
Visual Computing Systems 
CMU 15-769, Fall 2016

Lecture 18:

Visibility 
(coverage and occlusion using rasterization and the Z-buffer)
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Last time: graphics pipeline architecture
Interface to GPU used for real-time 3D graphics applications

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization 
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Primitive Processing

Vertices

Primitives

Fragments

Pixels

Memory

1 in / 1 out

3 in / 1 out 
(for tris)

1 in / small N out

1 in / N out

1 in / 1 out Uniform 
data

Texture 
buffers

Uniform 
data

Texture 
buffers

Uniform 
data

Texture 
buffers

1 in / 0 or 1 out Output image buffer
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Surprising to some: what the pipeline 
architecture does not have primitives for
▪ Modern graphics pipeline has no concept of lights, materials, 

geometric modeling transforms 
- Only streams of records processed by application defined kernels: vertices, 

primitives, fragments, pixels 
- And pipeline state (input/output buffers, “shaders”, and fixed-function 

configuration parameters) 
- Applications implement lights, materials, etc. using these basic abstractions 

▪ The graphics pipeline has no concept of a scene 

▪ Just a machine that executes pipeline state change and draw 
primitives commands
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Last time: programming the graphics pipeline
Issue draw commands                     output image contents change

Bind shaders, textures, uniforms
Draw using vertex buffer for object 1
Bind new uniforms
Draw using vertex buffer for object 2 
Bind new shader
Draw using vertex buffer for object 3 

CommandCommand Type

State change

Change depth test function 
Bind new shader 
Draw using vertex buffer for object 4 

Draw
State change
Draw
State change
Draw
State change
State change
Draw
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Major graphics-specific services of pipeline
▪ Efficiently implementing visibility (generating fragments from 

primitives in the “fragment generation” stage) and occlusion (“pixel 
ops stage”) 
- Today’s topic 
- Implemented in fixed-function hardware on modern GPU 

▪ Providing efficient implementation of texture mapping and 
tessellation 
- Future topics 

▪ Scheduling these operations and application-provided kernels 
efficiently on heterogeneous, parallel GPU hardware
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Let’s draw some triangles on the screen

Question 1: what pixels does the triangle overlap? 
(“coverage”)

Question 2: what triangle is closest to 
the camera in each pixel? (“occlusion”)

Pixel
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The visibility problem
▪ An informal definition: what scene geometry is visible within 

each screen pixel? 
- What scene geometry projects into a screen pixel? (coverage) 

- Which geometry is visible from the camera at that pixel? (occlusion)

Pinhole 
Camera 
at (0,0)

Virtual 
Sensor

(x,z)

1

x/z
z-axis

x-axis
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The visibility problem

Pinhole 
Camera 
at (0,0)

Virtual 
Sensor

(x,z)

1

x/z

z-axis

x-axis

▪ An informal definition: what scene geometry is visible within 
each screen pixel? 
- What scene geometry projects into a screen pixel? (coverage) 

- Which geometry is visible from the camera at that pixel? (occlusion)
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The visibility problem (said differently)
▪ In terms of light rays: 

- What scene geometry is hit by a ray from a pixel through the pinhole? (coverage) 

- What object is the first hit along that ray? (occlusion)

Pinhole 
Camera 
at (0,0)

Virtual 
Sensor

(x,z)

z-axis

x-axis

Hold onto this thought for later in the semester.
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Visibility: coverage + occlusion

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization 
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Primitive Processing

Vertices

Primitives

Fragments

Pixels

Memory

1 in / 1 out

3 in / 1 out 
(for tris)

1 in / small N out

1 in / N out

1 in / 1 out Uniform 
data

Texture 
buffers

Uniform 
data

Texture 
buffers

Uniform 
data

Texture 
buffers

1 in / 0 or 1 out Output image buffer

Coverage occurs here

Visibility via depth 
buffer occurs here
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Today’s main ideas
▪ Hardware-friendly visibility algorithms 

- Tension between work-efficient (but serial) and “brute 
force” wide data parallel methods 

- Hierarchical techniques (per tile, per pixel) pay off in 
multiple context (save work, basis for compression, …) 

▪ Hardware optimized data compression 
- Domain-specific data compression techniques to alleviate 

bandwidth bottleneck
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Input: 
projected position of triangle vertices: P0, P1, P2

Computing triangle coverage

Output: 
set of pixels “covered” by the triangle

What pixels does the triangle overlap?
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What does it mean for a pixel to be covered by a triangle? 
Question: which triangles “cover” this pixel?

