
Visual Computing Systems
CMU 15-769, Fall 2016

Lecture 18:

Visibility
(coverage and occlusion using rasterization and the Z-buffer)

 CMU 15-769, Fall 2016

Last time: graphics pipeline architecture
Interface to GPU used for real-time 3D graphics applications

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Primitive Processing

Vertices

Primitives

Fragments

Pixels

Memory

1 in / 1 out

3 in / 1 out
(for tris)

1 in / small N out

1 in / N out

1 in / 1 out Uniform
data

Texture
buffers

Uniform
data

Texture
buffers

Uniform
data

Texture
buffers

1 in / 0 or 1 out Output image buffer

 CMU 15-769, Fall 2016

Surprising to some: what the pipeline
architecture does not have primitives for
▪ Modern graphics pipeline has no concept of lights, materials,

geometric modeling transforms
- Only streams of records processed by application defined kernels: vertices,

primitives, fragments, pixels
- And pipeline state (input/output buffers, “shaders”, and fixed-function

configuration parameters)
- Applications implement lights, materials, etc. using these basic abstractions

▪ The graphics pipeline has no concept of a scene

▪ Just a machine that executes pipeline state change and draw
primitives commands

 CMU 15-769, Fall 2016

Last time: programming the graphics pipeline
Issue draw commands output image contents change

Bind shaders, textures, uniforms
Draw using vertex buffer for object 1
Bind new uniforms
Draw using vertex buffer for object 2
Bind new shader
Draw using vertex buffer for object 3

CommandCommand Type

State change

Change depth test function
Bind new shader
Draw using vertex buffer for object 4

Draw
State change
Draw
State change
Draw
State change
State change
Draw

 CMU 15-769, Fall 2016

Major graphics-specific services of pipeline
▪ Efficiently implementing visibility (generating fragments from

primitives in the “fragment generation” stage) and occlusion (“pixel
ops stage”)
- Today’s topic
- Implemented in fixed-function hardware on modern GPU

▪ Providing efficient implementation of texture mapping and
tessellation
- Future topics

▪ Scheduling these operations and application-provided kernels
efficiently on heterogeneous, parallel GPU hardware

 CMU 15-769, Fall 2016

Let’s draw some triangles on the screen

Question 1: what pixels does the triangle overlap?
(“coverage”)

Question 2: what triangle is closest to
the camera in each pixel? (“occlusion”)

Pixel

 CMU 15-769, Fall 2016

The visibility problem
▪ An informal definition: what scene geometry is visible within

each screen pixel?
- What scene geometry projects into a screen pixel? (coverage)

- Which geometry is visible from the camera at that pixel? (occlusion)

Pinhole
Camera
at (0,0)

Virtual
Sensor

(x,z)

1

x/z
z-axis

x-axis

 CMU 15-769, Fall 2016

The visibility problem

Pinhole
Camera
at (0,0)

Virtual
Sensor

(x,z)

1

x/z

z-axis

x-axis

▪ An informal definition: what scene geometry is visible within
each screen pixel?
- What scene geometry projects into a screen pixel? (coverage)

- Which geometry is visible from the camera at that pixel? (occlusion)

 CMU 15-769, Fall 2016

The visibility problem (said differently)
▪ In terms of light rays:

- What scene geometry is hit by a ray from a pixel through the pinhole? (coverage)

- What object is the first hit along that ray? (occlusion)

Pinhole
Camera
at (0,0)

Virtual
Sensor

(x,z)

z-axis

x-axis

Hold onto this thought for later in the semester.

 CMU 15-769, Fall 2016

Visibility: coverage + occlusion

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Primitive Processing

Vertices

Primitives

Fragments

Pixels

Memory

1 in / 1 out

3 in / 1 out
(for tris)

1 in / small N out

1 in / N out

1 in / 1 out Uniform
data

Texture
buffers

Uniform
data

Texture
buffers

Uniform
data

Texture
buffers

1 in / 0 or 1 out Output image buffer

Coverage occurs here

Visibility via depth
buffer occurs here

 CMU 15-769, Fall 2016

Today’s main ideas
▪ Hardware-friendly visibility algorithms

- Tension between work-efficient (but serial) and “brute
force” wide data parallel methods

- Hierarchical techniques (per tile, per pixel) pay off in
multiple context (save work, basis for compression, …)

▪ Hardware optimized data compression
- Domain-specific data compression techniques to alleviate

bandwidth bottleneck

 CMU 15-769, Fall 2016

Input:
projected position of triangle vertices: P0, P1, P2

Computing triangle coverage

Output:
set of pixels “covered” by the triangle

What pixels does the triangle overlap?

 CMU 15-769, Fall 2016

What does it mean for a pixel to be covered by a triangle?
Question: which triangles “cover” this pixel?

Pixel

1

2

3

4

 CMU 15-769, Fall 2016

One option: analytically compute fraction of pixel covered by triangle

10%

35%

60%

85%

15%

 CMU 15-769, Fall 2016

Analytical schemes get tricky when considering occlusion

Two regions of [1] contribute to pixel. One of
these regions is not even convex.

1
2 2

1

2

1

Interpenetration: even worse

 CMU 15-769, Fall 2016

Sampling 101

 CMU 15-769, Fall 2016

Sampling: taking measurements a signal

x1x0 x2 x3 x4

f(x0)
f(x1) f(x2) f(x3)

f(x4)

f (x)

Below: five measurements (“samples”) of 1D signal f(x)

 CMU 15-769, Fall 2016

Reconstruction: given a set of samples, how might
we attempt to reconstruct the original signal f(x)?

x1x0 x2 x3 x4

f(x0) f(x1) f(x2)

f(x3)

f(x4)

 CMU 15-769, Fall 2016

Piecewise constant approximation

x1

f (x)

x0 x2 x3 x4

frecon (x)

frecon(x) approximates f(x)
frecon(x) = value of sample closest to x

 CMU 15-769, Fall 2016

Piecewise linear approximation

x1x0 x2 x3 x4

f (x)

frecon (x)

frecon(x) = linear interpolation between values of two closest samples to x

 CMU 15-769, Fall 2016

Sampling signal more densely (increasing sampling
rate) enables more accurate reconstruction

x1x0 x2 x3 x4 x5 x6 x7 x8

 CMU 15-769, Fall 2016

Reconstruction from denser sampling

x1x0 x2 x3 x4 x5 x6 x7 x8

= reconstruction via linear interpolation
= reconstruction via nearest

 CMU 15-769, Fall 2016

Reconstruction as convolution (box filter)

T

Sampled signal:
(with period T)

Reconstruction filter:
(unit area box of width T)

Reconstructed signal:

