Lecture 14:

Large-scale 3D Reconstruction

Visual Computing Systems
CMU 15-769, Fall 2016

Understanding 3D structure of a scene

e &
.
— -

(MU 15-769, Fall 2016

erstanding 3D structure of a scene

>

-

ImageCredit: DroneDeploy
CMU 15-769, Fall 2016

Understanding 3D structure of a scene

(MU 15-769, Fall 2016

Understanding 3D structure of a scene

Understanding 3D structure of a scene

Ao
N4 : %

QCI.“ ’l\ ﬁl
'.\ o-ool-”'

HATTIN
TLLLLE
% #————'

A ‘c ”4? \\\\\ ;”
Augmented Reality '

To know what/where to draw on screen,
must know where headset is, and where
objects in the scene are

(MU 15-769, Fall 2016

Two styles of approach:

m Reconstruction from sparse feature correspondence
- Based on structure from motion (SfM)
- Will discuss today

m Dense reconstruction (tracking-less)
- Will discuss next time

CMU 15-769, Fall 2016

3D reconstruction from large
photo collections

CMU 15-769, Fall 2016

Reconstructing city-scale scenes

B |nput:
- Unstructured collection of millions of photos from same location (obtained
from Flickr, Facebook, etc.)
® Qutput:
- Sparse 3D representation of scene (point cloud)
- Position of camera for each photo

(MU 15-769, Fall 2016

Computing depth of scene point from two images

Assume two calibrated cameras are looking at the same scene
Binocular stereo 3D reconstruction of point P: depth from disparity

P

Focal length: /)
Baseline: 5
Disparity: d = x - x

Simple reconstruction example: cameras aligned (coplanar sensors), separated by known distance, same focal length

“Disparity” is the distance between object’s projected position in the two images: x - x’
CMU 15-769, Fall 2016

Correspondence problem

How to determine which pairs of pixels in image 1 and image 2 correspond to

the same scene point?

' o 1
’ ! 1
.

.
' '
\

'

(MU 15-769, Fall 2016

Epipolar constraint

Goal: determine pixel correspondence from pixel values
- Corresponding pixels = pairs of pixels that contain the same scene point

~r

epipolar | _epipolar line

(image of the line through P)

Epipolar Constraint

— Reduces correspondence problem to 1D search along conjugate epipolar lines
— Point in left image will lie on line in right image (epipolar line)

Slide credit: S. Narasimhan CMU 15-769, Fall 2016

But in our 3D scene reconstruction problem...

B We don't know the relative orientation of the cameras

m We don't even know which images are observing the same
scene

- Correspondence may not even exist

CMU 15-769, Fall 2016

Preliminaries and background

1. Image similarity / retrieval basics
- Need to find image pairs that may potential be views of the same scene

2. Nearest neighbor search and approximate nearest neighbor
search (ANN) using a KD-tree

- Need to find image pairs that may potential be views of the same scene

- Need to find matching keypoints given a pair of images

3. RANSACalgorithm overview

- Used for estimating relative orientation of pair of cameras

CMU 15-769, Fall 2016

Background part 1:
image retrieval basics

CMU 15-769, Fall 2016

Are these images similar?

N7 el Qi |
«.-_\\

2=

U A

Photographs of my backyard, over six-month period.

(MU 15-769, Fall 2016

Similarity via pixel differences

Image 1

(MU 15-769, Fall 2016

Similarity via pixel differences

(MU 15-769, Fall 2016

Similarity via pixel differences
diff(x,y) = image1(x,y) - image2(x,y)

(MU 15-769, Fall 2016

Are these two web pages similar?

CMU 15-769

Parallel Computer Architecture
f:°ﬁ?55?i§i°::;3‘?“” - _:;: < bl e and Programml n g (CMU 15-418)

blur_x(x, y) = (input{x-1, y) + input(x
rx(

From smart phones, to multi-core CPUs and GPUSs, to the world's largest supercomputers and web sites, parallel
processing is ubiquitous in modern computing. The goal of this course is to provide a deep understanding of the
fundamental principles and engineering trade-offs involved in designing modern parallel computing systems as well as
to teach parallel programming techniques necessary to effectively utilize these machines. Because writing good parallel
programs requires an understanding of key machine performance characteristics, this course will cover both parallel
hardware and software design.

Visual computing tasks such as 2D/3D graphics, image processing, and image understanding are important
responsibilities of modern computer systems ranging from sensor-rich smart phones to large datacenters. These
workloads demand exceptional system efficiency and this course examines the key ideas, techniques, and challenges
associated with the design of parallel (and heterogeneous) systems that serve to accelerate visual computing
applications. This course is intended for graduate and advanced undergraduate-level students interested in [Our Self-Made Online Reference]
architecting efficient future graphics, image processing, and computer vision platforms and for students seeking to

develop scalable algorithms for these platforms.

[Policies, Logistics, and Details]
Basic Info

When We Meet
Mon/Wed 10:30-11:50am
GHC 4303 Tues/Thurs S:00 - 10:20am
Instructor: Kayvon Fatahalian Baker Hall A51 (Giant Eagle Auditorium)

. . . . nstructor: Kayvon Fatahalian
See the course info page for more info on policies and logistics.

