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Last week:
▪ Large-scale (off-line) sparse 3D reconstruction 
▪ From unstructured collections of millions of images

Figure 4. SfM models output by our system. From left to right, then top to bottom: Berliner Dom, Trafalgar Square, Brandenburg Gate,
Piccadilly Circus, Notre Dame, Louvre, Prague, Brussels, and Sagrada Famı́lia.

of our significantly improved cluster representation and the
streaming computation that readily obtains connected com-
ponents. Frahm et al. report a computation time of 20.32
hours for the structure-from-motion part of their system. On
the same machine we achieve a processing time of 14.61
hours for registering more than an order of magnitude more
images for the same dataset.

The third and fourth dataset we tested were datasets from
Paris, with 10.3 million images, and from London, with
12.3 million. Both datasets were downloaded from Flickr.
It can be seen that in both datasets our method reaches a
registration rate of around one quarter of the images (Paris
24% registration rate and London 26%) which is similar to
the 26% registration rate for the Berlin dataset. It can be
seen that the computation rates for these datasets are also
scaling linearly (less than 6% variation from linear). This
underlines the scalability of our proposed method that re-
constructs from an order of magnitude more image data
than previously proposed methods while reaching state-of-
the-art model completeness. Example data are shown in
Figure 4 and the detailed statistics are provided in Table 1.

To demonstrate the true world-scale processing, we pro-
cessed 96 million images spanning the globe from the Ya-
hoo webscope dataset [2, 28]. The processing time was ap-
proximately 5.26 days. Our pipeline is the first system to be
able to reconstruct from a world-scale dataset like this. Ex-
ample models are shown in Figure 4 and the detailed statis-

tics are provided in Table 1. This clearly demonstrates the
scalability of our newly proposed reconstruction system en-
abling us to reconstruct the world in six days on a single
computer. While we did register almost 1.5 million images,
the generated reconstructions were smaller compared to the
specific city-scale datasets (as the city-scale datasets have
a denser sampling of images). Therefore, we skipped the
iconic-image-based reconstruction, and instead used all of
the images in the connected components directly.

5. Conclusion

We proposed a novel stream computing paradigm to en-
able world-scale 3D modeling from unordered Internet im-
age photo collections. While the streaming processing al-
lows for high-scalability, it posed challenges for the data
association required for 3D reconstruction. We proposed
novel data association concepts to overcome these chal-
lenges and reach high model completeness. In compari-
son to the state-of-the-art modeling from unordered photo
collections, our proposed method pushes the scale of re-
constructabilty by more than an order of magnitude while
achieving highly complete models.

Acknowledgments: This material is based upon work sup-
ported by the National Science Foundation under Grant
No. IIS-1252921, No. IIS-1349074, and No. CNS-1405847.
This material is based upon work supported by the US

Image credit: Heinly 2015
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Today: real-time, dense 3D reconstruction from a single 
RGBD capture session

Microsoft Kinect

Occipital’s Structure Sensor 

Stereolabs Zed
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3D output

Image credit: Dai 2016
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3D output

Image credit: Dai 2016
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Aside: how a depth camera works
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Depth from time-of-flight
▪ Conventional LIDAR 

- Laser beam scans scene (rotating mirror) 

- Low frame rate to capture entire scene 

▪ “Time-of-flight” (TOF) cameras 
- No moving beam, capture entire image of scene with 

each light pulse 

- Special CMOS sensor records a depth image based on 
phase of arriving light (phase depends on distance at 
which light is reflected off scene object) 

- High frame rate 

- Formerly TOF cameras were low resolution, expensive... 

- TOF camera featured in XBox One depth sensor 
(today we will only talk about the original XBox 360 
implementation)
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Computing depth of scene point from two images
Assume two calibrated cameras are looking at the same scene 
Binocular stereo 3D reconstruction of point P: depth from disparity

P

x x’

ff
b

z

Focal length:  f 
Baseline:  b 
Disparity:  d = x’- x

Simple reconstruction example: cameras aligned (coplanar sensors), separated by known distance, same focal length 
“Disparity” is the distance between object’s projected position in the two images: x - x’
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Recall: correspondence problem
How to determine which pairs of pixels in image 1 and image 2 correspond to 
the same scene point?
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Epipolar constraint
Goal: determine pixel correspondence from pixel values 

- Corresponding pixels = pairs of pixels that contain the same scene point

Epipolar Constraint 
– Reduces correspondence problem to 1D search along conjugate epipolar lines 
– Point in left image will lie on line in right image (epipolar line)

epipolar plane epipolar lineepipolar line

Slide credit: S. Narasimhan 

P

(image of the line through P)
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For each epipolar line
For each pixel in the left image

Compare with every pixel on same epipolar line in right image

Pick pixel with minimum match cost

Basic improvements: match windows, adaptive size match windows... 

- This should sound familiar given our discussion of image processing algorithms... 

- Correlation, sum-of-squared difference (SSD), etc.

Solving correspondence (basic algorithm)

What are 
assumptions?

Slide credit: S. Narasimhan 
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Solving correspondence: robustness challenges
▪ Scene with no texture (many parts of the scene look the same) 

▪ Non-lambertian surfaces (surface appearance is dependent upon view) 

▪ Pixel pairs may not be present (point on surface is occluded from one view)
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Active sensor: emit structured light

z

zref

d

f

Reference plane

Known light 
source

b

System: one light source emitting known beam + one camera measuring scene appearance  
If the scene is at reference plane, image that will be recorded by camera is known 
(correspondence between pixel in recorded image and scene point is known)

Single spot illuminant is inefficient! 
(must “scan” scene with spot to get depth, so high latency to retrieve a single depth image) 

x
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Active sensor: emit structured light
Simplify correspondence problem by encoding spatial position in illuminant

Projected light pattern Camera image
Image: Zhang et al.
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Microsoft XBox 360 Kinect

Illuminant 
(Infrared Laser + diffuser)

RGB CMOS Sensor 
640x480 (w/ Bayer mosaic) 

Monochrome Infrared 
CMOS Sensor 

(Aptina MT9M001) 
1280x1024 ** 

** Kinect returns 640x480 disparity image, suspect sensor is 
configured for 2x2 pixel binning down to 640x512, then crop 

Image credit: iFixIt

Similar approach used in 
Intel’s RealSense cameras
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Credit: www.futurepicture.org

Infrared image of Kinect illuminant output
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Credit: www.futurepicture.org

Infrared image of Kinect illuminant output
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Computing disparity for entire scene

1. Choose output pixels in image, classify as UNKNOWN or SHADOW (based on whether speckle is found) 

2. While significantly large percentage of output pixels are UNKNOWN 

- Choose an UNKNOWN pixel. 
- Correlate surrounding MxN pixel window with reference image to compute disparity D = (dx,dy) 

(note: search window is a horizontal swath of image, plus some vertical slack) 
- If sufficiently good correlation is found: 

- Mark pixel as a region anchor (its depth is known) 
- Attempt to grow region around the anchor pixel: 

- Place region anchor in FIFO, mark as ACTIVE 
- While FIFO not empty 
- Extract pixel P from FIFO (known disparity for P is D) 
- Attempt to establish correlations for UNKOWN neighboring pixels Pn of P 

(left,right,top,bottom neighbors) by searching region given by Pn + D + (+/-1,+/1) 
- If correlation is found, mark Pn as ACTIVE, set parent to P, add to FIFO 
- Else, mark Pn as EDGE, set depth to depth of P.

