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Abstract

This paper introduces an approach for enabling exist-
ing multi-view stereo methods to operate on extremely large
unstructured photo collections. The main idea is to decom-
pose the collection into a set of overlapping sets of photos
that can be processed in parallel, and to merge the result-
ing reconstructions. This overlapping clustering problem
is formulated as a constrained optimization and solved it-
eratively. The merging algorithm, designed to be parallel
and out-of-core, incorporates robust filtering steps to elim-
inate low-quality reconstructions and enforce global visi-
bility constraints. The approach has been tested on several
large datasets downloaded from Flickr.com, including one
with over ten thousand images, yielding a 3D reconstruc-
tion with nearly thirty million points.

1. Introduction
The state of the art in 3D reconstruction from images has

undergone a revolution in the last few years. Coupled with
the explosion of imagery available online and advances in
computing, we have the opportunity to run reconstruction
algorithms at massive scale. Indeed, we can now attempt to
reconstruct the entire world, i.e., every building, landscape,
and (static) object that can be photographed.

The most important technological ingredients towards
this goal are already in place. Matching algorithms (e.g.,
SIFT [17]) provide accurate correspondences, structure-
from-motion (SFM) algorithms use these correspondences
to estimate precise camera pose, and multi-view-stereo
(MVS) methods take images with pose as input and produce
dense 3D models with accuracy nearly on par with laser
scanners [22]. Indeed, this type of pipeline has already been
demonstrated by a few research groups [11, 12, 14, 19],
with impressive results.

To reconstruct everything, one key challenge is scala-
bility.1 In particular, how can we devise reconstruction al-
gorithms that operate at Internet-scale, i.e., on the millions
of images available on Internet sites such as Flickr.com?

1There are other challenges such as handling complex BRDFs and
lighting variations, which we do not address in this paper.

Figure 1. Our dense reconstruction of Piazza San Marco (Venice)
from 13, 703 images with 27,707,825 reconstructed MVS points
(further upsampled x9 for high quality point-based rendering).

Given recent progress on Internet-scale matching and SFM
(notably Agarwal et al.’s Rome-in-a-day project [1]), we fo-
cus our efforts in this paper on the last stage of the pipeline,
i.e., Internet-scale MVS.

MVS algorithms are based on the idea of correlating
measurements from several images at once to derive 3D
surface information. Many MVS algorithms aim at recon-
structing a global 3D model by using all the images avail-
able simultaneously [9, 13, 20, 24]. Such an approach is not
feasible as the number of images grows. Instead, it becomes
important to select the right subset of images, and to cluster
them into manageable pieces.

We propose a novel view selection and clustering scheme
that allows a wide class of MVS algorithms to scale up to
massive photo sets. Combined with a new merging method
that robustly filters out low-quality or erroneous points, we
demonstrate our approach running for thousands of images
of large sites and one entire city. Our system is the first to
demonstrate an unstructured MVS approach at city-scale.

We propose an overlapping view clustering problem [2],
in which the goal is to decompose the set of input images
into clusters that have small overlap. Overlap is important
for the MVS problem, as a strict partition would undersam-
ple surfaces near cluster boundaries. Once clustered, we
apply a state-of-the-art MVS algorithm to reconstruct dense
3D points, and then merge the resulting reconstructions into
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Understanding 3D structure of a scene

ImageCredit: DroneDeploy
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Understanding 3D structure of a scene
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Understanding 3D structure of a scene
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Understanding 3D structure of a scene

Augmented Reality 
To know what/where to draw on screen, 
must know where headset is, and where 
objects in the scene are
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Two styles of approach:
▪ Reconstruction from sparse feature correspondence 

- Based on structure from motion (SfM) 
- Will discuss today 

▪ Dense reconstruction (tracking-less) 
- Will discuss next time
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3D reconstruction from large 
photo collections
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Reconstructing city-scale scenes
▪ Input: 

- Unstructured collection of millions of photos from same location (obtained 
from Flickr, Facebook, etc.) 

▪ Output:  
- Sparse 3D representation of scene (point cloud) 
- Position of camera for each photo
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Computing depth of scene point from two images
Assume two calibrated cameras are looking at the same scene 
Binocular stereo 3D reconstruction of point P: depth from disparity

P

x x’

ff
b

z

Focal length:  f 
Baseline:  b 
Disparity:  d = x’- x

Simple reconstruction example: cameras aligned (coplanar sensors), separated by known distance, same focal length 
“Disparity” is the distance between object’s projected position in the two images: x - x’
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Correspondence problem
How to determine which pairs of pixels in image 1 and image 2 correspond to 
the same scene point?
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Epipolar constraint
Goal: determine pixel correspondence from pixel values 

- Corresponding pixels = pairs of pixels that contain the same scene point

Epipolar Constraint 
– Reduces correspondence problem to 1D search along conjugate epipolar lines 
– Point in left image will lie on line in right image (epipolar line)

epipolar plane epipolar lineepipolar line

Slide credit: S. Narasimhan 

P

(image of the line through P)
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But in our 3D scene reconstruction problem…

▪ We don’t know the relative orientation of the cameras 

▪ We don’t even know which images are observing the same 
scene 
- Correspondence may not even exist
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Preliminaries and background
1. Image similarity / retrieval basics 

- Need to find image pairs that may potential be views of the same scene 

2. Nearest neighbor search and approximate nearest neighbor 
search (ANN) using a KD-tree 

- Need to find image pairs that may potential be views of the same scene 

- Need to find matching keypoints given a pair of images 

3. RANSAC algorithm overview 
- Used for estimating relative orientation of pair of cameras
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Background part 1: 
image retrieval basics
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Are these images similar?

