Lecture 17:

The Real-Time 3D
Graphics Pipeline

Visual Computing Systems
CMU 15-769, Fall 2016

Where we stand

Part 1: High-Efficiency Image Processing

The Digital Camera Image Processing Pipeline: Part |
From raw sensor measurements to an RGB image: demosaicing, correcting aberrations, color space conversions

The Digital Camera Image Processing Pipeline: Part Il

JPG image compression, auto-focus/auto-exposure, high-dynamic range processing Processu‘g Images:
Efficiently Scheduling Image Processing Algorithms on Multi-Core Hardware o o
Balancing parallelism/local/extra work, programming using Halide to prOduce hlgh'qual Ity
Image Processing Algorithm Grab Bag -

Fast bilateral filter and median filters, bilateral grid, optical flow phOtos and Vldeos

Specializing Hardware for Image Processing
Contrasting efficiency of GPUs, DSPs, Image Signal Processors, and FGPAs for image processing

H.264 Video Compression
Basics of H.264 video stream encoding

Part 2: Trends in Deep Neural Network Authoring and Acceleration

Basics of Deep Neural Network Evaluation
DNN topology, reduction to dense linear algebra, challenges of direct implementation

Parallel DNN Training

basics of back-prop, stochastic gradient descent (SGD), memory footprint issues, parallelizing SGD

Performance/Accuracy Optimization Case Study: End-to-End Training for Object Detection ProceSSing images:
R-CNN, Fast R-CNN, and then Faster R-CNN
Optimizing DNN Inference via Approximation to mterPTEt the" Contents

pruning and sparsification techniques, precision reduction, temporal rate reductions

Imposing Task-Specific Structure on DNN Topology
image compression networks, cross-stitch networks, spatial transformer networks, convolutional pose machines

Hardware Accelerators for Deep Neural Network Evaluation (discussion only)
A comparison of the various recent hardware accelerator papers
Oct 23: Exam 1 Released (take home exam)

(MU 15-769, Fall 2016

Where we stand

Part 3: Systems Challenges of 3D Reconstruction

Large-Scale 3D Reconstruction + Image Retrieval 1
City—gcale 3D reconstruction, content-based image retrieval ReconStrUCtlng 3 D scene
geometric from images/videos

Real-Time 3D Reconstruction from RGBD Input
dense 3D reconstruction methods, implicit scene representations (TSDF), KinectFusion, BundleFusion

(MU 15-769, Fall 2016

Where we stand

Part 4: Real-Time 3D Rendering Systems

Architecture of the GPU-Accelerated Real-Time 3D Graphics Pipeline
Graphics pipeline abstractions, scheduling challenges

Rasterization and Occlusion
Hardware acceleration, depth and color compression algorithms

Texture Mapping
Texture sampling and prefiltering, texture compression, data layout optimizations

Parallel Scheduling of the Graphics Pipeline Real-time 3D graphics:
Molnar taxonomy, scheduling under data amplification, tiled rendering . e . .

, , , synthesizing high quality
Deferred Shading and Image-Space Rendering Techniques .
Deferred shading as a scheduling decision, image-space anti-aliasing Images

Hardware-Accelerated Ray Tracing
Ray-tracing as an alternative to rasterization, what does modern ray tracing HW do?

Shading Language Design
Contrasting different shading languages, is CUDA a DSL?

Case Study: The Spire Shading Language

Discussion of relationship to other recent DSLs

Part 5: Miscellaneous Topics

DSLs for Physical Simulation: Lizst and Ebb
Open research questions on high-performance DSL design

(MU 15-769, Fall 2016

What is an “architecture”?

(not distinguishing between software or hardware architecture)

CMU 15-769, Fall 2016

A system architecture is an abstraction

B Entities (state)
- Registers, buffers, vectors, triangles, lights, pixels, images

m (Operations (that manipulate state)
- Add two registers, copy buffers, multiply vectors, blur images, draw triangles

m Mechanisms for creating/destroying entities, expressing operations

- Execute machine instruction, make CAPI call, express logic in a programming
language

Notice the different levels of granularity/abstraction in my examples

Key course theme: choosing the right level of abstraction for system’s needs
Decision impacts system’s expressiveness/scope and its suitability for efficient implementation

(MU 15-769, Fall 2016

X86 architecture?