Pixel

1

2

3

4
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One option: analytically compute fraction of pixel covered by triangle

10%

35%

60%

85%

15%
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Analytical schemes get tricky when considering occlusion

Two regions of [1] contribute to pixel.  One of 
these regions is not even convex.

1
2 2

1

2

1

Interpenetration: even worse
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Sampling 101
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Sampling: taking measurements a signal

x1x0 x2 x3 x4

f(x0)
f(x1) f(x2) f(x3)

f(x4)

f (x)

Below: five measurements (“samples”) of 1D signal  f(x)
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Reconstruction: given a set of samples, how might 
we attempt to reconstruct the original signal f(x)?

x1x0 x2 x3 x4

f(x0) f(x1) f(x2)

f(x3)

f(x4)
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Piecewise constant approximation

x1

f (x)

x0 x2 x3 x4

frecon (x)

frecon(x) approximates f(x)
frecon(x) = value of sample closest to x
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Piecewise linear approximation

x1x0 x2 x3 x4

f (x)

frecon (x)

frecon(x) = linear interpolation between values of two closest samples to x
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Sampling signal more densely (increasing sampling 
rate) enables more accurate reconstruction

x1x0 x2 x3 x4 x5 x6 x7 x8
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Reconstruction from denser sampling

x1x0 x2 x3 x4 x5 x6 x7 x8

= reconstruction via linear interpolation
= reconstruction via nearest 
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Reconstruction as convolution (box filter)

T

Sampled signal: 
(with period T)

Reconstruction filter: 
(unit area box of width T) 

Reconstructed signal:

0 T 2T 3T 4T 5T 6T 7T 8T

(chooses nearest sample)

VEC: Small: Collaborative Research: The Visual Computing Database: A

Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

Z 1

�1
�(x)dx = 1

x 6= 0, �(x) = 0

Z 1

�1
f(x)�(x)dx = f(0)

XT (x) = T

1X

i=�1
�(x� iT )

XT (x)f(x) = T

1X

i=�1
f(iT )�(x� iT )

g(x) = XT (x)f(x)

(h ⇤ g)(x) = T

Z 1

�1
h(y)

1X

i=�1
f(iT )�(x� y � iT )dy =

Z T/2

�T/2

1X

i=�1
f(iT )�(x� y � iT )

h(x) =

⇢
1/T |x|  T/2
0 otherwise

VEC: Small: Collaborative Research: The Visual Computing Database: A

Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

Z 1

�1
�(x)dx = 1

x 6= 0, �(x) = 0

Z 1

�1
f(x)�(x)dx = f(0)

X
T

(x) = T

1X

i=�1
�(x� iT )

X
T

(x)f(x) = T

1X

i=�1
f(iT )�(x� iT )

g(x) = X
T

(x)f(x)

f

recon

(x) = (h ⇤ g)(x) = T

Z 1

�1
h(y)

1X

i=�1
f(iT )�(x� y � iT )dy =

Z
T/2

�T/2

1X

i=�1
f(iT )�(x� y � iT )

h(x) =

⇢
1/T |x|  T/2
0 otherwise

VEC: Small: Collaborative Research: The Visual Computing Database: A

Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

Z 1

�1
�(x)dx = 1

x 6= 0, �(x) = 0

Z 1

�1
f(x)�(x)dx = f(0)

X
T

(x) = T

1X

i=�1
�(x� iT )

X
T

(x)f(x) = T

1X

i=�1
f(iT )�(x� iT )

g(x) = X
T

(x)f(x) = T

1X

i=�1
f(iT )�(x� iT )

f

recon

(x) = (h ⇤ g)(x) = T

Z 1

�1
h(y)