0 T 2T 3T 4T 5T 6T 7T 8T

(chooses nearest sample)

VEC: Small: Collaborative Research: The Visual Computing Database: A

Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x| 0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

Z 1

�1
�(x)dx = 1

x 6= 0, �(x) = 0

Z 1

�1
f(x)�(x)dx = f(0)

XT (x) = T

1X

i=�1
�(x� iT)

XT (x)f(x) = T

1X

i=�1
f(iT)�(x� iT)

g(x) = XT (x)f(x)

(h ⇤ g)(x) = T

Z 1

�1
h(y)

1X

i=�1
f(iT)�(x� y � iT)dy =

Z T/2

�T/2

1X

i=�1
f(iT)�(x� y � iT)

h(x) =

⇢
1/T |x| T/2
0 otherwise

VEC: Small: Collaborative Research: The Visual Computing Database: A

Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x| 0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

Z 1

�1
�(x)dx = 1

x 6= 0, �(x) = 0

Z 1

�1
f(x)�(x)dx = f(0)

X
T

(x) = T

1X

i=�1
�(x� iT)

X
T

(x)f(x) = T

1X

i=�1
f(iT)�(x� iT)

g(x) = X
T

(x)f(x)

f

recon

(x) = (h ⇤ g)(x) = T

Z 1

�1
h(y)

1X

i=�1
f(iT)�(x� y � iT)dy =

Z
T/2

�T/2

1X

i=�1
f(iT)�(x� y � iT)

h(x) =

⇢
1/T |x| T/2
0 otherwise

VEC: Small: Collaborative Research: The Visual Computing Database: A

Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x| 0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

Z 1

�1
�(x)dx = 1

x 6= 0, �(x) = 0

Z 1

�1
f(x)�(x)dx = f(0)

X
T

(x) = T

1X

i=�1
�(x� iT)

X
T

(x)f(x) = T

1X

i=�1
f(iT)�(x� iT)

g(x) = X
T

(x)f(x) = T

1X

i=�1
f(iT)�(x� iT)

f

recon

(x) = (h ⇤ g)(x) = T

Z 1

�1
h(y)

1X

i=�1
f(iT)�(x� y � iT)dy =

Z
T/2

�T/2

1X

i=�1
f(iT)�(x� y � iT)

h(x) =

⇢
1/T |x| T/2
0 otherwise

non-zero only for iT closest to x

 CMU 15-769, Fall 2016

Reconstruction as convolution (triangle filter)
Sampled signal:
(with period T)

Reconstruction filter:
(unit area triangle of width T)

VEC: Small: Collaborative Research: The Visual Computing Database: A

Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x| 0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

Z 1

�1
�(x)dx = 1

x 6= 0, �(x) = 0

Z 1

�1
f(x)�(x)dx = f(0)

X
T

(x) = T

1X

i=�1
�(x� iT)

X
T

(x)f(x) = T

1X

i=�1
f(iT)�(x� iT)

g(x) = X
T

(x)f(x) = T

1X

i=�1
f(iT)�(x� iT)

f

recon

(x) = (h ⇤ g)(x) = T

Z 1

�1
h(y)

1X

i=�1
f(iT)�(x� y � iT)dy =

Z
T/2

�T/2

1X

i=�1
f(iT)�(x� y � iT)

h(x) =

⇢
1/T |x| T/2
0 otherwise

T
0 T 2T 3T 4T 5T 6T 7T 8T

VEC: Small: Collaborative Research: The Visual Computing Database: A

Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x| 0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

Z 1

�1
�(x)dx = 1

x 6= 0, �(x) = 0

Z 1

�1
f(x)�(x)dx = f(0)

X
T

(x) = T

1X

i=�1
�(x� iT)

X
T

(x)f(x) = T

1X

i=�1
f(iT)�(x� iT)

g(x) = X
T

(x)f(x) = T

1X

i=�1
f(iT)�(x� iT)

f

recon

(x) = (h ⇤ g)(x) = T

Z 1

�1
h(y)

1X

i=�1
f(iT)�(x� y � iT)dy =

Z
T/2

�T/2

1X

i=�1
f(iT)�(x� y � iT)

h(x) =

⇢
1/T |x| T/2
0 otherwise

h(x) =

⇢
(1� |x|

T

)/T |x| T

0 otherwise

-T T

1/T

 CMU 15-769, Fall 2016

Back to computing coverage

 CMU 15-769, Fall 2016

Sampling 2D triangle coverage signal

coverage(x,y)	=	
1	

0	

if	the	triangle	
contains	point	(x,y)	

otherwise

 CMU 15-769, Fall 2016

Edge cases (literally)

Is this sample point covered by triangle 1? or triangle 2? or both?

1

2

 CMU 15-769, Fall 2016

Edge rules
▪ Direct3D rules: when edge falls directly on sample, sample classified as within

triangle if the edge is a “top edge” or “left edge”
- Top edge: horizontal edge that is above all other edges
- Left edge: an edge that is not exactly horizontal and is on the left side of

the triangle. (triangle can have one or two left edges)

Source: Direct3D Programming Guide, Microsoft

 CMU 15-769, Fall 2016

Results of sampling triangle coverage
Note: I’m not drawing the boundaries of image pixels anymore.

 CMU 15-769, Fall 2016

I have a sampled signal, now I want to display it
on a screen

So if we send the display this…

 CMU 15-769, Fall 2016

We might see this when we look at the screen
(assuming a screen pixel emits a square of perfectly uniform intensity of light)

 CMU 15-769, Fall 2016

Recall: the real coverage signal was this

 CMU 15-769, Fall 2016

Problem: aliasing
▪ Undersampling high frequency signal results in aliasing

- “Jaggies” in a single image
- “Roping” or “shimmering” in an animation

▪ High frequencies exist in coverage signal because of triangle
edges

 CMU 15-769, Fall 2016

Initial coverage sampling rate (1 sample per pixel)

 CMU 15-769, Fall 2016

Increase density of sampling coverage signal

 CMU 15-769, Fall 2016

Supersampling Example: stratified sampling using
four samples per pixel

 CMU 15-769, Fall 2016

Resampling

Coarsely sampled signalReconstructed signal
(lacks high frequencies)

Dense sampling of
reconstructed signal

Converting from one discrete sampled representation to another

Original signal
(high frequency edge)

 CMU 15-769, Fall 2016

Resample to display’s pixel resolution
(Because a screen displays one sample value per screen pixel...)