B State:

- Maintained by execution context (registers, PC, VM
mappings, etc.)

- Contents of memory

m (Qperations:
- X86 instructions (privileged and non-privileged)

CMU 15-769, Fall 2016

GPU compute architecture (as defined by CUDA)?

m State:
- Execution context for all executing CUDA threads
- Contents of global memory

m (QOperations:

- Bulk launch N CUDA threads running of kernel K: Launch(N, k)
- Individual instructions executed by CUDA thread

CMU 15-769, Fall 2016

The 3D rendering problem

/
e %
Image credit: Henrik Wann Jensen
Input: description of a scene Output: image

3D surface geometry (e.g., triangle meshes)
surface materials
lights
camera

Problem statement: How does each geometric element contribute to the
appearance of each output pixel in the image, given a description of a scene’s
surface properties and lighting conditions?

(MU 15-769, Fall 2016

Goal: render very high complexity 3D scenes

100’s of thousands to millions of triangles in a scene

Complex material, lighting, and animation computations
High-resolution screen outputs (2-4 Mpixel + supersampling)
30-60 fps

(MU 15-769, Fall 2016

Goal: render very high complexity 3D scenes

Ryse: Son of Rome (image credit: http://www.gamespot.com/ryse-son-of-rome/images/) CMU 15-769, Fall 2016

The real-time graphics pipeline architecture

(A review of the GPU-accelerated OpenGL/D3D graphics pipeline, from a systems perspective)

The graphics pipeline is an architecture for driving modern GPU execution

(Note to CUDA programmers: graphics pipeline was original interface to GPU
hardware. Compute mode execution came later..)

CMU 15-769, Fall 2016

Real-time graphics pipeline entities

o3
o1
o4
o 2
Vertices Primitives
(triangles, points, lines)
Fragments Pixels

(MU 15-769, Fall 2016

Real-time graphics pipeline operations

©3
°1 ..
Vertex Generation °4 Verticesin 3D space

. Vertex stream
Vertices

Vertex Processing S ;

Vertex stream Vertices in positioned on screen

Primitive Generation

L. Primitive stream
Primitives

Primitive Processing

Primitive stream Triangles positioned on screen

Fragment Generation

(Rasterization)

Fragment stream

Fragments Fragments (one per pixel covered by triangle ¥)

Fragment Processing

Fragment stream

Shaded fragments

Pixels Pixel Operations

Output image (pixels)

* Imprecise definition: will give precise definition in later lecture — CMU 15-769, Fall 2016

Real-time graphics pipeline state

Vertices

Primitives

Fragments

Pixels

Memory Buffers (system state)

©3
°1
Vertex Generation °4 Vertex data buffers
Vertex stream °2
Vertex Processing Buffers, textures

Vertex stream

Primitive Generation

Primitive stream

ST 2 OESTT [<meeeeeeeee: Buffiers, textures

Primitive stream

Fragment Generation

(Rasterization)
Fragment stream

F 0 [EH] e Buffier's, textures

Fragment stream

Pixel Operations

(MU 15-769, Fall 2016

3D graphics system stack

Application

(e.g, a computer game, a CAD application, web browser)

clients to the system
(use the abstraction)

Scene graph

(application’s database representing the scene: geometry, materials, lights, etc.)

Graphics pipeline |
. the abstraction we
(OpenGL/Direct3D) are discussing now

Graphics pipeline implementation :I_ implements the

(software driver + GPU) abstraction

(MU 15-769, Fall 2016

Issues to keep in mind during this overview*

m Level of abstraction
m Orthogonality of abstractions

m How is the pipeline designed for performance/scalability?

m What the pipeline does and DOES NOT do

*These are great questions to ask yourself about any system you study

CMU 15-769, Fall 2016

The graphics pipeline

Vertices

Primitives

Fragments

Pixels

Vertex Generation

Vertex Processing

Primitive Generation

Primitive Processing

Rasterization
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Memory

Output image buffer

(MU 15-769, Fall 2016

Command: draw these triangles!