* Source: PrimeSense Patent WO 2007/043036 A1 

Use region-growing algorithm for compute efficiency * 
(Assumption: spatial locality implies depth locality)
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Kinect block diagram

Infrared Sensor RGB Sensor Illuminant

Image processing 
ASIC 

(depth from disparity)

USB bus

Box 360 CPU

640x480 x 30fps  RGB image 
640x480 x 30fps  Disparity image

Disparity calculations performed by PrimeSense ASIC in Kinect, not by XBox 360 CPU

Kinect

Cheap sensors: ~ 1 MPixel

Cheap illuminant: laser + diffuser makes random 
dot pattern (not a traditional projector)

Custom image-processing ASIC to compute 
disparity image (scale-invariant region 
correlation involves non-trivial compute cost)
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Back to real-time 3D reconstruction
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Real-time 3D reconstruction from depth: 
unique assumptions and challenges
▪ New assumptions: 

- Now have dense depth estimate at each frame 
- But depth is noisy and may exhibit “holes” 

- Frame-to-frame correspondence made easier since camera undergoes limited 
motion between frames

▪ New challenges: 

- Seek dense 3D model 

- Real-time performance (important for 
providing user accurate feedback during 
scanning)

Image credit: Lejeune et al. 2011

Depth image from original Kinect sensor
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           = camera intrinsics matrix (focal length, 
aspect ratio): converts camera-space dir to 
normalized sensor plane coordinate (pixel)

KinectFusion: 3D reconstruction from only 
depth information
Input: per-frame depth image from frame k of capture: 

(may clean up raw depth from sensor using bilateral filter)
Dk(u)

Given depth map and camera calibration information, compute per-frame set of 
observed surface 3D points (camera-relative coordinates):

Vk(u) = Dk(K
�1u̇)

Given camera-to-world transformation         , can compute position of observed 
points in global coordinate frame 
(below: g = “global coordinate frame”)

Note: dot notation indicates homogeneous 
form. [from Newcombe 11]

Vg
k(u) = TkV̇k(u)

V̇k = [VT
k 1]T

u̇ = [uT 1]T

Vg
k(u) = TkV̇k(u)

How do we estimate camera poses? 
How do we fuse partial surface observations into a 
single consistent 3D model?

Vg
k(u) = TkV̇k(u)

Vk(u) = Dk(K
�1u̇)
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Fast projective data association 
(keypoint-less correspondence)
Assume       moves points from camera 1’s reference frame to camera 2’s reference frameT

Error

f(x) is actual measurement 
made by camera 2 at f(x)

= kf(xi)�Tpik

xi = ⇡(Tpi)
Camera 1 Camera 2

f(xi)

pi
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Estimating camera pose (      ) for new frame    
using iterated closest point (ICP)
Establish correspondence between depth measurements from frame k with depth 
estimates from frame k-1:  ***

Vg
k(u) = TkV̇k(u)

Use each pixel      in frame k with a valid depth estimate, use projective data association 
to predict corresponding pixel      in frame k-1

Vk(u) = Dk(u)K
�1u̇

World-space position of surface as measured by frame k 
(given current estimate of frame k camera pose)

Position of surface relative to camera at frame k-1

Predicted corresponding pixel in frame k-1

V̂g
k�1(û) = Tk�1V̂k(û)

û = ⇡(T�1
k�1T

z
kV̇k(u))

World space position of surface(as measured by frame k-1) 
at predicted corresponding pixel

u
û

Measured camera space position of surface in frame k

T0
k = Tk�1Seed frame k pose estimate:  

*** In practice, use frame-to-model (not frame-to-frame) tracking: establish correspondence with 
        view of volumetric TSDF model from camera position at k-1.  See future slides.
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Estimating camera pose (      ) for new frame    
using iterated closest point (ICP)
Use “good” correspondences to retain pose estimate:

Vg
k(u) = TkV̇k(u)

Depth estimate                      for pixel       must be valid uDk(u)

Reasonably good correspondence in position: 

Reasonably good correspondence in normal (not shown) 

(large discrepancy might indicate dis-occlusion)

Pose error is computed using point-plane metric: (measured surface point at frame 
k should be in surface plane of corresponding point from k-1)

Non-linear optimization to iteratively refine

kTz
kV̇k(u)� V̂g

k�1(û)k  ✏d

Vg
k(u) = TkV̇k(u) Note: parallel over all pixels

E(Tz
k) =

X

u2valid

⇥
(Tz

kV̇k(u)� V̂g
k�1(û)) · N̂

g
k�1(û)

⇤2
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Computing the 3D surface model
Given camera poses (      ) and surface vertex estimates (             ) 
estimate 3D surface position

Tk Vg
k(u)

Store scene geometry in volumetric form as truncated signed distance function (TSDF)

p

u

3D voxel grid point p is distance  
from camera, projects to pixel u 

Camera measures surface at 
distance  

Distance is:

Dk(u)

dp

d = Dk(u)� dp

Store                                  grid cell if:min
�
1,

d

µ

�

d � �µ

Fully data-parallel across voxels
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Computing the 3D surface model
Store scene geometry in volumetric form as truncated signed distance function (TSDF)
Each voxel stores: 
1. truncated signed distance: 
2. weight: 
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Convenient incremental TSDF update 
when new frames arrive:

FDk(p)
WDk(p) / cos(✓)/Dk(u)

Wk(p) = Wk�1(p) +WDk(p)

Fk(p) =
Wk�1(P)Fk(p) +WDk(p)FDk(p)

Wk�1(p) +WDk(p)

Weight closer measurements, and 
measurements that are not at 
glancing angles more heavily

= contribution to TSDF due to  
     depth map Dk

FDk
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During pose estimation: raycast the TSDF to obtain                          when estimating pose             
(“frame-to-model tracking” intuition: TSDF model is more accurate/complete than the 
single measured depth map from frame k-1) 

Computing Dk(u) from the TSDF model (given Tk)
Raycast the TSDF! For each pixel, compute world-coordinate camera ray directions, 
then march from starting voxel until encountering zero crossing in TSDF

0.1

0.1

0.5

-0.3

0.8

0.1 -0.2 -0.5

0.5

1.0

1.01.0
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kTz
kV̇k(u)� V̂g

k�1(û)k  ✏d Tk
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KinectFusion summary
▪ Simple data-parallel operations enable efficient real-time GPU 

implementation 
- Energy term computed in parallel for all pixels (correspondence, error 

estimation) 
- Each frame updates TSDF independently in parallel over all voxels 

▪ Weighted volumetric surface representation  
- Encodes “uncertainty” in weights 
- TSDF incrementally refines as more frames arrive 

- More confident measurements override incorrect early values 
- Fills “holes” in surface estimate as new views are added 

- Not memory efficient (dense 3D voxel representation) 
- KinectFusion (2011) limited to “desk-scale” reconstructions (2563)
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Improving memory efficiency
▪ One option: adaptive data structures (e.g., octtree) 

▪ Simple and GPU performant solution: 
- Hash table storing non-empty 83 voxel-blocks 

▪ Upon new frame arrival: 
- Pre-allocate necessary voxelblocks: raycast voxel grid from camera to frame’s 

depth samples to find intersections with voxelblocks 
- Determine voxels to update: for each voxel (in parallel), compute whether voxel is 

in view frustum (then compact list of touched voxels using standard prefix scan 
techniques) 

- Update voxels: for each voxel in list (in parallel), perform update similar to dense 
voxel method

H(x, y, z) = x · p1 � y · p2 � z · p3

Image credit: Lefebvre et al. GPU Gems 2

[Nießner 2013]
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Hashing-based sparse voxel representation
On a Titan X GPU: sparsity enables storage of 8mm2 voxels for near-room sized scenes

[Nießner 2013]
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BundleFusion
▪ Combine incremental depth-based volumetric methods (like 

we just discussed) 
- Produce dense 3D geometry 
- Performant 
- Quality issues: prone to drift (reliance on temporal tracking) 

