

5

4

3

2

1

Recall: forward shading shades multiple fragments at pixels
containing triangle boundaries

 CMU 15-769, Fall 2016

Motivation: why deferred shading?

▪ Shade only visible surface fragments

▪ Forward rendering shades small triangles inefficiently (quad-
fragment granularity)

▪ Increasing complexity of lighting computations
- Growing interest in scaling scenes to many light sources

 CMU 15-769, Fall 2016

1000 lights

[J. Andersson, SIGGRAPH 2009 Beyond Programmable shading course talk]

 CMU 15-769, Fall 2016

Lights

Dcutoff
Omnidirectional point light
(with distance cutoff)

Directional spotlight

Environment light

Shadowed light

Graphics applications employ many
kinds of lights

For efficiency, lights often specify
finite volume of influence

 CMU 15-769, Fall 2016

Forward rendering: naive multiple-light shader
struct	LightDefinition	{	

		int	type;	

		...	

}	

//	uniform	values	(read-only	inputs	to	all	shader	instancess)	

sampler	mySamp;

Texture2D<float3>	myTex;	

Texture2D<float>	myEnvMaps[MAX_NUM_LIGHTS];		

Texture2D<float>	myShadowMaps[MAX_NUM_LIGHTS];

LightDefinition		lightList[MAX_NUM_LIGHTS];	

int	numLights;	

//	fragment	shader	receives	surface	normal	and	texture	coords	uv

float4	fragment_shader(float3	norm,	float2	uv)	{

		float3	kd	=	myTex.Sample(mySamp,	uv);	

		float4	result	=	float4(0,	0,	0,	0);	

		for	(int	i=0;	i<numLights;	i++)	

		{	

					result	+=	…			//	eval	contribution	of	light	to	surface	reflectance	here

 }	

			return	result;		//	output	color	of	fragment	shader

}

 CMU 15-769, Fall 2016

Rendering as a triple for-loop

initialize	z_closest[]	to	INFINITY													//	store	closest-surface-so-far	for	all	samples		
initialize	color[]																													//	store	scene	color	for	all	samples	
bind	all	relevant	light	data	in	buffers:	light	descriptors,	shadow	maps,	etc.	
for	each	triangle	t	in	scene:																		//	loop	1:	triangles	
				t_proj	=	project_triangle(t)	
				for	each	sample	s	in	frame	buffer:									//	loop	2:	visibility	samples	
								if	(t_proj	covers	s)		
												for	each	light	l	in	scene:									//	loop	3:	lights	
																accumulate	contribution	of	light	l	to	surface	appearance	
												if	(depth	of	t	at	s	is	closer	than	z_closest[s])	
																update	z_closest[s]	and	color[s]

Naive forward rasterization-based renderer:

Efficient rasterization techniques (tiled,
hierarchical, bounding boxes) serve to reduce
T x S complexity of finding covered samples.

Triangles are outermost loop:

Triangle setup performed once, amortized
across many samples

High coherence in shading computations
(fragments are from the same triangle: same
shader program, similar data access)

 CMU 15-769, Fall 2016

Rendering as a triple for-loop

Naive forward rasterization-based renderer:

F x L loop: # fragments x # lights

In practice: not all lights illuminate all surfaces

Would like to be more efficient in computing these interactions
(just like we were efficient computing triangle/visibility sample interactions)

initialize	z_closest[]	to	INFINITY													//	store	closest	surface-so-far	for	all	samples		
initialize	color[]																													//	store	scene	color	for	all	samples	
bind	all	relevant	shadow	maps,	etc.	
for	each	triangle	t	in	scene:																		//	loop	1:	triangles	
				t_proj	=	project_triangle(t)	
				for	each	sample	s	in	frame	buffer:									//	loop	2:	visibility	samples	
								if	(t_proj	covers	s)		
												for	each	light	l	in	scene:									//	loop	3:	lights	
																accumulate	contribution	of	light	l	to	surface	appearance	
												if	(depth	of	t	at	s	is	closer	than	z_closest[s])	
																update	z_closest[s]	and	color[s]