Inputs:
list_of_positions = { list_of_texcoords = {
vox, vey, vOz, vou, Vvov,
vlx, vly, vix, vliu, vlv,
v2x, vy, Vv2z, v2u, V2v,
v3Xx, Vv3y, V3X, v3u, V3v,
v4x, v4y, viz, v4u, viv,
vbx, v5y, v5x }; v5u, v5v }

Object-to-camera-space transform:

Perspective projection transform

Size of output image (W, H)

Use depth test /update depth buffer: YES!

(MU 15-769, Fall 2016

“Assembling” vertices

Contiguous version data version

: my_vtx_buffer
Vertex Generation y_vix_bu

Vertex records Vo V4 Vn-1

Vertex Processing

glBindBuffer (GL_ARRAY_BUFFER, my_vtx_buffer);
glDrawArrays (GL_TRIANGLES, O, N);

Indexed access version (“gather”)

my_vtx_buffer

my_vtx_indices 1 3 2 1 5 6

glBindBuffer (GL_ARRAY_BUFFER, my_vtx_buffer);
glDrawElements (GL_TRIANGLES, 6, GL_UNSIGNED_ INT,
my vtx_indices);

(MU 15-769, Fall 2016

“Assembling” vertices

Contiguous vertex buffer

Vertex Generation

Vertex records XYZy XVYZ, XYZy-1
Vertex Processing

Uuve, UV, UVn-1

No N1 NN-1

Output of vertex generation is a collection of vertex records.

Current pipelines set a limit of 32 float4 attributes per vertex (512 bytes)
Why? (to be answered in a later lecture)

(MU 15-769, Fall 2016

What the vertex processing kernel does

Transform triangle vertices into camera space

CMU 15-769, Fall 2016

What the vertex processing kernel does

Apply perspective projection transform to transform triangle vertices
into normalized coordinate space

X Pinhole
Camera

(0,0)

Znear

Camera-space positions: 3D

X2

Normalized space positions

CMU 15-769, Fall 2016

Vertex processing: inputs

Memory

Vertex Generation <c——
Vertex records
Vertex Processing . Uniform
data

Uniform data: constant read-only data provided as
input to every instance of the vertex shader
e.g., object-to-clip-space vertex transform matrix

Vertex processing operates on a stream of
vertex records + read-only “uniform” inputs.

(MU 15-769, Fall 2016

struct input_vertex {
float3 pos; // object space

| |

/ertexirocessing

l

struct output_vertex {
float3 pos; // NDC space

}s

Vertex Shader Program *

Vertex processing: inputs and outputs

Memory

{EEEEE——

Uniform
data

1input vertex —> 1 output vertex

independent processing of each vertex

uniform mat4 my_transform; // P *T

output_vertex my vertex_program(input_vertex in) {

output_vertex out;

out.pos = my_transform * in.pos; // matrix-vector mult

return out;

(* Note: this is pseudocode, not valid GLSL syntax)

CMU 15-769, Fall 2016

Example per-vertex computation: lighting

Per-vertex lighting computation Per-vertex normal computation, per pixel lighting

Per-vertex data: surface normal, surface color

Uniform data: light direction, light color

(MU 15-769, Fall 2016

Example per-vertex computation: skeletal
animation via “skinning”

skmned 2 W M base

bEbones

Per-vertex data: base vertex position (Vpase) + blend coefficients (wp)

Uniform data: “bone” matrices (M) for current animation frame

Image credit: http://www.okino.com/conv/skinning.htm CMU 15-769, Fall 2016

Primitive generation: group vertices into primitives

Vertices

Primitives

Fragments

Pixels

Memory

Vertex Generation <——

l

)

T1in/1 out

Uniform
data

l

VAN primitive Generation
(for tris)

Primitive Processing

Rasterization
(Fragment Generation)

l :
|

Fragment Processing

Frame-Buffer Ops

Output image buffer

(MU 15-769, Fall 2016

Programmable primitive processing *

Vertex Generation

l

/ertex’rocessing

)

-

l

Primitive Generation

l

{ T

|

Memory

EEEEEE——

EEEEE——

<

Uniform
data

Uniform
data

input vertices for 1 prim — output vertices for N prims **

independent processing of each INPUT primitive

*“Geometry shader” in OpenGL/Direct3D terminology

** Pipeline caps output at 1024 floats of output

(MU 15-769, Fall 2016

Primitive processing: clipping

B Discard triangles that lie complete outside the unit cube (culling)
- They are off screen, don’t bother processing them further