Photographs of my backyard, over six-month period.
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Similarity via pixel differences
Image 1



 CMU 15-769, Fall 2016

Image 2
Similarity via pixel differences
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diff(x,y) = image1(x,y) - image2(x,y)
Similarity via pixel differences



 CMU 15-769, Fall 2016

Are these two web pages similar?

Another example: which web page is most similar to the search query...
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Are these two web pages similar?
Another example: which web page is most similar to 
the search query...
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One simple definition of similarity
Given text query with words: w1 and w2 
for each document d in database: 
    score(d, w1, w2) = number of occurrences of w1 and w2 in d 
Return top 20 results in sorted order based on score

Ways to improve the above approach: 
- Improve accuracy of document scoring function (return more 

meaningful “top documents” results) 

- Improve query execution time: above solution is O(N) for database of N 
documents
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Accelerating document retrieval: use an index

Document	0:	Kayvon	is	teaching	15-769	today.	Yay	15-769!	
Document	1:	15-769	is	awesome,	Kayvon	claims.	
Document	2:	Kayvon	is	occasionally	awesome.	

Index: maps words to database document ids 
- Kayvon:	0,	1,	2	
- is:	0,	1,	2	
- teaching:	0	
- 15-769:	0,	1	
- yay:	0	
- thinks:	1	
- today:	0	
- awesome:	1,	2	
- occasionally:	2

Query:    kayvon	awesome

Partial result set:  
kayvon:		{0,	1,,2}	
awesome:	{1,	2}

Result:  
{0,1,2}	∩	{1,	2}	=	{1,2}

To simplify, let: 
score(d,w1,w2)	=	1	if	d	contains	w1	and	w2,	0	otherwise
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Full inverted index

Document	0:	Kayvon	is	teaching	15-769	today.	Yay	15-769!	
Document	1:	15-769	is	awesome,	Kayvon	claims.	
Document	2:	Kayvon	is	occasionally	awesome.	

Index: maps words to (document, position) 
- Kayvon:	(0,0),	(1,3),	(2,0)	
- is:	(0,1),	(1,1),	(2,1)	
- teaching:	(0,	2)	
- 15-769:	(0,3),	(0,6),	(1,	0)	
- yay:	(0,	5)	
- claims:	(1,4)	
- today:	(0,	4)	
- awesome:	(1,2),	(2,3)	
- occasionally:	(2,2)

Query:    kayvon	15-769

Partial result set:  
kayvon:	{(0,0),	(1,3),	(2,0)}	
15-769:	{(0,3),	(0,6),	(1,0)}

Result (per document counts shown):  
{0	(1),	1	(1),	2	(1)}	∩	
{0	(2),	1	(1)}	
=	{0	(3),	1	(2)}

Inverted index contains one entry per word occurrence: 
score(d,w1,w2)	=	
					number	of	occurrences	of	w1	or	w2			(if	d	contains	w1	and	w2)	
					0																																			otherwise

Ranking:  
0,	1
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TF-IDF weighting
▪ Term frequency: 

- TF(w,d) = the number of occurrences of word w in document d 
- Measure of how relevant a document is for a given query word 

▪ Inverse document frequency: 

- IDF(w, D) =                                                           

- Measure of how discriminative a word is (IDF is small for common words) 
- Depends on number of occurrences in entire document database 
- Idea: words that appear in most documents should influence score less 

▪ tfidf_score(w, d, D) =  TF(w,d) x IDF(w, D) 

▪ Many variants on how to compute TF(w,d) 
- Binary: 1 of 0, depending on whether word is in document 
- Normalized frequency: number of occurrences normalized by document size

Number of documents in database D

Number of documents containing w
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Searching for images (via text query)
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Content-based image retrieval
▪ Search for images, based on a query image 

- Take a photo, find similar looking photos 

- Take a photo, find information about (objects, people, etc.) in photo
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Text-based document retrieval
▪ Key idea in text-based document retrieval was the breakdown 

of document into words 
- Documents that have the same words are likely to be similar 

- Words are a meaningful granularity of text to latch on to
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Content-based image retrieval
▪ If we wanted to follow the text analogy, what are the words? 

- Pixels? 

- Blocks of pixels? 

- Descriptors/features computed from images?
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Correspondence
▪ Defining similarity requires us to quantify the notion of 

correspondence 
- Example: pictures of the same place are similar 
- Example: pictures containing the same/similar objects are similar 

▪ Seek image representations (“descriptors”) such that 
numerically similar descriptors correspond to meaningful 
correspondences 
- Example: similar descriptor value corresponds to same object in the scene: 

descriptor’s value is invariant to noise, lighting, affine object transformation 
(rotation, translation, scale) 

- In the previous lectures we discussed deep learning based methods to learn 
good descriptors
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Sparse SIFT descriptors 
▪ Interest-point-based, orientation of gradients descriptor 
▪ Find interest points (locations in image that are extrema of gradients) 
▪ Compute 128-element descriptor for interest points

Pool gradient samples from 4x4 window into 8-bin histogram 
Concatenate 4x4 grid of histograms to get full descriptor (8 x 16 = 128)

Figure credits: 
R. Bandara, Codeproject 
Chen, Kong, Oh, Sanan, Wohlberk 09

http://www.codeproject.com/Articles/619039/Bag-of-Features-Descriptor-on-SIFT-Features-with-O
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Visual words
- Text document is made up of words (discrete values in a vocabulary) 
- Descriptors are points in continuous high-dimensional descriptor space 
- Idea: construct “visual words” from descriptors