 CMU 15-769, Fall 2016

Naive many-light shader with culling
struct	LightDefinition	{	
		int	type;	
		...	
}	

sampler	mySamp;
Texture2D<float3>	myTex;	
Texture2D<float>	myEnvMaps[MAX_NUM_LIGHTS];		
Texture2D<float>	myShadowMaps[MAX_NUM_LIGHTS];
LightDefinition	lightList[MAX_NUM_LIGHTS];	
int	numLights;	

float4	shader(float3	norm,	float2	uv)
{
		float3	kd	=	myTex.Sample(mySamp,	uv);	
		float4	result	=	float4(0,	0,	0,	0);	
		for	(int	i=0;	i<numLights;	i++)	
		{	
						if	(this	fragment	is	illuminated	by	current	light)	
						{	
									if	(lightList[i].type	==	SPOTLIGHT)	
												result	+=	//	eval	contribution	of	light	here	
									else	if	(lightList[i].type	==	POINTLIGHT)	
												result	+=	//	eval	contribution	of	light	here	
									else	if	...	
						}		

 }	
			return	result;
}

SIMD execution divergence:
1.Different outcomes for “is illuminated” predicate

2.Different logic to perform test
(based on light type)

3.Different logic in loop body (based on light type,
shadowed/unshadowed, etc.)

Work inefficient:
Predicate evaluated for each fragment/light pair:
O(F x L) work

F = number of fragments
L = number of lights

(spatial coherence in predicate should exist)

Large footprint:
Assets for all lights (shadow maps, environment
maps, etc.) must be allocated and bound to pipeline

 CMU 15-769, Fall 2016

Forward rendering: techniques for scaling to many lights

▪ Goal: avoid performing F x L “is-illuminated” checks

▪ Solution: application maintains per-object light lists
- Each object stores list of lights that illuminate it
- CPU computes this list each frame by intersecting light volumes with

scene geometry
(light-geometry interactions computed per light-object pair, not light-
fragment pair)

 CMU 15-769, Fall 2016

Light lists

L1

L2

L3

L4

Obj 1

Obj 2
Obj 3

Obj 4
Obj 5

Obj 1: L1

Obj 2: L2

Obj 3: L2

Obj 4: L2, L4

Example: compute lists based on conservative bounding volumes
for lights and scene objects

Resulting per-object lists:

Obj 5: L3, L4

 CMU 15-769, Fall 2016

Forward rendering: techniques for scaling to many lights

▪ Application maintains light lists
- Computed conservatively per frame

▪ Option 1: draw scene in many small batches
- First generate data structures for all lights: e.g., shadow maps
- Before drawing each object, only bind data for relevant lights to pipeline
- To avoid SIMD divergence: precompile shader variants that are specialized for different

sets of bound lights (4-light version, 8-light version...)
- Low execution divergence during fragment shading
- Many graphics state changes, small draw command batch sizes (draw command =

single object, or group of objects with the same number of lights)

 CMU 15-769, Fall 2016

Recall: rendering as a triple for-loop

Naive forward rasterization-based renderer:

initialize	z_closest[]	to	INFINITY													//	store	closest	surface-so-far	for	all	samples		
initialize	color[]																													//	store	scene	color	for	all	samples	
bind	all	relevant	shadow	maps,	etc.	
for	each	triangle	t	in	scene:																		//	loop	1:	triangles	
				t_proj	=	project_triangle(t)	
				for	each	sample	s	in	frame	buffer:									//	loop	2:	visibility	samples	
								if	(t_proj	covers	s)		
												for	each	light	l	in	scene:									//	loop	3:	lights	
																accumulate	contribution	of	light	l	to	surface	appearance	
												if	(depth	of	t	at	s	is	closer	than	z_closest[s])	
																update	z_closest[s]	and	color[s]

 CMU 15-769, Fall 2016

Reordering triangles for light coherence

initialize	z_closest[]	to	INFINITY													//	store	closest	surface-so-far	for	all	samples	
initialize	color[]																													//	store	scene	color	for	all	samples	
bind	all	relevant	shadow	maps,	etc.		
for	each	group	of	triangles	with	the	same	number	of	lights:				//	loop	0:	groups	of	triangles	
			bind	specific	shader	for	number	of	lights	
			for	each	triangle	t	in	group:																		//	loop	1:	triangles			
							t_proj	=	project_triangle(t)	
							for	each	sample	s	in	frame	buffer:									//	loop	2:	visibility	samples	
										if	(t_proj	covers	s)		
													for	lights	0	through	3:														//	loop	3:	lights	(specialized	for	4	lights)	
																accumulate	contribution	of	light	l	to	surface	appearance	
													if	(depth	of	t	at	s	is	closer	than	z_closest[s])	
																update	z_closest[s]	and	color[s]

Shader code is specialized to a specific number of lights:

 CMU 15-769, Fall 2016

Multi-pass rendering for light coherence

initialize	z_closest[]	to	INFINITY													//	store	closest	surface-so-far	for	all	samples	
initialize	color[]																													//	store	scene	color	for	all	samples	
assume	z	buffer	is	initialized	using	a	z	prepass.	
for	each	light	l	in	scene:																										//	loop	1:	lights	
			bind	single	light	shader	specific	to	current	light	type	
			bind	relevant	shadow	map,	etc.	
			for	each	triangle	t	lit	by	light:																//	loop	2:	triangles			
							t_proj	=	project_triangle(t)	
							for	each	sample	s	in	frame	buffer:											//	loop	3:	visibility	samples	
										if	(t_proj	covers	s)		
													accumulate	contribution	of	light	l	to	surface	appearance			//	specialized	to	1	light	
													if	(depth	of	t	==	z_closest[s])	
																update	color[s]

Reorder loops: draw scene once per light

Each pass, only draw triangles illuminated by current light (per-light object lists)

Shader accumulates illumination of visible fragments from current light into frame buffer

 CMU 15-769, Fall 2016

Forward rendering: techniques for scaling to many lights
▪ Application maintains light lists

- Computed conservatively per frame

▪ Option 1: draw scene in many small batches
- First generate data structures for all lights: e.g., shadow maps
- Compute per-object light lists, before drawing each object, only bind data for relevant lights
- Precompile specialized shaders for different sets of bound lights (4-light version, etc…)
- For each object:

- Render object with specialized shader for relevant lights
- Good: low execution divergence during fragment shading
- Bad: many graphics state changes (draw call = single object, or group of objects with the same

number of lights)

▪ Option 2: multi-pass rendering
- Compute per-light lists (for each light, compute illuminated objects)

- For each light:

- Compute necessary data structures (e.g., shadow maps)

- Render scene with additive blending (only render geometry illuminated by light)

- Good: Minimal footprint for light data

- Good: Low execution divergence during fragment shading

- Bad: Significant overheads: redundant geometry processing, many G-buffer accesses, redundant
execution of common shading sub-expressions in fragment shader

Stream
over

scene
geometry

Stream
over

lights

 CMU 15-769, Fall 2016

initialize	z_closest[]	to	INFINITY													//	store	closest-surface—so-far	for	all	samples		
initialize	gbuffer[]																											//	store	surface	information	for	all	samples	
for	each	triangle	t	in	scene:																		//	loop	1:	triangles	
				t_proj	=	project_triangle(t)	
				for	each	sample	s	in	frame	buffer:									//	loop	2:	visibility	samples	
								if	(t_proj	covers	s)		
																emit	geometry	information	
												if	(depth	of	t	at	s	is	closer	than	z_closest[s])	
																update	z_closest[s]	and	gbuffer[s]	

initialize	color[]																													//	store	color	for	all	samples	
for	each	light	in	scene:																							//	loop	1:	lights	
			bind	single	light	shader	specific	to	current	light	type	
			bind	relevant	shadow	map,	etc.	
			for	each	sample	s	in	frame	buffer:										//	loop	2:	visibility	samples	
										load	gbuffer[s]	
										accumulate	contribution	of	current	light	to	surface	appearance	into	color[s]

▪ Good
- Only process scene geometry once (only in phase 1)
- Outer loop of phase 2 is over lights:
- Avoids light data footprint issues (stream over lights)
- Continues to avoid divergent execution in fragment shader

- Recall other deferred benefits: only shade visibility samples (and no more)

▪ Bad?

Phase 1:
Generate
G-buffer

Phase 2:
Shade

G-buffer

Basic many light deferred shading algorithm

 CMU 15-769, Fall 2016

Basic many light deferred shading algorithm
initialize	z_closest[]	to	INFINITY													//	store	closest-surface-so-far	for	all	samples		
initialize	gbuffer[]																											//	store	surface	information	for	all	samples	
for	each	triangle	t	in	scene:																		//	loop	1:	triangles	
				t_proj	=	project_triangle(t)	
				for	each	sample	s	in	frame	buffer:									//	loop	2:	visibility	samples	
								if	(t_proj	covers	s)		
																emit	geometry	information	
												if	(depth	of	t	at	s	is	closer	than	z_closest[s])	
																update	z_closest[s]	and	gbuffer[s]	

initialize	color[]																													//	store	color	for	all	samples	
for	each	light	in	scene:																							//	loop	1:	lights	
			bind	single	light	shader	specific	to	current	light	type	
			bind	relevant	shadow	map,	etc.	
			for	each	sample	s	in	frame	buffer:										//	loop	2:	visibility	samples	
										load	gbuffer[s]	
										accumulate	contribution	of	current	light	to	surface	appearance	into	color[s]