® (lip triangles that extend beyond the unit cube to the cube
- Note: clipping.may create more triangles

X8

Triangles before dipping Triangles after dipping
(MU 15-769, Fall 2016

Transform to screen coordinates

Transform vertex xy positions from normalized coordinates into
screen coordinates (based on screen w,h)

(w, h)

(0,0)

CMU 15-769, Fall 2016

The graphics pipeline

Vertices

Primitives

1in/smaIINout[Primitive Processing }4——

Fragments

Pixels

Vertex Generation

l

T1in/1 out

)

!

EALPAN IS primitive Generation
(for tris)

l

Rasterization

(Fragment Generation)

Fragment Processing

!

Frame-Buffer Ops

{EEEEE——

Memory
Uniform
data
Uniform
data
Output image buffer

(MU 15-769, Fall 2016

Rasterization (fragment generation)

1 input prim —> N output fragments
|

{ s i } N is unbounded
l (size of triangles varies greatly)

Primitive Generation

Rasterization

(Fragment Generation)

|

struct fragment // note similarity to output_vertex from before

{
float x,y; // screen pixel coordinates (sample point location)
float z; // depth of triangle at sample point

float3 normal; // interpolated application-defined attribs
float2 texcoord; // (e.g., texture coordinates, surface normal)

}s
CMU 15-769, Fall 2016

Rasterization

Compute covered pixels

| Sample vertex attributes once per covered pixel

" Vererprcesing

l

Primitive Generation

Rasterization

(Fragment Generation)

|

struct fragment // note similarity to output_vertex from before

{
float x,y; // screen pixel coordinates (sample point location)
float z; // depth of triangle at sample point

float3 normal; // interpolated application-defined attribs
float2 texcoord; // (e.g., texture coordinates, surface normal)

(MU 15-769, Fall 2016

Fragment generation: sampling coverage

Evaluate attributes (depth, u, v) at all covered samples

CMU 15-769, Fall 2016

The graphics pipeline

Vertex Generation

Vertices l

i

Primitive Generation

Primitives l Obiect/ 1d/
[T — } ject/world/camera space
Rasterization
(Fragment Generation) screen Space
Fragments l

Fragment Processing

Pixels Frame-Buffer Ops

Output image buffer

(MU 15-769, Fall 2016

The graphics pipeline

Vertex Generation

Vertices l
\ym i 12" ":"] S! iﬂu (']

!

EALPAN IS primitive Generation
(for tris)

T1in/1 out

)

Primitives l

1in/smaIINout[Primitive Processing }4——

, Rasterization
Tin/Nout

(Fragment Generation)

Fragments l
Fragment Processing
Pixels Frame-Buffer Ops

Memory
2l | Uniform
data
Uniform
data
Output image buffer

(MU 15-769, Fall 2016

Fragment processing

struct input_fragment

{
float x,y;

float z;
float3 normal;
float2 texcoord;

_—

{ Fragment Processing

I

struct output_fragment

{

int X,y; // pixel
float z;
float4 color;

}s

texture my_texture;

output_fragment my_fragment_program(input_fragment in)

{

output_fragment out;
float4 material color = sample(my_texture, in.texcoord);

for (each light L in scene)

{

Memory

<EEE——

—

Uniform
data

Texture Buffer 0

Texture Buffer N

out.color += shade(L) // compute reflectance towards camera due to L

}

return out;

CMU 15-769, Fall 2016

Example per-fragment op
fragment color

e.g., sample texture map

eration: computing

O O O O O
u(x,y), v(x,y)
O O o O O

(MU 15-769, Fall 2016

The graphics pipeline

Vertices

Primitives

1in/small N out

Fragments

**1in/1 out [Fragment Processing]:=

Pixels

** can be 0 out

Vertex Generation <——

I

1in/1out[vertex Processing]:=

I

EALPAN IS primitive Generation
(for tris)

I

Primitive Processing]:::|=

Rasterization

Tin/N out

(Fragment Generation)

|

Memory
Uniform Texture
data | buffers
Uniform Texture
data | buffers
Uniform Texture
data | buffers

I

Frame-Buffer Ops

Output image buffer

(MU 15-769, Fall 2016

Frame-buffer operations

struct output_fragment

Memory

{

int X,Y;
float z;
float4 color;

}; l

Pixel Operations

Frame Buffer

(MU 15-769, Fall 2016

Occlusion using the depth-buffer (Z-buffer)

For each coverage sample point, depth-buffer stores depth of closest triangle

at this sample point that has been processed by the renderer so far.