1X

i=�1
f(iT )�(x� y � iT )dy =

Z
T/2

�T/2

1X

i=�1
f(iT )�(x� y � iT )

h(x) =

⇢
1/T |x|  T/2
0 otherwise

non-zero only for iT closest to x  
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Reconstruction as convolution (triangle filter)
Sampled signal: 
(with period T)

Reconstruction filter: 
(unit area triangle of width T) 

VEC: Small: Collaborative Research: The Visual Computing Database: A

Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

Z 1

�1
�(x)dx = 1

x 6= 0, �(x) = 0

Z 1

�1
f(x)�(x)dx = f(0)

X
T

(x) = T

1X

i=�1
�(x� iT )

X
T

(x)f(x) = T

1X

i=�1
f(iT )�(x� iT )

g(x) = X
T

(x)f(x) = T

1X

i=�1
f(iT )�(x� iT )

f

recon

(x) = (h ⇤ g)(x) = T

Z 1

�1
h(y)

1X

i=�1
f(iT )�(x� y � iT )dy =

Z
T/2

�T/2

1X

i=�1
f(iT )�(x� y � iT )

h(x) =

⇢
1/T |x|  T/2
0 otherwise

T
0 T 2T 3T 4T 5T 6T 7T 8T

VEC: Small: Collaborative Research: The Visual Computing Database: A

Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

Z 1

�1
�(x)dx = 1

x 6= 0, �(x) = 0

Z 1

�1
f(x)�(x)dx = f(0)

X
T

(x) = T

1X

i=�1
�(x� iT )

X
T

(x)f(x) = T

1X

i=�1
f(iT )�(x� iT )

g(x) = X
T

(x)f(x) = T

1X

i=�1
f(iT )�(x� iT )

f

recon

(x) = (h ⇤ g)(x) = T

Z 1

�1
h(y)

1X

i=�1
f(iT )�(x� y � iT )dy =

Z
T/2

�T/2

1X

i=�1
f(iT )�(x� y � iT )

h(x) =

⇢
1/T |x|  T/2
0 otherwise

h(x) =

⇢
(1� |x|

T

)/T |x|  T

0 otherwise

-T T

1/T
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Back to computing coverage
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Sampling 2D triangle coverage signal

coverage(x,y)	=	
1	

0	

if	the	triangle	
contains	point	(x,y)	

otherwise
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Edge cases (literally)

Is this sample point covered by triangle 1? or triangle 2? or both?

1

2
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Edge rules
▪ Direct3D rules: when edge falls directly on sample, sample classified as within 

triangle if the edge is a “top edge” or “left edge” 
- Top edge: horizontal edge that is above all other edges 
- Left edge:  an edge that is not exactly horizontal and is on the left side of 

the triangle. (triangle can have one or two left edges)

Source: Direct3D Programming Guide, Microsoft
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Results of sampling triangle coverage
Note: I’m not drawing the boundaries of image pixels anymore.
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I have a sampled signal, now I want to display it 
on a screen

So if we send the display this…
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We might see this when we look at the screen 
(assuming a screen pixel emits a square of perfectly uniform intensity of light)
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Recall: the real coverage signal was this
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Problem: aliasing
▪ Undersampling high frequency signal results in aliasing 

- “Jaggies” in a single image 
- “Roping” or “shimmering” in an animation 

▪ High frequencies exist in coverage signal because of triangle 
edges
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Initial coverage sampling rate (1 sample per pixel)
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Increase density of sampling coverage signal
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Supersampling Example: stratified sampling using 
four samples per pixel
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Resampling

Coarsely sampled signalReconstructed signal 
(lacks high frequencies)

Dense sampling of 
reconstructed signal

Converting from one discrete sampled representation to another

Original signal 
(high frequency edge)
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Resample to display’s pixel resolution 
(Because a screen displays one sample value per screen pixel...)
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Resample to display’s pixel rate (box filter)
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Resample to display’s pixel rate (box filter)
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Displayed result (note anti-aliased edges)

100% 0%

50%

50%

100%

25%100%
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Recall: the real coverage signal was this



 CMU 15-769, Fall 2016

Sampling coverage
▪ We want the light emitted from a display to be an accurate to 

match the ground truth signal: coverage(x,y)) 