Fall 2016 Schedule Spring 2013 Schedule

. . . Jan 15 Why Parallelism?
Aug 31 Course Introduction + Parallel Hardware Architecture Review

History of visual computing, review of multi-core, multi-threading, SIMD, heterogeneity via Jan 17 A Modern Multi-Core Processor: Forms of Parallelism + Understanding Latency and BW
CPUs/GPUs/ASICs/FPGAs Assignment 1 out

. .) Jan 22 Parallel Programming Models and Their Corresponding HW/SW Implementations
Part 1: High-Efficiency Image Processing

Jan 24 Parallel Programming Basics (the parallelization thought process)

Sep7 The Digital Camera Image Processing Pipeline: Part | Assignment 1 due
From raw sensor measurements to an RGB image: demosaicing, correcting aberrations, color space Jan 29 GPU Architecture and CUDA Programming
conversions Assignment 2 out

Sep9 The Digital Camera Image Processing Pipeline: Part Il Jan 31 Performance Optimization I: Work Distribution

JPG image compression, auto-focus/auto-exposure, high-dynamic range processing

. Feb 5 Performance Optimization II: Locality, Communication, and Contention
Sep 12 Efficiently Scheduling Image Processing Algorithms on Multi-Core Hardware

Balancing parallelism/local/extra work, programming using Halide Feb 7 Parallel Application Case Studies
Sep 14 Image Processing Algorithm Grab Bag Feb 12 Workload-Driven Performance Evaluation
Fast bilateral filter and median filters, bilateral grid, optical flow Assignment 2 due

Assignment 3 out

Sep 26 Specializing Hardware for Image Processing

Another example: which web page is most similar to the search query...

(MU 15-769, Fall 2016

Are these two web pages similar?

CMU 15-769

v oa 0 aigd S i, | (
gﬂmﬁﬂwﬂggﬂﬂwﬂga”" puab ol SN C . w e
Palaly won o S . S ;
i L
fas

Visual computing tasks such as 2D/3D graphics, image processing, and image understanding are important
responsibilities of modern computer systems ranging from sensor-rich smart phones to large datacenters. These
workloads demand exceptional system efficiency and this course examines the key ideas, techniques, and challenges
associated with the design of parallel (and heterogeneous) systems that serve to accelerate visual computing
applications. This course is intended for graduate and advanced undergraduate-level students interested in
architecting efficient future graphics, image processing, and computer vision platforms and for students seeking to
develop scalable algorithms for these platforms.

Basic Info

Mon/Wed 10:30-11:50am
GHC 4303
Instructor: Kayvon Fatahalian

See the course info page for more info on policies and logistics.

Fall 2016 Schedule

Aug 31 Course Introduction + Parallel Hardware Architecture Review
History of visual computing, review of multi-core, multi-threading, SIMD, heterogeneity via
CPUs/GPUs/ASICs/FPGAs

Part 1: High-Efficiency Image Processing

Sep 7 The Digital Camera Image Processing Pipeline: Part |
From raw sensor measurements to an RGB image: demosaicing, correcting aberrations, color space
conversions

Sep 9 The Digital Camera Image Processing Pipeline: Part Il
JPG image compression, auto-focus/auto-exposure, high-dynamic range processing

Sep 12 Efficiently Scheduling Image Processing Algorithms on Multi-Core Hardware
Balancing parallelism/local/extra work, programming using Halide

Sep 14 Image Processing Algorithm Grab Bag
Fast bilateral filter and median filters, bilateral grid, optical flow

Sep 26 Specializing Hardware for Image Processin,

Parallel Computer Architecture
and Programming

From smart phones, to multi-core CPUs and GPUs, to the world's largest supercomputers and web sites, parallel
processing is ubiquitous in modern computing. The goal of this course is to provide a deep understanding of the
fundamental principles and engineering trade-offs involved in designing modern parallel computing systems as well as
to teach parallel programming techniques necessary to effectively utilize these machines. Because writing good parallel
programs requires an understanding of key machine performance characteristics, this course will cover both parallel
hardware and software design.

[Our Self-Made Online Reference]
[Policies, Logistics, and Details]

When We Meet

Tues/Thurs 9:00 - 10:20am
Baker Hall A51 (Giant Eagle Auditorium)
nstructor: Kayvon Fatahalian

Spring 2013 Schedule

Jan15 Why Parallelism?

Jan17 A Modern Multi-Core Processor: Forms of Parallelism + Understanding Latency and BW
Assignment 1 out

Jan 22 Parallel Programming Models and Their Corresponding HW/SW Implementations

Jan 24 Parallel Programming Basics (the parallelization thought process)
Assignment 1 due

Jan 29 GPU Architecture and CUDA Programming

Assignment 2 out
Jan 31 Performance Optimization I: Work Distribution
Feb 5 Performance Optimization II: Locality, Communication, and Contention
Feb 7 Parallel Application Case Studies
Feb 12 Workload-Driven Performance Evaluation

Assignment 2 due

Assignment 3 out

Another example: which web page is most similar to

the search query...

?‘3!9“‘

All Images

News

About 507,000 results (1.08 seconds)

cmu visual computing systems

Videos

Shopping

More v

Search tools

Kayvon Fatahalian - Carnegie Mellon School of Computer Science

https://www.cs.cmu.edu/~kayvonf/ ¥ Carnegie Mellon University

| architect high-performance visual computing systems that enable immersive and intelligent visual
computing applications. In pursuit of these goals, my recent ...
You've visited this page many times. Last visit: 9/14/16

Visual Computing Systems : 15-869 Fall 2014 - Carnegie Mellon ...

graphics.cs.cmu.edu/courses/15869/fall2014/ ¥ Carnegie Mellon University
Visual computing tasks such as 2D/3D graphics, image processing, and image understanding are

important responsibilities of modern computer systems ...

Visual Computing Systems : 15-869 Fall 2013 - Carnegie Mellon ...

graphics.cs.cmu.edu/courses/15869/fall2013/ ¥ Carnegie Mellon University
Visual computing tasks such as 2D/3D graphics, image processing, and image understanding are

important responsibilities of modern computer systems ...

Visual Computing Systems : Fall 2016 - Carnegie Mellon Computer ...

graphics.cs.cmu.edu/courses/15769/fall2016/ ¥ Carnegie Mellon University
Visual computing tasks such as 2D/3D graphics, image processing, and image understanding are

important responsibilities of modern computer systems ...

