
Visual Computing Systems
CMU 15-769, Fall 2016

Lecture 19:

Texturing mapping
algorithms and hardware

 CMU 15-769, Fall 2016

Graphics pipeline architecture

Primitive Generation

Vertex Generation

Kernel 1
(Per-Vertex Processing)

Rasterization
(Fragment Generation)

Frame-Buffer Ops

Vertices

Primitives

Fragments

Pixels

Memory

image + depth buffers

Kernel 2
(Per-Primitive Processing)

Kernel 3
(Per-Fragment Processing)

vertex stream

clip space vertex stream

primitive stream

primitive stream

fragment stream

shaded fragment stream

input buffers / input textures

input vertex data buffers

input buffers / input textures

input buffers / input textures

 CMU 15-769, Fall 2016

Today: texturing!

▪ Texture filtering math
- At the very least… a texture access is not just a 2D array lookup ;-)

- Implemented in fixed-function hardware in modern GPUs

▪ Memory-system implications of texture mapping operations
- Texture caching

- Memory layout of texture data

- Texture compression (decompression support in hardware)

- Prefetching and multi-threading

 CMU 15-769, Fall 2016

Previous lecture (visibility)
Rasterizer samples triangle-screen coverage (four samples per pixel shown here)
Z-buffer algorithm used to determine occlusion at these sample points

 CMU 15-869, Fall 2014

Last time
Rasterizer samples triangle-screen coverage (four samples per pixel shown here)
Z-buffer algorithm used to determine occlusion at these sample points

 CMU 15-769, Fall 2016

Generating fragments via “multi-sampling”
▪ Rasterizer samples coverage at N sample points per pixel (small dots in figure)
▪ If any visibility sample in a pixel is covered, GPU generates fragment for pixel **
▪ Surface attributes for fragment shading are typically sampled at pixel centers (big dots in figure)

** As we’ll discuss later in this lecture: a GPU actually generates a 2x2 block of fragments if any visibility sample in the 2x2 block is covered CMU 15-869, Fall 2014

Generating fragments via “multi-sampling”
▪ Rasterizer samples coverage at N sample points per pixel (small dots in figure)
▪ If any visibility sample in a pixel is covered, generate fragment for pixel **
▪ Surface attributes for fragment shading are [typically] sampled at pixel centers (big dots)

** As we’ll discuss later in this lecture: a GPU actually generates a 2x2 block of fragments if any visibility sample in the 2x2 block is covered

 CMU 15-769, Fall 2016

Many uses of texture mapping
Define variation in surface reflectance

Pattern on ball Wood grain on floor

 CMU 15-769, Fall 2016

Describe surface material properties

Multiple layers of texture maps for color, logos,
scratches, etc.

 CMU 15-769, Fall 2016

Layered material
(composition of many textures)

 CMU 15-769, Fall 2016

Normal mapping

Use texture value to perturb surface normal to give
appearance of a bumpy surface

Observe: smooth silhouette and smooth shadow
boundary indicates surface geometry is not bumpy

Rendering using high-resolution surface geometry
(note bumpy silhouette and shadow boundary)

 CMU 15-769, Fall 2016
Grace Cathedral environment map Environment map used in rendering

Textures used to represent precomputed lighting
and shadows

 CMU 15-769, Fall 2016

Texture mapping math

 CMU 15-769, Fall 2016

Texture coordinates

myTex(u,v) is a function
defined on the [0,1]2 domain:

myTex : [0,1]2 → float3
(represented by 2048x2048 image)

“Texture coordinates” define a mapping from surface coordinates (points on triangle)
to points in texture domain.

Today we’ll assume surface-to-texture space mapping is provided as per vertex attribute
(Not discussing methods for generating surface texture parameterizations)

(0.0, 0.0) (1.0, 0.0)

(1.0, 1.0)(0.0, 1.0)

(0.0, 0.5) (1.0, 0.5)(0.5, 0.5)

(0.5, 1.0)

(0.5, 0.0)

Eight triangles (one face of cube) with surface
parameterization provided as per-vertex
texture coordinates.