Features in images 

Compute “vocabulary” for dataset by 
clustering all features across all 
images: represent each cluster by its 
mean (or median) feature 

Bin (discretize) image features by 
assigning feature to closest cluster 
in vocabulary 

Represent image by its histogram of 
visual word counts

(A)

(B)

(C)

(D)
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Bag of words (BOW) image descriptor:
▪ Bag of words (BOW) descriptor: 

- Image descriptor is a histogram of word occurrences 
- Very sparse vector 

▪ Given query image descriptor q, compute score for database image d: 

- Example: dot product of normalized query descriptor and DB image descriptor: 

score(q,d) = 

- Improvement: weight descriptor elements by visual word IDF values 
- Many alternative distance functions: 

- e.g., histogram intersection: min(qi, di) rather than inner product 

0 	 0 	 0 	 1 	 0 	 1 	 0 	 4 	 0 	 0 	 0 	 0 	 0 	 8 	 9 	 3 	 0 	 0 	 0 	 . . .
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Summary
Image search using bag of words descriptors and an inverted 
index acceleration structure: 

1. Compute features for image collection 
2. Build vocabulary (visual words) by clustering features in collection 
3. Compute inverted index: 

- For each visual word, index stores list of images with word, plus the tf-idf weight 
for that word in that image:  tfidf_score(w,	d,	D)	=	tf(w,d)	*	idf(w,	
D) 

4. For each query image: 
- Compute bag of words descriptor 
- Use inverted index to find candidate set of similar images  
- Compute score between query and candidate images (e.g., dot product of 

descriptors) 
- Rank results by score 
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Background part 2: nearest neighbor 
search using a KD-tree
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Search application: establish feature correspondence

▪ For all descriptors in image 1, find nearest neighbor descriptor in image 2 

- Thousands of descriptors per image 

- Recall SIFT descriptor (length-128 vector at each keypoint)

Image credit: 
http://stackoverflow.com/questions/14360215/correspondence-analysis-in-opencv

http://stackoverflow.com/questions/14360215/correspondence-analysis-in-opencv
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Review: K-D tree
▪ Spatial partitioning hierarchy 
▪ K = dimensionality of space (below: K = 2)

4 2

3 2 1 3 3

Counts of points in leaf nodes
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Nearest neighbor search with K-D tree

Query point

A

Closest so far: A (at distance d)

Step 1: traverse to leaf cell containing query: compute closest point in 
this cell to the query. 

d
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Nearest neighbor search with K-D tree

Query point

A

Closest so far: B (at distance d’)

Step 2: backtrack: if distance to other cells is closer than distance to 
closest point found so far, must check points in this cell 

B

d

d’
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Nearest neighbor search with K-D tree

Query point

Nearest neighbor result: B (at distance d’) 
(Visited nodes during query shown in pink)

Step 2: backtrack: if distance to other cells is closer than distance to 
closest point found so far, must check points in this cell 

Bd’
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Nearest neighbor search with K-D tree
Problem: when K is large (high-dimensional space) 
backtracking results in visiting nearly all nodes in tree 

Rule of thumb for good efficiency: N > 2K
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Approximate nearest neighbor (ANN) search 

Query point

A

Approximate nearest neighbor: A (at distance d) 
(nodes visited during query shown in pink) 

One simple answer: just take closest point in leaf node containing query

d
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Approximate nearest neighbor search 

Query point

Improvement: place nodes in priority queue during downward traversal 
Resume downward traversal from closest node to query 

d1

d2

d3

d4 d1

d2

d3

d4
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Simple K-D tree construction
▪ To find a partition for a node: 

- Partition axis for which the variance of current data points is the highest 

- Split at the median of the current data points *

* Better metrics exists (e.g., in 3D for ray tracing the surface area heuristic is common)



 CMU 15-769, Fall 2016

Constructing a randomized K-D tree
▪ To find a partition for a node: 

- Randomly choose axis to partition 
- Draw from distribution weighted proportionally with variance of current 

data points is the highest 

- Even simpler: pick partition axis by uniformly sampling from top N axes 
with highest variance 

- Randomly choose partition point on chosen axis 

- Draw from distribution weighted toward at the median of the current data 
points (make it likely to split near the median of the data points)
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Approximate nearest-neighbor (ANN) search using 
a forest of randomized K-D trees
▪ Construct a set of random K-D trees (“forest”) 

▪ For each tree, find NN in leaf cell containing query 

- Add all nodes (across all trees) traversed along the way to a priority queue (node 
priority = distance from query to node)

▪ Take closest of all answers across all 
trees as an initial ANN  

▪ For top D nodes in queue, resume 
downward search from that node  
(D = 5 in figure [Muja et al. 2009]) 

▪ Use variant of this solution to get 
approximate k-NN 

Database size: 100K  
128-dimensional points (SIFT features)
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Aside: using approximate k-NN to perform image 
retrieval, not just keypoint matching

▪ Database: 
- K-D tree of features appearing in database images 

- e.g., SIFT descriptor: K = 128 

▪ Search procedure: 
- Compute SIFT keypoints for query image 

- For each key point descriptor 

- Find ANN descriptor in database (or k-NN) 

- Add “vote” for DB image containing feature (e.g., vote weighted by distance) 

- Rank database images by final score
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Recall: deep networks learn useful intermediate 
representations

  

Our model

● Max-pooling layers follow first, second, and 
fifth convolutional layers

● The number of neurons in each layer is given 
by 253440, 186624, 64896, 64896, 43264, 
4096, 4096, 1000

