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Graphics pipeline architecture
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Today: texturing!

▪ Texture filtering math 
- At the very least… a texture access is not just a 2D array lookup ;-) 

- Implemented in fixed-function hardware in modern GPUs 

▪ Memory-system implications of texture mapping operations 
- Texture caching 

- Memory layout of texture data 

- Texture compression (decompression support in hardware) 

- Prefetching and multi-threading
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Previous lecture (visibility)
Rasterizer samples triangle-screen coverage (four samples per pixel shown here) 
Z-buffer algorithm used to determine occlusion at these sample points
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Last time
Rasterizer samples triangle-screen coverage (four samples per pixel shown here) 
Z-buffer algorithm used to determine occlusion at these sample points
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Generating fragments via “multi-sampling”
▪ Rasterizer samples coverage at N sample points per pixel (small dots in figure) 
▪ If any visibility sample in a pixel is covered, GPU generates fragment for pixel ** 
▪ Surface attributes for fragment shading are typically sampled at pixel centers (big dots in figure)

** As we’ll discuss later in this lecture: a GPU actually generates a 2x2 block of fragments if any visibility sample in the 2x2 block is covered  CMU 15-869, Fall 2014

Generating fragments via “multi-sampling”
▪ Rasterizer samples coverage at N sample points per pixel (small dots in figure) 
▪ If any visibility sample in a pixel is covered, generate fragment for pixel ** 
▪ Surface attributes for fragment shading are [typically] sampled at pixel centers (big dots)

** As we’ll discuss later in this lecture: a GPU actually generates a 2x2 block of fragments if any visibility sample in the 2x2 block is covered 
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Many uses of texture mapping
Define variation in surface reflectance 

Pattern on ball Wood grain on floor
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Describe surface material properties

Multiple layers of texture maps for color, logos, 
scratches, etc.
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Layered material 
(composition of many textures)
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Normal mapping

Use texture value to perturb surface normal to give 
appearance of a bumpy surface 

Observe: smooth silhouette and smooth shadow 
boundary indicates surface geometry is not bumpy 

Rendering using high-resolution surface geometry 
(note bumpy silhouette and shadow boundary)
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Grace Cathedral environment map Environment map used in rendering

Textures used to represent precomputed lighting 
and shadows
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Texture mapping math
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Texture coordinates

myTex(u,v) is a function 
defined on the [0,1]2 domain: 

myTex : [0,1]2 → float3 
(represented by 2048x2048 image)

“Texture coordinates” define a mapping from surface coordinates (points on triangle) 
to points in texture domain.

Today we’ll assume surface-to-texture space mapping is provided as per vertex attribute 
(Not discussing methods for generating surface texture parameterizations)

(0.0, 0.0) (1.0, 0.0)

(1.0, 1.0)(0.0, 1.0)

(0.0, 0.5) (1.0, 0.5)(0.5, 0.5)

(0.5, 1.0)

(0.5, 0.0)

Eight triangles (one face of cube) with surface 
parameterization provided as per-vertex 
texture coordinates.

Final rendered result (entire cube 
shown). 

Location of triangle after projection 
onto screen shown in red. 

Location of highlighted triangle 
in texture space shown in red.

(1.0, 1.0)

(0.0, 0.0)
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Visualization of texture coordinates

(0.0, 0.0) (1.0, 0.0)

(0.0, 1.0)

(red)

(green)

Texture coordinates linearly interpolated over triangle
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More complex mapping

u

v

Each vertex has a coordinate (u,v) in texture space.
(Actually coming up with these coordinates is another story!)

Visualization of texture coordinates Triangle vertices in texture space
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Simple texture mapping operation

for	each	fragment	(x,y)	in	fragment	stream:	
				
			//	interpolate	per-vertex	coordinates	(eval	attribute	plane	eqn)	
			(u,v)	=	evaluate	texcoord	value	at	(x,y);	
		
			float3	texture_color	=	texture.sample(u,v);	
			color	of	surface	at	(x,y)	=	texture_color;
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Texture mapping adds detail

u

vRendered result Triangle vertices in texture space
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Texture mapping adds detail
rendering with texturerendering without texture texture image

zo
om
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Another example: Sponza

Notice texture coordinates repeat over surface.
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Textured Sponza
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Example textures used in Sponza
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Texture space samples