▪ Resampling a densely sampled signal (supersampled) integrates 
coverage values over the entire pixel region. The integrated result 
is sent to the display (and emitted by the pixel) so that the light 
emitted by the pixel is similar to what would be emitted in that 
screen region by an “infinite resolution display” 
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Modes of fragment generation
▪ Supersampling: generate one fragment for each covered sample 

▪ Multi-sampling: general one fragment per pixel if any sample 
point within the pixel is covered 

▪ Today, let’s assume that the number of samples per pixel is one. 
(thus, both of the above schemes are equivalent) 
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Point-in-triangle test

P0

P1

P2
Pi = (Xi, Yi) 

dXi = Xi+1 - Xi 
dYi = Yi+1 - Yi 

Ei (x, y)  = (x - Xi) dYi  - (y - Yi) dXi 
     = Ai x + Bi y + Ci 

Ei (x, y) =  0  : point on edge 
              > 0  : outside edge 
              < 0  : inside edge 

Compute triangle edge equations from projected positions of vertices
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Point-in-triangle test

P0

P1

P2
Pi = (Xi, Yi)

dXi = Xi+1 - Xi

dYi = Yi+1 - Yi

Ei (x, y)  = (x - Xi) dYi  - (y - Yi) dXi

     = Ai x + Bi y + Ci

Ei (x, y) =  0  : point on edge
              > 0  : outside edge
              < 0  : inside edge
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Point-in-triangle test

P0

P1

P2
Pi = (Xi, Yi)

dXi = Xi+1 - Xi

dYi = Yi+1 - Yi

Ei (x, y)  = (x - Xi) dYi  - (y - Yi) dXi

     = Ai x + Bi y + Ci

Ei (x, y) =  0  : point on edge
              > 0  : outside edge
              < 0  : inside edge
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Point-in-triangle test

P0

P1

P2
Pi = (Xi, Yi)

dXi = Xi+1 - Xi

dYi = Yi+1 - Yi

Ei (x, y)  = (x - Xi) dYi  - (y - Yi) dXi

     = Ai x + Bi y + Ci

Ei (x, y) =  0  : point on edge
              > 0  : outside edge
              < 0  : inside edge
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Point-in-triangle test

P0

P1

P2
Sample point s = (sx, sy) is inside the 
triangle if it is inside all three edges. 

inside(sx, sy) =
E0 (sx, sy) < 0 &&
E1 (sx, sy) < 0 &&
E2 (sx, sy) < 0;

Note: actual implementation of 
inside(sx,sy) involves ≤ checks based on 
the triangle coverage edge rules (see 
beginning of lecture)

Sample points inside triangle are highlighted red.



 CMU 15-769, Fall 2016

Pi = (Xi, Yi, Zi) 

dXi = Xi+1 - Xi 
dYi = Yi+1 - Yi 

Ei (x, y)  = (x - Xi) dYi  - (y - Yi) dXi 
              = Ai x + Bi y + Ci 

Ei (x, y)  = 0  : point on edge 
              > 0  : outside edge 
              < 0  : inside edge

Incremental triangle traversal

P0

P1

P2

Note incremental update: 

dEi (x+1,y) = Ei (x,y) + dYi = Ei (x,y) + Ai 
dEi (x,y+1) = Ei (x,y) + dXi = Ei (x,y) + Bi 

Incremental update saves computation: 
One addition per edge, per sample test 

Note: many traversal orders are possible: backtrack, zig-zag, Hilbert/Morton curves (locality maximizing)
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Modern approach: tiled triangle traversal

P0

P1

P2Traverse triangle in blocks 

Test all samples in block against triangle in parallel

Advantages: 
- Simplicity of wide parallel execution overcomes 

cost of extra point-in-triangle tests (most 
triangles cover many samples, especially when 
super-sampling coverage) 

- Can skip sample testing work: entire block not 
in triangle (“early out”), entire block entirely 
within triangle (“early in”) 

- Additional advantaged related to accelerating 
occlusion computations (not discussed today)

