Lecture 16:

Real-time Dense 3D
Reconstruction

Visual Computing Systems
CMU 15-769, Fall 2016

Last week:

B Large-scale (off-line) sparse 3D reconstruction
B From unstructured collections of millions of images

Image credit: Heinly 2015 CMU 15-769, Fall 2016

Today: real-time, dense 3D reconstruction from a single
RGBD capture session

Stereolabs Zed

Occipital’s Structure Sensor
CMU 15-769, Fall 2016

Image credit: Dai 2016

(MU 15-769, Fall 2016

3D output

Image credit: Dai 2016 CMU 15-769, Fall 2016

Aside: how a depth camera works

CMU 15-769, Fall 2016

Depth from time-of-flight

m (Conventional LIDAR
- Laser beam scans scene (rotating mirror)

- Low frame rate to capture entire scene L

-'II
AT

m “Time-of-flight” (TOF) cameras e

- No moving beam, capture entire image of scene with
each light pulse

s
s 27
- "

-~

- Special CMOS sensor records a depth image based on
phase of arriving light (phase depends on distance at
which light is reflected off scene object)

- High frame rate

- Formerly TOF cameras were low resolution, expensive...

- TOF camera featured in XBox One depth sensor
(today we will only talk about the original XBox 360
implementation)

(MU 15-769, Fall 2016

Computing depth of scene point from two images

Assume two calibrated cameras are looking at the same scene
Binocular stereo 3D reconstruction of point P: depth from disparity

P

Focal length: /)
Baseline: 5
Disparity: d = x - x

Simple reconstruction example: cameras aligned (coplanar sensors), separated by known distance, same focal length

“Disparity” is the distance between object’s projected position in the two images: x - x’
CMU 15-769, Fall 2016

Recall: correspondence problem

How to determine which pairs of pixels in image 1 and image 2 correspond to

the same scene point?

' o 1
’ ! 1
.

.
' '
\

'

CMU 15-769, Fall 2016

Epipolar constraint

Goal: determine pixel correspondence from pixel values
- Corresponding pixels = pairs of pixels that contain the same scene point

~r

epipolar | _epipolar line

(image of the line through P)

Epipolar Constraint

— Reduces correspondence problem to 1D search along conjugate epipolar lines
— Point in left image will lie on line in right image (epipolar line)

Slide credit: S. Narasimhan CMU 15-769, Fall 2016

» - . ———— - -
——————

=% HON. ATBRATIAM u\(m N, l’reshlcnt of United States. -“‘:."-

N
oo AT

Slide credlt S. Narasimhan

For each epipolar line
For each pixel in the leftimage

Compare with every pixel on same epipolar line in right image

Pick pixel with minimum match cost

Basic improvements: match windows, adaptive size match windows...

- This should sound familiar given our discussion of image processing algorithms...

- Correlation, sum-of-squared difference (SSD), etc.

Solving correspondence (basic algorithm)

What are
assumptions?

(MU 15-769, Fall 2016

Solving correspondence: robustness challenges

B Scene with no texture (many parts of the scene look the same)
® Non-lambertian surfaces (surface appearance is dependent upon view)

m Pixel pairs may not be present (point on surface is occluded from one view)

CMU 15-769, Fall 2016

Active sensor: emit structured light

System: one light source emitting known beam + one camera measuring scene appearance
If the scene is at reference plane, image that will be recorded by camera is known
(correspondence between pixel in recorded image and scene point is known)

- Reference plane
Sref 7= bf
. x+d
<
b/
Knownlight /¢
source /
Single spot illuminant is inefficient! xTTd

(must “scan” scene with spot to get depth, so high latency to retrieve a single depth image) MU 15.769. Fall 2016

Active sensor: emit structured light

Simplify correspondence problem by encoding spatial position in illuminant

§ % Surface
€ \Ci+1

// /
O
[Iluminant

Projected light pattern

Image: Zhang et al.