Closest triangle at sample point (x,y) is triangle with minimum depth at (x,y)

Initial state of depth buffer =—p
before rendering any triangles
(all samples store farthest distance)

Grayscale value of sample point
used to indicate distance

Black = small distance

White = large distance

O

O

O

O

O

O

O

CMU 15-769, Fall 2016

Depth buffer example

(MU 15-769, Fall 2016

Example: rendering three opaque triangles

(MU 15-769, Fall 2016

Occlusion using the depth-buffer (Z-buffer)

Processing yellow triangle:
depth=0.5

O O O O O O O

O O O O O O O

Color buffer contents

Grayscale value of sample point

used to indicate distance

White = large distance
Black = small distance

Red = sample passed depth test

O

O

O

O

O

O

O

O

Depth buffer contents

O O
O O
O O
o O
o O
o o
o o
O O
O O

CMU 15-769, Fall 2016

Occlusion using the depth-buffer (Z-buffer)

After processing yellow triangle:

O O O

O O O

Color buffer contents

O

O

O

O

O

O

O

Grayscale value of sample point

used to indicate distance

White = large distance
Black = small distance

Red = sample passed depth test

O

O

O

O

O

O

O

O

O

O

O

O

Depth buffer contents

O O
O O
O O
® O
® O
® ®
® ®
O O
O O

CMU 15-769, Fall 2016

Occlusion using the depth-buffer (Z-buffer)

Process ing blue trianQIE: Grayscale value of sample point
depth=0.75 used to indicate distance

White = large distance
Black = small distance

Red = sample passed depth test

O O O O O O O O O O O O O O O O O O
O O O O O O O O O O
O O O O O O O O O O
O O O O O O o O
O O O O O O o O
O O O O o o
O O O o
O O O O O O O O O O O O O

O O O O O O O O O O O O O O O O O O

Color buffer contents Depth buffer contents

(MU 15-769, Fall 2016

Occlusion using the depth-buffer (Z-buffer)

After processing blue triangle:

O O
O O
O
O

O O O

Color buffer contents

O

O

O

O

O

O

Grayscale value of sample point

used to indicate distance

White = large distance
Black = small distance

Red = sample passed depth test

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

Depth buffer contents

O O
O O
O O
® O
® O
® ®
® ®
O O
O O

CMU 15-769, Fall 2016

Occlusion using the depth-buffer (Z-buffer)

Processing red triangle:

depth =0.25

O ® ®

O O O

Color buffer contents

O

O

O

O

O

O

O

Grayscale value of sample point
used to indicate distance

White = large distance
Black = small distance

Red = sample passed depth test

O O
O O
O O

O
® O
® ®

Depth buffer contents

(MU 15-769, Fall 2016

Occlusion using the depth-buffer (Z-buffer)

After processing red triangle:

White = large distance
Black = small distance

Grayscale value of sample point
used to indicate distance

Red = sample passed depth test

O O O O O O O O O O O O
O O O O O O O O
O O O O O O O O
O O O O O O O
O O O O O

O O O O

O O ®
O O O O O O O O

O O O O O O O O O O O O

Color buffer contents

O

O

O

O

O

O

O

O

O

O

Depth buffer contents

O O
O O
O O
® O
® O
® ®
® ®
O O
O O

CMU 15-769, Fall 2016

Occlusion using the depth buffer

bool pass depth _test(dl, d2) {
return dl < d2;

}

depth_test(tri_d, tri_color, x, y) {
if (pass_depth_test(tri_d, zbuffer[x][y]) {

// triangle is closest object seen so far at this
// sample point. Update depth and color buffers.

tri d; // update zbuffer

zbuffer[x][y] =
= tri color; // update color buffer

color[x][vy]

CMU 15-769, Fall 2016

Does depth-buffer algorithm handle
interpenetrating surfaces?