Final rendered result (entire cube
shown).

Location of triangle after projection
onto screen shown in red.

Location of highlighted triangle
in texture space shown in red.

(1.0, 1.0)

(0.0, 0.0)

 CMU 15-769, Fall 2016

Visualization of texture coordinates

(0.0, 0.0) (1.0, 0.0)

(0.0, 1.0)

(red)

(green)

Texture coordinates linearly interpolated over triangle

 CMU 15-769, Fall 2016

More complex mapping

u

v

Each vertex has a coordinate (u,v) in texture space.
(Actually coming up with these coordinates is another story!)

Visualization of texture coordinates Triangle vertices in texture space

 CMU 15-769, Fall 2016

Simple texture mapping operation

for	each	fragment	(x,y)	in	fragment	stream:	
				
			//	interpolate	per-vertex	coordinates	(eval	attribute	plane	eqn)	
			(u,v)	=	evaluate	texcoord	value	at	(x,y);	
		
			float3	texture_color	=	texture.sample(u,v);	
			color	of	surface	at	(x,y)	=	texture_color;

 CMU 15-769, Fall 2016

Texture mapping adds detail

u

vRendered result Triangle vertices in texture space

 CMU 15-769, Fall 2016

Texture mapping adds detail
rendering with texturerendering without texture texture image

zo
om

 CMU 15-769, Fall 2016

Another example: Sponza

Notice texture coordinates repeat over surface.

 CMU 15-769, Fall 2016

Textured Sponza

 CMU 15-769, Fall 2016

Example textures used in Sponza

 CMU 15-769, Fall 2016

Texture space samples

Sample positions are uniformly distributed in screen space
(rasterizer samples triangle’s appearance at these locations)

Texture sample positions in texture space (texture
function is sampled at these locations)

u

v

Sample positions in XY screen space Sample positions in texture space

1 2 3 4 5

1
2

3
4

5

 CMU 15-769, Fall 2016

Recall: aliasing
Undersampling a high-frequency signal can result in aliasing

f(x)

x
1D example

2D examples:
Moiré patterns, jaggies

 CMU 15-769, Fall 2016

Aliasing due to undersampling texture

Rendering using pre-filtered texture dataNo pre-filtering of texture data
(resulting image exhibits aliasing)

 CMU 15-769, Fall 2016

Aliasing due to undersampling (zoom)

Rendering using pre-filtered texture dataNo pre-filtering of texture data
(resulting image exhibits aliasing)

 CMU 15-769, Fall 2016

Filtering textures

Figure credit: Akeley and Hanrahan

▪ Minification:
- Area of screen pixel maps to large region of texture (filtering required -- averaging)
- One texel corresponds to far less than a pixel on screen
- Example: when scene object is very far away

▪ Magnification:
- Area of screen pixel maps to tiny region of texture (interpolation required)
- One texel maps to many screen pixels
- Example: when camera is very close to scene object (need higher resolution texture map)

 CMU 15-769, Fall 2016

Filtering textures

Actual texture: 64x64 image

Actual texture: 700x700 image
(only a crop is shown)

...
...

Texture minification

Texture magnification

 CMU 15-769, Fall 2016

Mipmap (L. Williams 83)

Level 2 = 32x32 Level 3 = 16x16

Level 4 = 8x8 Level 5 = 4x4

Level 1 = 64x64Level 0 = 128x128

Level 6 = 2x2 Level 7 = 1x1

Idea: prefilter texture data to remove high frequencies
Texels at higher levels store integral of the texture function over a region of texture space (downsampled images)

Texels at higher levels represent low-pass filtered version of original texture signal

 CMU 15-769, Fall 2016

Mipmap (L. Williams 83)

