
Visual Computing Systems
CMU 15-769, Fall 2016

Lecture 17:

The Real-Time 3D
Graphics Pipeline

 CMU 15-769, Fall 2016

Where we stand

Processing images:
to produce high-quality
photos and videos

Processing images:
to interpret their contents

 CMU 15-769, Fall 2016

Where we stand

Reconstructing 3D scene
geometric from images/videos

 CMU 15-769, Fall 2016

Where we stand

Real-time 3D graphics:
synthesizing high quality
images

 CMU 15-769, Fall 2016

What is an “architecture”?
(not distinguishing between software or hardware architecture)

 CMU 15-769, Fall 2016

A system architecture is an abstraction

▪ Entities (state)
- Registers, buffers, vectors, triangles, lights, pixels, images

▪ Operations (that manipulate state)
- Add two registers, copy buffers, multiply vectors, blur images, draw triangles

▪ Mechanisms for creating/destroying entities, expressing operations
- Execute machine instruction, make C API call, express logic in a programming

language

Notice the different levels of granularity/abstraction in my examples
Key course theme: choosing the right level of abstraction for system’s needs

Decision impacts system’s expressiveness/scope and its suitability for efficient implementation

 CMU 15-769, Fall 2016

x86 architecture?
▪ State:

- Maintained by execution context (registers, PC, VM
mappings, etc.)

- Contents of memory

▪ Operations:
- x86 instructions (privileged and non-privileged)

 CMU 15-769, Fall 2016

GPU compute architecture (as defined by CUDA)?

▪ State:
- Execution context for all executing CUDA threads
- Contents of global memory

▪ Operations:
- Bulk launch N CUDA threads running of kernel K:
- Individual instructions executed by CUDA thread

Launch(N,	k)

 CMU 15-769, Fall 2016

The 3D rendering problem

Image credit: Henrik Wann Jensen

Input: description of a scene
3D surface geometry (e.g., triangle meshes)

surface materials
lights

camera

Output: image

Problem statement: How does each geometric element contribute to the
appearance of each output pixel in the image, given a description of a scene’s
surface properties and lighting conditions?

 CMU 15-769, Fall 2016Unreal Engine Kite Demo (Epic Games 2015)

Goal: render very high complexity 3D scenes
- 100’s of thousands to millions of triangles in a scene
- Complex material, lighting, and animation computations
- High-resolution screen outputs (2-4 Mpixel + supersampling)
- 30-60 fps

 CMU 15-769, Fall 2016

Goal: render very high complexity 3D scenes

Ryse: Son of Rome (image credit: http://www.gamespot.com/ryse-son-of-rome/images/)

 CMU 15-769, Fall 2016

The real-time graphics pipeline architecture
(A review of the GPU-accelerated OpenGL/D3D graphics pipeline, from a systems perspective)

The graphics pipeline is an architecture for driving modern GPU execution

(Note to CUDA programmers: graphics pipeline was original interface to GPU
hardware. Compute mode execution came later..)

 CMU 15-769, Fall 2016

Real-time graphics pipeline entities

Vertices Primitives
(triangles, points, lines)

Fragments Pixels

1

2

3

4

 CMU 15-769, Fall 2016

Real-time graphics pipeline operations

Primitive Generation

Vertex Generation

Vertex Processing

Fragment Generation
(Rasterization)

Fragment Processing

Pixel Operations

Primitive Processing

Vertex stream

Vertex stream

Primitive stream

Primitive stream

Fragment stream

Fragment stream

Vertices

Primitives

Fragments

Pixels

Triangles positioned on screen

Fragments (one per pixel covered by triangle *)

Shaded fragments

Output image (pixels)

Vertices in positioned on screen

Vertices in 3D space
1

2

3

4

* Imprecise definition: will give precise definition in later lecture

 CMU 15-769, Fall 2016

Real-time graphics pipeline state

Primitive Generation

Vertex Generation

Fragment Generation
(Rasterization)

Pixel Operations

Output image buffer

Vertex stream

Vertex stream

Primitive stream

Primitive stream

Fragment stream

Fragment stream

Vertices

Primitives

Fragments

Pixels

Vertex data buffers
1

2

3

4

Memory Buffers (system state)

Buffers, textures

Buffers, textures

Buffers, textures

Vertex Processing

Fragment Processing

Primitive Processing

 CMU 15-769, Fall 2016

3D graphics system stack

Application
(e.g, a computer game, a CAD application, web browser)

Scene graph
(application’s database representing the scene: geometry, materials, lights, etc.)