▪ Bad:
- High G-buffer footprint: G-buffer has large footprint (especially when G-buffer is supersampled!)
- High bandwidth costs (read G-buffer each pass, output to frame buffer)
- Exactly one shading computation per frame-buffer sample

- Does not support transparency (need multiple fragments per pixel)
- Challenging to implement MSAA efficiently (more on this to come)

 CMU 15-769, Fall 2016

Reducing deferred shading bandwidth costs
▪ Batching: process multiple lights in each phase 2 accumulation pass

- Amortizes G-buffer load and frame buffer write across lighting computations for multiple lights

▪ Only perform shading computations for G-buffer samples illuminated by light
- Technique 1: rasterize geometry of light volume (only generate fragments for covered G-buffer samples)

- Light-fragment interaction predicate is evaluated by rasterizer, not in shader

- Technique 2: CPU computes screen-aligned quad covered by light volume, renders quad

- Many other techniques for culling light/G-buffer sample interactions

Light volume geometry
If volume is convex, rendering only the front-facing
triangles of the light volume will generate fragments in
the yellow shaded region
(these are the only g-buffer samples that can be effected
by the light)

 CMU 15-769, Fall 2016

Scene with 256 lightsLit Scene (256 Point Lights)

Beyond Programmable Shading, SIGGRAPH 2010 78/2/2010

 CMU 15-769, Fall 2016

Visualization of light-sample interaction count

Number of lights evaluated per G-buffer sample
(scene contains 1024 point lights)

Image Credit: A. Lauritzen

Per-light culling is performed using a screen-aligned quad per light
(depth of quad is nearest point in light volume: early Z will cull fragments behind scene geometry)

 CMU 15-769, Fall 2016

Tile-based deferred shading
▪ Main idea: exploit coherence in light-sample interactions

- Compute set of lights that influence a small tile of G-buffer samples, then
compute contribution of lights to samples in the tile

▪ Efficient implementation enabled by “shared memory” available in
CUDA/computer shader
- Amortize G-buffer load, frame-buffer write across all lights

- Amortize light data load across tile samples

- Amortize light-sample culling across samples in a tile

[Andersson 09]

 CMU 15-769, Fall 2016

Tile-based deferred shading [Andersson 09]

LightDescription	perTileLightList[MAX_LIGHTS];				//	stored	in	group	shared	memory	

All	threads	cooperatively	compute	Z-min,	Zmax	for	current	tile	from	z-buffer		

barrier;	

for	each	light:														//	parallel	across	threads	in	thread	group	(parallel	over	lights)	
			if	(light	volume	intersects	tile	frustum)	
						append	light	to	tileLightList	//	stored	in	shared	memory	

barrier;	

for	each	sample:													//	parallel	across	threads	in	group	(parallel	over	samples)	
			result	=	float4(0,0,0,0)	
			load	G-buffer	data	for	sample	
			for	each	light	in	perTileLightList:						//	no	divergence	across	samples	
							result	+=	evaluate	contribution	of	light	

			store	result	to	appropriate	position	in	frame	buffer	

Step 1: Perform G-buffer generation pass to create G-buffer and Z-buffer
Step 2: Shade G-buffer using compute mode GPU execution
Each compute kernel thread group is responsible for shading a 16x16 sample tile of the G-buffer
(256 threads per group)

Load depth buffer once

Cull lights at tile granularity

Read G-buffer once

Write final pixel color to
frame buffer once

 CMU 15-769, Fall 2016

Tiled-based light culling
Yellow boxes: screen-aligned light volume bounding boxes
Blue boxes: screen tile boundaries

Image credit: HMREngine: http://www.hmrengine.com/blog/?p=399

http://www.hmrengine.com/blog/?p=399

 CMU 15-769, Fall 2016

Tile-based deferred shading: better light culling efficiency
(16x16 granularity of light culling is apparent in figure)

Number of lights evaluated per G-buffer sample
(scene contains 1024 point lights)

Image Credit: A. Lauritzen

 CMU 15-769, Fall 2016

Culling inefficiency near silhouettes

Tile screen boundaries + tile (zmin, zmax) define a frustum
Depth bounds are not tight when tile contains an object silhouette