Sample positions are uniformly distributed in screen space 
(rasterizer samples triangle’s appearance at these locations)

Texture sample positions in texture space (texture 
function is sampled at these locations) 

u

v

Sample positions in XY screen space Sample positions in texture space

1 2 3 4 5

1
2

3
4

5
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Recall: aliasing
Undersampling a high-frequency signal can result in aliasing

f(x)

x
1D example

2D examples: 
Moiré patterns, jaggies
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Aliasing due to undersampling texture

Rendering using pre-filtered texture dataNo pre-filtering of texture data 
(resulting image exhibits aliasing)
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Aliasing due to undersampling (zoom)

Rendering using pre-filtered texture dataNo pre-filtering of texture data 
(resulting image exhibits aliasing)
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Filtering textures

Figure credit: Akeley and Hanrahan

▪ Minification: 
- Area of screen pixel maps to large region of texture (filtering required -- averaging) 
- One texel corresponds to far less than a pixel on screen 
- Example: when scene object is very far away 

▪ Magnification: 
- Area of screen pixel maps to tiny region of texture (interpolation required) 
- One texel maps to many screen pixels 
- Example: when camera is very close to scene object (need higher resolution texture map)
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Filtering textures

Actual texture: 64x64 image

Actual texture: 700x700 image 
(only a crop is shown)

...
...

Texture minification

Texture magnification



 CMU 15-769, Fall 2016

Mipmap (L. Williams 83)

Level 2 = 32x32 Level 3 = 16x16

Level 4 = 8x8 Level 5 = 4x4

Level 1 = 64x64Level 0 = 128x128

Level 6 = 2x2 Level 7 = 1x1

Idea: prefilter texture data to remove high frequencies 
Texels at higher levels store integral of the texture function over a region of texture space (downsampled images) 

Texels at higher levels represent low-pass filtered version of original texture signal
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Mipmap (L. Williams 83)

Williams’ original proposed 
mip-map layout “Mip hierarchy” 

level = d

u

v

Slide credit: Akeley and Hanrahan



 CMU 15-769, Fall 2016

Computing d

Screen space Texture space

Compute differences between texture coordinate values of neighboring fragments

u

v
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Computing d
Compute differences between texture coordinate values of neighboring fragments

du/dx = u10-u00 
du/dy = u01-u00 

dv/dx = v10-v00 
dv/dy = v01-v00 

(u,v)00 (u,v)10

(u,v)01

L

mip-map d = log2(L) 

u

v
L

du/dx
dv/dx
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“Tri-linear” filtering

mip-map texels: level d

mip-map texels: level d+1

Bilinear resampling: 3 lerps  (3 mul + 6 add) 

Trilinear resampling: 7 lerps (7 mul + 14 add)

Figure credit: Akeley and Hanrahan
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Sponza (bilinear resampling at level 0)
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Sponza (bilinear resampling at level 2)
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Sponza (bilinear resampling at level 4)
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Mip-map level visualization 
(trilinear filtering: visualization of continuous d)
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Pixel area may not map to isotropic region in texture space

mip-map d = log2(L) 

u

v

L

v=.25

v=.5
v=.75

u=.5 u=.75u=.25
L

Trilinear (Isotropic) 
Filtering

Anisotropic Filtering

Overblurring in 
u direction

Proper filtering requires anisotropic (in texture space) filter footprint

Texture space: viewed from 
camera with perspective
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GPUs shade at the granularity of 2x2 fragments 
(“quad fragment” is the minimum granularity of rasterization output and shading)

Enables cheap computation of 
texture coordinate differentials 
(cheap: derivative computation 
leverages shading work that must be 
done by adjacent fragment anyway) 
  

All quad-fragments are shaded 
independently 
(communication is between fragments 
in a quad fragment, no communication 
required between quad fragments)
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Implication: multiple fragments get shaded for pixels 
near triangle boundaries

Shading computations per pixel

8 + 

7 

6 

5 

4 

3 

2 

1 
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Small triangles result in extra shading

8 + 
7 
6 
5 
4 
3 
2 
1 

1 pixel-area triangles10 pixel-area triangles100 pixel-area triangles

Shaded quad fragments per pixel 
(early-z is enabled + scene rendered in approximate front-to-back order to minimize extra shading due to overdraw)  