All modern GPUs have special-purpose hardware for efficiently performing point-in-triangle tests 
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Sampling triangle attributes
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Coverage(x,y)

x2D =

⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f

aspect

0 0 0

0 f 0 0

0 0

zfar+znear

znear�zfar

2⇥zfar⇥znear

znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =

⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f

aspect

0 0 0

0 f 0 0

0 0

zfar+znear

znear�zfar

2⇥zfar⇥znear

znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =

⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f

aspect

0 0 0

0 f 0 0

0 0

zfar+znear

znear�zfar

2⇥zfar⇥znear

znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

xx
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Consider sampling surface_color(x,y)

x2D =

⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f

aspect

0 0 0

0 f 0 0

0 0

zfar+znear

znear�zfar

2⇥zfar⇥znear

znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =

⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f

aspect

0 0 0

0 f 0 0

0 0

zfar+znear

znear�zfar

2⇥zfar⇥znear

znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =

⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f

aspect

0 0 0

0 f 0 0

0 0

zfar+znear

znear�zfar

2⇥zfar⇥znear

znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

green [0,1,0]

blue [0,0,1]

red [0,0,1]

x

What is the triangle’s color at the point       ? 

Lecture 3 Math

Rotations arbitrary:
u� v �w

R

�1 = R

T

R =

2

4
u

x

v

x

w

x

u

y

v

y

w

y

u

z

v

z

w

z

3

5

R

�1 = R

T =

2

4
u

x

u

y

u

z

v

x

v

y

v

z

w

x

w

y

w

z

3

5

R

T

u =
⇥
u · u v · u w · u

⇤
T

=
⇥
1 0 0

⇤
T

R

T

v =
⇥
u · v v · v w · v

⇤
T

=
⇥
0 1 0

⇤
T

R

T

w =
⇥
u ·w v ·w w ·w

⇤
T

=
⇥
0 0 1

⇤
T

R

�1 = R

T

uvw

=

2

4
u

x

v

x

w

x

u

y

v

y

w

y

u

z

v

x

w

z

3

5

Rw,✓

= R

T
uvwRz,✓

Ruvw

Homogeneous:
x =

⇥
x

x

x

y

1
⇤
T

wx =
⇥
wx

x

wx
y
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Review: interpolation in 1D

x1x0 x2 x3 x4

f (x)

frecon(x) = linear interpolation between values of two closest samples to x

f(x2) f(x3)

� = c3

� = c4

frecon(t) = (1� t)f(x2) + tf(x3)

t =

(x� x2)

x3 � x2

3

� = c3

� = c4

frecon(t) = (1� t)f(x2) + tf(x3)

t =

(x� x2)

x3 � x2

3

Between: x2 and x3:

where:
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Consider similar behavior on triangle
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How can we interpolate in 2D between three values?
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Interpolation via barycentric coordinates
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Triangles:
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Color at       is linear combination of color at 
three triangle vertices.

Lecture 3 Math

Rotations arbitrary:
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Direct evaluation of surface attributes 
(on a 2D triangle)

For any surface attribute (with value defined at triangle vertices as:                     )

3 equations, solve for 3 unknowns (A, B, C)
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⇥
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Let projected screen-space positions of vertices be: a=(X0, Y0), b=(X1, Y1), c=(X2, Y2) 
Attribute value at point (x,y):  f (x,y) is affine combination of value at vertices 
f (x,y) = Ax + By + C    (attribute plane equation)
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Perspective-incorrect interpolation
Due to projection, interpolation of values on a triangle with vertices at different 
depths is not an affine function of screen XY coordinates 

Attribute values must be interpolated linearly in 3D object space. 

Screen

A0

A1

(A0 + A1) / 2
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Project P, get 2D homogeneous representation:

� = c3

� = c4
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Perspective-correct interpolation
Assume triangle attribute varies linearly across the triangle
Attribute’s value at 3D (non-homogeneous) point                                      is:

So …           is affine function of 2D screen coordinates:
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Rewrite attribute equation for      in terms of 2D homogeneous coordinates:
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Where                        are projected screen 2D 
coordinates (after homogeneous divide)
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Efficient perspective-correct interpolation
Attribute values vary linearly across triangle in 3D, but not in projected screen XY  
Projected attribute values (f/w) are affine functions of screen XY!  