Image Credit: A. Lauritzen

 CMU 15-769, Fall 2016

Tiled vs. conventional deferred shading

[Lauritzen 2009]

Deferred shading rendering performance: 1920x1080 resolution

 CMU 15-769, Fall 2016

“Forward plus” rendering
▪ Tile-based (hierarchical) light culling is not unique to deferred shading

▪ “Forward+” rendering involves three phases

▪ Achieves light culling benefits of tiled-deferred approach in a forward
renderer (it’s just another reordering of the loops!)
- Primary difference is how shading is scheduled:

- Forward+ recomputes shading inputs using a second geometry pass (“rematerialization” of
shading inputs via extra computation) but stores light lists in memory between phase 2 and
phase 3.

- Tiled-deferred stores shading inputs in the G-buffer. It never stores light lists in off-chip
memory (only compute shader shared memory) because the light list is consumed
immediately after its construction in the shader.

Phase	1:	Render	“Z-prepass"	to	populate	depth	buffer	(process	all	geometry)	
Phase	2:	In	compute	shader:	compute	zmin/zmax	for	all	tiles,	compute	light	lists	for	screen	tiles	
Phase	3:	Render	scene	with	shading	enabled	(process	all	geometry	again)	

			Fragment	shader	determines	which	tile	it	resides	in	
			Shader	uses	tile’s	precomputed	light	list	when	computing	surface	illumination

 CMU 15-769, Fall 2016

Challenge: anti-aliasing geometry in a
deferred renderer

 CMU 15-769, Fall 2016

Recall: multi-sample anti-aliasing (MSAA)

Main idea: decouple shading sampling rate from visibility sampling rate
Depth buffer: stores depth per sample
Color buffer: stores color per sample
Resample color buffer to get final image pixel values

 CMU 15-769, Fall 2016

MSAA in a deferred shading system
▪ Deferred shading performs exactly one shading computation per G-buffer

sample *

▪ MSAA: shades once per triangle contributing coverage to samples in a pixel
- So the effective shading rate is adaptive

- For pixels in interior of projected triangle: this is one shading computation per pixel

- For pixels on boundary of triangles, extra shading occurs

- This is desirable: extra shading necessary to anti-alias object silhouettes

- The undesirable consequence of MSAA is extra shading when two adjacent
triangles from the same surface meet

* This is also why transparency is challenging in a deferred shading system

 CMU 15-769, Fall 2016

Two anti-aliasing solutions for deferred shading

▪ Super-sample G-buffer
- Generate super-sampled G-buffer (e.g., 4 samples per pixel)
- Shade all G-buffer samples
- Resample shaded results to get final frame-buffer pixels
- Problems:

- Increased G-buffer footprint and G-buffer read/write bandwidth (remember: “fat
samples” are stored per G-buffer sample)

- 1900 x 1200 x 4 spp x 20 bytes per sample = 173 MB frame-buffer
- Increases shading cost because deferred shading systems I described earlier shade at

visibility rate, not once per pixel!

▪ Intelligently filter aliased shading results
- Does not increase G-buffer footprint or shading cost

- Current popular technique: morphological anti-aliasing (MLAA)

 CMU 15-769, Fall 2016

Morphological anti-aliasing (MLAA)
Detect careful designed patterns in rendered image
For detected patterns, blend neighboring pixels according to a few simple rules
(“hallucinate” a smooth edge)

[Reshetov 09]

 CMU 15-769, Fall 2016

Morphological anti-aliasing (MLAA)

Aliased image
(one shading sample per pixel)

After filtering using MLAAZoomed views
(top: aliased, bottom: after MLAA)

[Reshetov 09]

 CMU 15-769, Fall 2016

Anti-aliasing solutions for deferred shading
▪ Super-sample G-buffer, super-sample shading

- Increases G-buffer footprint and shading cost

▪ Intelligently filter aliased shading results (MLAA popular choice)
- Does not increase G-buffer footprint or shading costs, but may produce artifacts

(hallucinates edges/detail)

▪ Application implements MSAA on its own (without HW support)
- Render super-sampled G-buffer
- Launch one shader instance for each output image sample, not each G-buffer sample
- New shader implementation:

Detect	if	pixel	contains	an	edge		//	how	might	this	be	done	without	geometry	information?	
If	pixel	contains	an	edge:	