(MU 15-769, Fall 2016

One simple definition of similarity

Given text query with words: w; and w;
for each document d in database:

score(d, wi, w2) = number of occurrences of w;andw;ind
Return top 20 results in sorted order based on score

Ways to improve the above approach:

— Improve accuracy of document scoring function (return more
meaningful “top documents” results)

— Improve query execution time: above solution is O(N) for database of N
documents

CMU 15-769, Fall 2016

Accelerating document retrieval: use an index

To simplify, let:
score(d,wl,w2) = 1 if d contains wl and w2, 0 otherwise

Document ©: Kayvon is teaching 15-769 today. Yay 15-769!
Document 1: 15-769 is awesome, Kayvon claims.
Document 2: Kayvon is occasionally awesome.

Index: maps words to database documentids Query: kayvon awesome
- Kayvon: 06, 1, 2

- is: @0, 1, 2 Partial result set:

- teaching: © kayvon: {0, 1,,2}

- 15-769: 0, 1 awesome: {1, 2}

- yay: 0

- thinks: 1 Result:

- today: © {0,1,2} n {1, 2} = {1,2}

- awesome: 1, 2
- occasionally: 2

CMU 15-769, Fall 2016

Full inverted index

Inverted index contains one entry per word occurrence:

score(d,wl,w2) =
number of occurrences of wl or w2 (if d contains wl and w2)
0 otherwise

Document ©: Kayvon is teaching 15-769 today. Yay 15-769!
Document 1: 15-769 is awesome, Kayvon claims.
Document 2: Kayvon is occasionally awesome.

Index: maps words to (document, position) Query: kayvon 15-769
- Kayvon: (0,0), (1,3), (2,0) . .
- is: (0,1), (1,1), (2,1) Partial result set:

kayvon: {(0,0), (1,3), (2,0)}

- teaChin83 (@, 2) 15-769: {(0,3), (0,6), (1,9)}

- 15-769: (0,3), (0,6), (1, O)

- yay: (0, 5) Result (per document counts shown):
- claims: (1,4) Eg g;j 1 ggi 2 (L)} n
- today: (@, 4) = {0 (3), 1 (2))

- awesome: (1,2), (2,3)
- occasionally: (2,2)

Ranking:

0, 1
CMU 15-769, Fall 2016

TF-IDF weighting

B Term frequency:
- TF(w,d) = the number of occurrences of word w in document d
- Measure of how relevant a document is for a given query word

® |nverse document frequency:
|D| «<————— Number of documents in database D

- IDK(w, D) = log .
{d € D w € d}| «—— Number of documents containing w

- Measure of how discriminative a word is (IDF is small for common words)
- Depends on number of occurrences in entire document database
- ldea: words that appear in most documents should influence score less

B thdf score(w,d, D)= TF(w,d) X IDF(w, D)

B Many variants on how to compute TF(w,d)
- Binary: 1 of 0, depending on whether word is in document
- Normalized frequency: number of occurrences normalized by document size

CMU 15-769, Fall 2016

Searching for images (via text query

GO 8[6 crazy professors i@“

Web Images Maps Shopping More ~ Search tools

~\ill Teack
% for Food

(MU 15-769, Fall 2016

Content-based image retrieval

m Search for images, based on a query image
- Take a photo, find similar looking photos
- Take a photo, find information about (objects, people, etc.) in photo

(MU 15-769, Fall 2016

Text-based document retrieval

B Keyidea in text-based document retrieval was the breakdown
of document into words

- Documents that have the same words are likely to be similar

- Words are a meaningful granularity of text to latch on to

CMU 15-769, Fall 2016

Content-based image retrieval

m |f we wanted to follow the text analogy, what are the words?
- Pixels?
- Blocks of pixels?

- Descriptors/features computed from images?

CMU 15-769, Fall 2016

Correspondence

m Defining similarity requires us to quantify the notion of

correspondence

- Example: pictures of the same place are similar
- Example: pictures containing the same/similar objects are similar

B Seek image representations (“descriptors”) such that
numerically similar descriptors correspond to meaningful

correspondences

- Example: similar descriptor value corresponds to same object in the scene:
descriptor’s value is invariant to noise, lighting, affine object transformation
(rotation, translation, scale)

= In the previous lectures we discussed deep learning based methods to learn
good descriptors

CMU 15-769, Fall 2016

Sparse SIFT descriptors

B |nterest-point-based, orientation of gradients descriptor

B Find interest points (locations in image that are extrema of gradients)
® Compute 128-element descriptor for interest points

(B SR K
] ‘ F ' # 1
:Q']
Keypoint descriptor

Pool gradient samples from 4x4 window into 8-bin histogram
Concatenate 4x4 grid of histograms to get full descriptor (8 x 16 = 128)

Figure credits:

R. Bandara, Codeproject

Chen, Kong, Oh, Sanan, Wohlberk 09 CMU 15-769, Fall 2016

http://www.codeproject.com/Articles/619039/Bag-of-Features-Descriptor-on-SIFT-Features-with-O

Visual words

= Text document is made up of words (discrete values in a vocabulary)
= Descriptors are points in continuous high-dimensional descriptor space
= ldea: construct “visual words” from descriptors

(A) Featuresinimages

(B) Compute “vocabulary” for dataset by
clustering all features across all
images: represent each cluster by its () (b)
mean (or median) feature

(C) Bin (discretize) image features by
assigning feature to closest cluster
in vocabulary

(D) Representimage byits histogramof .. \ A e

—
——
_—
—
—

visual word counts o, 1 M e, N\ W

(MU 15-769, Fall 2016

Bag of words (BOW) image descriptor:

m Bag of words (BOW) descriptor:
- Image descriptor is a histogram of word occurrences
- Very sparse vector

o(90|0|1|(0|1|0|4|0|0|0|0(0|8|93|60]|0|606

B Given query image descriptor g, compute score for database image d:

- Example: dot product of normalized query descriptor and DB image descriptor:

score(q,d) =

lal4|

- Improvement: weight descriptor elements by visual word IDF values
- Many alternative distance functions:
- e.g., histogram intersection: min(g;, di) rather than inner product

CMU 15-769, Fall 2016

Summary

Image search using baqg of words descriptors and an inverted

index acceleration structure:

1.
2,
3.