▪ With RGB keypoint-based sparse methods (like the offline 
reconstruction methods discussed in prior lecture) 
- Sparse 3D keypoints 
- Offline: expensive image matching + global optimization  
- Global model consistency via bundle-adjustment (global optimization) 

▪ Goals: high-quality reconstruction, interactive feedback (even 
for large scans) 

[Dai 2016]
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BundleFusion: three main ideas
▪ Sparse-to-dense: use sparse SIFT features to coarsely estimate 

camera poses, then use dense photometric/geometric consistency 
for fine-scale alignment 

▪ Use full history of frames (not just recent history) to estimate pose 
- Using full history is made tenable by using two-level hierarchy: align 

short sequences of frames locality (temporal tracking), then use a 
representative keyframe from the sequence in global alignment 

▪ “Reintegration” during volumetric fusion: ability to take 
contribution of a frame out of fused TSDF estimate whenever it’s 
reoptimized pose changes notably (retain high quality TSDF)

[Dai 2016]
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Fast sparse+dense correspondence
Given set of frames with per-pixel color (Ci) and depth (Di), find corresponding features

Compute SIFT keypoints for all frames 

For each image pair (i,j), use a brute force matching solution to find potential correspondences 
(no acceleration structure) 

Perform geometric verification of correspondences in 3D to estimate rigid camera transform 
between pair: 

Discard SIFT keypoint correspondences that are not inliers 

Attempt dense verification using 80x60 “tiny images”:                ,  
       Let                                be measured surface position (relative to camera i) derived from 

14 • Dai et al.

APPENDIX

Table III. Dataset overview.
#Frames Trajectory Length

Apt 0 8560 89.4m
Apt 1 8580 91.8m
Apt 2 3989 87.5m

Copyroom 4480 24.4m
Office 0 6159 52.8m
Office 1 5730 51.7m
Office 2 3500 36.3m
Office 3 3820 66.8m

In order to capture scans at high completeness, the cam-
era is moved in long and complex trajectories.

A. ADDITIONAL QUALITATIVE RESULTS
Reconstructed models for the seven scenes in our dataset are publicly
available at http://www.graphics.stanford.edu/projects/
bundlefusion/. Note that the relocalization (due to sensor occlu-
sion) in the sequence Apt 2 cannot be handled by state-of-the-art
methods such as ElasticFusion and Redwood. While our method and
ElasticFusion run at real-time rates, Redwood runs offline, taking
8.6 hours for Apt0, 13.2 hours for Apt1, 4 hours for Copyroom, 7.7
hours for Office1, 2.6 hours for Office2, and 3.5 hours for Office3.
Redwood is also a geometry-only approach that does not use the
RGB channels.

We additionally evaluate our method on the SUN3D dataset [Xiao
et al. 2013], which contains a variety of indoor scenes captured
with an Asus Xtion sensor. Fig. 14 shows reconstruction results
for several large, complex scenes, using the offline SUN3Dsfm
bundle adjustment system as well as our approach. Note that our
approach produces better global structure while maintaining local
detail at real-time rates. The SUN3D dataset also contains eight
scenes which contain manual object-correspondence annotations in
order to guide their reconstructions; we show reconstruction results
using our method (without annotation information) on these scenes
in Fig. 15.

We have also reconstructed all 464 scenes from the NYU2
dataset [Silberman et al. 2012], which contains a variety of in-
door scenes recorded by a Kinect. Several reconstruction results are
shown in Fig. 16.

B. ADDITIONAL QUANTITATIVE RESULTS
The ICL-NUIM dataset of Handa et al. [2014] also provides the
ground truth 3D model used to generate the virtually scanned se-
quences. In addition to the camera tracking evaluation provided in
Section 6 of the paper, we evaluate surface reconstruction accuracy
(mean distance of the model to the ground truth surface) for the
living room model in Table IV.

Additionally, we further evaluate our camera tracking on the aug-
mented ICL-NUIM dataset of [Choi et al. 2015], which comprises
synthetic scans of two virtual scenes, a living room and an office,
from the original ICL-NUIM data. In contrast to the original ICL-
NUIM, these scans have longer trajectories with more loop closures.
Table V shows our trajectory estimation performance on this dataset
(with synthetic sensor noise, using the reported camera intrinsic
parameters), which is on par with or better than existing state of the
art. Although the camera trajectories are complex, the additional

loop closures help maintain stability (as frames find matches which
are not neighbors, mitigating tracking drift), aiding our performance
in all scenes except Office 1. In this case, our method has difficulty
closing the loop, as part of it covers a wall with little to no color
features.

Table IV. Surface reconstruction accuracy on the synthetic
ICL-NUIM dataset by [Handa et al. 2014].

kt0 kt1 kt2 kt3
DVO SLAM 3.2cm 6.1cm 11.9cm 5.3cm

RGB-D SLAM 4.4cm 3.2cm 3.1cm 16.7cm
MRSMap 6.1cm 14.0cm 9.8cm 24.8cm
Kintinuous 1.1cm 0.8cm 0.9cm 24.8cm

Elastic Fusion 0.7cm 0.7cm 0.8cm 2.8cm
Redwood (rigid) 2.0cm 2.0cm 1.3cm 2.2cm

Ours 0.5cm 0.6cm 0.7cm 0.8cm

Mean distance of each reconstructed model to the ground truth surface.
Note that unlike the other methods listed, Redwood does not use color
information and runs offline.

Table V. ATE RMSE on the synthetic augmented ICL-NUIM Dataset
by [Choi et al. 2015].

Living room 1 Living room 2 Office 1 Office 2
Kintinuous 27cm 28cm 19cm 26cm

DVO SLAM 102cm 14cm 11cm 11cm
SUN3D SfM 21cm 23cm 24cm 12cm

Redwood 10cm 13cm 6cm 7cm
Ours 0.6cm 0.5cm 15.3cm 1.4cm

Note that unlike the other methods listed, Redwood does not use color information and
runs offline.

C. SIFT PERFORMANCE
We provide an additional performance analysis of our GPU-based
SIFT detection and matching strategy, see Table VI. Note that for
a 1296 ⇥ 968 image (another Structure sensor color resolution),
SIFT detection time increases slightly to ⇡ 6.4ms. We detect ⇠ 150

features per frame, and ⇠ 250 per keyframe, for all sequences.

Table VI. SIFT performance for a 640⇥ 480

image.
#Features Time Detect (ms) Time Match (ms)

150 3.8 0.04
250 4.2 0.07
1000 5.8 0.42

Detection time (including descriptor computation) is per frame,
and match time is per image pair (parallelized). On all sequences
run, we detect about 150 features per frame, and about 250 per
keyframe.
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Hierarchical camera pose estimation

Two-level grouping: 
Establish local alignment between consecutive groups of frames (~10 frames) 
Use one frame (first) from each group as “keyframe” for global alignment
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Sparse + dense energy optimization
Consider S frames in a local frame group (or all S keyframes across entire recording) 

Seek camera poses for all frames

� = [R0, t0, ...,RS�1, tS�1]
T = [x0, x1, x2, ...xN ]T

Set up as non-linear least squares optimization problem

BundleFusion: Real-time Globally Consistent 3D Reconstruction using On-the-fly Surface Re-integration • 5