Williams’ original proposed
mip-map layout “Mip hierarchy”

level = d

u

v

Slide credit: Akeley and Hanrahan

 CMU 15-769, Fall 2016

Computing d

Screen space Texture space

Compute differences between texture coordinate values of neighboring fragments

u

v

 CMU 15-769, Fall 2016

Computing d
Compute differences between texture coordinate values of neighboring fragments

du/dx = u10-u00
du/dy = u01-u00

dv/dx = v10-v00
dv/dy = v01-v00

(u,v)00 (u,v)10

(u,v)01

L

mip-map d = log2(L)

u

v
L

du/dx
dv/dx

 CMU 15-769, Fall 2016

“Tri-linear” filtering

mip-map texels: level d

mip-map texels: level d+1

Bilinear resampling: 3 lerps (3 mul + 6 add)

Trilinear resampling: 7 lerps (7 mul + 14 add)

Figure credit: Akeley and Hanrahan

 CMU 15-769, Fall 2016

Sponza (bilinear resampling at level 0)

 CMU 15-769, Fall 2016

Sponza (bilinear resampling at level 2)

 CMU 15-769, Fall 2016

Sponza (bilinear resampling at level 4)

 CMU 15-769, Fall 2016

Mip-map level visualization
(trilinear filtering: visualization of continuous d)

 CMU 15-769, Fall 2016

Pixel area may not map to isotropic region in texture space

mip-map d = log2(L)

u

v

L

v=.25

v=.5
v=.75

u=.5 u=.75u=.25
L

Trilinear (Isotropic)
Filtering

Anisotropic Filtering

Overblurring in
u direction

Proper filtering requires anisotropic (in texture space) filter footprint

Texture space: viewed from
camera with perspective

 CMU 15-769, Fall 2016

GPUs shade at the granularity of 2x2 fragments
(“quad fragment” is the minimum granularity of rasterization output and shading)

Enables cheap computation of
texture coordinate differentials
(cheap: derivative computation
leverages shading work that must be
done by adjacent fragment anyway)

All quad-fragments are shaded
independently
(communication is between fragments
in a quad fragment, no communication
required between quad fragments)

 CMU 15-769, Fall 2016

Implication: multiple fragments get shaded for pixels
near triangle boundaries

Shading computations per pixel

8 +

7

6

5

4

3

2

1

 CMU 15-769, Fall 2016

Small triangles result in extra shading

8 +
7
6
5
4
3
2
1

1 pixel-area triangles10 pixel-area triangles100 pixel-area triangles

Shaded quad fragments per pixel
(early-z is enabled + scene rendered in approximate front-to-back order to minimize extra shading due to overdraw)

Want to sample appearance approximately once per surface per pixel (assuming correct texture filtering)
But graphics pipeline generates at least one appearance sample per triangle per pixel (actually more, considering quad fragments)

 CMU 15-769, Fall 2016

Multi-sample anti-aliasing (MSAA)

Main idea: decouple shading sampling rate from visibility sampling rate
- Depth buffer: stores depth per sample
- Color buffer: stores color per sample
- Resample color buffer to get final image pixel values (need one sample per display pixel)

 CMU 15-769, Fall 2016

Principle of texture thrift

Given a scene consisting of textured 3D surfaces, the amount of
texture information minimally required to render an image of the
scene is proportional to the resolution of the image and is
independent of the number of surfaces and the size of the textures.

[Peachey 90]

 CMU 15-769, Fall 2016

Summary: texture filtering using the mip map
▪ Small storage overhead (33%)

- Mipmap is 4/3 the size of original texture image

▪ For each isotropically-filtered sampling operation
- Constant filtering cost (independent of d)

- Constant number of texels accessed (independent of d)

▪ Combat aliasing with prefiltering, rather than supersampling
- Recall: we used supersampling to address aliasing problem when sampling coverage

▪ Bilinear/trilinear filtering is isotropic and thus will “overblur”
to avoid aliasing
- Anisotropic texture filtering provides higher image quality at higher compute and

memory bandwidth cost (use more texture samples to better approximate non-
square footprint in texture space)

 CMU 15-769, Fall 2016

Summary: a texture sampling operation
1. Compute u and v from screen sample x,y (via evaluation of attribute equations)

2. Compute du/dx, du/dy, dv/dx, dv/dy differentials from quad-fragment samples

3. Compute d

4. Convert normalized texture coordinate (u,v) to texture coordinates texel_u, texel_v

5. Compute required texels in window of filter **

6. Load required texels from memory (need eight texels for trilinear)

7. Perform tri-linear interpolation according to (texel_u, texel_v, d)

Takeaway: a texture sampling operation is not just an image pixel lookup! It involves
a significant amount of math.

