Lecture 17:

The Real-Time 3D Graphics Pipeline

Visual Computing Systems CMU 15-769, Fall 2016

Where we stand

Part 1: High-Efficiency Image Processing

The Digital Camera Image Processing Pipeline: Part I

From raw sensor measurements to an RGB image: demosaicing, correcting aberrations, color space conversions

The Digital Camera Image Processing Pipeline: Part II

JPG image compression, auto-focus/auto-exposure, high-dynamic range processing

Efficiently Scheduling Image Processing Algorithms on Multi-Core Hardware

Balancing parallelism/local/extra work, programming using Halide

Image Processing Algorithm Grab Bag

Fast bilateral filter and median filters, bilateral grid, optical flow

Specializing Hardware for Image Processing

Contrasting efficiency of GPUs, DSPs, Image Signal Processors, and FGPAs for image processing

H.264 Video Compression

Basics of H.264 video stream encoding

Part 2: Trends in Deep Neural Network Authoring and Acceleration

Basics of Deep Neural Network Evaluation

DNN topology, reduction to dense linear algebra, challenges of direct implementation

Parallel DNN Training

basics of back-prop, stochastic gradient descent (SGD), memory footprint issues, parallelizing SGD

Performance/Accuracy Optimization Case Study: End-to-End Training for Object Detection

R-CNN, Fast R-CNN, and then Faster R-CNN

Optimizing DNN Inference via Approximation

pruning and sparsification techniques, precision reduction, temporal rate reductions

Imposing Task-Specific Structure on DNN Topology

image compression networks, cross-stitch networks, spatial transformer networks, convolutional pose machines

Hardware Accelerators for Deep Neural Network Evaluation (discussion only)

A comparison of the various recent hardware accelerator papers Oct 23: Exam 1 Released (take home exam) Processing images: to produce high-quality photos and videos

Processing images: to interpret their contents

Where we stand

Part 3: Systems Challenges of 3D Reconstruction

Large-Scale 3D Reconstruction + Image Retrieval

City-scale 3D reconstruction, content-based image retrieval

Real-Time 3D Reconstruction from RGBD Input

dense 3D reconstruction methods, implicit scene representations (TSDF), KinectFusion, BundleFusion

Reconstructing 3D scene geometric from images/videos

Where we stand

Part 4: Real-Time 3D Rendering Systems

Architecture of the GPU-Accelerated Real-Time 3D Graphics Pipeline

Graphics pipeline abstractions, scheduling challenges

Rasterization and Occlusion

Hardware acceleration, depth and color compression algorithms

Texture Mapping

Texture sampling and prefiltering, texture compression, data layout optimizations

Parallel Scheduling of the Graphics Pipeline

Molnar taxonomy, scheduling under data amplification, tiled rendering

Deferred Shading and Image-Space Rendering Techniques

Deferred shading as a scheduling decision, image-space anti-aliasing

Hardware-Accelerated Ray Tracing

Ray-tracing as an alternative to rasterization, what does modern ray tracing HW do?

Shading Language Design

Contrasting different shading languages, is CUDA a DSL?

Case Study: The Spire Shading Language

Discussion of relationship to other recent DSLs

Part 5: Miscellaneous Topics

DSLs for Physical Simulation: Lizst and Ebb

Open research questions on high-performance DSL design

Real-time 3D graphics: synthesizing high quality images

What is an "architecture"?

(not distinguishing between software or hardware architecture)

A system architecture is an abstraction

- Entities (state)
 - Registers, buffers, vectors, triangles, lights, pixels, images
- Operations (that manipulate state)
 - Add two registers, copy buffers, multiply vectors, blur images, draw triangles
- Mechanisms for creating/destroying entities, expressing operations
 - Execute machine instruction, make C API call, express logic in a programming language

Notice the different levels of granularity/abstraction in my examples

Key course theme: choosing the right level of abstraction for system's needs Decision impacts system's expressiveness/scope and its suitability for efficient implementation

x86 architecture?

State:

- Maintained by execution context (registers, PC, VM mappings, etc.)
- Contents of memory

Operations:

- x86 instructions (privileged and non-privileged)

GPU compute architecture (as defined by CUDA)?

State:

- Execution context for all executing CUDA threads
- Contents of global memory

Operations:

- Bulk launch N CUDA threads running of kernel K: Launch(N, k)
- Individual instructions executed by CUDA thread

The 3D rendering problem

Image credit: Henrik Wann Jensen

Input: description of a scene

3D surface geometry (e.g., triangle meshes)
surface materials
lights
camera

Output: image

Problem statement: How does each geometric element contribute to the appearance of each output pixel in the image, given a description of a scene's surface properties and lighting conditions?

Goal: render very high complexity 3D scenes

100's of thousands to millions of triangles in a scene

Goal: render very high complexity 3D scenes

Ryse: Son of Rome (image credit: http://www.gamespot.com/ryse-son-of-rome/images/)

The real-time graphics pipeline architecture

(A review of the GPU-accelerated OpenGL/D3D graphics pipeline, from a systems perspective)

The graphics pipeline is an architecture for driving modern GPU execution

(Note to CUDA programmers: graphics pipeline was original interface to GPU hardware. Compute mode execution came later..)