Graphics pipeline
(OpenGL/Direct3D)

Graphics pipeline implementation
(software driver + GPU)

the abstraction we
are discussing now

implements the
abstraction

clients to the system
(use the abstraction)

 CMU 15-769, Fall 2016

Issues to keep in mind during this overview*
▪ Level of abstraction

▪ Orthogonality of abstractions

▪ How is the pipeline designed for performance/scalability?

▪ What the pipeline does and DOES NOT do

* These are great questions to ask yourself about any system you study

 CMU 15-769, Fall 2016

The graphics pipeline

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Primitive Processing

Vertices

Primitives

Fragments

Pixels

Output image buffer

Memory

 CMU 15-769, Fall 2016

Command: draw these triangles!

list_of_positions	=	{	

				v0x,	v0y,	v0z,		
				v1x,	v1y,	v1x,	
				v2x,	v2y,	v2z,	
				v3x,	v3y,	v3x,	
				v4x,	v4y,	v4z,	
				v5x,	v5y,	v5x			};	

list_of_texcoords	=	{	

				v0u,	v0v,		
				v1u,	v1v,	
				v2u,	v2v,	
				v3u,	v3v,	
				v4u,	v4v,	
				v5u,	v5v			};	 Texture map

Size of output image (W, H)

Object-to-camera-space transform:

Lecture 5 Math

d

w

(x, y) = Ax+By + C

⇥
p0x p0y

⇤
T

, d0

⇥
p1x p1y

⇤
T

, d1

⇥
p2x p2y

⇤
T

, d2

Not premultiplied:

C = ↵

B

B + (1� ↵

B

)↵
A

A

C =
1

↵

C

(↵
B

B + (1� ↵

B

)↵
A

A)

↵

C

= ↵

B

+ (1� ↵

B

)↵
A

A =
⇥
A

r

A

g

A

b

⇤
T

B =
⇥
B

r

B

g

B

b

⇤
T

Premultiplied:

C

0 = B + (1� ↵

B

)A

A

0 =
⇥
↵

A

A

r

↵

A

A

g

↵

A

A

b

↵

A

⇤
T

B

0 =
⇥
↵

B

B

r

↵

B

B

g

↵

B

B

b

↵

B

⇤
T

C =
⇥
0.75 0 0

⇤
T

↵

C

= 0.75

T = P

Perspective projection transform

Lecture 5 Math

d

w

(x, y) = Ax+By + C

⇥
p0x p0y

⇤
T

, d0

⇥
p1x p1y

⇤
T

, d1

⇥
p2x p2y

⇤
T

, d2

Not premultiplied:

C = ↵

B

B + (1� ↵

B

)↵
A

A

C =
1

↵

C

(↵
B

B + (1� ↵

B

)↵
A

A)

↵

C

= ↵

B

+ (1� ↵

B

)↵
A

A =
⇥
A

r

A

g

A

b

⇤
T

B =
⇥
B

r

B

g

B

b

⇤
T

Premultiplied:

C

0 = B + (1� ↵

B

)A

A

0 =
⇥
↵

A

A

r

↵

A

A

g

↵

A

A

b

↵

A

⇤
T

B

0 =
⇥
↵

B

B

r

↵

B

B

g

↵

B

B

b

↵

B

⇤
T

C =
⇥
0.75 0 0

⇤
T

↵

C

= 0.75

T = P

Use depth test /update depth buffer: YES!

Inputs:

 CMU 15-769, Fall 2016

“Assembling” vertices

Vertex Generation

Vertex Processing

V0 V1 VN-1

glBindBuffer(GL_ARRAY_BUFFER,	my_vtx_buffer);	
glDrawArrays(GL_TRIANGLES,	0,	N);	

glBindBuffer(GL_ARRAY_BUFFER,	my_vtx_buffer);	
glDrawElements(GL_TRIANGLES,	6,	GL_UNSIGNED_INT,																						
															my_vtx_indices);	

V0 V1 VN-1

1 3 2 1 5 6

Indexed access version (“gather”)

Contiguous version data version

my_vtx_buffer

my_vtx_indices

my_vtx_buffer

Vertex records

 CMU 15-769, Fall 2016

“Assembling” vertices

Vertex Generation

Vertex Processing

XYZ0 XYZ1 XYZN-1

Contiguous vertex buffer

UV0 UV1 UVN-1

N0 N1 NN-1

Output of vertex generation is a collection of vertex records.