After conv5 maxpool: 
7x7x256=12K element descriptor 
(retains spatial information)

Post fc7: 
4K element descriptor

These low-D descriptors retain useful information for image 
classification, embedding is also useful for “semantic” retrieval 

Note: last class we discussed compact embeddings learned for image 
compression. (Likely very useful for visually similar retrieval)

▪ Image retrieval using descriptor produced by deep network 

▪ Evaluate object classification deep net: e.g., AlexNet 
- Use intermediate output of the network as descriptor 

▪ Use approximate K-NN technique to find similar images in database 
- Common optimization is to further compress descriptor into a small bit code 

(enables approximate K-NN search via hashing: not discussed today)
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Another aside: retrieval using bit codes
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Benefits of NN search in hamming space
1. Efficient distance computation: 

- Hamming distance: number of bits that differ between 
two b-bit codes 

2. Compact database representation: 
- bn bits to store bitcodes for n images in database 
- Recall SIFT descriptor: 512 bits per keypoint, hundreds/

thousands of keypoints per image!

int	hamming_distance(bitstring	x,	bitstring	y)	{	

				return	count_bits(	xor(x,	y)	);	

}
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K-NN search (K=5) in hamming space:
▪ 12.9M elements in database 

- Each element corresponds to full-image descriptor 

▪ Quad-core CPU 

▪ Brute-force search for top 5 nearest neighbors: 
- 30-bit codes: 400 MB of memory, 74 ms 

- 256-bit codes: 3.2 GB of memory, 0.23 sec 

▪ Two orders of magnitude faster than brute force (and also K-
NN tree search) on database containing full-representation 
GIST (384-float-element) descriptors *  

[Torralba et al. 2008]

* Unfair comparison: should have compared to approximate k-NN implementation 
to be more fair since bitcode search results are not the same (see next slide)
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Bitcode search “performance”

[Torralba et al. 2008]

▪ Baseline: GIST full image descriptor (384 floats) 

▪ Experiment (left): compute top 50 NN in GIST-space, then measure how many of 
these NN appeared in the NN results in hamming space 

▪ Experiment (right): object detection by transferring class label (person) from NN’s 
to query image  (does query picture contain a person?)
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Benefits of NN search in hamming space
1. Efficient distance metric computation: 

- Hamming distance: number of bits that differ between two b-bit codes 

2. Compact database representation: 
- bn bits to store bitcodes for n images in database 

3. Potential for using binary code directly as hash table index 
for O(1) search
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Simple problem formulation
▪ Find all images within hamming distance r from query 

▪ Search process: (assume 2b indices in hash table) 
Compute	b-bit	key	for	query	
For	all	indices	within	distance	r	from	query:	

				Add	images	in	hashtable[index]	to	result	set	

▪ Simple example: r=0, just check one bucket
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Problem
▪ Number of buckets to check increases rapidly with r 

- Volume of the “hamming ball” of radius r 

▪ Number of candidate buckets: 

[Norouzi et al. 2012]

▪ Example: b=64, then about 1B 
buckets for r=7 
- If database is smaller than 1B 

elements, most of these indices will 
be empty 

- Consider database of millions of 
elements: faster to just run brute-
force linear search through database!
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Multi-index hashing: to improve k-NN 
search in hamming space
▪ Basic intuition: 

- Divide query bit string into m disjoint b/m-bit substrings 

- Bit strings that are close in one of the substrings might be close overall 

▪ Key idea: 
- If binary codes x and y differ by less than r bits, then in one of their m substrings 

they must differ by less than floor(r/m) bits. 

- Proof by pigeon-hole principle (if they differed by more than r/m bits in each 
substring, then overall x and y must differ by more than r bits

[Norouzi et al. 2012]
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Efficient k-NN using multi-index hashing
▪ For each set of length-m substrings, find substrings of within 

Hamming radius of floor(r/m) 

▪ This is a much easier problem! 
- Previously: search needed to examine                         hash buckets 

- Now need to examine only                                               buckets in m different 
hash tables 

- E.g., r=7, m=4, then only need to search with radius 1 in each of the 
substrings
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Full algorithm
▪ Build m hashtables using the length b/m substrings of elements in the original 

database 

▪ Given b-bit query: 

- For each of the m substrings of the query: 

- Find radius floor(r/m) neighbors and add them to candidate set (using 
hashtable corresponding to current substring) 

- The candidate set is a superset of the true set of elements within hamming 
distance r, so compute actual set by executing full Hamming distance 
computation for all elements in candidate set (brute force linear scan) 

▪ Storage cost: 

- bn bits to represent all descriptors in hash table 

- m hash tables referring to these descriptors (mnlg2n) 

- In practice, optimal m=b/lg2n so overall storage cost near linear in n
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How to choose m?
▪ Trade-off between having large substrings (and thus a tight candidate set, but 

many bucket lookups in substring searches) and having small substrings (cheap 
substring search but very loose candidate set) 

- Consider m=b, substrings are of length 1, but all neighbors in candidate set!

Figure at right: 
- Database size: 1B descriptors 
- 128-bit codes (b=128)

b/m
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How to determine r from k?
▪ Algorithm finds all database elements within Hamming distance r, but we often 

want k nearest neighbors to a query (not all elements within a fixed distance) 

▪ Problem: binary codes not uniformly distributed across Hamming space, so cannot 
just pick an r corresponding to k (r required to contain knn depends on query) 

▪ Solution: progressively increase r until k-NN are found.
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10‘s of 
thousands of 

hamming 
distance 

computations

SIFT 
SURF 
HOG 
etc.