Shade	all	G-buffer	samples	for	pixel	(sequentially	in	shader)	
Resample	results	into	single	per	pixel	color	output	(e.g.,	using	box	filter)	

else:	
Shade	only	one	G-buffer	sample	for	this	pixel,	store	result	

- Increases G-buffer footprint, but approximately same shading cost as MSAA
- Additional BW cost (to detect edges) + potential execution divergence in shader

 CMU 15-769, Fall 2016

Handling divergence when implementing MSAA
in a shader

Red pixels = These pixels contain
edges (require additional shading)

Adaptive shading rate increases
divergence in shader execution
(recall eliminating shading divergence
was one of the motivations of deferred
shading)

Can apply standard gamut of data-parallel programming solutions:
e.g., multi-pass solution:

- Phase 1: categorize pixels, set stencil buffer
- Phase 2: shade pixels requiring one shading computation
- Phase 3: flip stencil value, shade pixels requiring N shading computations

This solution is a common bandwidth vs. execution coherence trade-off!
(recall earlier in lecture: same principle applied when sorting geometry draw calls by active lights)

 CMU 15-769, Fall 2016

Tile-based deferred shading (TBDR) in modern
mobile GPUs
▪ Motivation: energy-efficient rendering

- Philosophy: aggressive cull unnecessary fragment work to conserve energy

▪ Implementation of OpenGL ES graphics pipeline by imagination PowerVR
GPUs is sort-middle tiled with deferred shading
- Note: deferred shading is implemented as an optimization by the OpenGL

system, not on top of the graphics pipeline by the application as discussed so
far in this lecture

Phase 2 implementation of tiled renderer: (bin processing)
For	each	bin:	

	For	each	triangle	in	bin’s	triangle	list:	
				Rasterize	triangle	(store	only	triangle	id	per	G-buffer	sample)	
		
	//	Determine	quad	fragments	that	contribute	to	frame	buffer	
	For	each	sample	in	tile:	
				Given	triangle	id,	compute	fragment	that	corresponds	to	sample	
				Add	fragment	to	list	of	fragments	to	shade	(if	not	in	list	already)	

	//	Shade	only	fragments	that	contribute	coverage	
	For	each	fragment	that	must	be	shared:	
				Shade	fragment	and	contribute	results	into	frame	buffer

T0 T0

T0

T0

T0

T0

T0

T0T2

T2

T4

T4 T4

T4T4 T4T4

T7

T7

T7

G-buffer stored what triangle
covers each sample, not the full
set of surface properties (these

can be computed as needed
based on the triangle ID)

 CMU 15-769, Fall 2016

Deferred shading summary
▪ Main idea: perform shading calculations for opaque surfaces after all geometry

processing operations (rasterization, occlusions) are complete

▪ Modern motivations
- Scaling scenes to complex lighting conditions (many lights, diverse lights)
- High geometric complexity (due to tessellation) increases overhead of Z-prepass, so it’s useful to store and reload

results of geometry processing (rather than repeat it)
- Tiny triangles increase overhead of quad-fragment-based forward shading

▪ Computes (more-or-less) the same result as forward rendering; reorder key
rendering loops to change schedule of computation
- Key loops: for all lights, for all samples, for all drawing primitives
- Different footprint characteristics

- Trade footprint of scene light data structures for G-buffer footprint

- Different bandwidth characteristics

- Different execution coherence characteristics
- Traditionally deferred shading has traded bandwidth for increased batch sizes and coherence
- Tile-based methods improve bandwidth requirements considerably
- MSAA changes bandwidth, execution coherence equation yet again

▪ Keep in mind: not a technique used for transparent surfaces

 CMU 15-769, Fall 2016

Final comments
▪ Which is better, forward or deferred shading?

- Depends on context
- Is geometric complexity high? (prepass might be costly)
- Are triangles small? (forward shading has overhead)
- Is multi-sample anti-aliasing desired? (G-buffer footprint might be too large)
- Is there significant divergence impacting lighting computations?

▪ Common tradeoff: memory bandwidth vs. execution coherence
- Another example of relying on high bandwidth to achieve high ALU utilization
- In real-time graphics: typically manifests as multi-pass algorithms

▪ One lesson from today: when considering new techniques or a new system
design, be cognizant of interoperability with existing features and
optimizations
- Deferred shading is not compatible with hardware-accelerated MSAA implementations (application must

role its own version of MSAA... and still takes a large G-buffer footprint hit)

- Deferred shading does not support transparent surfaces