Real-time graphics pipeline entities

Real-time graphics pipeline operations

Real-time graphics pipeline state

Memory Buffers (system state)

3D graphics system stack

Issues to keep in mind during this overview*

Level of abstraction

Orthogonality of abstractions

How is the pipeline designed for performance/scalability?

■ What the pipeline does and <u>DOES NOT</u> do

^{*} These are great questions to ask yourself about <u>any system</u> you study

The graphics pipeline

Command: draw these triangles!

Inputs:

Texture map

Object-to-camera-space transform: $\ T$

Perspective projection transform ${f P}$

Size of output image (W, H)

Use depth test /update depth buffer: YES!

"Assembling" vertices

Contiguous version data version

Indexed access version ("gather")

"Assembling" vertices

Contiguous vertex buffer

Output of vertex generation is a collection of vertex records.

Current pipelines set a limit of 32 float4 attributes per vertex (512 bytes) Why? (to be answered in a later lecture)

What the vertex processing kernel does

Transform triangle vertices into camera space

What the vertex processing kernel does

Apply perspective projection transform to transform triangle vertices into normalized coordinate space

Camera-space positions: 3D

Normalized space positions

Vertex processing: inputs

Uniform data: constant read-only data provided as input to every instance of the vertex shader e.g., object-to-clip-space vertex transform matrix

Vertex processing operates on a stream of vertex records + read-only "uniform" inputs.

Vertex processing: inputs and outputs

1 input vertex → 1 output vertex independent processing of each vertex

Vertex Shader Program *

```
uniform mat4 my_transform;  // P * T

output_vertex my_vertex_program(input_vertex in) {
    output_vertex out;
    out.pos = my_transform * in.pos; // matrix-vector mult
    return out;
}
```

};

Example per-vertex computation: lighting

Per-vertex lighting computation

Per-vertex normal computation, per pixel lighting

Per-vertex data: surface normal, surface color

Uniform data: light direction, light color

Example per-vertex computation: skeletal animation via "skinning"

$$V_{skinned} = \sum_{b \in bones} w_b M_b V_{base}$$

Per-vertex data: base vertex position (V_{base}) + blend coefficients (w_b)

Uniform data: "bone" matrices (Mb) for current animation frame

Primitive generation: group vertices into primitives

Programmable primitive processing *

input vertices for 1 prim — output vertices for N prims ** independent processing of each INPUT primitive

^{* &}quot;Geometry shader" in OpenGL/Direct3D terminology

^{**} Pipeline caps output at 1024 floats of output

Primitive processing: clipping

- Discard triangles that lie complete outside the unit cube (culling)
 - They are off screen, don't bother processing them further
- Clip triangles that extend beyond the unit cube to the cube
 - Note: clipping may create more triangles

Triangles after clipping

Transform to screen coordinates

Transform vertex xy positions from normalized coordinates into screen coordinates (based on screen w,h)

The graphics pipeline

Rasterization (fragment generation)

1 input prim → N output fragments

N is unbounded (size of triangles varies greatly)

Rasterization

Compute covered pixels Sample vertex attributes once per covered pixel

Fragment generation: sampling coverage

Evaluate attributes (depth, u, v) at all covered samples

The graphics pipeline

The graphics pipeline

Fragment processing

Example per-fragment operation: computing fragment color

e.g., sample texture map

The graphics pipeline

Frame-buffer operations

For each coverage sample point, depth-buffer stores depth of closest triangle at this sample point that has been processed by the renderer so far.

Closest triangle at sample point (x,y) is triangle with minimum depth at (x,y)

Depth buffer example

Example: rendering three opaque triangles

Processing yellow triangle: depth = 0.5

Color buffer contents

Grayscale value of sample point used to indicate distance

White = large distance

Black = small distance

Red = sample passed depth test

After processing yellow triangle:

Color buffer contents

Grayscale value of sample point used to indicate distance

White = large distance

Black = small distance

Red = sample passed depth test

Processing blue triangle: depth = 0.75

Color buffer contents

Grayscale value of sample point used to indicate distance

White = large distance

Black = small distance

Red = sample passed depth test

After processing blue triangle:

Color buffer contents

Grayscale value of sample point used to indicate distance

White = large distance

Black = small distance

Red = sample passed depth test

Processing red triangle: depth = 0.25

Color buffer contents

Grayscale value of sample point used to indicate distance

White = large distance

Black = small distance

Red = sample passed depth test

After processing red triangle:

Color buffer contents

Grayscale value of sample point used to indicate distance

White = large distance

Black = small distance

Red = sample passed depth test

Occlusion using the depth buffer

```
bool pass_depth_test(d1, d2) {
   return d1 < d2;
depth_test(tri_d, tri_color, x, y) {
  if (pass_depth_test(tri_d, zbuffer[x][y]) {
   // triangle is closest object seen so far at this
    // sample point. Update depth and color buffers.
    zbuffer[x][y] = tri_d;  // update zbuffer
    color[x][y] = tri_color; // update color buffer
```

Does depth-buffer algorithm handle interpenetrating surfaces?