All modern GPUs have dedicated fixed-function hardware support for performing
texture sampling operations.

** May involve wrap, clamp, etc. of texel coordinates according to sampling mode configuration

 CMU 15-769, Fall 2016

GPU: heterogeneous, multi-core processor

GPU
Memory

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Texture Texture

Texture Texture

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Tessellate Tessellate

Tessellate Tessellate

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

T-OP’s of fixed-function
compute capability over here

Scheduler / Work Distributor

Modern GPUs offer ~ TFLOPs of performance for
executing vertex and fragment shader programs

 CMU 15-769, Fall 2016

Texture caching

 CMU 15-769, Fall 2016

Texture system block diagram

GPU programmable core
(executes fragment shaders)

Texture Processor
(fixed-function)

Texture data cache

Texture request
(e.g., uv, d, trilerp)

Texture response
(e.g., fp32 rgba)

GPU DRAMDecompression

 CMU 15-769, Fall 2016

Consider memory implications of texturing
▪ Texture data footprint

- Modern game scenes = many large textures
- GBs of texture data in a scene (uncompressed 2K x 2K RGB is 12MB)

- Film rendering: GBs to TBs of textures in scene DB

▪ Texture bandwidth
- 8 texels per tri-linear fetch
- Modern GPU: billions of fragments/sec

(NVIDIA GTX 1080: ~300 billion filtered texture values/sec)

▪ A performant graphics system needs:
- High memory bandwidth
- Texture caching
- Texture data compression
- Latency hiding solution to avoid stalls during texture data access

 CMU 15-769, Fall 2016

Review: the role of caches in CPUs
▪ Reduce latency of data access

▪ Reduce off-chip bandwidth requirements (caches service
requests that would require DRAM access)
- Note: alternatively, you can think about caches as bandwidth amplifiers (data

path between cache and ALUs is usually wider than that to DRAM)

▪ Convert fine-grained (word-sized) memory requests from
processors into large (cache-line sized) requests than can be
serviced efficiently by wide memory bus and DRAM

 CMU 15-769, Fall 2016

Texture caching thought experiment
Assume:
Row-major rasterization order
Horizontal texels contiguous in memory
Texture cache line = 4 texels

same cache line

same cache line

same cache line

same cache line

same cache line

same cache line
u

v

mip-map: level d texels

mip-map: level d+1 texels

 CMU 15-769, Fall 2016

What type of data reuse does a texture cache
designed to capture?
▪ Spatial locality across fragments, not temporal locality within a fragment!

- The same texels are required to filter texture fetches from adjacent fragments
(due to overlap of filter support regions)

- Little-to-no temporal locality within a fragment shader (little reason for a shader to access
the same part of the texture map twice)

0 1 2 3

Figure illustrates filter support
regions from texture fetches from
four adjacent fragments

 CMU 15-769, Fall 2016

Now rotate triangle on screen
Assume:
Row-major rasterization order
Horizontal texels contiguous in memory
Cache line = 4 texels

same cache line

same cache line

same cache line

same cache line

same cache line

same cache line

u

v

mip-map: level d texels

mip-map: level d+1 texels

 CMU 15-769, Fall 2016

4D blocking (texture is 2D array of 2D blocks: robust to triangle orientation)

mip-map: level d texels

mip-map: level d+1 texels

Assume:
Row-major rasterization order
2D blocks of texels contiguous in memory
Cache line = 4 texels

u

v

same cache line

same cache line

same cache line

same cache line

 CMU 15-769, Fall 2016

Tiled rasterization increases reuse
Assume:
Blocked rasterization order!
2D blocks of texels contiguous in memory
Cache line = 4 texels

u

v

same cache line

same cache line

same cache line

same cache line

mip-map: level d texels

mip-map: level d+1 texels

 CMU 15-769, Fall 2016

Key metric: unique texel-to-fragment ratio
▪ Unique texel-to-fragment ratio

- Number of unique texels accessed when rendering a scene divided by number of
fragments processed [see Igeny reading for stats: can be less than < 1]

- What is the worst case ratio assuming trilinear filtering?