RGB-D stream; adjacent chunks overlap by 1 frame. The goal of lo-
cal pose optimization is to compute the best intra-chunk alignments
{T

i

}, relative to the first frame of the chunk, which locally defines
the reference frame. To this end, valid feature correspondences are
searched between all pairs of frames of the chunk, and then the en-
ergy minimization approach described in Sec. 4.3 is applied, jointly
considering both these feature correspondences and dense photo-
metric and geometric matching. Since each chunk only contains a
small number of consecutive frames, the pose variation within the
chunk is small, and we can initialize each of the T

i

to the identity
matrix. To ensure that the local pose optimization result after con-
vergence is sufficiently accurate, we apply the Dense Verification
test (see Sec. 4.1.1) to each pair of images within the chunk using
the optimized local trajectory. If the re-projection error is too large
for any pair of images (> 0.05m), the chunk is discarded and not
used in the global optimization.
Per-Chunk Keyframes Once a chunk has been completely pro-
cessed, we define the RGB-D data from the first frame in the chunk
to be the chunk’s keyframe. We also compute a representative aggre-
gate keyframe feature set. Based on the optimized pose trajectory
of the chunk, we compute a coherent set of 3D positions of the
inter-chunk feature points in world space. These 3D positions may
contain multiple instances of the same real-world point, found in
separate pairwise frame matches. Thus to obtain the keyframe fea-
ture set, multiple feature point instances which match in their feature
descriptors and coincide in 3D world space are merged to one best
3D representative in the least squares sense. This keyframe feature
set is mapped into the space of the keyframe using the respective
transformation. Note that once this global keyframe and keyframe
feature set is created, the chunk data (i.e., intra-chunk features, de-
scriptors, correspondences) can be discarded as it is not needed in
the second layer pose alignment.
Global Inter-Chunk Pose Optimization Sparse correspondence
search and filtering between global keyframes is analogous to that
within a chunk, but on the level of all keyframes and their feature
sets. If a global keyframe does not find any matches to previously
seen keyframes, it is marked as invalid but kept as a candidate, allow-
ing for re-validation when it finds a match to a keyframe observed
in the future. The global pose optimization computes the best global
alignments {T

i

} for the set of all global keyframes, thus aligning
all chunks globally. Again, the same energy minimization approach
from Sec. 4.3 is applied using both sparse and dense constraints.
Intra-chunk alignment runs after each new global keyframe has
found correspondences. The pose for a global keyframe is initialized
with the delta transform computed by the corresponding intra-chunk
optimization, composed with the previous global keyframe pose.
After the intra-chunk transforms have been computed, we obtain
globally consistent transforms among all input frames by applying
the corresponding delta transformations (from the local optimiza-
tion) to all frames in a chunk.

4.3 Pose Alignment as Energy Optimization
Given a set of 3D correspondences between a set of frames S (frames
in a chunk or keyframes, depending on hierarchy level), the goal of
pose alignment is to find an optimal set of rigid camera transforms
{T

i

} per frame i (for simpler notation, we henceforth write i for f
i

)
such that all frames align as best as possible. We parameterize the
4⇥ 4 rigid transform T

i

using matrix exponentials based on skew-
symmetric matrix generators [Murray et al. 1994], which yields fast
convergence. This leaves 3 unknown parameters for rotation, and 3

for translation. For ease of notation, we stack the degrees of freedom

for all |S| frames in a parameter vector:

X = (R0, t0, . . . ,R|S|, t|S|)
T

= (x0, . . . , xN

)

T

.

Here, N is the total number of variables x

i

. Given this notation,
we phrase the alignment problem as a variational non-linear least
squares minimization problem in the unknown parameters X . To
this end, we define the following alignment objective, which is based
on sparse features and dense photometric and geometric constraints:

Ealign(X ) = wsparseEsparse(X ) + wdenseEdense(X ).

Here, wsparse and wdense are weights for the sparse and dense match-
ing terms, respectively. wdense is iteratively increased to achieve
coarse-to-fine alignment. Note that depending on the optimization
hierarchy level, the reference frame is the first frame in the chunk
(for intra-chunk alignment), or the first frame in the entire input
sequence (for global inter-chunk alignment). Hence, the reference
transform T0 is not a free variable and left out from the optimization.
Sparse Matching In the sparse matching term, we minimize the
sum of distances between the world space positions over all feature
correspondences between all pairs of frames in S:

Esparse(X ) =

|S|X
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Here, p
i,k

is the k-th detected feature point in the i-th frame. C
i,j

is the set of all pairwise correspondences between the i-th and the
j-th frame. Geometrically speaking, we seek the best rigid transfor-
mations T

i

such that the Euclidean distance over all the detected
feature matches is minimized.
Dense Matching We additionally use dense photometric and geo-
metric constraints for fine-scale alignment. To this end, we exploit
the dense pixel information of each input frame’s color C

i

and depth
D

i

. Evaluating the dense alignment is computationally more expen-
sive than the previous sparse term. We therefore evaluate it on a
restricted set E of frame pairs. E can be thought of as encoding the
edges (i, j) of a sparse matching graph, in which a frame i is aligned
(connected with) frame j if their camera angles are similar (within
60

�, to avoid glancing angles of the same view) and they overlap
with each other. The optimization for both dense photometric and
geometric alignment is based on the following energy:

Edense(T ) = wphotoEphoto(T ) + wgeoEgeo(T ).

Here, wphoto is the weight of the photometric term and wgeo of the
geometric term, respectively. For the dense photo-consistency term,
we evaluate the error on the gradient I

i

of the luminance of C
i

to
gain robustness against lighting changes:

Ephoto(X ) =
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Here, ⇡ denotes the perspective projection, and d
i,k

is the 3D po-
sition associated with the k-th pixel of the i-th depth frame. Our
geometric alignment term evaluates a point-to-plane metric to al-
low for fine-scale alignment in the tangent plane of the captured
geometry:

Egeo(X ) =
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Here, n
i,k

is the normal of the k-th pixel in the i-th input frame. Cor-
respondences that project outside of the input frame are ignored, and

Sparse matching: minimize euclidean distance between all corresponding keypoints.
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RGB-D stream; adjacent chunks overlap by 1 frame. The goal of lo-
cal pose optimization is to compute the best intra-chunk alignments
{T

i

}, relative to the first frame of the chunk, which locally defines
the reference frame. To this end, valid feature correspondences are
searched between all pairs of frames of the chunk, and then the en-
ergy minimization approach described in Sec. 4.3 is applied, jointly
considering both these feature correspondences and dense photo-
metric and geometric matching. Since each chunk only contains a
small number of consecutive frames, the pose variation within the
chunk is small, and we can initialize each of the T

i

to the identity
matrix. To ensure that the local pose optimization result after con-
vergence is sufficiently accurate, we apply the Dense Verification
test (see Sec. 4.1.1) to each pair of images within the chunk using
the optimized local trajectory. If the re-projection error is too large
for any pair of images (> 0.05m), the chunk is discarded and not
used in the global optimization.
Per-Chunk Keyframes Once a chunk has been completely pro-
cessed, we define the RGB-D data from the first frame in the chunk
to be the chunk’s keyframe. We also compute a representative aggre-
gate keyframe feature set. Based on the optimized pose trajectory
of the chunk, we compute a coherent set of 3D positions of the
inter-chunk feature points in world space. These 3D positions may
contain multiple instances of the same real-world point, found in
separate pairwise frame matches. Thus to obtain the keyframe fea-
ture set, multiple feature point instances which match in their feature
descriptors and coincide in 3D world space are merged to one best
3D representative in the least squares sense. This keyframe feature
set is mapped into the space of the keyframe using the respective
transformation. Note that once this global keyframe and keyframe
feature set is created, the chunk data (i.e., intra-chunk features, de-
scriptors, correspondences) can be discarded as it is not needed in
the second layer pose alignment.
Global Inter-Chunk Pose Optimization Sparse correspondence
search and filtering between global keyframes is analogous to that
within a chunk, but on the level of all keyframes and their feature
sets. If a global keyframe does not find any matches to previously
seen keyframes, it is marked as invalid but kept as a candidate, allow-
ing for re-validation when it finds a match to a keyframe observed
in the future. The global pose optimization computes the best global
alignments {T

i

} for the set of all global keyframes, thus aligning
all chunks globally. Again, the same energy minimization approach
from Sec. 4.3 is applied using both sparse and dense constraints.
Intra-chunk alignment runs after each new global keyframe has
found correspondences. The pose for a global keyframe is initialized
with the delta transform computed by the corresponding intra-chunk
optimization, composed with the previous global keyframe pose.
After the intra-chunk transforms have been computed, we obtain
globally consistent transforms among all input frames by applying
the corresponding delta transformations (from the local optimiza-
tion) to all frames in a chunk.