Compute features for image collection

Build vocabulary (visual words) by clustering features in collection

Compute inverted index:
For each visual word, index stores list of images with word, plus the tf-idf weight

For each query image:

Compute bag of words descriptor
Use inverted index to find candidate set of similar images

Compute score between query and candidate images (e.g., dot product of
descriptors)

Rank results by score

for that word in that image: tfidf score(w, d, D) = tf(w,d) * idf(w,
D)

CMU 15-769, Fall 2016

Background part 2: nearest neighbor
search using a KD-tree

Search application: establish feature correspondence

B Forall descriptors inimage 1, find nearest neighbor descriptor inimage 2
— Thousands of descriptors perimage
— Recall SIFT descriptor (length-128 vector at each keypoint)

Image credit:
http://stackoverflow.com/questions/14360215/correspondence-analysis-in-opencv

(MU 15-769, Fall 2016

http://stackoverflow.com/questions/14360215/correspondence-analysis-in-opencv

Review: K-D tree

m Spatial partitioning hierarchy
m K =dimensionality of space (below: K = 2)

e LI
~

Counts of points in leaf nodes

(MU 15-769, Fall 2016

Nearest neighbor search with K-D tree

Step 1: traverse to leaf cell containing query: compute closest point in

this cell to the query.
Query point

R a8

Closest so far: A (at distance d)

CMU 15-769, Fall 2016

Nearest neighbor search with K-D tree

Step 2: backtrack: if distance to other cells is closer than distance to
closest point found so far, must check points in this cell

Query point
" \ dl B o ® -
09 0 o \
Yo o) L
® °
L) (L {

R .

Closest so far: B (at distance d’)

CMU 15-769, Fall 2016

Nearest neighbor search with K-D tree

Step 2: backtrack: if distance to other cells is closer than distance to
closest point found so far, must check points in this cell

Query point
‘. \ dl B o ® .
09 O o
.)
® °
L) (0 L

R .

Nearest neighbor result: B (at distance d)
(Visited nodes during query shown in pink)

CMU 15-769, Fall 2016

Nearest neighbor search with K-D tree

Problem: when K is large (high-dimensional space)
backtracking results in visiting nearly all nodes in tree

Rule of thumb for good efficiency: N > 2K

CMU 15-769, Fall 2016

Approximate nearest neighbor (ANN) search

One simple answer: just take closest point in leaf node containing query

Query point
L -
° 09 O
e o) O
® °
) ()

R .

Approximate nearest neighbor: A (at distance d)
(nodes visited during query shown in pink)

CMU 15-769, Fall 2016

Approximate nearest neighbor search

Improvement: place nodes in priority queue during downward traversal
Resume downward traversal from closest node to query

Query point
o L
dy \d7 ¢ ¢
@ : yH d1
0 o O
d; ®
| o - L

CMU 15-769, Fall 2016

Simple K-D tree construction

m To find a partition for a node:

- Partition axis for which the variance of current data points is the highest

- Split at the median of the current data points *

* Better metrics exists (e.g., in 3D for ray tracing the surface area heuristic is common)
CMU 15-769, Fall 2016

Constructing a randomized K-D tree

m To find a partition for a node:

- Randomly choose axis to partition

- Draw from distribution weighted proportionally with variance of current
data points is the highest

- Even simpler: pick partition axis by uniformly sampling from top N axes
with highest variance

- Randomly choose partition point on chosen axis

- Draw from distribution weighted toward at the median of the current data
points (make it likely to split near the median of the data points)

CMU 15-769, Fall 2016

Approximate nearest-neighbor (ANN) search using
a forest of randomized K-D trees

B (onstruct a set of random K-D trees (“forest”)
B For each tree, find NN in leaf cell containing query

- Add all nodes (across all trees) traversed along the way to a priority queue (node

priority = distance from query to node)
Database size: 100K

128-dimensional points (SIFT features)
10 o

B Take closest of all answers across all
trees as an initial ANN

B For top D nodes in queue, resume
downward search from that node

(D=5 in figure [Muja et al. 2009])

B Use variant of this solution to get
approximate k-NN

N
|
|

|

\

|
|
|
/

Speedup over linear search
o
\
)
{
\

-

70% precisio
| = — —95% precisio

-

10

10 10°
Number of trees

CMU 15-769, Fall 2016

Aside: using approximate k-NN to perform image
retrieval, not just keypoint matching

B Database:

- K-D tree of features appearing in database images
- e.g., SIFT descriptor: K= 128

m Search procedure:
- Compute SIFT keypoints for query image

- For each key point descriptor
- Find ANN descriptor in database (or k-NN)
- Add“vote” for DB image containing feature (e.g., vote weighted by distance)

- Rank database imaqes by final score

CMU 15-769, Fall 2016

Recall: deep networks learn useful intermediate
representations

Image retrieval using descriptor produced by deep network

Evaluate object classification deep net: e.g., AlexNet

Use intermediate output of the network as descriptor

B Use approximate K-NN technique to find similar images in database

224

- Common optimization is to further compress descriptor into a small bit code

'\\
14 [
11

=

(enables approximate K-NN search via hashing: not discussed today)

77
o
| y

Stride
of 4

55

ol

96

Max
pooling

27

27

S a
-

13

\{I

13

13

/ v
o

Max
pooling

These low-D descriptors retain useful information forimage

classification, embedding is also useful for “semantic” retrieval

Note: last class we discussed compact embeddings learned for image

compression. (Likely very useful for visually similar retrieval)

—— [— —> —»
3 sl ol dense dense
3 -
384 256 100C
Max
pooling 4096 4096
After conv5 maxpool:

7x7x256=12K element descriptor
(retains spatial information)

Post fc7:
4K element descriptor

CMU 15-769, Fall 2016

Another aside: retrieval using bit codes

CMU 15-769, Fall 2016

Benefits of NN search in hamming space

1. Efficient distance computation:

- Hamming distance: number of bits that differ between
two b-bit codes

int hamming_distance(bitstring x, bitstring y) {

return count _bits(xor(x, y));

}

2. Compact database representation:
- bn bits to store bitcodes for n images in database

- Recall SIFT descriptor: 512 bits per keypoint, hundreds/
thousands of keypoints per image!