Matrix-vector 
multiplication

Neural network 
evaluation 

etc.

Fast image retrieval using bitcodes

Query 
image

Compute full 
descriptor

Compute b-bit 
binary descriptor 

(embedding in 
hamming space)

search database of 
binary descriptors

Compute intensive memory intensive
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Background part 3: RANSAC
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RANSAC
▪ RANdom Sample And Concensus 
▪ Goal: fit model to collection of noisy data points

Red data points: outliers 
Blue data points: consensus set

Image credit: Wikipedia

For	i=0	to	K:	

			Perform	random	subsampling	of	datapoints	(hypothetical	inlier	set)		

			Fit	model	Mi	to	hypothetical	inlier	set	

			For	each	datapoint	d:	

						Compute	e	=	error(d,	Mi)	

						if	e	<	threshold:	

										d	is	in	consensus	set	(it	is	consistent	with	model)	

			If	consensus	set	for	Mi	is	larger	than	that	for	Mbest:	

					Mbest	=	Mi	

Let	w	=	number	of	inliers	/	number	of	data	points	

						=	probability	of	selecting	an	inlier	at	random	

So:	

	wN					=	probability	of	selecting	all	inliers	in	hypothetical	inlier	set	of	size	N	

(1-wN)K	=	probability	that	no	iteration	selects	set	of	all	inliers	after	K	RANSAC	iterations
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3D reconstruction from large 
photo collections
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Step 1: 
▪ Find pairs of “matching” images 

(images that view the same scene points)
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Step 1: find matching image pairs from collection
1. Compute feature points for all images (SIFT keypoint descriptors: 128-elements) 

- Thousands of keypoints per image 

2. For each pair of images (I, J), determine if a match exists: 
- Find potentially matching keypoints (similar descriptors) 

- Output: pairs of matching keypoints in image I and J 

- Verify matching keypoints: attempt to find geometric relationship between the two 
viewpoints: estimate a fundamental matrix (3x3 matrix, rank 2) for the image pair using 
RANSAC: 

- Select matching keypoints at random, estimate F-matrix 
- If there are insufficient inlier keypoints, repeat  

for	each	keypoint	i	in	I:	
			//	d1,	d2	are	distance	to	first	nearest	neighbor	j1	and	second	NN	j2	
			(d1,	d2)	=	perform	approximate	nearest	neighbor	(ANN)	lookup	for	i	
														from	keypoints	in	J	
			if	(d1/d2	<	threshold)	
						i	in	I	and	j1	in	J	are	candidates	for	being	the	same	surface	point						

Recall: for keypoint visible at point p1 in image 1 and p2 in image 2, p2 should 
lie on the epipolar line of p1:     p1TFp2 = 0 



 CMU 15-769, Fall 2016

Geometric verification (example in 2D)

Image 1 Image 2

Outlier keypoint
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Step 2: organize matches into tracks
Track = connected set of matching keypoints 

- A track corresponds to a single point in the scene 
- All images in a track are different views of that scene point 
- Track must contain at least two keypoints

Consistent track: black arrows indicate matching keypoints in difference images

Inconsistent track: contains two keypoints in one image 
(clearly, all both keypoints in this image cannot correspond to same scene point)
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Image connectivity graph
Graph nodes = images 
Graph edges = images that contain matching keypoints

In this example, the two densely connected regions correspond to daytime and nighttime photos

Image credit: Snavely et al. 2007



 CMU 15-769, Fall 2016

Step 3: structure from motion (SfM)

▪ Goal: minimize track re-projection error: 

- Error = SSDs between projection of each track and the 
corresponding feature in the image. 

- Non-linear least squares problem (bundle adjustment)

Where: 

is the projection matrix into the i’th image (depends on camera pos, orientation, f-length) 

is the 3D scene position of track j 

is the 2D keypoint location of track j in image i 

is a binary indicator: designating whether a keypoint for track j exists in image i 

▪ Given image match graph and a set of tracks, estimate: 
- Camera parameters for each image (position, orientation, focal length) 
- 3D scene position of each track
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Incremental SfM approach
▪ Incrementally solve for camera positions, one camera at a time: 

- Begin with data that algorithm is most confident in 
▪ Initialization: 

- Pick pair of images with large number of feature matches and also wide baseline, estimate 
camera pose from these matches * 

- Triangulate shared tracks to estimate 3D position of scene point corresponding to track 
- Run two-frame bundle adjustment to refine camera poses and 3D position of track 

▪ Add next camera: 
- Choose camera that observes most number of tracks with known positions 
- Estimate camera pose from track matches using RANSAC 
- Run bundle adjustment to refine only new camera and positions of tracks it observes 
- Add new tracks to scene (observed by new camera but not yet in scene) 

- Triangulate positions of new tracks using two cameras with maximum angle of 
separation 

- Run bundle adjustment to globally refine all camera and track position estimates

* Snavely et al. initialize with image pair that has at least 100 keypoint matches, and for which the smallest percentage of matches are 
inliers to an estimated homography relating the two images
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Algorithm summary
▪ For each image, compute matching images 

(purpose: find pairs of images containing the scene points) 

- Embarrassingly parallel across images  

- Naively O(N2), but we discussed faster search strategies 

▪ Organize matching keypoints into consistent tracks (purpose: eliminate 
contributions from matches that are not consistent with others) 

▪ Until no new camera positions can be estimated: 

- Pick next camera to estimate (currently unregistered image) 

- Refine estimate globally using bundle adjustment (non-linear least 
squares optimization)
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Accelerating match finding
▪ A naive formulation of match finding is O(N2): for each image check for match 

against all other images 

- Large image collections → large N 

- Establishing a match is expensive: (it requires finding a geometric fit via 
estimating fundamental matrix): ~ a few matches per core per second 

- N=1,000,000, 10 matches per second per core =  3,100 CPU years 

▪ Must avoid performing expensive check on all possible matches! 