Of course!

Occlusion test is based on depth of triangles at a given sample point. The
relative depth of triangles may be different at different sample points.

o * o % o * 4 ° o
® ¢ @ ¢ ® e ® ¢ ® ®

® ° ® ° ® ° e Lo °
Green trianglein ° o Y Y . ® o ©
front of yellow g -
triangle ® ° ° _ ® ° ® °
Yellow triangle in S . o o .
front of green ® o o ® o
triangle ° ® ® ° ®

(MU 15-769, Fall 2016

Does depth-buffer algorithm handle
interpenetrating surfaces?

Of course!

Occlusion test is based on depth of triangles at a given sample point. The
relative depth of triangles may be different at different sample points.

CMU 15-769, Fall 2016

Summary: occlusion using a depth buffer

m Store one depth value per coverage sample (not per pixel!)

m (Constant space per sample
- Implication: constant space for depth buffer

m (Constant time occlusion test per covered sample
- Read-modify write of depth buffer if “pass” depth test
- Just a read if “fail”

m Not specific to triangles: only requires that surface depth can be
evaluated at a screen sample point

CMU 15-769, Fall 2016

Frame-buffer operations (full view)

struct output_fragment Memory
{

int X,Y;
float z;
float4 color;

l

{ Alpha Test }

l

}s

{ Stencil test } Stencil Buffer
[Deptlh test } 7 Buffer
l
{ Update target Color Buffer 0
Depth test (hidden surface removal) rolorBufter

if (fragment.z < zbuffer[fragment.x][fragment.y])

{
zbuffer[fragment.x][fragment.y] = fragment.z;

color_buffer[fragment.x][fragment.y] = blend(color_ buffer[fragment.x][fragment.y], fragment.color);

CMU 15-769, Fall 2016

The graphics pipeline

Vertices

Primitives

1in/small N out

Fragments

Pixels 1in/0or1out Frame-Buffer Ops >

Vertex Generation <——

I

1in/1out [Vertex Erocessing I:=

Memory
Uniform Texture
data | buffers

3in/ 1f°“t Primitive Generation
(for tris)

I

Uniform Texture
data | buffers

, Rasterization
Tin/Nout

(Fragment Generation)

|

Tin/1out [FragmentProcessing I:=

Uniform Texture
data | buffers

I

Output image buffer

(MU 15-769, Fall 2016

Programming the graphics pipeline

m [ssue draw commands —— outputimage contents change

Command Type Command

State change Bind shaders, textures, uniforms
Draw Draw using vertex buffer for object 1
State change Bind new uniforms

Draw Draw using vertex buffer for object 2
State change Bind new shader

Draw Draw using vertex buffer for object 3
State change Change depth test function

State change Bind new shader

Draw Draw using vertex buffer for object 4

Note: efficiently managing stage changes is a major challenge in implementations

CMU 15-769, Fall 2016

A series of graphics pipeline commands

State change (set “red” shader)
Draw

State change (set “blue” shader)
Draw

Draw

Draw

State change (change blend mode)

State change (set “yellow” shader

Draw

(MU 15-769, Fall 2016

Feedback loop 1: use output image as input
texture in later draw command

m |ssue draw commands —— outputimage contents change

Command Type Command

Draw Draw using vertex buffer for object 5

Draw Draw using vertex buffer for object 6

State change Bind contents of output image as texture 1
Draw Draw using vertex buffer for object 5

Draw Draw using vertex buffer for object 6

Rendering to textures for later use is key technique when implementing:
- Shadows

- Environment mapping
- Post-processing effects

CMU 15-769, Fall 2016

Feedback loop 2: output intermediate
geometry for use in later draw command

m |ssue draw commands —— outputimage contents change

Vertex Generation C——

l

etexprocessing NP

Tin/1 out

3in/ 1(f°“) Primitive Generation
or tris

Primitive Processing J.‘==

.