Current pipelines set a limit of 32 float4 attributes per vertex (512 bytes)
Why? (to be answered in a later lecture)

Vertex records

 CMU 15-769, Fall 2016

What the vertex processing kernel does
Transform triangle vertices into camera space

z

x

y

 CMU 15-769, Fall 2016

Apply perspective projection transform to transform triangle vertices
into normalized coordinate space

Pinhole
Camera

(0,0)

z

x

y

znear

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:

Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Rotations:

R✓(x)�R✓(x0)�R✓(x1)�R✓(x2)�R✓(x3)�R✓(ax)� aR✓(x)�R✓(y)�R✓(x+ y)

Translation:

Ta,b(x0)� Ta,b(x1)� Ta,b(x2)� Ta,b(x3)

x2D =
⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

z

x

y

(-1,-1,-1)

(1, 1, 1)

x2D =
⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

Camera-space positions: 3D Normalized space positions

What the vertex processing kernel does

 CMU 15-769, Fall 2016

Vertex processing: inputs

Vertex Generation

Vertex Processing

Memory

Uniform
data

Uniform data: constant read-only data provided as
input to every instance of the vertex shader
e.g., object-to-clip-space vertex transform matrix

Vertex processing operates on a stream of
vertex records + read-only “uniform” inputs.

Vertex records

 CMU 15-769, Fall 2016

Vertex processing: inputs and outputs

Vertex Processing

Memory

Uniform
data

struct	input_vertex	{	
			float3	pos;		//	object	space		
};	

struct	output_vertex	{	
			float3	pos;	//	NDC	space	
};	

uniform	mat4	my_transform;			//	P	*	T	

output_vertex	my_vertex_program(input_vertex	in)	{	
				output_vertex	out;	
				out.pos	=	my_transform	*	in.pos;	//	matrix-vector	mult	
				return	out;	
}

(* Note: this is pseudocode, not valid GLSL syntax)

Vertex Shader Program *

1 input vertex 1 output vertex
independent processing of each vertex

 CMU 15-769, Fall 2016

Example per-vertex computation: lighting

Per-vertex data: surface normal, surface color

Uniform data: light direction, light color

Per-vertex lighting computation Per-vertex normal computation, per pixel lighting

 CMU 15-769, Fall 2016

Example per-vertex computation: skeletal
animation via “skinning”

Image credit: http://www.okino.com/conv/skinning.htm

Per-vertex data: base vertex position (Vbase) + blend coefficients (wb)

Uniform data: “bone” matrices (Mb) for current animation frame

 CMU 15-769, Fall 2016

Primitive generation: group vertices into primitives

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Primitive Processing

Vertices

Primitives

Fragments

Pixels

Output image buffer

Memory

Uniform
data

1 in / 1 out

3 in / 1 out
(for tris)

 CMU 15-769, Fall 2016

Programmable primitive processing *

Primitive Generation

Vertex Generation

Vertex Processing

Primitive Processing

Memory

Uniform
data

Uniform
data

input vertices for 1 prim output vertices for N prims **
independent processing of each INPUT primitive

** Pipeline caps output at 1024 floats of output
* “Geometry shader” in OpenGL/Direct3D terminology

 CMU 15-769, Fall 2016

Primitive processing: clipping
▪ Discard triangles that lie complete outside the unit cube (culling)

- They are off screen, don’t bother processing them further

▪ Clip triangles that extend beyond the unit cube to the cube
- Note: clipping may create more triangles

z

x

y

(-1,-1,-1)

(1, 1, 1)

x2D =
⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

z

x

y

(-1,-1,-1)

(1, 1, 1)

x2D =
⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
x

x

/�x

z

x

y

/�x

z

⇤
T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

Triangles before clipping Triangles after clipping

 CMU 15-769, Fall 2016

Transform to screen coordinates
Transform vertex xy positions from normalized coordinates into
screen coordinates (based on screen w,h)

(0, 0)

(w, h)

 CMU 15-769, Fall 2016

The graphics pipeline

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Primitive Processing

Vertices

Primitives

Fragments

Pixels

Memory

Uniform
data

1 in / 1 out

3 in / 1 out
(for tris)

Uniform
data1 in / small N out

Output image buffer

 CMU 15-769, Fall 2016

Rasterization (fragment generation)