4.3 Pose Alignment as Energy Optimization
Given a set of 3D correspondences between a set of frames S (frames
in a chunk or keyframes, depending on hierarchy level), the goal of
pose alignment is to find an optimal set of rigid camera transforms
{T

i

} per frame i (for simpler notation, we henceforth write i for f
i

)
such that all frames align as best as possible. We parameterize the
4⇥ 4 rigid transform T

i

using matrix exponentials based on skew-
symmetric matrix generators [Murray et al. 1994], which yields fast
convergence. This leaves 3 unknown parameters for rotation, and 3

for translation. For ease of notation, we stack the degrees of freedom

for all |S| frames in a parameter vector:

X = (R0, t0, . . . ,R|S|, t|S|)
T

= (x0, . . . , xN

)

T

.

Here, N is the total number of variables x

i

. Given this notation,
we phrase the alignment problem as a variational non-linear least
squares minimization problem in the unknown parameters X . To
this end, we define the following alignment objective, which is based
on sparse features and dense photometric and geometric constraints:

Ealign(X ) = wsparseEsparse(X ) + wdenseEdense(X ).

Here, wsparse and wdense are weights for the sparse and dense match-
ing terms, respectively. wdense is iteratively increased to achieve
coarse-to-fine alignment. Note that depending on the optimization
hierarchy level, the reference frame is the first frame in the chunk
(for intra-chunk alignment), or the first frame in the entire input
sequence (for global inter-chunk alignment). Hence, the reference
transform T0 is not a free variable and left out from the optimization.
Sparse Matching In the sparse matching term, we minimize the
sum of distances between the world space positions over all feature
correspondences between all pairs of frames in S:

Esparse(X ) =

|S|X
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Here, p
i,k

is the k-th detected feature point in the i-th frame. C
i,j

is the set of all pairwise correspondences between the i-th and the
j-th frame. Geometrically speaking, we seek the best rigid transfor-
mations T

i

such that the Euclidean distance over all the detected
feature matches is minimized.
Dense Matching We additionally use dense photometric and geo-
metric constraints for fine-scale alignment. To this end, we exploit
the dense pixel information of each input frame’s color C

i

and depth
D

i

. Evaluating the dense alignment is computationally more expen-
sive than the previous sparse term. We therefore evaluate it on a
restricted set E of frame pairs. E can be thought of as encoding the
edges (i, j) of a sparse matching graph, in which a frame i is aligned
(connected with) frame j if their camera angles are similar (within
60

�, to avoid glancing angles of the same view) and they overlap
with each other. The optimization for both dense photometric and
geometric alignment is based on the following energy:

Edense(T ) = wphotoEphoto(T ) + wgeoEgeo(T ).

Here, wphoto is the weight of the photometric term and wgeo of the
geometric term, respectively. For the dense photo-consistency term,
we evaluate the error on the gradient I

i

of the luminance of C
i

to
gain robustness against lighting changes:

Ephoto(X ) =

X
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Here, ⇡ denotes the perspective projection, and d
i,k

is the 3D po-
sition associated with the k-th pixel of the i-th depth frame. Our
geometric alignment term evaluates a point-to-plane metric to al-
low for fine-scale alignment in the tangent plane of the captured
geometry:

Egeo(X ) =
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Here, n
i,k

is the normal of the k-th pixel in the i-th input frame. Cor-
respondences that project outside of the input frame are ignored, and

pi,k = position of kth key point 
in ith frame

matching keypoints in 
frames i and j
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RGB-D stream; adjacent chunks overlap by 1 frame. The goal of lo-
cal pose optimization is to compute the best intra-chunk alignments
{T

i

}, relative to the first frame of the chunk, which locally defines
the reference frame. To this end, valid feature correspondences are
searched between all pairs of frames of the chunk, and then the en-
ergy minimization approach described in Sec. 4.3 is applied, jointly
considering both these feature correspondences and dense photo-
metric and geometric matching. Since each chunk only contains a
small number of consecutive frames, the pose variation within the
chunk is small, and we can initialize each of the T

i

to the identity
matrix. To ensure that the local pose optimization result after con-
vergence is sufficiently accurate, we apply the Dense Verification
test (see Sec. 4.1.1) to each pair of images within the chunk using
the optimized local trajectory. If the re-projection error is too large
for any pair of images (> 0.05m), the chunk is discarded and not
used in the global optimization.
Per-Chunk Keyframes Once a chunk has been completely pro-
cessed, we define the RGB-D data from the first frame in the chunk
to be the chunk’s keyframe. We also compute a representative aggre-
gate keyframe feature set. Based on the optimized pose trajectory
of the chunk, we compute a coherent set of 3D positions of the
inter-chunk feature points in world space. These 3D positions may
contain multiple instances of the same real-world point, found in
separate pairwise frame matches. Thus to obtain the keyframe fea-
ture set, multiple feature point instances which match in their feature
descriptors and coincide in 3D world space are merged to one best
3D representative in the least squares sense. This keyframe feature
set is mapped into the space of the keyframe using the respective
transformation. Note that once this global keyframe and keyframe
feature set is created, the chunk data (i.e., intra-chunk features, de-
scriptors, correspondences) can be discarded as it is not needed in
the second layer pose alignment.
Global Inter-Chunk Pose Optimization Sparse correspondence
search and filtering between global keyframes is analogous to that
within a chunk, but on the level of all keyframes and their feature
sets. If a global keyframe does not find any matches to previously
seen keyframes, it is marked as invalid but kept as a candidate, allow-
ing for re-validation when it finds a match to a keyframe observed
in the future. The global pose optimization computes the best global
alignments {T

i

} for the set of all global keyframes, thus aligning
all chunks globally. Again, the same energy minimization approach
from Sec. 4.3 is applied using both sparse and dense constraints.
Intra-chunk alignment runs after each new global keyframe has
found correspondences. The pose for a global keyframe is initialized
with the delta transform computed by the corresponding intra-chunk
optimization, composed with the previous global keyframe pose.
After the intra-chunk transforms have been computed, we obtain
globally consistent transforms among all input frames by applying
the corresponding delta transformations (from the local optimiza-
tion) to all frames in a chunk.

4.3 Pose Alignment as Energy Optimization
Given a set of 3D correspondences between a set of frames S (frames
in a chunk or keyframes, depending on hierarchy level), the goal of
pose alignment is to find an optimal set of rigid camera transforms
{T

i

} per frame i (for simpler notation, we henceforth write i for f
i

)
such that all frames align as best as possible. We parameterize the
4⇥ 4 rigid transform T

i

using matrix exponentials based on skew-
symmetric matrix generators [Murray et al. 1994], which yields fast
convergence. This leaves 3 unknown parameters for rotation, and 3

for translation. For ease of notation, we stack the degrees of freedom

for all |S| frames in a parameter vector:

X = (R0, t0, . . . ,R|S|, t|S|)
T

= (x0, . . . , xN

)

T

.