 CMU 15-769, Fall 2016

Resample to display’s pixel rate (box filter)

 CMU 15-769, Fall 2016

Resample to display’s pixel rate (box filter)

 CMU 15-769, Fall 2016

Displayed result (note anti-aliased edges)

100% 0%

50%

50%

100%

25%100%

 CMU 15-769, Fall 2016

Recall: the real coverage signal was this

 CMU 15-769, Fall 2016

Sampling coverage
▪ We want the light emitted from a display to be an accurate to

match the ground truth signal: coverage(x,y))

▪ Resampling a densely sampled signal (supersampled) integrates
coverage values over the entire pixel region. The integrated result
is sent to the display (and emitted by the pixel) so that the light
emitted by the pixel is similar to what would be emitted in that
screen region by an “infinite resolution display”

 CMU 15-769, Fall 2016

Modes of fragment generation
▪ Supersampling: generate one fragment for each covered sample

▪ Multi-sampling: general one fragment per pixel if any sample
point within the pixel is covered

▪ Today, let’s assume that the number of samples per pixel is one.
(thus, both of the above schemes are equivalent)

 CMU 15-769, Fall 2016

Point-in-triangle test

P0

P1

P2
Pi = (Xi, Yi)

dXi = Xi+1 - Xi
dYi = Yi+1 - Yi

Ei (x, y) = (x - Xi) dYi - (y - Yi) dXi
 = Ai x + Bi y + Ci

Ei (x, y) = 0 : point on edge
 > 0 : outside edge
 < 0 : inside edge

Compute triangle edge equations from projected positions of vertices

 CMU 15-769, Fall 2016

Point-in-triangle test

P0

P1

P2
Pi = (Xi, Yi)

dXi = Xi+1 - Xi

dYi = Yi+1 - Yi

Ei (x, y) = (x - Xi) dYi - (y - Yi) dXi

 = Ai x + Bi y + Ci

Ei (x, y) = 0 : point on edge
 > 0 : outside edge
 < 0 : inside edge

 CMU 15-769, Fall 2016

Point-in-triangle test

P0

P1

P2
Pi = (Xi, Yi)

dXi = Xi+1 - Xi

dYi = Yi+1 - Yi

Ei (x, y) = (x - Xi) dYi - (y - Yi) dXi

 = Ai x + Bi y + Ci

Ei (x, y) = 0 : point on edge
 > 0 : outside edge
 < 0 : inside edge

 CMU 15-769, Fall 2016

Point-in-triangle test

P0

P1

P2
Pi = (Xi, Yi)

dXi = Xi+1 - Xi

dYi = Yi+1 - Yi

Ei (x, y) = (x - Xi) dYi - (y - Yi) dXi

 = Ai x + Bi y + Ci

Ei (x, y) = 0 : point on edge
 > 0 : outside edge
 < 0 : inside edge

 CMU 15-769, Fall 2016

Point-in-triangle test

P0

P1

P2
Sample point s = (sx, sy) is inside the
triangle if it is inside all three edges.

inside(sx, sy) =
E0 (sx, sy) < 0 &&
E1 (sx, sy) < 0 &&
E2 (sx, sy) < 0;

Note: actual implementation of
inside(sx,sy) involves ≤ checks based on
the triangle coverage edge rules (see
beginning of lecture)

Sample points inside triangle are highlighted red.

 CMU 15-769, Fall 2016

Pi = (Xi, Yi, Zi)

dXi = Xi+1 - Xi
dYi = Yi+1 - Yi

Ei (x, y) = (x - Xi) dYi - (y - Yi) dXi
 = Ai x + Bi y + Ci

Ei (x, y) = 0 : point on edge
 > 0 : outside edge
 < 0 : inside edge

Incremental triangle traversal

P0

P1

P2

Note incremental update:

dEi (x+1,y) = Ei (x,y) + dYi = Ei (x,y) + Ai
dEi (x,y+1) = Ei (x,y) + dXi = Ei (x,y) + Bi

Incremental update saves computation:
One addition per edge, per sample test

Note: many traversal orders are possible: backtrack, zig-zag, Hilbert/Morton curves (locality maximizing)

 CMU 15-769, Fall 2016

Modern approach: tiled triangle traversal

P0

P1

P2Traverse triangle in blocks

Test all samples in block against triangle in parallel

Advantages:
- Simplicity of wide parallel execution overcomes

cost of extra point-in-triangle tests (most
triangles cover many samples, especially when
super-sampling coverage)

- Can skip sample testing work: entire block not
in triangle (“early out”), entire block entirely
within triangle (“early in”)

- Additional advantaged related to accelerating
occlusion computations (not discussed today)

All modern GPUs have special-purpose hardware for efficiently performing point-in-triangle tests

 CMU 15-769, Fall 2016

Sampling triangle attributes

 CMU 15-769, Fall 2016

Coverage(x,y)

x2D =

⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f

aspect

0 0 0

0 f 0 0

0 0

zfar+znear

znear�zfar

2⇥zfar⇥znear

znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =

⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f

aspect

0 0 0

0 f 0 0

0 0

zfar+znear

znear�zfar

2⇥zfar⇥znear

znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =

⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f

aspect

0 0 0

0 f 0 0

0 0

zfar+znear

znear�zfar

2⇥zfar⇥znear

znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

xx

 CMU 15-769, Fall 2016

Consider sampling surface_color(x,y)

x2D =

⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f

aspect

0 0 0

0 f 0 0

0 0

zfar+znear

znear�zfar

2⇥zfar⇥znear

znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =

⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f

aspect

0 0 0

0 f 0 0

0 0

zfar+znear

znear�zfar

2⇥zfar⇥znear

znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =

⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f

aspect

0 0 0

0 f 0 0

0 0

zfar+znear

znear�zfar

2⇥zfar⇥znear

znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

green [0,1,0]

blue [0,0,1]

red [0,0,1]

x

What is the triangle’s color at the point ?

Lecture 3 Math

Rotations arbitrary:
u� v �w

R

�1 = R

T

R =

2

4
u

x

v

x

w

x

u

y

v

y

w

y

u

z

v

z

w

z

3

5

R

�1 = R

T =

2

4
u

x

u

y

u

z

v

x

v

y

v

z

w

x

w

y

w

z

3

5

R

T

u =
⇥
u · u v · u w · u

⇤
T

=
⇥
1 0 0

⇤
T

R

T

v =
⇥
u · v v · v w · v

⇤
T

=
⇥
0 1 0

⇤
T

R

T

w =
⇥
u ·w v ·w w ·w

⇤
T

=
⇥
0 0 1

⇤
T

R

�1 = R

T

uvw

=

2

4
u

x

v

x

w

x

u

y

v

y

w

y

u

z

v

x

w

z

3

5

Rw,✓

= R

T
uvwRz,✓

Ruvw

Homogeneous:
x =

⇥
x

x

x

y

1
⇤
T

wx =
⇥
wx

x

wx
y

w
⇤
T

Projection:
x

x2D =
⇥
x

x

/x
z

x

y

/x
z

⇤
T

x =
⇥
x

x

x

y

x

z

1
⇤

P =

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0

3

775

Px =
⇥
x

x

x

y

x

z

x

z

⇤
T

x2D-H =
⇥
x

x

x

y

x

z

⇤
T

x2D =
⇥
x

x

/x
z

x

y

/x
z

⇤
T

 CMU 15-769, Fall 2016

Review: interpolation in 1D

x1x0 x2 x3 x4

f (x)

frecon(x) = linear interpolation between values of two closest samples to x

f(x2) f(x3)