Want to sample appearance approximately once per surface per pixel (assuming correct texture filtering) 
But graphics pipeline generates at least one appearance sample per triangle per pixel (actually more, considering quad fragments)
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Multi-sample anti-aliasing (MSAA)

Main idea: decouple shading sampling rate from visibility sampling rate 
- Depth buffer: stores depth per sample 
- Color buffer: stores color per sample 
- Resample color buffer to get final image pixel values (need one sample per display pixel)
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Principle of texture thrift

Given a scene consisting of textured 3D surfaces, the amount of 
texture information minimally required to render an image of the 
scene is proportional to the resolution of the image and is 
independent of the number of surfaces and the size of the textures.

[Peachey 90]
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Summary: texture filtering using the mip map
▪ Small storage overhead (33%) 

- Mipmap is 4/3 the size of original texture image 

▪ For each isotropically-filtered sampling operation 
- Constant filtering cost (independent of d) 

- Constant number of texels accessed (independent of d) 

▪ Combat aliasing with prefiltering, rather than supersampling 
- Recall: we used supersampling to address aliasing problem when sampling coverage  

▪ Bilinear/trilinear filtering is isotropic and thus will “overblur” 
to avoid aliasing  
- Anisotropic texture filtering provides higher image quality at higher compute and 

memory bandwidth cost (use more texture samples to better approximate non-
square footprint in texture space)
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Summary: a texture sampling operation
1. Compute u and v from screen sample x,y (via evaluation of attribute equations) 

2. Compute du/dx, du/dy, dv/dx, dv/dy differentials from quad-fragment samples 

3. Compute d 

4. Convert normalized texture coordinate (u,v) to texture coordinates texel_u, texel_v 

5. Compute required texels in window of filter ** 

6. Load required texels from memory (need eight texels for trilinear) 

7. Perform tri-linear interpolation according to (texel_u, texel_v, d)

Takeaway: a texture sampling operation is not just an image pixel lookup!  It involves 
a significant amount of math. 

All modern GPUs have dedicated fixed-function hardware support for performing 
texture sampling operations.

** May involve wrap, clamp, etc. of texel coordinates according to sampling mode configuration
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GPU: heterogeneous, multi-core processor

GPU 
Memory

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Texture Texture

Texture Texture

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Tessellate Tessellate

Tessellate Tessellate

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

T-OP’s of fixed-function 
compute capability over here

Scheduler / Work Distributor

Modern GPUs offer ~ TFLOPs of performance for 
executing vertex and fragment shader programs
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Texture caching
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Texture system block diagram

GPU programmable core 
(executes fragment shaders)

Texture Processor 
(fixed-function)

Texture data cache

Texture request 
(e.g., uv, d, trilerp)

Texture response 
(e.g., fp32 rgba)

GPU DRAMDecompression
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Consider memory implications of texturing
▪ Texture data footprint 

- Modern game scenes = many large textures 
- GBs of texture data in a scene (uncompressed 2K x 2K RGB is 12MB) 

- Film rendering: GBs to TBs of textures in scene DB 

▪ Texture bandwidth 
- 8 texels per tri-linear fetch 
- Modern GPU: billions of fragments/sec 

(NVIDIA GTX 1080: ~300 billion filtered texture values/sec) 

▪ A performant graphics system needs: 
- High memory bandwidth 
- Texture caching 
- Texture data compression 
- Latency hiding solution to avoid stalls during texture data access 
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Review: the role of caches in CPUs
▪ Reduce latency of data access  

▪ Reduce off-chip bandwidth requirements (caches service 
requests that would require DRAM access) 
- Note: alternatively, you can think about caches as bandwidth amplifiers (data 

path between cache and ALUs is usually wider than that to DRAM) 

▪ Convert fine-grained (word-sized) memory requests from 
processors into large (cache-line sized) requests than can be 
serviced efficiently by wide memory bus and DRAM   
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Texture caching thought experiment
Assume: 
Row-major rasterization order 
Horizontal texels contiguous in memory 
Texture cache line = 4 texels

same cache line

same cache line

same cache line

same cache line

same cache line

same cache line
u

v

mip-map: level d texels

mip-map: level d+1 texels
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What type of data reuse does a texture cache 
designed to capture?
▪ Spatial locality across fragments, not temporal locality within a fragment! 