▪ This is a retrieval problem  (“quickly find most likely matches”)
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Accelerating match finding
▪ Step 1: use fast retrieval techniques to find candidate matching images 

- e.g., use inverted index with TF-IDF weighting to get k-NN for query image 
- Alternative: reduce image to compact bitcode representation 

▪ For each of the k candidates, perform expensive geometric verification step 
- Reduce complexity of expensive operations to O(kN), where k << N

Visual words

Im
ag

es TFIDF weights

Node 0

Node 1

Node 2

. . .

Parallelization on a distributed system: 

1. Partition images across nodes 
2. In parallel, compute features/BOW + term-frequencies for 

all images 
- SIFT features for 1M images: ~ 1-2 TB 
- BOW representation for 1M images: ~ 13 GB  

3. Global reduction to compute IDF for each visual word 
4. Broadcast IDF information to all nodes   
5. Broadcast TFIDF table to all nodes (13 GB) 
6. Each node computes top-k NN for the images it owns
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Improving match finding for 3D scene reconstruction

▪ Assume primary goal is to produce a high-quality 3D scene reconstruction 
(not to compute position of camera for every image in the database) 

▪ Want a match graph that is sufficiently dense to enable 3D reconstruction: 

- Want as few connected components in match graph as possible (note: 
each connected component will be its own 3D scene after reconstruction) 
- Prefer a single, large scene reconstruction, not many “pieces” of scene 

- Want multiple views of the same track (i.e., want multiple images 
containing the same features to aid robustness of bundle adjustment)
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Building a match graph
▪ Step 1: Compute k nearest neighbors using acceleration structure, k = k1 + k2 

▪ Step 2: Perform geometric verification of top k1 matches, add graph edge 
when verification succeeds 

▪ Step 3: Verify next k2 matches, but only verify image pair (I,J) if image I and 
image J are in different components of the graph 

▪ Step 4: Densify the graph using several rounds of “query expansion” 
For	each	image	I	
		For	each	neighbor	J	of	I	in	graph	
				For	each	neighbor	K	of	J	in	graph	
							If	I	and	K	are	in	different	components:	verify	(I,	K)

[Agarwal 2009]
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Putting it all together (distributed implementation)
1. In parallel across all nodes, compute features and term frequencies 

2. Compute IDF weights via reduction, broadcast to all nodes 

3. Broadcast TFIDF information (weight table) to all nodes 

4. Independently compute K=k1+k2 NN on all nodes (all-to-all communication of BOW vectors) 

5. For each image i, verify top k1 candidates to create initial match graph (parallel across images) 

6. Compute match graph connected components (sequentially on one node is easiest) 

7. For each image i, verify next k2 candidates if candidate is not in same graph connected component 
(dynamic parallelization) as i 

8. For each image i, verify further matches based on candidates returned from query expansion 

- Repeat for N rounds, or until convergence 

9. Generate tracks: 

- Each node generates tracks for the images it owns (in parallel across nodes) 

- Then merge tracks across nodes (parallel reduction, or sequentially on home node) 

10. Compute graph skeletal set (next slide)

In this example: build 
inverted index (other search 

accelerations possible)
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Match graph sparsification
▪ All images do not contribute accurately to coverage/accuracy of 3D reconstruction 

▪ For efficiency, we’d like to compute SfM using a minimal set of images (the “skeletal 
set”) that yields similar reconstruction quality as the full match graph

Image credit: Snavely et al. 2008

[Snavely 2008]

Match graph Skeletal set 
(black nodes are skeletal set 

images, gray nodes are 
remaining images)

Reconstruction 
from skeletal set

Adding additional 
images with pose 

estimation

final result post 
bundle 

adjustment

Result: 2x to 50x improvement in reconstruction performance
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Results
“Building Rome in a Day” Agarwal et al. 2009
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Building Rome on a Cloudless Day
Reconstruction from 2.8M images on a single PC in one day (Frahm et al. ECCV 2010)

Step 1: reduce all images to 512 bit binary code (64 bytes/image) 
- image →GIST descriptor+RGB → binarize via locality sensitive binary code 

- millions of image descriptors can fit in RAM 

Step 2: cluster all images based on bitcode descriptor (seed cluster centers with GPS data if available) 

Step 3: validate clusters using geometric verification 
- pick n images closest to cluster center, see if large fraction of pairs pass geometric verification (reject 

cluster if not) 

Step 4: compute single “iconic image” per cluster (image with most successful verifications with other images 
in the cluster) 

- remove images from cluster if they don’t geometrically match the iconic image 

Step 5: build match graph from iconic images (using image search, or if available, compute GPS position of 
clusters by averaging geotags from images, then attempt to match all iconic images within 150m 

Step 6: use SfM techniques to estimate camera pose, 3D pose for iconics 

Step 7: incorporate keypoints from non-iconic images into estimate (no SfM run since matches already known)
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Building Rome on a Cloudless Day
Reconstruction from 2.8M images on a single PC in one day (Frahm et al. ECCV 2010)
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Related task: location recognition
Given a new image, how can we leverage an existing 3D reconstruction to 
estimate the camera’s location and orientation?