� = c3

� = c4

frecon(t) = (1� t)f(x2) + tf(x3)

t =

(x� x2)

x3 � x2

3

� = c3

� = c4

frecon(t) = (1� t)f(x2) + tf(x3)

t =

(x� x2)

x3 � x2

3

Between: x2 and x3:

where:

 CMU 15-769, Fall 2016

Consider similar behavior on triangle

x2D =

⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f

aspect

0 0 0

0 f 0 0

0 0

zfar+znear

znear�zfar

2⇥zfar⇥znear

znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =

⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f

aspect

0 0 0

0 f 0 0

0 0

zfar+znear

znear�zfar

2⇥zfar⇥znear

znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =

⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f

aspect

0 0 0

0 f 0 0

0 0

zfar+znear

znear�zfar

2⇥zfar⇥znear

znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

black [0,0,0]

blue [0,0,1]

black [0,0,0]

x

Color depends on distance from line

color at

� = c3

� = c4

x = (1� t)

⇥
0 0 1

⇤
+ t

⇥
0 0 0

⇤

frecon(t) = (1� t)f(x2) + tf(x3)

t =

(x� x2)

x3 � x2

3

x2D =

⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f

aspect

0 0 0

0 f 0 0

0 0

zfar+znear

znear�zfar

2⇥zfar⇥znear

znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

2

� = c3

� = c4

x = (1� t)

⇥
0 0 1

⇤
+ t

⇥
0 0 0

⇤

frecon(t) = (1� t)f(x2) + tf(x3)

t =

(x� x2)

x3 � x2

3

distance from to
distance from to

Lecture 3 Math

Rotations arbitrary:
u� v �w

R

�1 = R

T

R =

2

4
u

x

v

x

w

x

u

y

v

y

w

y

u

z

v

z

w

z

3

5

R

�1 = R

T =

2

4
u

x

u

y

u

z

v

x

v

y

v

z

w

x

w

y

w

z

3

5

R

T

u =
⇥
u · u v · u w · u

⇤
T

=
⇥
1 0 0

⇤
T

R

T

v =
⇥
u · v v · v w · v

⇤
T

=
⇥
0 1 0

⇤
T

R

T

w =
⇥
u ·w v ·w w ·w

⇤
T

=
⇥
0 0 1

⇤
T

R

�1 = R

T

uvw

=

2

4
u

x

v

x

w

x

u

y

v

y

w

y

u

z

v

x

w

z

3

5

Rw,✓

= R

T
uvwRz,✓

Ruvw

Homogeneous:
x =

⇥
x

x

x

y

1
⇤
T

wx =
⇥
wx

x

wx
y

w
⇤
T

Projection:
x

x2D =
⇥
x

x

/x
z

x

y

/x
z

⇤
T

x =
⇥
x

x

x

y

x

z

1
⇤

P =

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0

3

775

Px =
⇥
x

x

x

y

x

z

x

z

⇤
T

x2D-H =
⇥
x

x

x

y

x

z

⇤
T

x2D =
⇥
x

x

/x
z

x

y

/x
z

⇤
T

x2D =

⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f

aspect

0 0 0

0 f 0 0

0 0

zfar+znear

znear�zfar

2⇥zfar⇥znear

znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

2

x2D =

⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f

aspect

0 0 0

0 f 0 0

0 0

zfar+znear

znear�zfar

2⇥zfar⇥znear

znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

2

x2D =

⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f

aspect

0 0 0

0 f 0 0

0 0

zfar+znear

znear�zfar

2⇥zfar⇥znear

znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

How can we interpolate in 2D between three values?

 CMU 15-769, Fall 2016

Interpolation via barycentric coordinates

x2D =

⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f

aspect

0 0 0

0 f 0 0

0 0

zfar+znear

znear�zfar

2⇥zfar⇥znear

znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =

⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f

aspect

0 0 0

0 f 0 0

0 0

zfar+znear

znear�zfar

2⇥zfar⇥znear

znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =

⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f

aspect

0 0 0

0 f 0 0

0 0

zfar+znear

znear�zfar

2⇥zfar⇥znear

znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

green [0,1,0]

blue [0,0,1]

red [0,0,1]

x2D =

⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f

aspect

0 0 0

0 f 0 0

0 0

zfar+znear

znear�zfar

2⇥zfar⇥znear

znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

2

x2D =

⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f

aspect

0 0 0

0 f 0 0

0 0

zfar+znear

znear�zfar

2⇥zfar⇥znear

znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

2

x

x2D =

⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f

aspect

0 0 0

0 f 0 0

0 0

zfar+znear

znear�zfar

2⇥zfar⇥znear

znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

x = a+ �(b� a) + �(c� a) = (1� � � �)a+ �b+ �c

2

x2D =

⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f

aspect

0 0 0

0 f 0 0

0 0

zfar+znear

znear�zfar

2⇥zfar⇥znear

znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

x = a+ �(b� a) + �(c� a) = (1� � � �)a+ �b+ �c

2

x2D =

⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f

aspect

0 0 0

0 f 0 0

0 0

zfar+znear

znear�zfar

2⇥zfar⇥znear

znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

x = a+ �(b� a) + �(c� a) = (1� � � �)a+ �b+ �c = ↵a+ �b+ �c

2

x2D =

⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f

aspect

0 0 0

0 f 0 0

0 0

zfar+znear

znear�zfar

2⇥zfar⇥znear

znear�zfar

0 0 �1 0

3

7775

Triangles:

b� a� c� a

x = a+ �(b� a) + �(c� a) = (1� � � �)a+ �b+ �c = ↵a+ �b+ �c

↵+ � + � = 1

2

color

Lecture 3 Math

Rotations arbitrary:
u� v �w

R

�1 = R

T

R =

2

4
u

x

v

x

w

x

u

y

v

y

w

y

u

z

v

z

w

z

3

5

R

�1 = R

T =

2

4
u

x

u

y

u

z

v

x

v

y

v

z

w

x

w

y

w

z

3

5

R

T

u =
⇥
u · u v · u w · u

⇤
T

=
⇥
1 0 0

⇤
T

R

T

v =
⇥
u · v v · v w · v

⇤
T

=
⇥
0 1 0

⇤
T

R

T

w =
⇥
u ·w v ·w w ·w

⇤
T

=
⇥
0 0 1

⇤
T

R

�1 = R

T

uvw

=

2

4
u

x

v

x

w

x

u

y

v

y

w

y

u

z

v

x

w

z

3

5

Rw,✓

= R

T
uvwRz,✓

Ruvw

Homogeneous:
x =

⇥
x

x

x

y

1
⇤
T

wx =
⇥
wx

x

wx
y

w
⇤
T

Projection:
x

x2D =
⇥
x

x

/x
z

x

y

/x
z

⇤
T

x =
⇥
x

x

x

y

x

z

1
⇤

P =

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0

3

775

Px =
⇥
x

x

x

y

x

z

x

z

⇤
T

x2D-H =
⇥
x

x

x

y

x

z

⇤
T

x2D =
⇥
x

x

/x
z

x

y

/x
z

⇤
T

=

x2D =

⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f

aspect

0 0 0

0 f 0 0

0 0

zfar+znear

znear�zfar

2⇥zfar⇥znear

znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =

⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f

aspect

0 0 0

0 f 0 0

0 0

zfar+znear

znear�zfar

2⇥zfar⇥znear

znear�zfar

0 0 �1 0

3

7775

Triangles:

b� a� c� a

x = a+ �(b� a) + �(c� a) = (1� � � �)a+ �b+ �c = ↵a+ �b+ �c

↵+ � + � = 1

2

color

x2D =

⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f

aspect

0 0 0

0 f 0 0

0 0

zfar+znear

znear�zfar

2⇥zfar⇥znear

znear�zfar

0 0 �1 0

3

7775

Triangles:

b� a� c� a

x = a+ �(b� a) + �(c� a) = (1� � � �)a+ �b+ �c = ↵a+ �b+ �c

↵+ � + � = 1

2

x2D =

⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f

aspect

0 0 0

0 f 0 0

0 0

zfar+znear

znear�zfar

2⇥zfar⇥znear

znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

color

x2D =

⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f

aspect

0 0 0

0 f 0 0

0 0

zfar+znear

znear�zfar

2⇥zfar⇥znear

znear�zfar

0 0 �1 0

3

7775

Triangles:

b� a� c� a

x = a+ �(b� a) + �(c� a) = (1� � � �)a+ �b+ �c = ↵a+ �b+ �c

↵+ � + � = 1

2

x2D =

⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f

aspect

0 0 0

0 f 0 0

0 0

zfar+znear

znear�zfar

2⇥zfar⇥znear

znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

color

 form a non-orthogonal
basis for points in triangle (origin at)

x2D =

⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f

aspect

0 0 0

0 f 0 0

0 0

zfar+znear

znear�zfar

2⇥zfar⇥znear

znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

2

x2D =

⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f

aspect

0 0 0

0 f 0 0

0 0

zfar+znear

znear�zfar

2⇥zfar⇥znear

znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

2

and

x2D =

⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f

aspect

0 0 0

0 f 0 0

0 0

zfar+znear

znear�zfar

2⇥zfar⇥znear

znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

Color at is linear combination of color at
three triangle vertices.

Lecture 3 Math

Rotations arbitrary:
u� v �w

R

�1 = R

T

R =

2

4
u

x

v

x

w

x

u

y

v

y

w

y

u

z

v

z

w

z

3

5

R

�1 = R

T =

2

4
u

x

u

y

u

z

v

x

v

y

v

z

w

x

w

y

w

z

3

5

R

T

u =
⇥
u · u v · u w · u

⇤
T

=
⇥
1 0 0

⇤
T

R

T

v =
⇥
u · v v · v w · v

⇤
T

=
⇥
0 1 0

⇤
T

R

T

w =
⇥
u ·w v ·w w ·w

⇤
T

=
⇥
0 0 1

⇤
T

R

�1 = R

T

uvw

=

2

4
u

x

v

x

w

x

u

y

v

y

w

y

u

z

v

x

w

z

3

5

Rw,✓

= R

T
uvwRz,✓

Ruvw

Homogeneous:
x =

⇥
x

x

x

y

1
⇤
T

wx =
⇥
wx

x

wx
y

w
⇤
T

Projection:
x

x2D =
⇥
x

x

/x
z

x

y

/x
z

⇤
T

x =
⇥
x

x

x

y

x

z

1
⇤

P =

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0

3

775

Px =
⇥
x

x

x

y

x

z

x

z

⇤
T

x2D-H =
⇥
x

x

x

y

x

z

⇤
T

x2D =
⇥
x

x

/x
z

x

y

/x
z

⇤
T

 CMU 15-769, Fall 2016

Direct evaluation of surface attributes
(on a 2D triangle)

For any surface attribute (with value defined at triangle vertices as:)

3 equations, solve for 3 unknowns (A, B, C)

x2D =

⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f

aspect

0 0 0

0 f 0 0

0 0

zfar+znear

znear�zfar

2⇥zfar⇥znear

znear�zfar

0 0 �1 0

3

7775

Triangles:

b� a� c� a

x = a+ �(b� a) + �(c� a) = (1� � � �)a+ �b+ �c = ↵a+ �b+ �c

↵+ � + � = 1

↵ = A

A

/A

� = A

B

/A

� = A

C

/A

f = f

a

, f

b

, f

c

f

a

= Aa

x

+Ba

y

+ C

f

b

= Ab

x

+Bb

y

+ C

f

c

= Ac

x

+Bc

y

+ C

kEac(bx

,b

y

) = 1

kEac(xx

,x

y

) = �

� =

(a

y

� c

y

)x

x

+ (c

x

� a

x

)x

y

+ a

x

c

y

� c

x

a

y

(a

y

� c

y

)b

x

+ (c

x

� a

x

)b

y

+ a

x

c

y

� c

x

a

y

� =

Eac(xx

,x

y

)

Eac(bx

,b

y

)

� = c1

� = c2

2

x2D =

⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f

aspect

0 0 0

0 f 0 0

0 0

zfar+znear

znear�zfar

2⇥zfar⇥znear

znear�zfar

0 0 �1 0

3

7775

Triangles:

b� a� c� a

x = a+ �(b� a) + �(c� a) = (1� � � �)a+ �b+ �c = ↵a+ �b+ �c

↵+ � + � = 1

↵ = A

A

/A

� = A

B

/A

� = A

C

/A

f = f

a

, f

b

, f

c

f

a

= Aa

x

+Ba

y

+ C

f

b

= Ab

x

+Bb

y

+ C

f

c

= Ac

x

+Bc

y

+ C

kEac(bx

,b

y

) = 1

kEac(xx

,x

y

) = �

� =

(a

y

� c

y

)x

x

+ (c

x

� a

x

)x

y

+ a

x

c

y

� c

x

a

y

(a

y

� c

y

)b

x

+ (c

x

� a

x

)b

y

+ a

x

c

y

� c

x

a

y

� =

Eac(xx

,x

y

)