TAR
%

Camera image

(MU 15-769, Fall 2016

Microsoft XBox 360 Kinect

Image credit: iFixIt

llluminant RGB CMOS Sensor Monochrome Infrared
(Infrared Laser + diffuser) 640x480 (w/ Bayer mosaic) CMOS Sensor
(Aptina MT9MO001)
1280x1024 **

Similar approach used in
** Kinect returns 640x480 disparity image, suspect sensor is Intel’s RealSense cameras

configured for 2x2 pixel binning down to 640x512, then crop CMU 15-769. Fall 2016
- ,Fa

(MU 15-769, Fall 2016

www.futurepicture.org

v
—
.

e
—
-

i
| e
s |

=
=

=

e
v |
<),

=

—

S |
o
e_
(@)
a.

E

&
A |
S
o
-

|

=

Cred

(MU 15-769, Fall 2016

www.futurepicture.org

wd |
—
.
-
—
-
i
| e—
< |
=
&=
i
i
W
<),
=
—
S |
o
e..
(@)
(g~
E
&
D
S
o
-
|
=

Cred

Computing disparity for entire scene

Use region-growing algorithm for compute efficiency *
(Assumption: spatial locality implies depth locality)

1. Choose output pixels in image, classify as UNKNOWN or SHADOW (based on whether speckle is found)
2. While significantly large percentage of output pixels are UNKNOWN

- Choose an UNKNOWN pixel.

- Correlate surrounding MxN pixel window with reference image to compute disparity D = (dx,dy)
(note: search window is a horizontal swath of image, plus some vertical slack)

- If sufficiently good correlation is found:
- Mark pixel as a region anchor (its depth is known)
- Attempt to grow region around the anchor pixel:
- Place region anchor in FIFO, mark as ACTIVE
= While FIFO not empty
- Extract pixel P from FIFO (known disparity for Pis D)

- Attempt to establish correlations for UNKOWN neighboring pixels P, of P
(left,right, top,bottom neighbors) by searching region given by P, + D + (+/-1,+/1)

- If correlation is found, mark P, as ACTIVE, set parent to P, add to FIFO
- Else, mark P, as EDGE, set depth to depth of P.

* Source: PrimeSense Patent W0 2007/043036 A1 CMU 15-769. Fall 2016
- , Fa

Kinect block diagram

Disparity calculations performed by PrimeSense ASICin Kinect, not by XBox 360 CPU

Kinect

‘ Infrared Sensor ‘ ‘ RGB Sensor ‘ ‘ llluminant

]

Image processing
ASIC
(depth from disparity)

Cheap sensors: ~ 1 MPixel

Cheap illuminant: laser + diffuser makes random
dot pattern (not a traditional projector)

Custom image-processing ASIC to compute
disparity image (scale-invariant region
correlation involves non-trivial compute cost)

USB bus

640x480 x 30fps RGB image
640x480 x 30fps Disparity image

Box 360 CPU

CMU 15-769, Fall 2016

Back to real-time 3D reconstruction

CMU 15-769, Fall 2016

Real-time 3D reconstruction from depth:
unique assumptions and challenges

B New assumptions:
- Now have dense depth estimate at each frame
- But depth is noisy and may exhibit “holes”

- Frame-to-frame correspondence made easier since camera undergoes limited
motion between frames

® New challenges:
- Seek dense 3D model

- Real-time performance (important for
providing user accurate feedback during
scanning)

Depth image from original Kinect sensor

Image credit: Lejeune et al. 2011 CMU 15-769, Fall 2016

KinectFusion: 3D reconstruction from only
depth information

Input: per-frame depth image from frame k of capture: D, (u)
(may clean up raw depth from sensor using bilateral filter)

Given depth map and camera calibration information, compute per-frame set of
observed surface 3D points (camera-relative coordinates):

Vi(u) = Dp (K™ 'a)

Given camera-to-world transformation I';., can compute position of observed
points in global coordinate frame
(below: g ="“global coordinate frame”)

K = camera intrinsics matrix (focal length,
aspect ratio): converts camera-space dir to