To evaluate surface attribute f at every covered sample: 

Evaluate 1/w (x,y)                                                       (from precomputed equation for 1/w) 

Reciprocate 1/w (x,y) to get w(x,y) 

For each triangle attribute: 

 Evaluate f/w (x,y)                                              (from precomputed equation for f/w) 

 Multiply f/w (x,y) by w(x,y) to get f (x,y)

Works for any surface attribute  f  that varies linearly across triangle:  
e.g., color, depth, texture coordinates
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GPUs store attribute plane equations separately from 
individual fragments (effectively a form of fragment compression)

Rasterization

Attributes:	N,	texcoord

pixel	xy	
sample	screen	xy		
depth	
tri_id:	2

1

2

1/w	plane	eq	
N/w	plane	eq	
texcoord/w	plane	eq

. . .

1/w	plane	eq	
N/w	plane	eq	
texcoord/w	plane	eq

Fragment buffer 
(many fragments)

Triangle buffer 
(far fewer triangles 
than fragments)

tri 2

tri 1
“”	
tri_id:	1

“”	
tri_id:	1

“”	
tri_id:	1

Note: GPU rasterizer does not need to evaluate 
attributes, it only needs to compute plane 
equation coefficients for each attribute. 

Attribute value at shading sample point is 
evaluated on demand during fragment shading, 
using the plane equation coefficients.

Attributes:	N,	texcoord
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Modern GPU rasterization

▪ Triangle setup: 
- Transform clip-space vertex positions to screen space 
- Convert vertex positions to fixed point (Direct3D requires 8 bits of subpixel precision**) 
- Compute triangle edge equations (for coverage testing) 
- Compute plane equations for all vertex attributes (including 1/W and depth) 

▪ Traverse triangle in blocks: 
- Identify covered samples using edge tests (wide data parallelism in implementation)  
- May attempt to trivially accept/reject block using edge tests on block corners 
- Generate and emit fragments based on coverage  (also emit per-triangle data as necessary) 
- Block granularity order is also important for…  (topics of future lectures) 

- Shading derivatives, maximizing data locality (cache locality/compression), maximizing 
control locality (avoiding SIMD divergence during fragment shading)

** Note 1: limited precision can be a good thing: really acute triangles snap to 0 area and get discarded 
** Note 2: limited precision can be a bad thing: precision limits in (x,y) can limit precision in Z  (see Akeley and Su, 2006)

All modern GPUs have fixed-function hardware to perform triangle “setup” and rasterization. 
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Occlusion
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From last time: occlusion via the depth buffer

bool	pass_depth_test(d1,	d2)	{	
			return	d1	<	d2;				
}		

depth_test(tri_d,	tri_color,	x,	y)	{	

		if	(pass_depth_test(tri_d,	zbuffer[x][y])	{	
		
				zbuffer[x][y]	=	tri_d;					//	update	zbuffer	
				color[x][y]	=	tri_color;			//	update	color	buffer	
		}	
}	
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Depth buffer for occlusion
▪ Depth buffer stores depth of scene at each coverage sample point 

- Stored per sample, not per pixel!  

▪ Triangles are planar 
- Each triangle has exactly one depth at each sample point * 

(so triangle order is a well-defined ordering of fragments at each sample point)  

▪ Occlusion check using Z-buffer algorithm 
- Constant-time occlusion test per fragment 
- Constant space per coverage sample 
- Constant space per depth buffer (overall)

* Assumes edge-on triangles have been discarded due to zero area

✓

✓
✓
✓
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Depth buffer for occlusion
▪ Z-buffer algorithm has high bandwidth requirements (particularly 

when super-sampling triangle coverage) 
- Number of Z-buffer reads/writes for a frame depends on: 

- Depth complexity of the scene 
- The order triangles are provided to the graphics pipeline 

(if depth test fails, don’t write to depth buffer or rgba) 

▪ Bandwidth estimate:  
- 60 Hz x 2 MPixel image x avg. depth complexity 4  (assume: replace 50% of time ) x 32-bit Z 