Here, N is the total number of variables x

i

. Given this notation,
we phrase the alignment problem as a variational non-linear least
squares minimization problem in the unknown parameters X . To
this end, we define the following alignment objective, which is based
on sparse features and dense photometric and geometric constraints:

Ealign(X ) = wsparseEsparse(X ) + wdenseEdense(X ).

Here, wsparse and wdense are weights for the sparse and dense match-
ing terms, respectively. wdense is iteratively increased to achieve
coarse-to-fine alignment. Note that depending on the optimization
hierarchy level, the reference frame is the first frame in the chunk
(for intra-chunk alignment), or the first frame in the entire input
sequence (for global inter-chunk alignment). Hence, the reference
transform T0 is not a free variable and left out from the optimization.
Sparse Matching In the sparse matching term, we minimize the
sum of distances between the world space positions over all feature
correspondences between all pairs of frames in S:

Esparse(X ) =
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Here, p
i,k

is the k-th detected feature point in the i-th frame. C
i,j

is the set of all pairwise correspondences between the i-th and the
j-th frame. Geometrically speaking, we seek the best rigid transfor-
mations T

i

such that the Euclidean distance over all the detected
feature matches is minimized.
Dense Matching We additionally use dense photometric and geo-
metric constraints for fine-scale alignment. To this end, we exploit
the dense pixel information of each input frame’s color C

i

and depth
D

i

. Evaluating the dense alignment is computationally more expen-
sive than the previous sparse term. We therefore evaluate it on a
restricted set E of frame pairs. E can be thought of as encoding the
edges (i, j) of a sparse matching graph, in which a frame i is aligned
(connected with) frame j if their camera angles are similar (within
60

�, to avoid glancing angles of the same view) and they overlap
with each other. The optimization for both dense photometric and
geometric alignment is based on the following energy:

Edense(T ) = wphotoEphoto(T ) + wgeoEgeo(T ).

Here, wphoto is the weight of the photometric term and wgeo of the
geometric term, respectively. For the dense photo-consistency term,
we evaluate the error on the gradient I

i

of the luminance of C
i

to
gain robustness against lighting changes:

Ephoto(X ) =
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Here, ⇡ denotes the perspective projection, and d
i,k

is the 3D po-
sition associated with the k-th pixel of the i-th depth frame. Our
geometric alignment term evaluates a point-to-plane metric to al-
low for fine-scale alignment in the tangent plane of the captured
geometry:
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Here, n
i,k

is the normal of the k-th pixel in the i-th input frame. Cor-
respondences that project outside of the input frame are ignored, and

Dense: photometric alignment (based on matching image gradients (not pixel values)
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RGB-D stream; adjacent chunks overlap by 1 frame. The goal of lo-
cal pose optimization is to compute the best intra-chunk alignments
{T

i

}, relative to the first frame of the chunk, which locally defines
the reference frame. To this end, valid feature correspondences are
searched between all pairs of frames of the chunk, and then the en-
ergy minimization approach described in Sec. 4.3 is applied, jointly
considering both these feature correspondences and dense photo-
metric and geometric matching. Since each chunk only contains a
small number of consecutive frames, the pose variation within the
chunk is small, and we can initialize each of the T

i

to the identity
matrix. To ensure that the local pose optimization result after con-
vergence is sufficiently accurate, we apply the Dense Verification
test (see Sec. 4.1.1) to each pair of images within the chunk using
the optimized local trajectory. If the re-projection error is too large
for any pair of images (> 0.05m), the chunk is discarded and not
used in the global optimization.
Per-Chunk Keyframes Once a chunk has been completely pro-
cessed, we define the RGB-D data from the first frame in the chunk
to be the chunk’s keyframe. We also compute a representative aggre-
gate keyframe feature set. Based on the optimized pose trajectory
of the chunk, we compute a coherent set of 3D positions of the
inter-chunk feature points in world space. These 3D positions may
contain multiple instances of the same real-world point, found in
separate pairwise frame matches. Thus to obtain the keyframe fea-
ture set, multiple feature point instances which match in their feature
descriptors and coincide in 3D world space are merged to one best
3D representative in the least squares sense. This keyframe feature
set is mapped into the space of the keyframe using the respective
transformation. Note that once this global keyframe and keyframe
feature set is created, the chunk data (i.e., intra-chunk features, de-
scriptors, correspondences) can be discarded as it is not needed in
the second layer pose alignment.
Global Inter-Chunk Pose Optimization Sparse correspondence
search and filtering between global keyframes is analogous to that
within a chunk, but on the level of all keyframes and their feature
sets. If a global keyframe does not find any matches to previously
seen keyframes, it is marked as invalid but kept as a candidate, allow-
ing for re-validation when it finds a match to a keyframe observed
in the future. The global pose optimization computes the best global
alignments {T

i

} for the set of all global keyframes, thus aligning
all chunks globally. Again, the same energy minimization approach
from Sec. 4.3 is applied using both sparse and dense constraints.
Intra-chunk alignment runs after each new global keyframe has
found correspondences. The pose for a global keyframe is initialized
with the delta transform computed by the corresponding intra-chunk
optimization, composed with the previous global keyframe pose.
After the intra-chunk transforms have been computed, we obtain
globally consistent transforms among all input frames by applying
the corresponding delta transformations (from the local optimiza-
tion) to all frames in a chunk.

4.3 Pose Alignment as Energy Optimization
Given a set of 3D correspondences between a set of frames S (frames
in a chunk or keyframes, depending on hierarchy level), the goal of
pose alignment is to find an optimal set of rigid camera transforms
{T

i

} per frame i (for simpler notation, we henceforth write i for f
i

)
such that all frames align as best as possible. We parameterize the
4⇥ 4 rigid transform T

i

using matrix exponentials based on skew-
symmetric matrix generators [Murray et al. 1994], which yields fast
convergence. This leaves 3 unknown parameters for rotation, and 3

for translation. For ease of notation, we stack the degrees of freedom

for all |S| frames in a parameter vector:

X = (R0, t0, . . . ,R|S|, t|S|)
T

= (x0, . . . , xN

)

T

.

Here, N is the total number of variables x

i

. Given this notation,
we phrase the alignment problem as a variational non-linear least
squares minimization problem in the unknown parameters X . To
this end, we define the following alignment objective, which is based
on sparse features and dense photometric and geometric constraints:

Ealign(X ) = wsparseEsparse(X ) + wdenseEdense(X ).

Here, wsparse and wdense are weights for the sparse and dense match-
ing terms, respectively. wdense is iteratively increased to achieve
coarse-to-fine alignment. Note that depending on the optimization
hierarchy level, the reference frame is the first frame in the chunk
(for intra-chunk alignment), or the first frame in the entire input
sequence (for global inter-chunk alignment). Hence, the reference
transform T0 is not a free variable and left out from the optimization.
Sparse Matching In the sparse matching term, we minimize the
sum of distances between the world space positions over all feature
correspondences between all pairs of frames in S:

Esparse(X ) =
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Here, p
i,k

is the k-th detected feature point in the i-th frame. C
i,j

is the set of all pairwise correspondences between the i-th and the
j-th frame. Geometrically speaking, we seek the best rigid transfor-
mations T

i

such that the Euclidean distance over all the detected
feature matches is minimized.
Dense Matching We additionally use dense photometric and geo-
metric constraints for fine-scale alignment. To this end, we exploit
the dense pixel information of each input frame’s color C

i

and depth
D

i

. Evaluating the dense alignment is computationally more expen-
sive than the previous sparse term. We therefore evaluate it on a
restricted set E of frame pairs. E can be thought of as encoding the
edges (i, j) of a sparse matching graph, in which a frame i is aligned
(connected with) frame j if their camera angles are similar (within
60

�, to avoid glancing angles of the same view) and they overlap
with each other. The optimization for both dense photometric and
geometric alignment is based on the following energy:

Edense(T ) = wphotoEphoto(T ) + wgeoEgeo(T ).