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Primitive Processing

1 input prim N output fragments

N is unbounded
(size of triangles varies greatly)

struct	fragment						//	note	similarity	to	output_vertex	from	before	
{	
			float		x,y;							//	screen	pixel	coordinates	(sample	point	location)	
			float		z;									//	depth	of	triangle	at	sample	point	

			float3	normal;				//	interpolated	application-defined	attribs										
			float2	texcoord;		//	(e.g.,	texture	coordinates,	surface	normal)	
};	

 CMU 15-769, Fall 2016

Rasterization

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Primitive Processing

Compute covered pixels
Sample vertex attributes once per covered pixel

struct	fragment						//	note	similarity	to	output_vertex	from	before	
{	
			float		x,y;							//	screen	pixel	coordinates	(sample	point	location)	
			float		z;									//	depth	of	triangle	at	sample	point	

			float3	normal;				//	interpolated	application-defined	attribs										
			float2	texcoord;		//	(e.g.,	texture	coordinates,	surface	normal)	

}	

 CMU 15-769, Fall 2016

Fragment generation: sampling coverage
Evaluate attributes (depth, u, v) at all covered samples

 CMU 15-769, Fall 2016

The graphics pipeline

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Primitive Processing

Vertices

Primitives

Fragments

Pixels

screen space

Object/world/camera space

Output image buffer

 CMU 15-769, Fall 2016

The graphics pipeline

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Primitive Processing

Vertices

Primitives

Fragments

Pixels

Memory

Uniform
data

1 in / 1 out

3 in / 1 out
(for tris)

Uniform
data1 in / small N out

1 in / N out

Output image buffer

 CMU 15-769, Fall 2016

Fragment processing

Fragment Processing

Memory

Uniform
data

struct	input_fragment	
{	
			float		x,y;			
			float		z;					
			float3	normal;														
			float2	texcoord;		
};

struct	output_fragment	
{	
			int				x,y;	//	pixel			
			float		z;					
			float4	color;															
};	

Texture Buffer 0

Texture Buffer N

. . .

texture	my_texture;	

output_fragment	my_fragment_program(input_fragment	in)	
{	
				output_fragment	out;	
				float4	material_color	=	sample(my_texture,	in.texcoord);	

				for	(each	light	L	in	scene)	
				{	
								out.color	+=	shade(L)	//	compute	reflectance	towards	camera	due	to	L	
				}	
				return	out;	
}

 CMU 15-769, Fall 2016

Example per-fragment operation: computing
fragment color
e.g., sample texture map

u

v
u(x,y), v(x,y)

 CMU 15-769, Fall 2016

The graphics pipeline

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Primitive Processing

Vertices

Primitives

Fragments

Pixels

Memory

1 in / 1 out

3 in / 1 out
(for tris)

1 in / small N out

1 in / N out

** 1 in / 1 out Uniform
data

Texture
buffers

Uniform
data

Texture
buffers

Uniform
data

Texture
buffers

** can be 0 out

Output image buffer

 CMU 15-769, Fall 2016

Frame-buffer operations

Pixel Operations

Frame Buffer

Memorystruct	output_fragment	
{	
			int				x,y;			
			float		z;					
			float4	color;															
};	

 CMU 15-769, Fall 2016

Occlusion using the depth-buffer (Z-buffer)

Closest triangle at sample point (x,y) is triangle with minimum depth at (x,y)

For each coverage sample point, depth-buffer stores depth of closest triangle
at this sample point that has been processed by the renderer so far.

Black = small distance

White = large distance

Grayscale value of sample point
used to indicate distance

Initial state of depth buffer
before rendering any triangles
(all samples store farthest distance)

 CMU 15-769, Fall 2016

Depth buffer example

 CMU 15-769, Fall 2016

Example: rendering three opaque triangles

 CMU 15-769, Fall 2016

Depth buffer contents

Processing yellow triangle:
depth = 0.5

Color buffer contents

White = large distance
Black = small distance

Grayscale value of sample point
used to indicate distance

Red = sample passed depth test

Occlusion using the depth-buffer (Z-buffer)

 CMU 15-769, Fall 2016

Depth buffer contents

After processing yellow triangle:

Color buffer contents

White = large distance
Black = small distance

Grayscale value of sample point
used to indicate distance

Red = sample passed depth test

Occlusion using the depth-buffer (Z-buffer)

 CMU 15-769, Fall 2016

Depth buffer contents

Processing blue triangle:
depth = 0.75

Color buffer contents

White = large distance
Black = small distance

Grayscale value of sample point
used to indicate distance

Red = sample passed depth test

Occlusion using the depth-buffer (Z-buffer)