CMU 15-869, Fall 2014

K-NN search (K=5) in hamming space:

m 12.9M elements in database
- Each element corresponds to full-image descriptor

B Quad-core CPU

m Brute-force search for top 5 nearest neighbors:

- 30-bit codes: 400 MB of memory, 74 ms
- 256-bit codes: 3.2 GB of memory, 0.23 sec

[Torralba et al. 2008]

m Two orders of magnitude faster than brute force (and also K-
NN tree search) on database containing full-representation
GIST (384-float-element) descriptors *

* Unfair comparison: should have compared to approximate k-NN implementation
to be more fair since bitcode search results are not the same (see next slide)

CMU 15-869, Fall 2014

Bitcode search “performance”

m Baseline: GIST full image descriptor (384 floats)

B Experiment (left): compute top 50 NN in GIST-space, then measure how many of
these NN appeared in the NN results in hamming space

B Experiment (right): object detection by transferring class label (person) from NN's
to query image (does query picture contain a person?)

Person

3
n
©
QO
>
g
o
= 5
= (%2
B o —— 30-bit RBM
5 | 64-bitRBM |
c —— 128-bit RBM
8 256-bit RBM| -
o — Full gist
5000 10000 20000 30000 40000 50000 7 . e 0.3 0.4 0.5 08 0.7 0.8 0.9 1

Recall
Number of retrieved images (out of 12900000)

[Torralba et al. 2008]
CMU 15-869, Fall 2014

Benefits of NN search in hamming space

1. Efficient distance metric computation:

- Hamming distance: number of bits that differ between two b-bit codes

2. Compact database representation:

- bn bits to store bitcodes for nimages in database

3. Potential for using binary code directly as hash table index
for 0(1) search

(MU 15-869, Fall 2014

Simple problem formulation

® Find all images within hamming distance r from query
B Search process: (assume 2° indices in hash table)

Compute b-bit key for query
For all indices within distance r from query:

Add images in hashtable[index] to result set

m Simple example: r=0, just check one bucket

CMU 15-869, Fall 2014

Problem

B Number of buckets to check increases rapidly with r
- Volume of the “hamming ball” of radius r

B Number of candidate buckets:

o - 3 (7)

k=0 [Norouzi et al. 2012]

9y
m Example: b=64, then about 1B =
buckets for r=7 % 5|
- If database is smaller than 1B 2
elements, most of these indices will 4 |——32 bits
be empty -3 4 » | —64bits |
- Consi - T 1= 128 b!tS
onsider database o.f millions of - : |—9256 bits
elements: faster to just run brute- 00 > 4 5 8 10

force linear search through database! Hamming Radius
(MU 15-869, Fall 2014

Multi-index hashing: to improve k-NN
search in hamming space Norouz el 2012

m Basicintuition:
- Divide query bit string into m disjoint b/m-bit substrings

- Bit strings that are close in one of the substrings might be close overall

B Keyidea:

- If binary codes x and y differ by less than r bits, then in one of their m substrings
they must differ by less than floor(r/m) bits.

- Proof by pigeon-hole principle (if they differed by more than r/m bits in each
substring, then overall x and y must differ by more than r bits

CMU 15-869, Fall 2014

Efficient k-NN using multi-index hashing

m For each set of length-m substrings, find substrings of within
Hamming radius of floor(r/m)

® This is a much easier problem!
- Previously: search needed to examine L (b, ") hash buckets

- Now need to examine only L(b/m, |r/m |)bucketsin m different
hash tables

- E.g.,r=7, m=4, then only need to search with radius 1 in each of the
substrings

CMU 15-869, Fall 2014

Full algorithm

B Build m hashtables using the length b/m substrings of elements in the original
database

B Given b-bit query:
- For each of the m substrings of the query:

- Find radius floor(r/m) neighbors and add them to candidate set (using
hashtable corresponding to current substring)

- The candidate set is a superset of the true set of elements within hamming
distance r, so compute actual set by executing full Hamming distance
computation for all elements in candidate set (brute force linear scan)

m Storage cost:
- bn bits to represent all descriptors in hash table
- m hash tables referring to these descriptors (mnlg,n)

- In practice, optimal m=b/lg.n so overall storage cost near linearinn

CMU 15-869, Fall 2014

How to choose m?

B Trade-off between having large substrings (and thus a tight candidate set, but
many bucket lookups in substring searches) and having small substrings (cheap

substring search but very loose candidate set)

- Consider m=b, substrings are of length 1, but all neighbors in candidate set!

15;

Figure at right:
- Database size: 1B descriptors
- 128-bit codes (b=128)

cost (log 1 0)

—r/b = O.é5
—r/b =0.15

r/b = 0.05

L

''''''

10 20 30 40 50 60
substring length (bits)

b/m

CMU 15-869, Fall 2014

How to determine r from k?

® Algorithm finds all database elements within Hamming distance r, but we often
want k nearest neighbors to a query (not all elements within a fixed distance)

B Problem: binary codes not uniformly distributed across Hamming space, so cannot
just pick an r corresponding to k (r required to contain knn depends on query)

64-bit LSH 128-bit LSH 128-bit MLH

S — 7 0

.: .g .Q:)

. 2 :

T 0.2} g 0.1} & 0.1

O “6 ..6

S 0.1} S 0.05} S 0.05}

3 B 8

s . g . s .