Here, wphoto is the weight of the photometric term and wgeo of the
geometric term, respectively. For the dense photo-consistency term,
we evaluate the error on the gradient I

i

of the luminance of C
i

to
gain robustness against lighting changes:
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Here, ⇡ denotes the perspective projection, and d
i,k

is the 3D po-
sition associated with the k-th pixel of the i-th depth frame. Our
geometric alignment term evaluates a point-to-plane metric to al-
low for fine-scale alignment in the tangent plane of the captured
geometry:
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Here, n
i,k

is the normal of the k-th pixel in the i-th input frame. Cor-
respondences that project outside of the input frame are ignored, and

Dense: geometric alignment (based on point-to-plane metric)

BundleFusion: Real-time Globally Consistent 3D Reconstruction using On-the-fly Surface Re-integration • 5

RGB-D stream; adjacent chunks overlap by 1 frame. The goal of lo-
cal pose optimization is to compute the best intra-chunk alignments
{T

i

}, relative to the first frame of the chunk, which locally defines
the reference frame. To this end, valid feature correspondences are
searched between all pairs of frames of the chunk, and then the en-
ergy minimization approach described in Sec. 4.3 is applied, jointly
considering both these feature correspondences and dense photo-
metric and geometric matching. Since each chunk only contains a
small number of consecutive frames, the pose variation within the
chunk is small, and we can initialize each of the T

i

to the identity
matrix. To ensure that the local pose optimization result after con-
vergence is sufficiently accurate, we apply the Dense Verification
test (see Sec. 4.1.1) to each pair of images within the chunk using
the optimized local trajectory. If the re-projection error is too large
for any pair of images (> 0.05m), the chunk is discarded and not
used in the global optimization.
Per-Chunk Keyframes Once a chunk has been completely pro-
cessed, we define the RGB-D data from the first frame in the chunk
to be the chunk’s keyframe. We also compute a representative aggre-
gate keyframe feature set. Based on the optimized pose trajectory
of the chunk, we compute a coherent set of 3D positions of the
inter-chunk feature points in world space. These 3D positions may
contain multiple instances of the same real-world point, found in
separate pairwise frame matches. Thus to obtain the keyframe fea-
ture set, multiple feature point instances which match in their feature
descriptors and coincide in 3D world space are merged to one best
3D representative in the least squares sense. This keyframe feature
set is mapped into the space of the keyframe using the respective
transformation. Note that once this global keyframe and keyframe
feature set is created, the chunk data (i.e., intra-chunk features, de-
scriptors, correspondences) can be discarded as it is not needed in
the second layer pose alignment.
Global Inter-Chunk Pose Optimization Sparse correspondence
search and filtering between global keyframes is analogous to that
within a chunk, but on the level of all keyframes and their feature
sets. If a global keyframe does not find any matches to previously
seen keyframes, it is marked as invalid but kept as a candidate, allow-
ing for re-validation when it finds a match to a keyframe observed
in the future. The global pose optimization computes the best global
alignments {T

i

} for the set of all global keyframes, thus aligning
all chunks globally. Again, the same energy minimization approach
from Sec. 4.3 is applied using both sparse and dense constraints.
Intra-chunk alignment runs after each new global keyframe has
found correspondences. The pose for a global keyframe is initialized
with the delta transform computed by the corresponding intra-chunk
optimization, composed with the previous global keyframe pose.
After the intra-chunk transforms have been computed, we obtain
globally consistent transforms among all input frames by applying
the corresponding delta transformations (from the local optimiza-
tion) to all frames in a chunk.

4.3 Pose Alignment as Energy Optimization
Given a set of 3D correspondences between a set of frames S (frames
in a chunk or keyframes, depending on hierarchy level), the goal of
pose alignment is to find an optimal set of rigid camera transforms
{T

i

} per frame i (for simpler notation, we henceforth write i for f
i

)
such that all frames align as best as possible. We parameterize the
4⇥ 4 rigid transform T

i

using matrix exponentials based on skew-
symmetric matrix generators [Murray et al. 1994], which yields fast
convergence. This leaves 3 unknown parameters for rotation, and 3

for translation. For ease of notation, we stack the degrees of freedom

for all |S| frames in a parameter vector:

X = (R0, t0, . . . ,R|S|, t|S|)
T

= (x0, . . . , xN

)

T

.

Here, N is the total number of variables x

i

. Given this notation,
we phrase the alignment problem as a variational non-linear least
squares minimization problem in the unknown parameters X . To
this end, we define the following alignment objective, which is based
on sparse features and dense photometric and geometric constraints:

Ealign(X ) = wsparseEsparse(X ) + wdenseEdense(X ).

Here, wsparse and wdense are weights for the sparse and dense match-
ing terms, respectively. wdense is iteratively increased to achieve
coarse-to-fine alignment. Note that depending on the optimization
hierarchy level, the reference frame is the first frame in the chunk
(for intra-chunk alignment), or the first frame in the entire input
sequence (for global inter-chunk alignment). Hence, the reference
transform T0 is not a free variable and left out from the optimization.
Sparse Matching In the sparse matching term, we minimize the
sum of distances between the world space positions over all feature
correspondences between all pairs of frames in S:

Esparse(X ) =

|S|X
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Here, p
i,k

is the k-th detected feature point in the i-th frame. C
i,j

is the set of all pairwise correspondences between the i-th and the
j-th frame. Geometrically speaking, we seek the best rigid transfor-
mations T

i

such that the Euclidean distance over all the detected
feature matches is minimized.
Dense Matching We additionally use dense photometric and geo-
metric constraints for fine-scale alignment. To this end, we exploit
the dense pixel information of each input frame’s color C

i

and depth
D

i

. Evaluating the dense alignment is computationally more expen-
sive than the previous sparse term. We therefore evaluate it on a
restricted set E of frame pairs. E can be thought of as encoding the
edges (i, j) of a sparse matching graph, in which a frame i is aligned
(connected with) frame j if their camera angles are similar (within
60

�, to avoid glancing angles of the same view) and they overlap
with each other. The optimization for both dense photometric and
geometric alignment is based on the following energy:

Edense(T ) = wphotoEphoto(T ) + wgeoEgeo(T ).