 CMU 15-769, Fall 2016

Depth buffer contents

After processing blue triangle:

Color buffer contents

White = large distance
Black = small distance

Grayscale value of sample point
used to indicate distance

Red = sample passed depth test

Occlusion using the depth-buffer (Z-buffer)

 CMU 15-769, Fall 2016

Depth buffer contents

Processing red triangle:
depth = 0.25

Color buffer contents

White = large distance
Black = small distance

Grayscale value of sample point
used to indicate distance

Red = sample passed depth test

Occlusion using the depth-buffer (Z-buffer)

 CMU 15-769, Fall 2016

Depth buffer contents

After processing red triangle:

Color buffer contents

White = large distance
Black = small distance

Grayscale value of sample point
used to indicate distance

Red = sample passed depth test

Occlusion using the depth-buffer (Z-buffer)

 CMU 15-769, Fall 2016

Occlusion using the depth buffer
bool	pass_depth_test(d1,	d2)	{	
			return	d1	<	d2;				
}		

depth_test(tri_d,	tri_color,	x,	y)	{	

		if	(pass_depth_test(tri_d,	zbuffer[x][y])	{	

				//	triangle	is	closest	object	seen	so	far	at	this	
				//	sample	point.	Update	depth	and	color	buffers.			

				zbuffer[x][y]	=	tri_d;					//	update	zbuffer	
				color[x][y]	=	tri_color;			//	update	color	buffer	
		}	
}	

 CMU 15-769, Fall 2016

Does depth-buffer algorithm handle
interpenetrating surfaces?
Of course!
Occlusion test is based on depth of triangles at a given sample point. The
relative depth of triangles may be different at different sample points.

Green triangle in
front of yellow
triangle

Yellow triangle in
front of green
triangle

 CMU 15-769, Fall 2016

Of course!
Occlusion test is based on depth of triangles at a given sample point. The
relative depth of triangles may be different at different sample points.

Does depth-buffer algorithm handle
interpenetrating surfaces?

 CMU 15-769, Fall 2016

Summary: occlusion using a depth buffer
▪ Store one depth value per coverage sample (not per pixel!)

▪ Constant space per sample
- Implication: constant space for depth buffer

▪ Constant time occlusion test per covered sample
- Read-modify write of depth buffer if “pass” depth test
- Just a read if “fail”

▪ Not specific to triangles: only requires that surface depth can be
evaluated at a screen sample point

 CMU 15-769, Fall 2016

Frame-buffer operations (full view)

Stencil Buffer

Memorystruct	output_fragment	
{	
			int				x,y;			
			float		z;					
			float4	color;															
};	

Alpha Test

Stencil test

Depth test

Update target

Z Buffer

Color Buffer 0

Color Buffer N

. . .

if	(fragment.z	<	zbuffer[fragment.x][fragment.y])	
{	
				zbuffer[fragment.x][fragment.y]	=	fragment.z;	
				color_buffer[fragment.x][fragment.y]	=	blend(color_buffer[fragment.x][fragment.y],	fragment.color);	
}	

Depth test (hidden surface removal)

 CMU 15-769, Fall 2016

The graphics pipeline

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Primitive Processing

Vertices

Primitives

Fragments

Pixels

Memory

1 in / 1 out

3 in / 1 out
(for tris)

1 in / small N out

1 in / N out

1 in / 1 out Uniform
data

Texture
buffers

Uniform
data

Texture
buffers

Uniform
data

Texture
buffers

1 in / 0 or 1 out Output image buffer

 CMU 15-769, Fall 2016

Programming the graphics pipeline
▪ Issue draw commands output image contents change

Bind shaders, textures, uniforms
Draw using vertex buffer for object 1
Bind new uniforms
Draw using vertex buffer for object 2
Bind new shader
Draw using vertex buffer for object 3

CommandCommand Type

State change

Change depth test function
Bind new shader
Draw using vertex buffer for object 4

Draw
State change
Draw
State change
Draw
State change
State change
Draw

Note: efficiently managing stage changes is a major challenge in implementations

 CMU 15-769, Fall 2016

A series of graphics pipeline commands

State change (set “red” shader)

Draw

State change (set “blue” shader)

State change (change blend mode)

State change (set “yellow” shader

Draw

Draw

Draw

Draw

 CMU 15-769, Fall 2016

Feedback loop 1: use output image as input
texture in later draw command

Bind contents of output image as texture 1
Draw using vertex buffer for object 5
Draw using vertex buffer for object 6

CommandCommand Type

State change
Draw
Draw

. . .