Query image
4 Yunpeng Li, Noah Snavely, and Daniel P. Huttenlocher

Fig. 1. SIFT Features in an image corresponding to reconstructed 3D points in the full model
(left) and the compressed model (right) for Dubrovnik. The feature corresponding to the most
visible point (i.e., seen by the most number of images) is marked in red in the right-hand image.
This feature, the face of a clock tower, is intuitively a highly visible one, and was successfully
matched in 370 images (over 5% of the total database).

to any other photo—we remove these from consideration, as well as other very small
connected components). For instance, the Rome dataset described in Section 5 consists
of 69 large components. An example 3D reconstruction is shown in Figure 2. Each
reconstruction consists of a set of recovered camera locations, as well as a set of re-
constructed 3D points, denoted P . For each point p 2 P , we know the set of images
in which p was successfully detected and matched during the feature matching process
(and deemed to be a geometrically consistent detection during SfM). We also have a
128-byte SIFT descriptor for each detection (we will assign the mean descriptor to p).
Given a new query image from the same scene, our goal is to find correspondences
between these scene features and the query image, then determine the camera pose.

One property of Internet photo collections (and current SfM methods) is that there
is a large variability in the number of times each scene feature is matched between
images. While many scene points are matched in only two images, others might be suc-
cessfully matched in hundreds. Consequently, not all scene features are equally useful
when matching with a new query image. This suggests a first step of “compressing” the
set of scene features by keeping only a subset of informative points, thus reducing the
computational cost of matching and suppressing potential sources of confusion.

A naı̈ve way to compress the model is to rank the scene features by “visibility” (by
which we mean the number of images in which that point has been successfully detected
and matched) and select a set from the top of this list. However, points selected in
such way can (and usually do) have very uneven spatial distribution, with popular areas
having a large number of points, and other areas having few or none.

Instead, we would like to choose a set of points that are both prominent and that
cover the whole model. To this end, we pose the selection of points as a set covering
problem, where the images in the model are the elements to be covered and each point
is regarded as a set containing the images in which it is visible. In other words, we
seek the smallest subset of P , such that each image is covered by at least one point in
the subset. Given such a subset, we might expect that a query image drawn from the
same distribution of views as the database images would—roughly speaking—match

Database image (keypoints shown)

▪ First-thought solution: 

- For each keypoint in query image, finding matching tracks in scene database of all images 
(recall: tracks correspond to scene features) 

- Possible implementation: ANN lookup using KD-tree built over database 

- Then attempt camera pose estimation for query given the collection of matches

Left image credit: Mark Ordonez (via Flickr), Right image credit: Li et al. 2010
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Observation
▪ Not all scene database features are equally useful in matching images 

▪ Many scene features appear in many images 
- Example below: clock face on tower is most frequently observed point in database 

(many tourist images of Dubrovnik, Croatia on Flickr contain this feature)
4 Yunpeng Li, Noah Snavely, and Daniel P. Huttenlocher

Fig. 1. SIFT Features in an image corresponding to reconstructed 3D points in the full model
(left) and the compressed model (right) for Dubrovnik. The feature corresponding to the most
visible point (i.e., seen by the most number of images) is marked in red in the right-hand image.
This feature, the face of a clock tower, is intuitively a highly visible one, and was successfully
matched in 370 images (over 5% of the total database).

to any other photo—we remove these from consideration, as well as other very small
connected components). For instance, the Rome dataset described in Section 5 consists
of 69 large components. An example 3D reconstruction is shown in Figure 2. Each
reconstruction consists of a set of recovered camera locations, as well as a set of re-
constructed 3D points, denoted P . For each point p 2 P , we know the set of images
in which p was successfully detected and matched during the feature matching process
(and deemed to be a geometrically consistent detection during SfM). We also have a
128-byte SIFT descriptor for each detection (we will assign the mean descriptor to p).
Given a new query image from the same scene, our goal is to find correspondences
between these scene features and the query image, then determine the camera pose.

One property of Internet photo collections (and current SfM methods) is that there
is a large variability in the number of times each scene feature is matched between
images. While many scene points are matched in only two images, others might be suc-
cessfully matched in hundreds. Consequently, not all scene features are equally useful
when matching with a new query image. This suggests a first step of “compressing” the
set of scene features by keeping only a subset of informative points, thus reducing the
computational cost of matching and suppressing potential sources of confusion.

A naı̈ve way to compress the model is to rank the scene features by “visibility” (by
which we mean the number of images in which that point has been successfully detected
and matched) and select a set from the top of this list. However, points selected in
such way can (and usually do) have very uneven spatial distribution, with popular areas
having a large number of points, and other areas having few or none.

Instead, we would like to choose a set of points that are both prominent and that
cover the whole model. To this end, we pose the selection of points as a set covering
problem, where the images in the model are the elements to be covered and each point
is regarded as a set containing the images in which it is visible. In other words, we
seek the smallest subset of P , such that each image is covered by at least one point in
the subset. Given such a subset, we might expect that a query image drawn from the
same distribution of views as the database images would—roughly speaking—match
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Observation
▪ Not all scene database features are equally useful in matching images 

▪ Many scene features appear in many images 
- Example below: clock face on tower is most frequently observed point in database 

(many tourist images of Dubrovnik, Croatia on Flickr contain this feature)

4 Yunpeng Li, Noah Snavely, and Daniel P. Huttenlocher

Fig. 1. SIFT Features in an image corresponding to reconstructed 3D points in the full model
(left) and the compressed model (right) for Dubrovnik. The feature corresponding to the most
visible point (i.e., seen by the most number of images) is marked in red in the right-hand image.
This feature, the face of a clock tower, is intuitively a highly visible one, and was successfully
matched in 370 images (over 5% of the total database).

to any other photo—we remove these from consideration, as well as other very small
connected components). For instance, the Rome dataset described in Section 5 consists
of 69 large components. An example 3D reconstruction is shown in Figure 2. Each
reconstruction consists of a set of recovered camera locations, as well as a set of re-
constructed 3D points, denoted P . For each point p 2 P , we know the set of images
in which p was successfully detected and matched during the feature matching process
(and deemed to be a geometrically consistent detection during SfM). We also have a
128-byte SIFT descriptor for each detection (we will assign the mean descriptor to p).
Given a new query image from the same scene, our goal is to find correspondences
between these scene features and the query image, then determine the camera pose.