Here, wphoto is the weight of the photometric term and wgeo of the
geometric term, respectively. For the dense photo-consistency term,
we evaluate the error on the gradient I

i

of the luminance of C
i

to
gain robustness against lighting changes:

Ephoto(X ) =
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Here, ⇡ denotes the perspective projection, and d
i,k

is the 3D po-
sition associated with the k-th pixel of the i-th depth frame. Our
geometric alignment term evaluates a point-to-plane metric to al-
low for fine-scale alignment in the tangent plane of the captured
geometry:
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Here, n
i,k

is the normal of the k-th pixel in the i-th input frame. Cor-
respondences that project outside of the input frame are ignored, and

E
geo

(�) =

tiny image intensity gradients

E
dense

(�) = w
photo

E
photo

(�) + w
geo

E
geo

(�)
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Sparse to dense optimization
▪ Non-linear least squares problem is linearized and solved 

using custom iterative solver (conjugate gradient) 

▪ Custom: sparse matrix non-zeros computed on-demand (save 
bandwidth, exploit common subexpressions) 
- Fast GPU-based implementation 
- See tonights reading… 

▪                    is increased as the solve proceeds: sparse-to-dense

BundleFusion: Real-time Globally Consistent 3D Reconstruction using On-the-fly Surface Re-integration • 5

RGB-D stream; adjacent chunks overlap by 1 frame. The goal of lo-
cal pose optimization is to compute the best intra-chunk alignments
{T

i

}, relative to the first frame of the chunk, which locally defines
the reference frame. To this end, valid feature correspondences are
searched between all pairs of frames of the chunk, and then the en-
ergy minimization approach described in Sec. 4.3 is applied, jointly
considering both these feature correspondences and dense photo-
metric and geometric matching. Since each chunk only contains a
small number of consecutive frames, the pose variation within the
chunk is small, and we can initialize each of the T

i

to the identity
matrix. To ensure that the local pose optimization result after con-
vergence is sufficiently accurate, we apply the Dense Verification
test (see Sec. 4.1.1) to each pair of images within the chunk using
the optimized local trajectory. If the re-projection error is too large
for any pair of images (> 0.05m), the chunk is discarded and not
used in the global optimization.
Per-Chunk Keyframes Once a chunk has been completely pro-
cessed, we define the RGB-D data from the first frame in the chunk
to be the chunk’s keyframe. We also compute a representative aggre-
gate keyframe feature set. Based on the optimized pose trajectory
of the chunk, we compute a coherent set of 3D positions of the
inter-chunk feature points in world space. These 3D positions may
contain multiple instances of the same real-world point, found in
separate pairwise frame matches. Thus to obtain the keyframe fea-
ture set, multiple feature point instances which match in their feature
descriptors and coincide in 3D world space are merged to one best
3D representative in the least squares sense. This keyframe feature
set is mapped into the space of the keyframe using the respective
transformation. Note that once this global keyframe and keyframe
feature set is created, the chunk data (i.e., intra-chunk features, de-
scriptors, correspondences) can be discarded as it is not needed in
the second layer pose alignment.
Global Inter-Chunk Pose Optimization Sparse correspondence
search and filtering between global keyframes is analogous to that
within a chunk, but on the level of all keyframes and their feature
sets. If a global keyframe does not find any matches to previously
seen keyframes, it is marked as invalid but kept as a candidate, allow-
ing for re-validation when it finds a match to a keyframe observed
in the future. The global pose optimization computes the best global
alignments {T

i

} for the set of all global keyframes, thus aligning
all chunks globally. Again, the same energy minimization approach
from Sec. 4.3 is applied using both sparse and dense constraints.
Intra-chunk alignment runs after each new global keyframe has
found correspondences. The pose for a global keyframe is initialized
with the delta transform computed by the corresponding intra-chunk
optimization, composed with the previous global keyframe pose.
After the intra-chunk transforms have been computed, we obtain
globally consistent transforms among all input frames by applying
the corresponding delta transformations (from the local optimiza-
tion) to all frames in a chunk.

4.3 Pose Alignment as Energy Optimization
Given a set of 3D correspondences between a set of frames S (frames
in a chunk or keyframes, depending on hierarchy level), the goal of
pose alignment is to find an optimal set of rigid camera transforms
{T

i

} per frame i (for simpler notation, we henceforth write i for f
i

)
such that all frames align as best as possible. We parameterize the
4⇥ 4 rigid transform T

i

using matrix exponentials based on skew-
symmetric matrix generators [Murray et al. 1994], which yields fast
convergence. This leaves 3 unknown parameters for rotation, and 3

for translation. For ease of notation, we stack the degrees of freedom

for all |S| frames in a parameter vector:

X = (R0, t0, . . . ,R|S|, t|S|)
T

= (x0, . . . , xN

)

T

.

Here, N is the total number of variables x

i

. Given this notation,
we phrase the alignment problem as a variational non-linear least
squares minimization problem in the unknown parameters X . To
this end, we define the following alignment objective, which is based
on sparse features and dense photometric and geometric constraints:

Ealign(X ) = wsparseEsparse(X ) + wdenseEdense(X ).

Here, wsparse and wdense are weights for the sparse and dense match-
ing terms, respectively. wdense is iteratively increased to achieve
coarse-to-fine alignment. Note that depending on the optimization
hierarchy level, the reference frame is the first frame in the chunk
(for intra-chunk alignment), or the first frame in the entire input
sequence (for global inter-chunk alignment). Hence, the reference
transform T0 is not a free variable and left out from the optimization.
Sparse Matching In the sparse matching term, we minimize the
sum of distances between the world space positions over all feature
correspondences between all pairs of frames in S:

Esparse(X ) =

|S|X

i=1

|S|X

j=1
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Here, p
i,k

is the k-th detected feature point in the i-th frame. C
i,j

is the set of all pairwise correspondences between the i-th and the
j-th frame. Geometrically speaking, we seek the best rigid transfor-
mations T

i

such that the Euclidean distance over all the detected
feature matches is minimized.
Dense Matching We additionally use dense photometric and geo-
metric constraints for fine-scale alignment. To this end, we exploit
the dense pixel information of each input frame’s color C

i

and depth
D

i

. Evaluating the dense alignment is computationally more expen-
sive than the previous sparse term. We therefore evaluate it on a
restricted set E of frame pairs. E can be thought of as encoding the
edges (i, j) of a sparse matching graph, in which a frame i is aligned
(connected with) frame j if their camera angles are similar (within
60

�, to avoid glancing angles of the same view) and they overlap
with each other. The optimization for both dense photometric and
geometric alignment is based on the following energy:

Edense(T ) = wphotoEphoto(T ) + wgeoEgeo(T ).

Here, wphoto is the weight of the photometric term and wgeo of the
geometric term, respectively. For the dense photo-consistency term,
we evaluate the error on the gradient I

i

of the luminance of C
i

to
gain robustness against lighting changes:

Ephoto(X ) =

X
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Here, ⇡ denotes the perspective projection, and d
i,k

is the 3D po-
sition associated with the k-th pixel of the i-th depth frame. Our
geometric alignment term evaluates a point-to-plane metric to al-
low for fine-scale alignment in the tangent plane of the captured
geometry:

Egeo(X ) =
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Here, n
i,k

is the normal of the k-th pixel in the i-th input frame. Cor-
respondences that project outside of the input frame are ignored, and

wdense
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Overall flow
▪ For each group of frames (~10) 

- Extract SIFT features, compute tiny images, compute correspondences 
(cache tiny images and features of the keyframe) 

- Run optimization described on previous slide to estimate pose 

▪ If group aligns well, add keyframe to global group 
▪ Run optimizations on all keyframes to globally estimate keyframe poses 

▪ If keyframe pose changes dramatically, may remove and reinsert frames 
into voxelized TSDF (TSDF always reflects best globally optimized 
camera pose estimates) 

D0
(v) = D(v)W(v)+wi(v)di(v)

W(v)+wi(v)
, W0

(v) = W(v) + w

i

(v).

D0
(v) = D(v)W(v)�wi(v)di(v)

W(v)�wi(v)
, W0

(v) = W(v)� w

i

(v).

Inserting a depth frame: (using current best-estimate pose)

Removing a depth frame: (using same pose as used to insert)
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Summary
▪ Modern real-time 3D reconstruction methods mix sparse and 

dense techniques 

▪ Fast GPU-implementations 
- Brute-force sparse correspondence 

- Data-parallel (pixel-wise) computation of energy terms or voxel-wise 
TSDF updates / ray marching 

▪ Voxelized 3d model representations support fast incremental 
update/refinement 
- Memory footprint issues: hashing is GPU-friendly sparse representation 

du jour 

▪ Global optimization via customized solvers for non-linear 
least squares problems