- 01234567 8 910 “ 5 10 15 20 25 30 “- 5 10 15 20 25 30
Hamming radii needed for 10-NN Hamming radii needed for 10-NN Hamming radii needed for 10-NN

wn

g g 8

@ @ @

-

o & 0.1} I & of

O ‘*6 ..5

S & 0.0} 1 §o.osf

H- 0123456 7 8 9 10111213 e % 5 10 15 20 25 30 e % 5 10 15 20 25 30
Hamming radii needed for 1000-NN Hamming radii needed for 1000-NN Hamming radii needed for 1000-NN

® Solution: progressively increase r until k-NN are found.

CMU 15-869, Fall 2014

Fast image retrieval using bitcodes

Compute full
descriptor

—

SIFT
SURF
HOG
etc.

Compute b-bit
binary descriptor
(embeddingin
hamming space)

Matrix-vector
multiplication

Neural network
evaluation
etc.

_

Compute intensive

search database of
binary descriptors

—

10’s of
thousands of
hamming
distance
computations

i
memory intensive

CMU 15-869, Fall 2014

Background part 3: RANSAC

RANSAC

B RANdom Sample And Concensus
m Goal: fit model to collection of noisy data points

For i=0 to K: y . . P
o -
Perform random subsampling of datapoints (hypothetical inlier set) . e «®
Fit model M; to hypothetical inlier set ,. .
For each datapoint d: . «* o
Compute e = error(d, M;) . o ° . *
"
if e < threshold: a o’ .
d is in consensus set (it is consistent with model) .'. .
If consensus set for M; is larger than that for Mpest: . ® .
@ * o
Mbest = Mi po
o , Red data points: outliers
Let w = number of inliers / number of data points

o , o Blue data points: consensus set
probability of selecting an inlier at random

So:
wh = probability of selecting all inliers in hypothetical inlier set of size N
(1-wN)X = probability that no iteration selects set of all inliers after K RANSAC iterations

Image credit: Wikipedia CMU 15-769, Fall 2016

3D reconstruction from large
photo collections

CMU 15-769, Fall 2016

Step 1:

® Find pairs of “matching” images
(images that view the same scene points)

CMU 15-769, Fall 2016

Step 1: find matching image pairs from collection

1. Compute feature points for all images (SIFT keypoint descriptors: 128-elements)
- Thousands of keypoints per image

2. For each pair of images (1, J), determine if a match exists:
- Find potentially matching keypoints (similar descriptors)

for each keypoint 1 in I:

(d1, d2) = perform approximate nearest neighbor (ANN) lookup for i

from keypoints in J

if (d1/d2 < threshold)
i in I and jl1 in J are candidates for being the same surface point

- Qutput: pairs of matching keypoints in image | and J

- Verify matching keypoints: attempt to find geometric relationship between the two
viewpoints: estimate a fundamental matrix (3x3 matrix, rank 2) for the image pair using

RANSAC:
- Select matching keypoints at random, estimate F-matrix

- If there are insufficient inlier keypoints, repeat

Recall: for keypoint visible at point p; inimage 1 and p, in image 2, p, should
lie on the epipolar lineof p1: p11Fp>=0

CMU 15-769, Fall 2016

Geometric verification (example in 2D)

Outlier keypoint

Image 1

(MU 15-769, Fall 2016

Step 2: organize matches into tracks

Track = connected set of matching keypoints
- A track corresponds to a single point in the scene
- Allimages in a track are different views of that scene point
- Track must contain at least two keypoints

o T
o4 T
\ o T %A
7 P~ _» 0O

Consistent track: black arrows indicate matching keypoints in difference images

.A, N
- 4

o~

\C

Ov_

Inconsistent track: contains two keypoints in one image
(clearly, all both keypoints in this image cannot correspond to same scene point)

CMU 15-769, Fall 2016

Image connectivity graph

Graph nodes = images
Graph edges = images that contain matching keypoints

Us 7

\
/
)

’ _\\
\ N\ T
——
"
%

’ \

|
-
g /
. 0
W

g\

N
LN
\)
e\ \ T
\ / .
e N J p .
.
| E 1
J A N
!) '_ A '
& ”“ .' - s \ 5 e
\ VT URE DA Dt
) - ' 7 .
-~ A
< ._.,"-. B 4 . '{ -
" B -
[S 4 e " .
o L as .
. L)
! 'l v)
W
-
e o PR
""
.
l'-'t‘.:) -
. \
-
-
'Q'I
-
".' - ‘\.‘: ~
B L
P A
¥ Fy . .
- o - ‘e » 3 -,
7 ™ : *3 % ey -5
= 2 e SRR A L >
A TN N, . !
g e - pa— b
2 "L . : . -
\"’.'5'#-";6/ TS U RS
s S '0'//|f o 4
= g3 2,
- > *
‘.{{.Q ' »
Y g
/ — -
&
LN
s ¥
" e » - a >
Q B ML e
\l p ,/_' . . r‘. ¥ -
‘4 .54 e
Foarter
3 sla ¥ v ¢
9. . ~ - sl
S LS y
- " s
4

In this example, the two densely connected regions correspond to daytime and nighttime photos

Image credit: Snavely et al. 2007 CMU 15-769, Fall 2016

Step 3: structure from motion (SfM)

B Given image match graph and a set of tracks, estimate:

- Camera parameters for each image (position, orientation, focal length)
- 3D scene position of each track

B Goal: minimize track re-projection error:

- Error = SSDs between projection of each track and the @
corresponding feature in the image. "

argggﬁnzwlj F,X. -,

- Non-linear least squares problem (bundle adjustment) / ™. .7

-t
-
-
-
-
-
-
-
-
-
-
-

Where: |
Pg' is the projection matrix into the /'th image (depends on camera pos, orientation, f-length) Q

l

X i is the 3D scene position of track

ﬁ . is the 2D keypoint location of track jinimage J

le is a binary indicator: designating whether a keypoint for track j exists in image i

CMU 15-769, Fall 2016

Incremental SfM approach

B Incrementally solve for camera positions, one camera at a time:
- Begin with data that algorithm is most confident in
B |nitialization:

- Pick pair of images with large number of feature matches and also wide baseline, estimate
camera pose from these matches *

- Triangulate shared tracks to estimate 3D position of scene point corresponding to track
= Run two-frame bundle adjustment to refine camera poses and 3D position of track
B Add next camera:
- Choose camera that observes most number of tracks with known positions
- Estimate camera pose from track matches using RANSAC
- Run bundle adjustment to refine only new camera and positions of tracks it observes
- Add new tracks to scene (observed by new camera but not yet in scene)

- Triangulate positions of new tracks using two cameras with maximum angle of
separation

- Run bundle adjustment to globally refine all camera and track position estimates

* Snavely et al. initialize with image pair that has at least 100 keypoint matches, and for which the smallest percentage of matches are

inliers to an estimated homography relating the two images CMU 15-769, Fall 2016

Algorithm summary

® For each image, compute matching images
(purpose: find pairs of images containing the scene points)

- Embarrassingly parallel across images

- Naively O(N2), but we discussed faster search strategies

B (Organize matching keypoints into consistent tracks (purpose: eliminate
contributions from matches that are not consistent with others)

® Until no new camera positions can be estimated:
- Pick next camera to estimate (currently unregistered image)

- Refine estimate globally using bundle adjustment (non-linear least
squares optimization)

CMU 15-769, Fall 2016

Accelerating match finding

® A naive formulation of match finding is O(N2): for each image check for match
against all other images

- Large image collections — large N

- Establishing a match is expensive: (it requires finding a geometric fit via
estimating fundamental matrix): ~ a few matches per core per second

- N=1,000,000, 10 matches per second per core = 3,100 CPU years
® Must avoid performing expensive check on all possible matches!

B This is a retrieval problem (“quickly find most likely matches”)

CMU 15-769, Fall 2016

Accelerating match finding

B Step 1: use fast retrieval techniques to find candidate matching images
- e.g., use inverted index with TF-IDF weighting to get k-NN for query image
- Alternative: reduce image to compact bitcode representation

B For each of the k candidates, perform expensive geometric verification step
- Reduce complexity of expensive operations to O(kN), wherek << N

Visual words

Node 0

Node 1

TFIDF weights Node 2

Images

Parallelization on a distributed system:

1. Partition images across nodes

2. In parallel, compute features/BOW + term-frequencies for
all images

- SIFT features for TM images: ~ 1-2TB
- BOW representation for 1M images: ~ 13 GB
3. Global reduction to compute IDF for each visual word
4. Broadcast IDF information to all nodes
5. Broadcast TFIDF table to all nodes (13 GB)
6. Each node computes top-k NN for the images it owns

(MU 15-769, Fall 2016

Improving match finding for 3D scene reconstruction

B Assume primary goal is to produce a high-quality 3D scene reconstruction
(not to compute position of camera for every image in the database)

m Want a match graph that is sufficiently dense to enable 3D reconstruction:

- Want as few connected components in match graph as possible (note:
each connected component will be its own 3D scene after reconstruction)

- Prefer asingle, large scene reconstruction, not many “pieces” of scene

- Want multiple views of the same track (i.e., want multiple images
containing the same features to aid robustness of bundle adjustment)

CMU 15-769, Fall 2016

Building a match graph Agarwal 2009

m Step 1: Compute k nearest neighbors using acceleration structure, k=k; + k;

m Step 2: Perform geometric verification of top k; matches, add graph edge
when verification succeeds

m Step 3: Verify next k; matches, but only verify image pair (/,J) if image / and
image J are in different components of the graph

B Step 4: Densify the graph using several rounds of “query expansion”

For each image I
For each neighbor J of I in graph
For each neighbor K of J in graph
If I and K are in different components: verify (I, K)

[nitial Matches CC Merge Query Expansion 1 Query Expansion 4

CMU 15-769, Fall 2016

Putting it all together (distributed implementation)

In parallel across all nodes, compute features and term frequencies
In this example: build

Compute IDF weights via reduction, broadcast to all nodes inverted index (other search
Broadcast TFIDF information (weight table) to all nodes accelerations possible)
Independently compute K=k;+k: NN on all nodes (all-to-all communication of BOW vectors)
For each image J, verify top k; candidates to create initial match graph (parallel across images)

Compute match graph connected components (sequentially on one node is easiest)

NS B WD

For each image J, verify next k; candidates if candidate is not in same graph connected component
(dynamic parallelization) as i

8. For eachimage i, verify further matches based on candidates returned from query expansion
- Repeat for N rounds, or until convergence

9. Generate tracks:
- Each node generates tracks for the images it owns (in parallel across nodes)
- Then merge tracks across nodes (parallel reduction, or sequentially on home node)

10. Compute graph skeletal set (next slide)

CMU 15-769, Fall 2016

Match graph sparsification

[Snavely 2008]

m Allimages do not contribute accurately to coverage/accuracy of 3D reconstruction

m For efficiency, we'd like to compute SfM using a minimal set of images (the “skeletal
set”) that yields similar reconstruction quality as the full match graph

RO
Doe o Koo SO
e -y A%
u‘.- "‘ ‘. beb \’(7@4 %.
w Y " g S !
¥, 27
T e ’
) Yilam ” L. P
Pt L S U
 \ S AL kcosammibdniiy
. & o' %
B . qu 8
53 b %P s
Sy
L ? g 'g\jg*?’g q
. 7 % '?V %2 st
(b) (c)
Match graph Skeletal set Reconstruction Adding additional final result post
(black nodes are skeletal set ~ from skeletal set images with pose bundle
images, gray nodes are estimation adjustment
remaining images)