One property of Internet photo collections (and current SfM methods) is that there
is a large variability in the number of times each scene feature is matched between
images. While many scene points are matched in only two images, others might be suc-
cessfully matched in hundreds. Consequently, not all scene features are equally useful
when matching with a new query image. This suggests a first step of “compressing” the
set of scene features by keeping only a subset of informative points, thus reducing the
computational cost of matching and suppressing potential sources of confusion.

A naı̈ve way to compress the model is to rank the scene features by “visibility” (by
which we mean the number of images in which that point has been successfully detected
and matched) and select a set from the top of this list. However, points selected in
such way can (and usually do) have very uneven spatial distribution, with popular areas
having a large number of points, and other areas having few or none.

Instead, we would like to choose a set of points that are both prominent and that
cover the whole model. To this end, we pose the selection of points as a set covering
problem, where the images in the model are the elements to be covered and each point
is regarded as a set containing the images in which it is visible. In other words, we
seek the smallest subset of P , such that each image is covered by at least one point in
the subset. Given such a subset, we might expect that a query image drawn from the
same distribution of views as the database images would—roughly speaking—match

Idea: use up-front knowledge of 
likelihood of scene points to appear in 
images… to accelerate image feature 
matching 
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Idea: analyze image database to accelerate 
matching

▪ Previously in this lecture: organize database feature points into 
index (e.g., KD-tree) to accelerate search 

▪ New idea: leverage co-occurrence and frequency of occurrence 
- We do not seek to find all matches in the database with the query, only enough 

matches to estimate query image’s camera pose 

- Co-occurrence: it is sufficient to search over a small subset of scene points 
(since many scene points co-occur in the same images and are similarly useful 
for pose estimation) 

- Frequency of occurrence: search for the points that are most likely to be in the 
query image
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K-coverings of scene images
▪ Subsample database: compute scene keypoint set that is a 

K-covering of all images in the database 
- K-cover: set of points such that at least K points are present in each image 

- Simple greedy algorithm to compute K cover: 
S	=	{}				//	set	of	points	in	covering	

sort	all	scene	points	by	number	of	images	they	appear	in	

while	K-cover	not	reached	by	S:	

									add	point	P	appearing	in	largest	number	of	images	into	S	

▪ Precompute two K-coverings for image database 
- Ps: 5-covering, capped to at most 2,000 points 
- Pc:  100-covering
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Localization algorithm
▪ Query = list of feature points 

▪ Database = list of feature points for all images in collection 

▪ Idea: rather than search database for matches to points in query image, search 
query list for matches database feature points  

▪ Simple algorithm: tests database points against query image in priority order 
Compute	Kd	tree	for	points	in	query	
Initial	prioritization	of	database	points:	

Highest	priority	points:	Ps	
Next	highest	priority	points:	Pc	
Remaining	points:	priority	=	number	of	images	point	is	visible	in	

	while	additional	matching	points	are	required:	
				Attempt	to	match	highest	priority	point	against	query’s	points	
				if	match	found:	
								for	each	DB	image	I	containing	matched	point:	
											Increase	priority	of	all	DB	points	in	I

Dynamic reprioritization of DB points based on co-occurrence 
with matched points. 
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Recap: how the algorithm works
▪ Test the most likely to match images from the database first 

- Recall: only need a few matches to estimate 3D camera pose of query 

▪ Once a match is found, leverage co-occurrence of points in database images to 
predict new matching points 

▪ Desirable system behavior:  optimize for the common case 

- Common query images get found very quickly 

- Uncommon query images take longer to localize 

- Memory efficient: don’t need to store an additional acceleration structure  
for the entire database of images
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(a) Circular movement

Frame
t0 100− t0 100+0t

(b) Volleyball

Frame
t0 150− t0 50+0t

(c) Bat swing

(d) Falling boxes

Frame
t0 100− t0 80+0t

(e) Confetti

Frame
t0 50− t0 40+0t

(f) Fluid motion

Figure 7. We reconstruct 3D trajectories in real world scenes in the presence of significant occlusion, large displacement, and topological
change. The color codes the time that trajectory points are reconstructed. Note that each trajectory is individually reconstructed without
any spatial or temporal regularization.

where [AX

0
(t)]⇥ AX(t) = ↵ [AX(t)]⇥ AX(t) = 0.

Equation (17) implies Equation (8).
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Modern challenges
▪ Interest in 3D reconstruction of moving scenes 

- Capturing dynamic environments (navigation, localization) 
- Capturing humans (performance capture, entertainment, VR)  

▪ Correspondence problem is more difficult because scene keypoints may not share the same 3D 
position across images

[Image credit: Joo et al. 2014]

Another challenge is latency: 
Autonomous agents typically want to respond to 
changes in world in ms 
(also true of VR)