- How can inaccurate computation of texture mip level (d) affect this?

▪ In reality, texture caching behavior is good, but not CPU
workload good
- [Montrym & Moreton 95] design for 90% hits

- Only so much spatial locality to exploit (no high temporal locality like CPU workloads)

 CMU 15-769, Fall 2016

Texture data access characteristics
▪ Key metric: unique texel-to-fragment ratio

- Number of unique texels accessed when rendering a scene divided by number of
fragments processed [see Igeny reading for stats: often less than < 1]

- What is the worst-case ratio? (assuming trilinear filtering)

- How can incorrect computation of texture miplevel (d) affect this?

▪ In practice, caching behavior is good, but not CPU workload good
- [Montrym & Moreton 95] design for 90% hits

- Why? (only so much spatial locality)

▪ Implications
- GPU must provide high memory bandwidth for texture data access

- GPU must have solution for hiding memory access latency

- GPU must reduce its bandwidth requirements using caching and texture compression

 CMU 15-769, Fall 2016

Texture compression

 CMU 15-769, Fall 2016

A texture sampling operation
1. Compute u and v from screen sample x,y (via evaluation of attribute equations)

2. Compute du/dx, du/dy, dv/dx, dv/dy differentials from quad-fragment samples

3. Compute d

4. Convert normalized texture coordinate (u,v) to texture coordinates texel_u, texel_v

5. Compute required texels in window of filter **

6. If texture data in filter footprint (eight texels for trilinear filtering) is not in cache:

- Load required texels (in compressed form) from memory

- Decompress texture data

7. Perform tri-linear interpolation according to (texel_u, texel_v, d)

** May involve wrap, clamp, etc. of texel coordinates according to sampling mode configuration

 CMU 15-769, Fall 2016

Texture compression
▪ Goal: reduce bandwidth requirements of texture access

▪ Texture is read-only data
- Compression can be performed off-line, so compression algorithms can take

significantly longer than decompression (decompression must be fast!)
- Lossy compression schemes are permissible

▪ Design requirements
- Support random texel access into texture map (constant time access to any texel)
- High-performance decompression
- Simple algorithms (low-cost hardware implementation)
- High compression ratio
- High visual quality (lossy is okay, but cannot lose too much!)

 CMU 15-769, Fall 2016

Simple scheme: color palette (indexed color)
▪ Lossless (if image contains a small

number of unique colors)

0 1 2 3 4 5 6 7

Color palette (eight colors)

Image encoding in this example:
3 bits per texel + eight RGB values in palette (8x24 bits)

0 1 3 6

0 2 6 7

1 4 6 7

4 5 6 7 What is the compression ratio?

 CMU 15-769, Fall 2016

Per-block palette
▪ Block-based compression scheme on 4x4 texel blocks

- Idea: there might be many unique colors across an entire image, but can
approximate all values in any 4x4 texel region using only a few unique colors

▪ Per-block palette (e.g., four colors in palette)
- 12 bytes for palette (assume 24 bits per RGB color: 8-8-8)

- 2 bits per texel (4 bytes for per-texel indices)

- 16 bytes (3x compression on original data: 16x3=48 bytes)

▪ Can we do better?