Of course!

Occlusion test is based on depth of triangles at a given sample point. The relative depth of triangles may be different at different sample points.

Does depth-buffer algorithm handle interpenetrating surfaces?

Of course!

Occlusion test is based on depth of triangles at a given sample point. The relative depth of triangles may be different at different sample points.

Summary: occlusion using a depth buffer

- Store one depth value per coverage sample (not per pixel!)
- Constant space per sample
 - Implication: constant space for depth buffer
- Constant time occlusion test per covered sample
 - Read-modify write of depth buffer if "pass" depth test
 - Just a read if "fail"
- Not specific to triangles: only requires that surface depth can be evaluated at a screen sample point

Frame-buffer operations (full view)

The graphics pipeline

Programming the graphics pipeline

■ Issue draw commands — output image contents change

Command Type	Command
State change	Bind shaders, textures, uniforms
Draw	Draw using vertex buffer for object 1
State change	Bind new uniforms
Draw	Draw using vertex buffer for object 2
State change	Bind new shader
Draw	Draw using vertex buffer for object 3
State change	Change depth test function
State change	Bind new shader
Draw	Draw using vertex buffer for object 4

Note: efficiently managing stage changes is a major challenge in implementations

A series of graphics pipeline commands

State change (set "red" shader)

Draw

State change (set "blue" shader)

Draw

Draw

Draw

State change (change blend mode)

State change (set "yellow" shader

Draw

Feedback loop 1: use output image as input texture in later draw command

■ Issue draw commands — output image contents change

Command Type	Command
Draw	Draw using vertex buffer for object 5
Draw	Draw using vertex buffer for object 6
State change	Bind contents of output image as texture 1
Draw	Draw using vertex buffer for object 5
Draw	Draw using vertex buffer for object 6
	•

Rendering to textures for later use is key technique when implementing:

- Shadows
- Environment mapping
- Post-processing effects

Feedback loop 2: output intermediate geometry for use in later draw command

■ Issue draw commands — output image contents change

Analyzing the design of the graphics pipeline

Level of abstraction

Orthogonality of abstractions

How is pipeline designed for performance/scalability?

■ What the pipeline does and <u>DOES NOT</u> do

^{*} These are great questions to ask yourself about any system we discuss in this course

Level of abstraction

- Imperative abstraction, not declarative
 - Application code specifies: "draw these triangles, using this fragment shader, with depth testing on".
 - It does not specify: "draw a cow made of marble on a sunny day"
- <u>Programmable</u> stages provide application large amount of flexibility (e.g., to implement wide variety of materials and lighting techniques)
- <u>Configurable</u> (but not programmable) pipeline structure: turn stages on and off, create feedback loops
- Abstraction is low enough to allow application to implement many techniques, but high enough to abstract over radically different GPU implementations

Orthogonality of abstractions

- All vertices treated the same regardless of primitive type
 - Result: vertex programs oblivious to primitive types
 - The same vertex program works for triangles and lines
- All primitives are converted into fragments for per-pixel shading and frame-buffer operations
 - Fragment programs are oblivious to source primitive type and the behavior of the vertex program *
 - Z-buffer is a common representation used to perform occlusion for any primitive that can be converted into fragments

What the pipeline DOES NOT do (non-goals)

- Modern graphics pipeline has no concept of lights, materials, modeling transforms
 - Only vertices, primitives, fragments, pixels, and STATE
 (state = buffers, shaders, and configuration parameters)
 - Applications use these basic abstractions to implement lights, materials, etc.
- The graphics pipeline has no concept of a scene
- No I/O or OS window management

Pipeline design facilitates performance/scalability

- [Reasonably] low level: low abstraction distance to implementation
- Constraints on pipeline structure:
 - Constrained data flow between stages
 - Fixed-function stages for common and difficult to parallelize tasks
 - Shaders: independent processing of each data element (enables parallelism)
- Provide frequencies of computation (per vertex, per primitive, per fragment)
 - Application can choose to perform work at the rate required
- Keep it simple:
 - Only a few common intermediate representations
 - Triangles, points, lines
 - Fragments, pixels
 - Z-buffer algorithm computes visibility for any primitive type
- "Immediate-mode system": pipeline processes primitives as it receives them (as opposed to buffering the entire scene)
 - Leave global optimization of <u>how</u> to render scene to the application

Homework exercise: describe one example of a graphics pipeline design decision that enables high-performance implementations.

Perspective from Kurt Akeley

- Does the system meet original design goals, and then do much more than was originally imagined? If so, the design is a good one!
 - Simple, orthogonal concepts often produce amplifier effect

Graphics pipeline implementation: GPUs

Specialized processors for executing graphics pipeline computations

Integrated GPU: part of modern Intel CPU die

GPU: heterogeneous, multi-core processor

Modern GPUs offer ~2-4 TFLOPs of performance for executing vertex and fragment shader programs

T-OP's of fixed-function compute capability over here

