Lecture 12:

Imposing Task-Specific Structure on DNNs

Visual Computing Systems CMU 15-769, Fall 2016

Today

- Four examples of DNN authors imposing structure on networks to better perform a desired task
- For each example, consider:
 - What knowledge does the human inject?
 - What does the computer learn?
- Image compression networks [Toderici ICLR 16]
- Cross-stitch networks: sharing lower DNN layers [Misra CVPR 2016]
- Spatial transformers [Jaderberg NIPS 2015]
- **Convolutional pose machines for pose estimation** [Wei CVPR16]

Image compression using DNNs

Review: JPG image compression Lossy compression designed to retain information that is most

- Lossy compression designed to retain information important to human perception
- Human-designed compact representation

Deep learning learns useful representations

- Can we apply deep learning techniques to obtain compact image representations for efficient storage and transmission?
- Class discussion: Why?

Example use case

Auto-encoder: learn to compress (encode) and reconstruct (decode) the input signal

- Jointly train D, B, and E using supervision from Loss(x, x')

Progressive encoding: chain copies of autoencoder (each iteration contributes bits)

$$F_t(r_{t-1}) = D_t(B(E_t(r_{t-1})))$$

$r_0 = input image to compress$

Version 1: each iteration predicts the residual

$$\begin{aligned} r_t &= F_t(r_{t-1}) - r_{t-1} & r_t &= F_t(r_{t-1}) - r_0 \\ x' &= \sum_{t=1}^N F_t(r_{t-1}) & x' &= F_N(r_{N-1}) \\ \text{In both cases, loss given by } \|r_t\|_2^2 \text{ for all } t \end{aligned}$$

[Toderici ICLR 16]

 $r_{t-1}))))$

Version 2: (stateful E() and D() units) each iteration predicts input image

Binarization

- Step 1: output of encoder passes through fully-connected layer with *m* outputs (to "squeeze" to desired number of outputs)
- Step 2: quantize each output to a bit

$$B(x) = f(tanh(Wx + f(x))) = \begin{cases} -1 & x < 0 \\ +1 & x \ge 0 \end{cases}$$

Add random perturbation during training (regularization): $f(x) = x + \epsilon$ $\epsilon \sim \begin{cases} 1-x & \text{with probability } \frac{1+x}{2}, \\ -x-1 & \text{with probability } \frac{1-x}{2}, \end{cases}$

(+b))

Version 1 autoencoder

Fully-connected version:

Input is 8x8 block

Each fully connected layer has 512 outputs and tanh non-linearity

Each iteration through auto encoder yields 4 bits (two iterations shown)

[Toderici ICLR 16]

nearity ations shown)

Version 1 autoencoder (convolutional)

Convolutional version: 2 bits per spatial location of output per iteration 32x32 input \rightarrow 8x8 spatial outputs (128 bits per iteration)

[Toderici ICLR 16]

1x1 conv to convert to rgb not shown (3 filters in layer)

Version 2 autoencoder (LSTM-based)

(Convolutional form also exists)

LSTM version: predicts source image each iteration (not a residual) **LSTM units:**

- **Recurrent: output from iteration t-1 fed into unit in iteration t**
- Stateful: each unit maintains its own hidden state

Compression results

Original (32×32)

JPEG compressed images

Compressed images with LSTM architecture

JPEG	0.641
LSTM	0.625
(De)Convolutional LSTM	0.625

Average bpp:

[Toderici ICLR 16]

[Toderici ICLR 2016]