Vz (11) = T V . (11) normalized sensor plane coordinate (pixel)
, a=[ul 1]
How do we estimate camera poses? 1. .
How do we fuse partial surface observations into a Vie=[Vy 1]
single consistent 3D model? Note: dot notation indicates homogeneous

form. [from Newcombe 11]
CMU 15-769, Fall 2016

Fast projective data association
(keypoint-less correspondence)

Assume T moves points from camera 1’s reference frame to camera 2’s reference frame

Error = [|f(x;) — Tp;|

f (X) is actual measurement
made by camera2 at X

|||§|||| X, = T (sz)

Cameral Camera 2

CMU 15-769, Fall 2016

Estimating camera pose (T,) for new frame
using iterated closest point (ICP)

Establish correspondence between depth measurements from frame k with depth
estimates from frame k-1: ***

Use each pixel u in frame k with a valid depth estimate, use projective data association
to predict corresponding pixel U1 in frame k-7

Vi(u) = Dp(u)K 'a < Measured camera space position of surface in frame k

A —1 2\
i = 7(T; 1 TV (u)
A L [
' | ' World-space position of surface as measured by frame k
(given current estimate of frame k camera pose)

Position of surface relative to camera at frame k-1

Predicted corresponding pixel in frame k-1

\A/'z ,(0) =Tk \' (1) World space position of surface(as measured by frame k-1)
0 at predicted corresponding pixel
Seed frame k pose estimate: 1", — 1",

**¥ In practice, use frame-to-model (not frame-to-frame) tracking: establish correspondence with
view of volumetric TSDF model from camera position at k-1. See future slides. CMU 15-769, Fall 2016

Estimating camera pose (T,) for new frame
using iterated closest point (ICP)

Use “good” correspondences to retain pose estimate:

Depth estimate), (1) for pixel u must be valid

Reasonably good correspondence in position: HTZVk (u) — Vi_l (0)]| < eq
(large discrepancy might indicate dis-occlusion)

Reasonably good correspondence in normal (not shown)

Pose error is computed using point-plane metric: (measured surface point at frame
k should be in surface plane of corresponding point from k-1)

E(T) = Y [(TiVe(u) - VI (2) - N¢_ (0)]3

ucvalid I—T‘
Note: parallel over all pixels

Non-linear optimization to iteratively refine 1';.

CMU 15-769, Fall 2016

Computing the 3D surface model

Given camera poses (T,) and surface vertex estimates (v¢(u))
estimate 3D surface position

Store scene geometry in volumetric form as truncated signed distance function (TSDF)

| 3D voxel grid point p is distance d,
from camera, projects to pixel u

Camera measures surface at
Y distance D, (u)

S0

Distanceis: d = Dy (u) — dp

d
Store min (1, —) grid cell if:
L

L]
L]
»
L
L
L]
. _
®:
L] —
L
L]
L
L]

| ' Fully data-parallel across voxels

CMU 15-769, Fall 2016

Computing the 3D surface model

Store scene geometry in volumetric form as truncated signed distance function (TSDF)

Each voxel stores:

1. truncated signed distance: ['p, (P)
Wp, (p) x cos(0)/Dy(u)

2. weight:

0.7 0:0]0.71-0.2 [-0.5|-0.7[-0.9
N.2[°03 (05 | 0.11-03|-0.4 |0,
*0.5(1.0{0.5]|0.170.0
3.8 | 1.0 | 1.0 | 0.8 | 0,6
1010 1.0
0(1.0 1/

1.0

/ Weight closer measurements, and

measurements that are not at
glancing angles more heavily

F D, = contribution to TSDF due to
depthmap ;.

Convenient incremental TSDF update
when new frames arrive:

_ Wk—l(P)Fk (P) T WDk (p)FDk (p)
Wi—1(p) + Wp, (p)

Wi(p) = Wi—1(p) + Wp, (P)

F.(p)

CMU 15-769, Fall 2016

Computing Dx(u) from the TSDF model (given Tk)

Raycast the TSDF! For each pixel, compute world-coordinate camera ray directions,
then march from starting voxel until encountering zero crossing in TSDF