 CMU 15-769, Fall 2016

S3TC
(Called BC1 or DXTC by Direct3D)

▪ Palette of four colors encoded in four bytes:
- Two low-precision base colors: C0 and C1 (2 bytes each: RGB 5-6-5 format)
- Other two colors computed from base values

- 1/3C0 + 2/3C1
- 2/3C0 + 1/3C1

▪ Total footprint of 4x4 texel block: 8 bytes
- 4 bytes for palette, 4 bytes of color ids (16 texels, 2 bits per texel)
- 4 bpp effective rate, 6:1 compression ratio (fixed ratio: independent of data values)

▪ S3TC assumption:
- All texels in a 4x4 block lie on a line in RGB color space

▪ Additional mode:
- If C0 < C1, then third color is 1/2C0 + 1/2C1 and fourth color is transparent black

 CMU 15-769, Fall 2016

S3TC artifacts

Original data Compressed result

Cannot interpolate red and blue to get green
(here compressor chose blue and yellow as base
colors to minimize overall error)

But scheme works well in practice on “real-world”
images. (see images at right)

Image credit:
http://renderingpipeline.com/2012/07/texture-compression/

S3TCOriginal (Zoom)Original

[Strom et al. 2007]

 CMU 15-769, Fall 2016

PACKMAN
▪ Block-based compression on 2x4 texel blocks

- Idea: vary luminance per texel, but specify single chrominance per block (similar idea
as YUV 4:0:0)

▪ Each block encoded as:
- A single base color per block (12 bits: RGB 4-4-4)
- 4-bit index identifying one of 16 predefined luminance modulation tables
- Per-texel 2-bit index into luminance modulation table (8x2=16 bits)
- Total block size = 12 + 4 + 16 = 32 bits (6:1 compression ratio)

▪ Decompression:
					texel[i]	=		base_color	+	table[table_id][table_index[i]];

Example codebook for modulation tables (8 of 16 tables shown)

[Strom et al. 2004]

 CMU 15-769, Fall 2016

iPackman (ETC)
▪ Improves on problems of heavily quantized and sparsely

represented chrominance in PACKMAN
- Higher resolution base color + differential color represents color more accurately

▪ Operates on 4x4 texel blocks
- Optionally represent 4x4 block as two eight-texel subblocks with differentials

(else use PACKMAN for two subblocks)

- 1 bit designates whether differential scheme is in use

- Base color for first block (RGB 5-5-5: 15 bits)

- Color differential for second block (RGB 3-3-3: 9 bits)

- 1 bit designating if subblocks are 4x2 or 2x4

- 3-bit index identifying modulation table per subblock (2x3 bits)

- Per-texel modulation table index (2x16 bits)

- Total compressed block size: 1 + 15 + 9 + 1 + 6 + 32 = 64 bits (6:1 ratio)

BaseRGB555 DeltaRGB333

[Strom et al. 2005]

 CMU 15-769, Fall 2016

PACKMAN vs. iPACKMAN quality comparison
iPACKMANPACMANOriginal

Chrominance banding

Chrominance block artifact

Image credit: Strom et al. 2005

 CMU 15-769, Fall 2016

PVRTC (Power VR texture compression)
▪ Not a block-based format

- Used in Imagination PowerVR GPUs
▪ Store low-frequency base images A and B

- Base images downsampled by factor of 4 in each dimension (1/16 fewer texels)
- Store base image pixels in RGB 5:5:5 format (+ 1 bit alpha)

▪ Store 2-bit modulation factor per texel
▪ Total footprint: 4 bpp (6:1 ratio)

[Fenney et al. 2003]

 CMU 15-769, Fall 2016

PVRTC
▪ Decompression algorithm:

- Bilinear interpolate samples from A and B (upsample) to get value at desired texel

- Interpolate upsampled values according to 2-bit modulation factor

[Fenney et al. 2003]

 CMU 15-769, Fall 2016

PVRTC avoids blocking artifacts

Image credit: Fenney et al. 2003

PVRTC

Because it is not block-based

Recall: decompression algorithm involves
bilinear upsampling of low-resolution base
images

(Followed by a weighted combination of the
two images)

 CMU 15-769, Fall 2016

Summary: texture compression
▪ Many schemes target 6:1 fixed compression ratio (4 bpp)

- Predictable performance
- 8 bytes per 4x4-texel block is desirable for memory transfers