Eac(bx

,b

y

)

� = c1

� = c2

2

Let projected screen-space positions of vertices be: a=(X0, Y0), b=(X1, Y1), c=(X2, Y2)
Attribute value at point (x,y): f (x,y) is affine combination of value at vertices
f (x,y) = Ax + By + C (attribute plane equation)

 CMU 15-769, Fall 2016

Perspective-incorrect interpolation
Due to projection, interpolation of values on a triangle with vertices at different
depths is not an affine function of screen XY coordinates

Attribute values must be interpolated linearly in 3D object space.

Screen

A0

A1

(A0 + A1) / 2

 CMU 15-769, Fall 2016

Project P, get 2D homogeneous representation:

� = c3

� = c4

x = (1� t)

⇥
0 0 1

⇤
+ t

⇥
0 0 0

⇤

frecon(t) = (1� t)f(x2) + tf(x3)

t =

(x� x2)

x3 � x2

P =

⇥
x y z

⇤
T

f(x, y, z) = ax+ by + cz

⇥
x2D-H y2D-H w

⇤
T

=

⇥
x y z

⇤
T

f = ax2D-H + by2D-H + cw

f

w

= a

x2D-H

w

+ b

y2D-H

w

+ c

f

w

= ax2D + by2D + c

⇥
x2D y2D

⇤
T

3

Perspective-correct interpolation
Assume triangle attribute varies linearly across the triangle
Attribute’s value at 3D (non-homogeneous) point is:

So … is affine function of 2D screen coordinates:

� = c3

� = c4

x = (1� t)

⇥
0 0 1

⇤
+ t

⇥
0 0 0

⇤

frecon(t) = (1� t)f(x2) + tf(x3)

t =

(x� x2)

x3 � x2

P =

⇥
x y z

⇤
T

f(x, y, z) = ax+ by + cz

⇥
x2DH y2DH w

⇤
T

=

⇥
x y z

⇤
T

f = ax2DH + by2DH + cw

f

w

= a

x2DH

w

+ b

y2DH

w

+ c

f

w

= ax2D + by2D + c

⇥
x2D y2D

⇤
T

3

� = c3

� = c4

x = (1� t)

⇥
0 0 1

⇤
+ t

⇥
0 0 0

⇤

frecon(t) = (1� t)f(x2) + tf(x3)

t =

(x� x2)

x3 � x2

P =

⇥
x y z

⇤
T

f(x, y, z) = ax+ by + cz

⇥
x2DH y2DH w

⇤
T

=

⇥
x y z

⇤
T

f = ax2DH + by2DH + cw

f

w

= a

x2DH

w

+ b

y2DH

w

+ c

f

w

= ax2D + by2D + c

⇥
x2D y2D

⇤
T

3

Rewrite attribute equation for in terms of 2D homogeneous coordinates:

� = c3

� = c4

x = (1� t)

⇥
0 0 1

⇤
+ t

⇥
0 0 0

⇤

frecon(t) = (1� t)f(x2) + tf(x3)

t =

(x� x2)

x3 � x2

P =

⇥
x y z

⇤
T

f(x, y, z) = ax+ by + cz

⇥
x2DH y2DH w

⇤
T

=

⇥
x y z

⇤
T

f = ax2DH + by2DH + cw

f

w

= a

x2DH

w

+ b

y2DH

w

+ c

f

w

= ax2D + by2D + c

⇥
x2D y2D

⇤
T

3

� = c3

� = c4

x = (1� t)

⇥
0 0 1

⇤
+ t

⇥
0 0 0

⇤

frecon(t) = (1� t)f(x2) + tf(x3)

t =

(x� x2)

x3 � x2

P =

⇥
x y z

⇤
T

f(x, y, z) = ax+ by + cz

⇥
x2D-H y2D-H w

⇤
T

=

⇥
x y z

⇤
T

f = ax2D-H + by2D-H + cw

f

w

= a

x2D-H

w

+ b

y2D-H

w

+ c

f

w

= ax2D + by2D + c

⇥
x2D y2D

⇤
T

3

� = c3

� = c4

x = (1� t)

⇥
0 0 1

⇤
+ t

⇥
0 0 0

⇤

frecon(t) = (1� t)f(x2) + tf(x3)

t =

(x� x2)

x3 � x2

P =

⇥
x y z

⇤
T

f(x, y, z) = ax+ by + cz

⇥
x2D-H y2D-H w

⇤
T

=

⇥
x y z

⇤
T

f = ax2D-H + by2D-H + cw

f

w

= a

x2D-H

w

+ b

y2D-H

w

+ c

f

w

= ax2D + by2D + c

⇥
x2D y2D

⇤
T

3

� = c3

� = c4

x = (1� t)

⇥
0 0 1

⇤
+ t

⇥
0 0 0

⇤

frecon(t) = (1� t)f(x2) + tf(x3)

t =

(x� x2)

x3 � x2

P =

⇥
x y z

⇤
T

f(x, y, z) = ax+ by + cz

⇥
x2D-H y2D-H w

⇤
T

=

⇥
x y z

⇤
T

f = ax2D-H + by2D-H + cw

f

w

= a

x2D-H

w

+ b

y2D-H

w

+ c

f

w

= ax2D + by2D + c

⇥
x2D y2D

⇤
T

3

Where are projected screen 2D
coordinates (after homogeneous divide)

� = c3

� = c4

x = (1� t)

⇥
0 0 1

⇤
+ t

⇥
0 0 0

⇤

frecon(t) = (1� t)f(x2) + tf(x3)

t =

(x� x2)

x3 � x2

P =

⇥
x y z

⇤
T

f(x, y, z) = ax+ by + cz

⇥
x2D-H y2D-H w

⇤
T

=

⇥
x y z

⇤
T

f = ax2D-H + by2D-H + cw

f

w

= a

x2D-H

w

+ b

y2D-H

w

+ c

f

w

= ax2D + by2D + c

⇥
x2D y2D

⇤
T

3

� = c3

� = c4

x = (1� t)