Tin/small N out

|

Memory
Uniform Texture
data | buffers
Uniform Texture
data | buffers
Output vertex buffer

(MU 15-769, Fall 2016

Analyzing the design of the graphics pipeline

m Level of abstraction
m Orthogonality of abstractions

B How is pipeline designed for performance/scalability?

m What the pipeline does and DOES NOT do

*These are great questions to ask yourself about any system we discuss in this course CMU 15-769, Fall 2016

Level of abstraction

® |mperative abstraction, not declarative

- Application code specifies: “draw these triangles, using this fragment
shader, with depth testing on”.
- It does not specify: “draw a cow made of marble on a sunny day”

B Programmable stages provide application large amount of flexibility
(e.g., to implement wide variety of materials and lighting techniques)

m Configurable (but not programmable) pipeline structure: turn stages on
and off, create feedback loops

m Abstraction is low enough to allow application to implement many
techniques, but high enough to abstract over radically different GPU

implementations

CMU 15-769, Fall 2016

Orthogonality of abstractions

m All vertices treated the same regardless of primitive type

- Result: vertex programs oblivious to primitive types
- The same vertex program works for triangles and lines

m All primitives are converted into fragments for per-pixel shading
and frame-buffer operations

- Fragment programs are oblivious to source primitive type and the behavior of
the vertex program *

- Z-buffer is a common representation used to perform occlusion for any
primitive that can be converted into fragments

* Almost oblivious. Vertex shader must make sure it passes along all inputs required by the fragment shader
(MU 15-769, Fall 2016

What the pipeline DOES NOT do (non-goals)

B Modern graphics pipeline has no concept of lights, materials,

modeling transforms

= Only vertices, primitives, fragments, pixels, and STATE
(state = buffers, shaders, and configuration parameters)
- Applications use these basic abstractions to implement lights, materials, etc.

® The graphics pipeline has no concept of a scene

® Nol/0 or 0S window management

CMU 15-769, Fall 2016

Pipeline design facilitates performance/scalability

B [Reasonably] low level: low abstraction distance to implementation
B (Constraints on pipeline structure:
- Constrained data flow between stages
- Fixed-function stages for common and difficult to parallelize tasks
- Shaders: independent processing of each data element (enables parallelism)
B Provide frequencies of computation (per vertex, per primitive, per fragment)
- Application can choose to perform work at the rate required
B Keepitsimple:
= Only a few common intermediate representations
- Triangles, points, lines
- Fragments, pixels
- Z-buffer algorithm computes visibility for any primitive type
B “Immediate-mode system”: pipeline processes primitives as it receives them
(as opposed to buffering the entire scene)
- Leave global optimization of how to render scene to the application

Homework exercise: describe one example of a graphics pipeline design
decision that enables high-performance implementations.
(MU 15-769, Fall 2016

Perspective from Kurt Akeley

m Does the system meet original design goals, and then do much
more than was originally imagined? If so, the design is a good one!

- Simple, orthogonal concepts often produce amplifier effect

CMU 15-769, Fall 2016

Graphics pipeline implementation: GPUs

Specialized processors for executing graphics pipeline computations

f‘::a .
"l‘l"i‘—- System ? :
,,,,, Core Agent & |

1€ . E bl = S ST T AT 5 - 5 = Memory
| - o : “ j| % y Q'H Controllen 5
Processor = ,0 :

Discrete GPU card A s B g ke
(NVIDIA GeForce Titan X) | i IETEE: ' |
e —Ehgred L3 Cache** 7 ot
' g] s Rl e

Memory Controller /0

Integrated GPU part of modern Intel CPU dle

(MU 15-769, Fall 2016

GPU: heterogeneous, multi-core processor

Modern GPUs offer ~2-4 TFLOPs of performance for
executing vertex and fragment shader programs

T-0P’s of fixed-function
compute capability over here

———————————

Tessellate Tessellate
Tessellate Tessellate
Clip/Cull Clip/Culi
Rasterize Rasterize
Clip/Cull Clip/Culi
Rasterize Rasterize

Zbuffer / Zbuffer / Zbuffer /
Blend Blend Blend

Zbuffer / Zbuffer / Zbuffer /
Blend Blend Blend

Scheduler / Work Distributor

GPU
Memory

(MU 15-769, Fall 2016