- The same texels are required to filter texture fetches from adjacent fragments 
(due to overlap of filter support regions) 

- Little-to-no temporal locality within a fragment shader (little reason for a shader to access 
the same part of the texture map twice) 

0 1 2 3

Figure illustrates filter support 
regions from texture fetches from 
four adjacent fragments
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Now rotate triangle on screen
Assume: 
Row-major rasterization order 
Horizontal texels contiguous in memory 
Cache line = 4 texels

same cache line

same cache line

same cache line

same cache line

same cache line

same cache line

u

v

mip-map: level d texels

mip-map: level d+1 texels
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4D blocking  (texture is 2D array of 2D blocks: robust to triangle orientation)

mip-map: level d texels

mip-map: level d+1 texels

Assume: 
Row-major rasterization order 
2D blocks of texels contiguous in memory 
Cache line = 4 texels

u

v

same cache line

same cache line

same cache line

same cache line
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Tiled rasterization increases reuse
Assume: 
Blocked rasterization order! 
2D blocks of texels contiguous in memory 
Cache line = 4 texels

u

v

same cache line

same cache line

same cache line

same cache line

mip-map: level d texels

mip-map: level d+1 texels
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Key metric: unique texel-to-fragment ratio
▪ Unique texel-to-fragment ratio 

- Number of unique texels accessed when rendering a scene divided by number of 
fragments processed [see Igeny reading for stats: can be less than < 1] 

- What is the worst case ratio assuming trilinear filtering? 

- How can inaccurate computation of texture mip level (d) affect this? 

▪ In reality, texture caching behavior is good, but not CPU 
workload good 
- [Montrym & Moreton 95] design for 90% hits 

- Only so much spatial locality to exploit (no high temporal locality like CPU workloads)
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Texture data access characteristics
▪ Key metric: unique texel-to-fragment ratio 

- Number of unique texels accessed when rendering a scene divided by number of 
fragments processed [see Igeny reading for stats: often less than < 1] 

- What is the worst-case ratio? (assuming trilinear filtering) 

- How can incorrect computation of texture miplevel (d) affect this? 

▪ In practice, caching behavior is good, but not CPU workload good 
- [Montrym & Moreton 95] design for 90% hits 

- Why? (only so much spatial locality) 

▪ Implications 
- GPU must provide high memory bandwidth for texture data access 

- GPU must have solution for hiding memory access latency 

- GPU must reduce its bandwidth requirements using caching and texture compression
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Texture compression
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A texture sampling operation
1. Compute u and v from screen sample x,y (via evaluation of attribute equations) 

2. Compute du/dx, du/dy, dv/dx, dv/dy differentials from quad-fragment samples 

3. Compute d 

4. Convert normalized texture coordinate (u,v) to texture coordinates texel_u, texel_v 

5. Compute required texels in window of filter ** 

6. If texture data in filter footprint (eight texels for trilinear filtering) is not in cache: 

- Load required texels (in compressed form) from memory 

- Decompress texture data 

7. Perform tri-linear interpolation according to (texel_u, texel_v, d)

** May involve wrap, clamp, etc. of texel coordinates according to sampling mode configuration
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Texture compression
▪ Goal: reduce bandwidth requirements of texture access 

▪ Texture is read-only data 
- Compression can be performed off-line, so compression algorithms can take 

significantly longer than decompression (decompression must be fast!) 
- Lossy compression schemes are permissible 

▪ Design requirements 
- Support random texel access into texture map (constant time access to any texel) 
- High-performance decompression 
- Simple algorithms (low-cost hardware implementation) 
- High compression ratio 
- High visual quality (lossy is okay, but cannot lose too much!)
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Simple scheme: color palette (indexed color)
▪ Lossless (if image contains a small 

number of unique colors)

0  1  2  3  4  5  6  7  

Color palette (eight colors)

Image encoding in this example: 
3 bits per texel + eight RGB values in palette (8x24 bits)

0  1  3  6  

0  2  6  7  

1  4  6  7  

4  5  6  7 What is the compression ratio?
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Per-block palette
▪ Block-based compression scheme on 4x4 texel blocks 

- Idea: there might be many unique colors across an entire image, but can 
approximate all values in any 4x4 texel region using only a few unique colors 

▪ Per-block palette (e.g., four colors in palette) 
- 12 bytes for palette (assume 24 bits per RGB color: 8-8-8) 

- 2 bits per texel (4 bytes for per-texel indices) 

- 16 bytes (3x compression on original data: 16x3=48 bytes) 

▪ Can we do better?