During pose estimation: raycast the TSDF to obtain Vg_ . (1) when estimating pose T';,
(“frame-to-model tracking” intuition: TSDF model is more accurate/complete than the

single measured depth map from frame k-1)
|

0.7 | 0:0 0.71-0.2|-0.5 | -0.7|-0.¢
0.2/:0.3 ['0.5 [\0.1:-0.3 |-0.4 |-/5

“ 055 | 10 | 0.5\ 0.1 0.0

0.8 [\1.0{ 10 | 0.8/[ol6
1.0.| 1.0\ (1.0
q M | hlo
10
1.0

CMU 15-769, Fall 2016

KinectFusion summary

® Simple data-parallel operations enable efficient real-time GPU
implementation

- Energy term computed in parallel for all pixels (correspondence, error
estimation)

- Each frame updates TSDF independently in parallel over all voxels

m Weighted volumetric surface representation
- Encodes “uncertainty” in weights
- TSDF incrementally refines as more frames arrive
- More confident measurements override incorrect early values
= Fills“holes” in surface estimate as new views are added
- Not memory efficient (dense 3D voxel representation)
- KinectFusion (2011) limited to “desk-scale” reconstructions (256°)

CMU 15-769, Fall 2016

Improving memory efficiency

B (One option: adaptive data structures (e.g., octtree)

B Simple and GPU performant solution:

- Hash table storing non-empty 83 voxel-blocks [NieBner2013]
H(z,y,z) =2 -p1 @Y -p2® 2 p3

® Upon new frame arrival:

- Pre-allocate necessary voxelblocks: raycast voxel grid from camera to frame’s
depth samples to find intersections with voxelblocks

- Determine voxels to update: for each voxel (in parallel), compute whether voxel is
in view frustum (then compact list of touched voxels using standard prefix scan
techniques)

- Update voxels: for each voxel in list (in parallel), perform update similar to dense
voxel method

Image credit: Lefebvre et al. GPU Gems 2 CMU 15-769, Fall 2016

Hashing-based sparse voxel representation

On a Titan X GPU: sparsity enables storage of 8mm? voxels for near-room sized scenes

[Nief3ner 2013] CMU 15-769, Fall 2016

BundleFusion [Dai 2016]

m Combine incremental depth-based volumetric methods (like
we just discussed)

- Produce dense 3D geometry
- Performant
- Quality issues: prone to drift (reliance on temporal tracking)

m With RGB keypoint-based sparse methods (like the offline
reconstruction methods discussed in prior lecture)

- Sparse 3D keypoints
- Offline: expensive image matching + global optimization
- Global model consistency via bundle-adjustment (global optimization)

B Goals: high-quality reconstruction, interactive feedback (even
for large scans)

CMU 15-769, Fall 2016

BundleFusion: three main ideas ai 2016]

B Sparse-to-dense: use sparse SIFT features to coarsely estimate
camera poses, then use dense photometric/geometric consistency
for fine-scale alignment

m Use full history of frames (not just recent history) to estimate pose

= Using full history is made tenable by using two-level hierarchy: align
short sequences of frames locality (temporal tracking), then use a
representative keyframe from the sequence in global alignment

B “Reintegration” during volumetric fusion: ability to take
contribution of a frame out of fused TSDF estimate whenever it’s
reoptimized pose changes notably (retain high quality TSDF)

CMU 15-769, Fall 2016

Fast sparse+dense correspondence

Given set of frames with per-pixel color (Ci) and depth (Dy), find corresponding features

#Features | Time Detect (ms) | Time Match (ms)
Compute SIFT keypoints for all frames 150 3.8 0.04
250 4.2 0.07
1000 5.8 0.42

For each image pair (i,j), use a brute force matching solution to find potential correspondences
(no acceleration structure)

Sparse

Perform geometric verification of correspondences in 3D to estimate rigid camera transform
between pair: T';;, — Tj_lTi

Discard SIFT keypoint correspondences that are not inliers

Attempt dense verification using 80x60 “tiny images”: C;°", Diow
Let P,°" (z,) be measured surface position (relative to camera i) derived from D"

E(i,j) = YTy Pl (2.y) — P (n(Ty; Pl (2.)

vy \ | \correspoﬁding pixel inimage j
surface position in camera j's frame (as measured by i)

Discard match if reproduction error exceeded world-space threshold.
(Similar dense correspondence checks for color and normals)

Dense

CMU 15-769, Fall 2016

Hierarchical camera pose estimation

c Two-level grouping:
- Establish local alignment between consecutive groups of frames (~10 frames)
Use one frame (first) from each group as “keyframe” for global alignment

*
n *
*
[] .
.
“
L

n ..’