▪ Lossy compression techniques
- Exploit characteristics of the human visual system to minimize perceived error
- Texture data is read only, so “drift” due to multiple reads/writes is not a concern

▪ Block-based vs. not-block based
- Block-based: S3TC/DXTC/BC1, iPACKMAN/ETC/ETC2, ASTC (not discussed today)
- Not-block-based: PVRTC

▪ We only discussed decompression today:
- Compression can be performed off-line (except when textures are generated at

runtime… e.g., reflectance maps)

 CMU 15-769, Fall 2016

Hiding the latency of texture
sampling and texture data access

 CMU 15-769, Fall 2016

1. Compute u and v from screen sample x,y (via evaluation of attribute equations)

2. Compute du/dx, du/dy, dv/dx, dv/dy differentials from quad-fragment samples

3. Compute d

4. Convert normalized texture coordinate (u,v) to texture coordinates texel_u, texel_v

5. Compute required texels in window of filter **

6. If texture data in filter footprint (eight texels for trilinear filtering) is not in cache:

- Load required texels (in compressed form) from memory

- Decompress texture data

7. Perform tri-linear interpolation according to (texel_u, texel_v, d)

** May involve wrap, clamp, etc. of texel coordinates according to sampling mode configuration

Texture sampling is a high-latency operation

Latency of texture fetch involves time to perform math for texel address
computation, decompression, and filtering (not just latency of fetching
data from memory)

 CMU 15-769, Fall 2016

Addressing texture sampling latency
▪ Processor requests filtered texture data → processor waits hundreds of cycles

(significant loss of performance)

▪ Solution prior to programmable GPU cores: texture data prefetching
- Igehy et al. Prefetching in a Texture Cache Architecture

▪ Solution in all modern GPUs: multi-threaded processor cores

 CMU 15-769, Fall 2016

Prefetching example: large fragment FIFOs
Texture prefetching (from Igehy 1998)

Rasterization

Texture Filtering

Texel cache tags
(texel ids)

Memory
request fifo

Memory
reorder buffer

Memory
System

Texel cache data

Fragment FIFO
(coverage, Z, attribs)

Note: fragment FIFO
must be large! Why?

Texel addresses

Cache addresses

Cache addresses

Texel data

 CMU 15-769, Fall 2016

A more modern design

Texel
cache tags
(texel ids)

Memory
request fifo

Memory
reorder buffer

Memory
System

Texel
cache data

Texture
request fifo

Texel addresses

Cache addresses

Cache
addresses

Texel data

Programmable
GPU Core

Texel address
computation

Texel Filtering

texture request:
(u,v, du, dv, lod)

filtered texture
result: rgba

Texture Sampling Unit

 CMU 15-769, Fall 2016

Modern GPUs: texture latency is hidden via
hardware multi-threading

Exec Context 0
Exec Context 1
Exec Context 2

Exec Context 63

. . .

Multi-threaded
GPU Core

Memory
System

Texture
Sampling

Unit

texture request:
(u,v, du, dv, lod)

filtered texture
result: rgba

texel data

texel data
request

GPU executes instructions from runnable fragments when other fragments are waiting
on texture sampling responses.

Fragment FIFO from Igehy prefetching design is now represented by live fragment state
in the programmable core.

 CMU 15-769, Fall 2016

GPU texture system summary
▪ A texture lookup is a lot more than a 2D array access

- Significant computational and bandwidth expense
- Implemented in specialized fixed-function hardware

▪ Bandwidth reduction mechanism: GPU texture caches
- Primarily serve to amplify limited DRAM bandwidth, not reduce latency to off-chip memory
- Small capacity compared to CPU caches, but high BW (need eight texels at once)
- Tiled rasterization order + tiled texture layout optimizations increase cache hits

▪ Bandwidth reduction mechanism: texture compression
- Lossy compression schemes
- Fixed-compression ratio encodings (e.g, 6:1 ratio, 4 bpp is common for RGB data)
- Schemes permit random access into compressed representation

▪ Latency avoidance/hiding mechanisms:
- Prefetching (in the old days)
- Multi-threading (in modern GPUs)