 CMU 15-769, Fall 2016

S3TC 
(Called BC1 or DXTC by Direct3D)

▪ Palette of four colors encoded in four bytes: 
- Two low-precision base colors: C0 and C1 (2 bytes each: RGB 5-6-5 format) 
- Other two colors computed from base values 

- 1/3C0 + 2/3C1 
- 2/3C0 + 1/3C1 

▪ Total footprint of 4x4 texel block: 8 bytes 
- 4 bytes for palette, 4 bytes of color ids (16 texels, 2 bits per texel) 
- 4 bpp effective rate, 6:1 compression ratio (fixed ratio: independent of data values) 

▪ S3TC assumption: 
- All texels in a 4x4 block lie on a line in RGB color space 

▪ Additional mode: 
- If C0 < C1, then third color is 1/2C0 + 1/2C1 and fourth color is transparent black
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S3TC artifacts

Original data Compressed result

Cannot interpolate red and blue to get green 
(here compressor chose blue and yellow as base 
colors to minimize overall error)  

But scheme works well in practice on “real-world” 
images. (see images at right)

Image credit: 
http://renderingpipeline.com/2012/07/texture-compression/

S3TCOriginal (Zoom)Original

[Strom et al. 2007]
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PACKMAN
▪ Block-based compression on 2x4 texel blocks 

- Idea: vary luminance per texel, but specify single chrominance per block (similar idea 
as YUV 4:0:0) 

▪ Each block encoded as: 
- A single base color per block (12 bits: RGB 4-4-4) 
- 4-bit index identifying one of 16 predefined luminance modulation tables 
- Per-texel 2-bit index into luminance modulation table (8x2=16 bits) 
- Total block size = 12 + 4 + 16 = 32 bits (6:1 compression ratio) 

▪ Decompression: 
					texel[i]	=		base_color	+	table[table_id][table_index[i]];

Example codebook for modulation tables (8 of 16 tables shown)

[Strom et al. 2004]
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iPackman (ETC)
▪ Improves on problems of heavily quantized and sparsely 

represented chrominance in PACKMAN 
- Higher resolution base color + differential color represents color more accurately 

▪ Operates on 4x4 texel blocks 
- Optionally represent 4x4 block as two eight-texel subblocks with differentials 

(else use PACKMAN for two subblocks) 

- 1 bit designates whether differential scheme is in use 

- Base color for first block (RGB 5-5-5: 15 bits) 

- Color differential for second block (RGB 3-3-3: 9 bits) 

- 1 bit designating if subblocks are 4x2 or 2x4 

- 3-bit index identifying modulation table per subblock (2x3 bits) 

- Per-texel modulation table index (2x16 bits) 

- Total compressed block size: 1 + 15 + 9 + 1 + 6 + 32 = 64 bits  (6:1 ratio)

BaseRGB555 DeltaRGB333

[Strom et al. 2005]
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PACKMAN vs. iPACKMAN quality comparison
iPACKMANPACMANOriginal

Chrominance banding

Chrominance block artifact

Image credit: Strom et al. 2005
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PVRTC (Power VR texture compression)
▪ Not a block-based format 

- Used in Imagination PowerVR GPUs 
▪  Store low-frequency base images A and B 

- Base images downsampled by factor of 4 in each dimension (1/16 fewer texels) 
- Store base image pixels in RGB 5:5:5 format (+ 1 bit alpha)   

▪ Store 2-bit modulation factor per texel 
▪ Total footprint: 4 bpp (6:1 ratio)

[Fenney et al. 2003]
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PVRTC
▪ Decompression algorithm: 

- Bilinear interpolate samples from A and B (upsample) to get value at desired texel 

- Interpolate upsampled values according to 2-bit modulation factor

[Fenney et al. 2003]
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PVRTC avoids blocking artifacts

Image credit: Fenney et al. 2003

PVRTC

Because it is not block-based 

Recall: decompression algorithm involves 
bilinear upsampling  of low-resolution base 
images 