= 2.8 GB/s 
- If super-sampling at 4 times per pixel, multiply by 4 
- Consider five shadow maps per frame (1 MPixel, not super-sampled): additional 8.6 GB/s 
- Note: this is just depth accesses. It does not include color-buffer bandwidth 

▪ Modern GPUs implement caching and lossless compression of both 
color and depth buffers to reduce bandwidth (coming slides)
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Early occlusion culling
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Early occlusion-culling (“early Z”)

Rasterization

Fragment Processing

Frame-Buffer Ops

Pipeline generates, shades, and depth 
tests orange triangle fragments in this 
region although they do not contribute 
to final image.  (they are occluded by 
the blue triangle)

Graphics pipeline 
abstraction specifies 
that depth test is 
performed here!

Idea: discard fragments that will not contribute to image as quickly as 
possible in the pipeline
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Early occlusion-culling (“early Z”)

Rasterization

Fragment Processing

Frame-Buffer Ops

A GPU implementation detail:  not reflected in the graphics pipeline abstraction 

Key assumption: occlusion results do not depend on fragment shading 
- Example operations that prevent use of this early Z optimization: enabling alpha test, fragment 

shader modifies fragment’s Z value 

Note: early Z only provides benefit if closer triangle is rendered by application first! 
(application developers are encouraged to submit geometry in as close to front-to-back order as possible) 

Rasterization

Fragment Processing

Frame-Buffer Ops

Optimization: reorder 
pipeline operations: 
perform depth test 
immediately following 
rasterization and before 
fragment shadingGraphics pipeline 

specifies that depth 
test is performed here!
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Summary: early occlusion culling
▪ Key observation: can reorder pipeline operations without impacting 

correctness: perform depth test prior to fragment shading 

▪ Benefit: reduces fragment processing work 
- Effectiveness of optimization is dependent on triangle ordering 
- Ideal geometry submission order: front-to-back order 

▪ Does not reduce amount of bandwidth used to perform depth tests  
- The same depth-buffer reads and writes still occur (they just occur before fragment shading) 

▪ Implementation-specific optimization, but programmers know it is there 
- Commonly used two-pass technique: rendering with a “Z-prepass” 

- Pass 1: render all scene geometry, with fragment shading and color buffer writes disabled 
(Put the depth buffer in its end-of-frame state) 

- Pass 2: re-render scene with shading enabled and with depth-test predicate: less than-or-
equal 

- Overhead: must process and rasterizer scene geometry twice 

- Benefit: minimizes expensive fragment shading work by only shading visible fragments
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Hierarchical early occlusion culling: “hi-Z”
Recall hierarchical traversal during rasterization

P0

P1

P2
Z-Max culling: 
For each screen tile, compute farthest value in the depth 
buffer:  z_max 

During traversal, for each tile: 

1. Compute closest point on triangle in tile: 
tri_min (using Z plane equation) 

2. If tri_min	>	z_max, then triangle is 
completely occluded in this tile.  (The depth test 
will fail for all samples in the tile.) Proceed to 
next tile without performing coverage tests for 
individual samples in tile. 

Z-min optimization: 

Depth-buffer also stores z_min for each tile. 
If tri_max	<	z_min, then all depth tests for 
fragments in tile will pass. (No need to perform depth 
test on individual fragments.)
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Hierarchical Z + early Z-culling

Rasterization

Fragment Processing

Frame-Buffer Ops

Depth-buffer

Zmin/max tile buffer

Per-tile values: compact, likely 
stored on-chip

Feedback: must update zmin/zmax 
tiles on depth-buffer update

Remember: these are GPU implementation details 
(common optimizations performed by most GPUs). 
They are invisible to the programmer and not 
reflected in the graphics pipeline abstraction
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Summary: hierarchical Z
▪ Idea: perform depth test at coarse tile granularity prior to sampling coverage 

▪ ZMax culling benefits: 
- Reduces rasterization work 
- Reduces depth-testing work (don’t process individual depth samples) 
- Reduces memory bandwidth requirements (don’t need to read individual depth samples) 
- Eliminates less fragment processing work than early Z (Since hierarchical Z is a conservative 

approximation to early X results, it will only discard a subset of the fragments early Z does) 