⇥
0 0 1

⇤
+ t

⇥
0 0 0

⇤

frecon(t) = (1� t)f(x2) + tf(x3)

t =

(x� x2)

x3 � x2

P =

⇥
x y z

⇤
T

f(x, y, z) = ax+ by + cz

⇥
x2D-H y2D-H w

⇤
T

=

⇥
x y z

⇤
T

f = ax2D-H + by2D-H + cw

f

w

= a

x2D-H

w

+ b

y2D-H

w

+ c

f

w

= ax2D + by2D + c

⇥
x2D y2D

⇤
T

3

� = c3

� = c4

x = (1� t)

⇥
0 0 1

⇤
+ t

⇥
0 0 0

⇤

frecon(t) = (1� t)f(x2) + tf(x3)

t =

(x� x2)

x3 � x2

P =

⇥
x y z

⇤
T

f(x, y, z) = ax+ by + cz

⇥
x2D-H y2D-H w

⇤
T

=

⇥
x y z

⇤
T

f = ax2D-H + by2D-H + cw

f

w

= a

x2D-H

w

+ b

y2D-H

w

+ c

f

w

= ax2D + by2D + c

⇥
x2D y2D

⇤
T

3

 CMU 15-769, Fall 2016

Efficient perspective-correct interpolation
Attribute values vary linearly across triangle in 3D, but not in projected screen XY
Projected attribute values (f/w) are affine functions of screen XY!

To evaluate surface attribute f at every covered sample:

Evaluate 1/w (x,y) (from precomputed equation for 1/w)

Reciprocate 1/w (x,y) to get w(x,y)

For each triangle attribute:

 Evaluate f/w (x,y) (from precomputed equation for f/w)

 Multiply f/w (x,y) by w(x,y) to get f (x,y)

Works for any surface attribute f that varies linearly across triangle:
e.g., color, depth, texture coordinates

 CMU 15-769, Fall 2016

GPUs store attribute plane equations separately from
individual fragments (effectively a form of fragment compression)

Rasterization

Attributes:	N,	texcoord

pixel	xy	
sample	screen	xy		
depth	
tri_id:	2

1

2

1/w	plane	eq	
N/w	plane	eq	
texcoord/w	plane	eq

. . .

1/w	plane	eq	
N/w	plane	eq	
texcoord/w	plane	eq

Fragment buffer
(many fragments)

Triangle buffer
(far fewer triangles
than fragments)

tri 2

tri 1
“”	
tri_id:	1

“”	
tri_id:	1

“”	
tri_id:	1

Note: GPU rasterizer does not need to evaluate
attributes, it only needs to compute plane
equation coefficients for each attribute.

Attribute value at shading sample point is
evaluated on demand during fragment shading,
using the plane equation coefficients.

Attributes:	N,	texcoord

 CMU 15-769, Fall 2016

Modern GPU rasterization

▪ Triangle setup:
- Transform clip-space vertex positions to screen space
- Convert vertex positions to fixed point (Direct3D requires 8 bits of subpixel precision**)
- Compute triangle edge equations (for coverage testing)
- Compute plane equations for all vertex attributes (including 1/W and depth)

▪ Traverse triangle in blocks:
- Identify covered samples using edge tests (wide data parallelism in implementation)
- May attempt to trivially accept/reject block using edge tests on block corners
- Generate and emit fragments based on coverage (also emit per-triangle data as necessary)
- Block granularity order is also important for… (topics of future lectures)

- Shading derivatives, maximizing data locality (cache locality/compression), maximizing
control locality (avoiding SIMD divergence during fragment shading)

** Note 1: limited precision can be a good thing: really acute triangles snap to 0 area and get discarded
** Note 2: limited precision can be a bad thing: precision limits in (x,y) can limit precision in Z (see Akeley and Su, 2006)

All modern GPUs have fixed-function hardware to perform triangle “setup” and rasterization.

 CMU 15-769, Fall 2016

Occlusion

 CMU 15-769, Fall 2016

From last time: occlusion via the depth buffer

bool	pass_depth_test(d1,	d2)	{	
			return	d1	<	d2;				
}		

depth_test(tri_d,	tri_color,	x,	y)	{	

		if	(pass_depth_test(tri_d,	zbuffer[x][y])	{	
		
				zbuffer[x][y]	=	tri_d;					//	update	zbuffer	
				color[x][y]	=	tri_color;			//	update	color	buffer	
		}	
}	

 CMU 15-769, Fall 2016

Depth buffer for occlusion
▪ Depth buffer stores depth of scene at each coverage sample point

- Stored per sample, not per pixel!

▪ Triangles are planar
- Each triangle has exactly one depth at each sample point *

(so triangle order is a well-defined ordering of fragments at each sample point)

▪ Occlusion check using Z-buffer algorithm
- Constant-time occlusion test per fragment
- Constant space per coverage sample
- Constant space per depth buffer (overall)

* Assumes edge-on triangles have been discarded due to zero area

✓

✓
✓
✓

 CMU 15-769, Fall 2016

Depth buffer for occlusion
▪ Z-buffer algorithm has high bandwidth requirements (particularly

when super-sampling triangle coverage)
- Number of Z-buffer reads/writes for a frame depends on:

- Depth complexity of the scene
- The order triangles are provided to the graphics pipeline

(if depth test fails, don’t write to depth buffer or rgba)

▪ Bandwidth estimate:
- 60 Hz x 2 MPixel image x avg. depth complexity 4 (assume: replace 50% of time) x 32-bit Z

= 2.8 GB/s
- If super-sampling at 4 times per pixel, multiply by 4
- Consider five shadow maps per frame (1 MPixel, not super-sampled): additional 8.6 GB/s
- Note: this is just depth accesses. It does not include color-buffer bandwidth

▪ Modern GPUs implement caching and lossless compression of both
color and depth buffers to reduce bandwidth (coming slides)

 CMU 15-769, Fall 2016

Early occlusion culling

 CMU 15-769, Fall 2016

Early occlusion-culling (“early Z”)

Rasterization

Fragment Processing

Frame-Buffer Ops

Pipeline generates, shades, and depth
tests orange triangle fragments in this
region although they do not contribute
to final image. (they are occluded by
the blue triangle)

Graphics pipeline
abstraction specifies
that depth test is
performed here!

Idea: discard fragments that will not contribute to image as quickly as
possible in the pipeline

 CMU 15-769, Fall 2016

Early occlusion-culling (“early Z”)

Rasterization

Fragment Processing

Frame-Buffer Ops

A GPU implementation detail: not reflected in the graphics pipeline abstraction

Key assumption: occlusion results do not depend on fragment shading
- Example operations that prevent use of this early Z optimization: enabling alpha test, fragment

shader modifies fragment’s Z value

Note: early Z only provides benefit if closer triangle is rendered by application first!
(application developers are encouraged to submit geometry in as close to front-to-back order as possible)

Rasterization

Fragment Processing

Frame-Buffer Ops

Optimization: reorder
pipeline operations:
perform depth test
immediately following
rasterization and before
fragment shadingGraphics pipeline

specifies that depth
test is performed here!