X L4 u

] '.. :O.

.........
L

‘e

""""""
’’’’’’
*
S

CMU 15-769, Fall 2016

Sparse + dense energy optimization

Consider S frames in a local frame group (or all S keyframes across entire recording)
Seek camera poses for all frames
X — [R(), t(), cees RS—l; ts_l]T — [.CIZ’(), L1, L2, ...£I?N]T

Set up as non-linear least squares optimization problem
Ealign (X) — wsparse Esparse (X) + Wdense Edense (X)

Sparse matching: minimSize| S()e|uclidean distance between all corresponding keypoints.

Egparse (X)) = ;: S: Z | Tipi — T;Pj. H2 P,k = position of kth key point

1=1 5=1 (k,l)EC(i,j) . .) in ith frame
- — matching keypoints in

framesiandj

CMU 15-769, Fall 2016

Sparse + dense energy optimization

Consider S frames in a local frame group (or all S keyframes across entire recording)
Seek camera poses for all frames
— [R(), t(), cees RS—l; ts_l]T — [.CIZ’(), L1, L2, ...£I?N]T

Set up as non-linear least squares optimization problem
Ealign (X) — wsparse Esparse (X) + Wdense Edense (X)

Edense (X) — wphotoEphoto (X) - wgeoEgeo (X)

Dense: photometric alignment (based on matching image gradients (not pixel values)
;|

Fpnoo(X) = > > | Zalr(din)) = Z;(v(T; Tidi) |

(2,7)€E k=0 ‘N
tiny image intensity gradients

Dense: geometric alignment (based on point-to-plane metric)
D |

Bueol) =3 3 [0 (@ie = 7 57 (D) (w7 o)) D]

(¢,7)eE k=0

2

CMU 15-769, Fall 2016

Sparse to dense optimization

m Non-linear least squares problem is linearized and solved
using custom iterative solver (conjugate gradient)

Ealign(X) — wsparseEsparse(X) + wdenseEdense(X)
m Custom: sparse matrix non-zeros computed on-demand (save
bandwidth, exploit common subexpressions)

- Fast GPU-based implementation
- See tonights reading...

B Wdense is increased as the solve proceeds: sparse-to-dense

CMU 15-769, Fall 2016

Overall flow

m For each group of frames (~10)

- Extract SIFT features, compute tiny images, compute correspondences
(cache tiny images and features of the keyframe)

- Run optimization described on previous slide to estimate pose

m |f group aligns well, add keyframe to global group

m Run optimizations on all keyframes to globally estimate keyframe poses

m If keyframe pose changes dramatically, may remove and reinsert frames
into voxelized TSDF (TSDF always reflects best globally optimized
camera pose estimates)

Inserting a depth frame: (using current best-estimate pose)

D(v)W(v)tw;(v)d; (v _
D/(V) — ()W((v))_—ll:wiﬁx ()’ W,(V) — W(V) T wi(v)'

Removing a depth frame: (using same pose as used to insert)

D(v)W(v)—w;(v)d;(v
D'(v) = 2R W) = W) —wi(v)

CMU 15-769, Fall 2016

Summary

m Modern real-time 3D reconstruction methods mix sparse and
dense techniques
m Fast GPU-implementations

- Brute-force sparse correspondence

- Data-parallel (pixel-wise) computation of energy terms or voxel-wise
TSDF updates / ray marching

m Voxelized 3d model representations support fast incremental
update/refinement

- Memory footprint issues: hashing is GPU-friendly sparse representation
du jour

m Global optimization via customized solvers for non-linear
least squares problems

CMU 15-769, Fall 2016