▪ ZMin benefits: 
- Reduces depth-testing work (don’t need to test individual depth samples) 
- Reduces memory bandwidth (don’t need to read individual depth samples, but still must write) 

▪ Costs: 
- Overhead of hierarchical tests 
- Must maintain per-tile Zmin/Zmax values 
- System complexity: must update per-tile values frequently to be effective (early Z system feeds 

results back to hierarchical Z system)  



 CMU 15-769, Fall 2016

Frame-buffer compression
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Depth-buffer compression
▪ Motivation: reduce bandwidth required for depth-buffer accesses 

- Worst-case (uncompressed) buffer allocated in DRAM 
- Conserving memory footprint is a non-goal 

(Need for real-time guarantees in graphics applications requires application to 
plan for worst case anyway) 

▪ Lossless compression 
- Question: why not lossy? 

▪ Designed for fixed-point numbers (fixed-point math in rasterizer)
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Depth-buffer compression is tile based
Main idea: exploit similarity of values within a screen tile

Figure credit: [Hasselgren et al. 2006]

On tile evict: 
1. Compute zmin/zmax (needed for 

hierarchical culling and/or compression) 
2. Attempt to compress 
3. Update tile table 
4. Store tile to memory

On tile load: 
1. Check tile table for compression scheme 
2. Load required bits from memory 
3. Decompress into tile cache
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Anchor encoding
▪ Choose anchor value and compute DX, DY from adjacent pixels (fits a plane 

to the data) 

▪ Use plane to predict depths at other pixels, store offset d from prediction at 
each pixel 

▪ Scheme (for 24-bit depth buffer) 

- Anchor:  24 bits (full resolution) 

- DX, DY: 15 bits 

- Per-sample offsets: 5 bits

[Van Dyke and Margeson]
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Depth-offset compression
▪ Assume depth values have low dynamic range relative to tile’s 

zmin and zmaz (assume two surfaces) 

▪ Store zmin/zmax (need to anyway for hierarchical Z) 

▪ Store low-precision (8-12 bits) offset value for each sample 
- MSB encodes if offset is from zmin or zmax

[Morein and Natali]
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Explicit plane encoding
▪ Do not attempt to infer prediction plane, just get the plane equation 

directly from the rasterizer 
- Store plane equation in tile (values must be stored with high precision: to match exact math 

performed by rasterizer) 

- Store bit per sample indicating coverage 

▪  Simple extension to multiple triangles per tile: 
- Store up to N plane equations in tile 

- Store log2(N) bit id per depth sample indicating which triangle it belongs to 

▪ When new triangle contributes coverage to tile: 
- Add new plane equation if storage is available, else decompress 

▪ To decompress: 
- For each sample, evaluate Z(x,y) for appropriate plane 

0  0  0  0  0  1  1  1
0  0  0  0  0  1  1  1
0  0  0  0  1  1  1  1
0  0  0  0  1  1  1  1
0  0  0  0  1  1  1  1
0  0  0  1  1  1  1  1
0  0  0  1  1  1  1  1
0  0  0  1  1  1  1  1
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Summary: reducing the bandwidth 
requirements of depth testing
▪ Caching: access DRAM less often (by caching depth buffer data) 

▪ Hierarchical Z techniques (zmin/zmax culling): “early outs” result in 
accessing individual sample data less often 

▪ Data compression: reduce number of bits that must be transferred from 
memory to read/write a depth sample 

▪ The pipeline’s output color buffer (output image) is also compressed 
using similar techniques 
- Depth buffer typically achieves higher compression ratios than color 

buffer. Why? 
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Cross-cutting issues
▪ Hierarchical traversal during rasterization 

- Leveraged to reduce coverage testing and also occlusion work 

- Tile size often coupled to hierarchical Z granularity 

- May also be coupled to compression tile granularity 

▪ Hierarchical culling and plane-based buffer compression are 
most effective when triangles are reasonably large 
- Modern GPU implementations are still optimized for triangles of area ~ 

tens of pixels