Rendering to textures for later use is key technique when implementing:
- Shadows
- Environment mapping
- Post-processing effects

Draw using vertex buffer for object 5Draw
Draw using vertex buffer for object 6 Draw

▪ Issue draw commands output image contents change

 CMU 15-769, Fall 2016

Feedback loop 2: output intermediate
geometry for use in later draw command

Primitive Generation

Vertex Generation

Vertex Processing

Primitive Processing

Vertices

Primitives

Memory

1 in / 1 out

3 in / 1 out
(for tris)

1 in / small N out
Uniform

data
Texture
buffers

Uniform
data

Texture
buffers

Output vertex buffer

▪ Issue draw commands output image contents change

 CMU 15-769, Fall 2016

Analyzing the design of the graphics pipeline
▪ Level of abstraction

▪ Orthogonality of abstractions

▪ How is pipeline designed for performance/scalability?

▪ What the pipeline does and DOES NOT do

* These are great questions to ask yourself about any system we discuss in this course

 CMU 15-769, Fall 2016

Level of abstraction
▪ Imperative abstraction, not declarative

- Application code specifies: “draw these triangles, using this fragment
shader, with depth testing on”.

- It does not specify: “draw a cow made of marble on a sunny day”

▪ Programmable stages provide application large amount of flexibility
(e.g., to implement wide variety of materials and lighting techniques)

▪ Configurable (but not programmable) pipeline structure: turn stages on
and off, create feedback loops

▪ Abstraction is low enough to allow application to implement many
techniques, but high enough to abstract over radically different GPU
implementations

 CMU 15-769, Fall 2016

Orthogonality of abstractions
▪ All vertices treated the same regardless of primitive type

- Result: vertex programs oblivious to primitive types
- The same vertex program works for triangles and lines

▪ All primitives are converted into fragments for per-pixel shading
and frame-buffer operations
- Fragment programs are oblivious to source primitive type and the behavior of

the vertex program *

- Z-buffer is a common representation used to perform occlusion for any
primitive that can be converted into fragments

* Almost oblivious. Vertex shader must make sure it passes along all inputs required by the fragment shader

 CMU 15-769, Fall 2016

What the pipeline DOES NOT do (non-goals)
▪ Modern graphics pipeline has no concept of lights, materials,

modeling transforms
- Only vertices, primitives, fragments, pixels, and STATE

(state = buffers, shaders, and configuration parameters)
- Applications use these basic abstractions to implement lights, materials, etc.

▪ The graphics pipeline has no concept of a scene

▪ No I/O or OS window management

 CMU 15-769, Fall 2016

Pipeline design facilitates performance/scalability

▪ [Reasonably] low level: low abstraction distance to implementation
▪ Constraints on pipeline structure:

- Constrained data flow between stages
- Fixed-function stages for common and difficult to parallelize tasks
- Shaders: independent processing of each data element (enables parallelism)

▪ Provide frequencies of computation (per vertex, per primitive, per fragment)
- Application can choose to perform work at the rate required

▪ Keep it simple:
- Only a few common intermediate representations

- Triangles, points, lines
- Fragments, pixels

- Z-buffer algorithm computes visibility for any primitive type
▪ “Immediate-mode system”: pipeline processes primitives as it receives them

(as opposed to buffering the entire scene)
- Leave global optimization of how to render scene to the application

Homework exercise: describe one example of a graphics pipeline design
decision that enables high-performance implementations.

 CMU 15-769, Fall 2016

Perspective from Kurt Akeley
▪ Does the system meet original design goals, and then do much

more than was originally imagined? If so, the design is a good one!
- Simple, orthogonal concepts often produce amplifier effect

 CMU 15-769, Fall 2016

Graphics pipeline implementation: GPUs
Specialized processors for executing graphics pipeline computations

Discrete GPU card
(NVIDIA GeForce Titan X)

Integrated GPU: part of modern Intel CPU die

 CMU 15-769, Fall 2016

GPU: heterogeneous, multi-core processor

GPU
Memory

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Texture Texture

Texture Texture

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Tessellate Tessellate

Tessellate Tessellate

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

T-OP’s of fixed-function
compute capability over here

Scheduler / Work Distributor

Modern GPUs offer ~2-4 TFLOPs of performance for
executing vertex and fragment shader programs