Result: 2x to 50x improvement in reconstruction performance

Image credit: Snavely et al. 2008 CMU 15-769, Fall 2016

Results

“Building Rome in a Day” Agarwal et al. 2009

Time (hrs)
Data set Images Cores Registered Pairs verified Pairs found Matching Skeletal sets Reconstruction
Dubrovnik 57,845 352 11,868 2,658,264 498,982 5 1 16.5
Rome 150,000 496 36,658 8,825,256 2,712,301 13 1 7
Venice 250,000 496 47,925 35,465,029 6,119,207 27 21.5 16.5

(MU 15-769, Fall 2016

Building Rome on a Cloudless Day

Reconstruction from 2.8M images on a single PCin one day (Frahm et al. ECCV 2010)

Step 1: reduce all images to 512 bit binary code (64 bytes/image)
- image — GIST descriptor+RGB — binarize via locality sensitive binary code
- millions of image descriptors can fitin RAM

Step 2: cluster all images based on bitcode descriptor (seed cluster centers with GPS data if available)

Step 3: validate clusters using geometric verification
- pick nimages closest to cluster center, see if large fraction of pairs pass geometric verification (reject
cluster if not)

Step 4: compute single “iconicimage” per cluster (image with most successful verifications with other images
in the cluster)

- remove images from cluster if they don’t geometrically match the iconicimage

Step 5: build match graph from iconicimages (using image search, or if available, compute GPS position of
clusters by averaging geotags from images, then attempt to match all iconicimages within 150m

Step 6: use SfM techniques to estimate camera pose, 3D pose for iconics
Step 7: incorporate keypoints from non-iconic images into estimate (no SfM run since matches already known)

CMU 15-769, Fall 2016

Building Rome on a Cloudless Day

Reconstruction from 2.8M images on a single PCin one day (Frahm et al. ECCV 2010)

Gist & SIFT & Local iconic
Dataset Clustering|Geom. verification ||scene graph|Dense |total time
Rome & geo|| 1:35 hrs 11:36 hrs 8:35 hrs 1:58 hrs|| 23:53 hrs
Berlin & geo|| 1:30 hrs 11:46 hrs 7:03 hrs ||0:58 hrs| 21:58 hrs
LSBC F#images

Dataset total |clusters |iconics|verified |[3D models|largest model

Rome & geo (|2,884,6563|[100, 000| 21,651 | 306788 63905 5671

Berlin & geo||2,771,966(100, 000| 14664 | 124317 31190 3158

(MU 15-769, Fall 2016

Related task: location recognition

Given a new image, how can we leverage an existing 3D reconstruction to
estimate the camera’s location and orientation?

Query image

B First-thought solution:

- For each keypoint in query image, finding matching tracks in scene database of all images
(recall: tracks correspond to scene features)

- Possible implementation: ANN lookup using KD-tree built over database

- Then attempt camera pose estimation for query given the collection of matches

Left image credit: Mark Ordonez (via Flickr), Right image credit: Li et al. 2010 (MU 15-769, Fall 2016

Observation

m Not all scene database features are equally useful in matching images

® Many scene features appear in many images

- Example below: clock face on tower is most frequently observed point in database
(many tourist images of Dubrovnik, Croatia on Flickr contain this feature)

(MU 15-769, Fall 2016

Observation

m Not all scene database features are equally useful in matching images

B Many scene features appear in many images

- Example below: clock face on tower is most frequently observed point in database
(many tourist images of Dubrovnik, Croatia on Flickr contain this feature)

|dea: use up-front knowledge of
likelihood of scene points to appear in
images. .. to accelerate image feature
matching

(MU 15-769, Fall 2016

ldea: analyze image database to accelerate
matching

Previously in this lecture: organize database feature points into
index (e.qg., KD-tree) to accelerate search

New idea: leverage co-occurrence and frequency of occurrence

- We do not seek to find all matches in the database with the query, only enough
matches to estimate query image’s camera pose

- Co-occurrence: it is sufficient to search over a small subset of scene points
(since many scene points co-occur in the same images and are similarly useful
for pose estimation)

- Frequency of occurrence: search for the points that are most likely to be in the
query image

CMU 15-769, Fall 2016

K-coverings of scene images

m Subsample database: compute scene keypoint set thatis a
K-covering of all images in the database

— K-cover: set of points such that at least K points are present in each image
— Simple greedy algorithm to compute K cover:

S = {} // set of points in covering

sort all scene points by number of images they appear in
while K-cover not reached by S:

add point P appearing in largest number of images into S

m Precompute two K-coverings for image database

- Ps: 5-covering, capped to at most 2,000 points
- P< 100-covering

CMU 15-769, Fall 2016

Localization algorithm

Query = list of feature points
Database = list of feature points for all images in collection

Idea: rather than search database for matches to points in query image, search
query list for matches database feature points

Simple algorithm: tests database points against query image in priority order

Compute Kd tree for points in query
Initial prioritization of database points:
Highest priority points: Ps
Next highest priority points: Pc
Remaining points: priority = number of images point 1is visible in

while additional matching points are required:
Attempt to match highest priority point against query’s points
if match found:
for each DB image I containing matched point:
Increase priority of all DB points in I

\ Dynamic reprioritization of DB points based on co-occurrence
with matched points.

CMU 15-769, Fall 2016

Recap: how the algorithm works

B Test the most likely to match images from the database first
- Recall: only need a few matches to estimate 3D camera pose of query

B Once a match is found, leverage co-occurrence of points in database images to
predict new matching points

m Desirable system behavior: optimize for the common case
- Common query images get found very quickly
- Uncommon query images take longer to localize

- Memory efficient: dont need to store an additional acceleration structure
for the entire database of images

CMU 15-769, Fall 2016

Modern challenges

B Interestin 3D reconstruction of moving scenes
- (Capturing dynamic environments (navigation, localization)
- (Capturing humans (performance capture, entertainment, VR)

®m (Correspondence problem is more difficult because scene keypoints may not share the same 3D
position across images

Another challenge is latency:
Autonomous agents typically want to respond to
changes in world in ms
(also true of VR)

[Image credit: Joo et al. 2014] (MU 15-769, Fall 2016