(Followed by a weighted combination of the 
two images)
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Summary: texture compression
▪ Many schemes target 6:1 fixed compression ratio (4 bpp) 

- Predictable performance 
- 8 bytes per 4x4-texel block is desirable for memory transfers 

▪ Lossy compression techniques 
- Exploit characteristics of the human visual system to minimize perceived error 
- Texture data is read only, so “drift” due to multiple reads/writes is not a concern 

▪ Block-based vs. not-block based 
- Block-based: S3TC/DXTC/BC1, iPACKMAN/ETC/ETC2, ASTC (not discussed today) 
- Not-block-based: PVRTC 

▪ We only discussed decompression today: 
- Compression can be performed off-line (except when textures are generated at 

runtime… e.g., reflectance maps)
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Hiding the latency of texture 
sampling and texture data access
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1. Compute u and v from screen sample x,y (via evaluation of attribute equations) 

2. Compute du/dx, du/dy, dv/dx, dv/dy differentials from quad-fragment samples 

3. Compute d 

4. Convert normalized texture coordinate (u,v) to texture coordinates texel_u, texel_v 

5. Compute required texels in window of filter ** 

6. If texture data in filter footprint (eight texels for trilinear filtering) is not in cache: 

- Load required texels (in compressed form) from memory 

- Decompress texture data 

7. Perform tri-linear interpolation according to (texel_u, texel_v, d)

** May involve wrap, clamp, etc. of texel coordinates according to sampling mode configuration

Texture sampling is a high-latency operation

Latency of texture fetch involves time to perform math for texel address 
computation, decompression, and filtering (not just latency of fetching 
data from memory)
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Addressing texture sampling latency
▪ Processor requests filtered texture data → processor waits hundreds of cycles 

(significant loss of performance) 

▪ Solution prior to programmable GPU cores: texture data prefetching 
- Igehy et al.  Prefetching in a Texture Cache Architecture 

▪ Solution in all modern GPUs: multi-threaded processor cores
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Prefetching example: large fragment FIFOs
Texture prefetching (from Igehy 1998)

Rasterization

Texture Filtering

Texel cache tags 
(texel ids)

Memory 
request fifo

Memory 
reorder buffer

Memory 
System

Texel cache data

Fragment FIFO 
(coverage, Z, attribs) 

Note: fragment FIFO 
must be large! Why?

Texel addresses

Cache addresses

Cache addresses

Texel data
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A more modern design

Texel 
cache tags 
(texel ids)

Memory 
request fifo

Memory 
reorder buffer

Memory 
System

Texel 
cache data

Texture 
request fifo

Texel addresses

Cache addresses

Cache 
addresses

Texel data

Programmable 
GPU Core

Texel address 
computation

Texel Filtering

texture request: 
(u,v, du, dv, lod)

filtered texture 
result: rgba

Texture Sampling Unit
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Modern GPUs: texture latency is hidden via 
hardware multi-threading

Exec Context 0
Exec Context 1
Exec Context 2

Exec Context 63

. . . 

Multi-threaded 
GPU Core

Memory 
System

Texture 
Sampling 

Unit

texture request: 
(u,v, du, dv, lod)

filtered texture 
result: rgba

texel data

texel data 
request

GPU executes instructions from runnable fragments when other fragments are waiting 
on texture sampling responses. 

Fragment FIFO from Igehy prefetching design is now represented by live fragment state 
in the programmable core.  
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GPU texture system summary
▪ A texture lookup is a lot more than a 2D array access 

- Significant computational and bandwidth expense 
- Implemented in specialized fixed-function hardware 

▪ Bandwidth reduction mechanism: GPU texture caches 
- Primarily serve to amplify limited DRAM bandwidth, not reduce latency to off-chip memory 
- Small capacity compared to CPU caches, but high BW (need eight texels at once) 
- Tiled rasterization order + tiled texture layout optimizations increase cache hits 

▪ Bandwidth reduction mechanism: texture compression 
- Lossy compression schemes 
- Fixed-compression ratio encodings (e.g, 6:1 ratio, 4 bpp is common for RGB data) 
- Schemes permit random access into compressed representation 

▪ Latency avoidance/hiding mechanisms: 
- Prefetching (in the old days) 
- Multi-threading (in modern GPUs)