 CMU 15-769, Fall 2016

Summary: early occlusion culling
▪ Key observation: can reorder pipeline operations without impacting

correctness: perform depth test prior to fragment shading

▪ Benefit: reduces fragment processing work
- Effectiveness of optimization is dependent on triangle ordering
- Ideal geometry submission order: front-to-back order

▪ Does not reduce amount of bandwidth used to perform depth tests
- The same depth-buffer reads and writes still occur (they just occur before fragment shading)

▪ Implementation-specific optimization, but programmers know it is there
- Commonly used two-pass technique: rendering with a “Z-prepass”

- Pass 1: render all scene geometry, with fragment shading and color buffer writes disabled
(Put the depth buffer in its end-of-frame state)

- Pass 2: re-render scene with shading enabled and with depth-test predicate: less than-or-
equal

- Overhead: must process and rasterizer scene geometry twice

- Benefit: minimizes expensive fragment shading work by only shading visible fragments

 CMU 15-769, Fall 2016

Hierarchical early occlusion culling: “hi-Z”
Recall hierarchical traversal during rasterization

P0

P1

P2
Z-Max culling:
For each screen tile, compute farthest value in the depth
buffer: z_max

During traversal, for each tile:

1. Compute closest point on triangle in tile:
tri_min (using Z plane equation)

2. If tri_min	>	z_max, then triangle is
completely occluded in this tile. (The depth test
will fail for all samples in the tile.) Proceed to
next tile without performing coverage tests for
individual samples in tile.

Z-min optimization:

Depth-buffer also stores z_min for each tile.
If tri_max	<	z_min, then all depth tests for
fragments in tile will pass. (No need to perform depth
test on individual fragments.)

 CMU 15-769, Fall 2016

Hierarchical Z + early Z-culling

Rasterization

Fragment Processing

Frame-Buffer Ops

Depth-buffer

Zmin/max tile buffer

Per-tile values: compact, likely
stored on-chip

Feedback: must update zmin/zmax
tiles on depth-buffer update

Remember: these are GPU implementation details
(common optimizations performed by most GPUs).
They are invisible to the programmer and not
reflected in the graphics pipeline abstraction

 CMU 15-769, Fall 2016

Summary: hierarchical Z
▪ Idea: perform depth test at coarse tile granularity prior to sampling coverage

▪ ZMax culling benefits:
- Reduces rasterization work
- Reduces depth-testing work (don’t process individual depth samples)
- Reduces memory bandwidth requirements (don’t need to read individual depth samples)
- Eliminates less fragment processing work than early Z (Since hierarchical Z is a conservative

approximation to early X results, it will only discard a subset of the fragments early Z does)

▪ ZMin benefits:
- Reduces depth-testing work (don’t need to test individual depth samples)
- Reduces memory bandwidth (don’t need to read individual depth samples, but still must write)

▪ Costs:
- Overhead of hierarchical tests
- Must maintain per-tile Zmin/Zmax values
- System complexity: must update per-tile values frequently to be effective (early Z system feeds

results back to hierarchical Z system)

 CMU 15-769, Fall 2016

Frame-buffer compression

 CMU 15-769, Fall 2016

Depth-buffer compression
▪ Motivation: reduce bandwidth required for depth-buffer accesses

- Worst-case (uncompressed) buffer allocated in DRAM
- Conserving memory footprint is a non-goal

(Need for real-time guarantees in graphics applications requires application to
plan for worst case anyway)

▪ Lossless compression
- Question: why not lossy?

▪ Designed for fixed-point numbers (fixed-point math in rasterizer)

 CMU 15-769, Fall 2016

Depth-buffer compression is tile based
Main idea: exploit similarity of values within a screen tile

Figure credit: [Hasselgren et al. 2006]

On tile evict:
1. Compute zmin/zmax (needed for

hierarchical culling and/or compression)
2. Attempt to compress
3. Update tile table
4. Store tile to memory

On tile load:
1. Check tile table for compression scheme
2. Load required bits from memory
3. Decompress into tile cache

 CMU 15-769, Fall 2016

Anchor encoding
▪ Choose anchor value and compute DX, DY from adjacent pixels (fits a plane

to the data)

▪ Use plane to predict depths at other pixels, store offset d from prediction at
each pixel

▪ Scheme (for 24-bit depth buffer)

- Anchor: 24 bits (full resolution)

- DX, DY: 15 bits

- Per-sample offsets: 5 bits

[Van Dyke and Margeson]

 CMU 15-769, Fall 2016

Depth-offset compression
▪ Assume depth values have low dynamic range relative to tile’s

zmin and zmaz (assume two surfaces)

▪ Store zmin/zmax (need to anyway for hierarchical Z)

▪ Store low-precision (8-12 bits) offset value for each sample
- MSB encodes if offset is from zmin or zmax

[Morein and Natali]

 CMU 15-769, Fall 2016

Explicit plane encoding
▪ Do not attempt to infer prediction plane, just get the plane equation

directly from the rasterizer
- Store plane equation in tile (values must be stored with high precision: to match exact math

performed by rasterizer)

- Store bit per sample indicating coverage

▪ Simple extension to multiple triangles per tile:
- Store up to N plane equations in tile

- Store log2(N) bit id per depth sample indicating which triangle it belongs to

▪ When new triangle contributes coverage to tile:
- Add new plane equation if storage is available, else decompress

▪ To decompress:
- For each sample, evaluate Z(x,y) for appropriate plane

0 0 0 0 0 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 1

 CMU 15-769, Fall 2016

Summary: reducing the bandwidth
requirements of depth testing
▪ Caching: access DRAM less often (by caching depth buffer data)

▪ Hierarchical Z techniques (zmin/zmax culling): “early outs” result in
accessing individual sample data less often

▪ Data compression: reduce number of bits that must be transferred from
memory to read/write a depth sample

▪ The pipeline’s output color buffer (output image) is also compressed
using similar techniques
- Depth buffer typically achieves higher compression ratios than color

buffer. Why?

 CMU 15-769, Fall 2016

Cross-cutting issues
▪ Hierarchical traversal during rasterization

- Leveraged to reduce coverage testing and also occlusion work

- Tile size often coupled to hierarchical Z granularity

- May also be coupled to compression tile granularity

▪ Hierarchical culling and plane-based buffer compression are
most effective when triangles are reasonably large
- Modern GPU implementations are still optimized for triangles of area ~

tens of pixels