Compressed images with conv/deconv LSTM architecture

From left to right

0.875	1.117	1.375
0.875	1.125	1.375
0.875	1.125	1.375

Compression results

	Patch Size	SSIM / 64B Target	SSIM / 128B Target		
		(Header-less Size)	(Header-less Size)		
Header-less JPEG	8×8	0.70	0.80		
	0/10	(72.5 bytes avg.)	(133 bytes avg.)		
Header-less JPEG 2000		0.66	0.77		
Reduct-less JPEO 2000		(73 bytes avg.)	(156 bytes avg.)		
		0.62	0.73		
Header-less WebP		(80.7 bytes avg.)	(128.2 bytes avg.)		
Fully Connected Residual Encoder	0 > 0	0.46	0.40		
(Shared Weights)	8×8	0.46	0.48		
Fully Connected Residual Encoder	8×8	0.65	0.75		
(Distinct Weights)	0 × 0	0.05	0.75		
LSTM Compressor	8×8	0.69	0.81		
Conv/Deconv Residual Encoder	2222	0.45	0.10		
(Shared Weights)	32×32	0.45	0.46		
Conv/Deconv Residual Encoder	20~20	0 65	0.75		
(Distinct Weights)	32×32	0.65			
Convolutional/Deconvolutional Autoencoder	32×32	0.76	0.86		
Conv/Deconv LSTM Compressor	32×32	0.77	0.87		

SSIM: structural similarity index

Summary / thoughts

- Idea: learn how to compress thumbnail-sized images by trying to compress large database of tiny images
 - Loss is not perceptually motivated (if there was a differentiable perceptual loss metric, they would have used it instead of L2 on pixel residual)
- Improvement on JPG for small images, future work extends to large images by exploiting global redundancy [Toderici 2016]
- Why use learning for this problem?
 - Potential for higher quality encode (learn better representations than humans can manually craft)
 - General mechanism to specialize representations for task
 - [Toderici 2016]: specific to thumbnail images
 - What about camera-viewpoint specific compression?
 - Task-based definition of loss rather than pixels (compress subject to still being able to recognize objects)

Camera-specific compression?

Security cameras (stationary)

Head mounted cameras

Cross-Stitch Networks

Recall object classification networks

Lower levels of network "shared" across all categories (Lower level convolutions produce useful features)

VGG-16

Recall Faster R-CNN

Lower conv layers shared between two tasks: (1) object bounding box prediction and (2) object detection

Multi-task learning

For better accuracy

- Representations learned to successfully perform multiple tasks A, B, C may be more general, less prone to overfitting, etc.
- One task serves as a form of supervision for another (as there are effectively more examples available to train the shared lower layers of the network)

For increased computational efficiency

- Share early layer computations across many tasks (consider performing N related tasks on an input video stream)

Example: various topologies for multi-class learning

Semantic Segmentation

[Image from: Misra et al. CVPR 2016]

Normal estimation

Idea: learn how much to share weights

Setting α_{AB} or α_{BA} to 0 implies no input sharing. Setting row's coefficients to same value implies full sharing.

[Image from: Misra et al. CVPR 2016]

Example cross-stitch network

(Two cross-stitched AlexNet's)

Example result: segmentation + normal estimation task

Surface Normal

	Angle Distance (Lower Better)		Within t° (Higher Better)			(Hig	ther Bet	ter)
Method	Mean		11.25		30	` U	mIU	fwIU
One-task	34.8	19.0	38.3	53.5	59.2	_	_	_
	_	_	_	_	_	46.6	18.4	33.1
Ensemble	34.4	18.5	38.7	54.2	59.7	_	-	_
	_	_	-	-	-	48.2	18.9	33.8
Split conv4	34.7	19.1	38.2	53.4	59.2	47.8	19.2	33.8
MTL-shared	34.7	18.9	37.7	53.5	58.8	45.9	16.6	30.1
Cross-stitch [ours]] 34.1	18.2	39.0	54.4	60.2	47.2	19.3	34.0

Segmentation

Spatial Transformer Networks

Common pattern

- Train DNN for perform task on canonical image form
- Example, R-CNN expects contents of boxes to be scaled to **fixed**-size input
 - This is a crop of original image, followed by resample
 - for all candidate boxes (x,y,w,h): cropped = image_crop(image, bbox(resized = image_resize(227,227) label = detect_object(resized) if (label != background) // region defined by bbox(x,y,w,h) contains object // of class 'label'
 - Recall Faster R-CNN: given pixel pattern... predict box, then crop/resample to canonicalize box's contents

Generalization: learning to canonicalize

- **Modular thinking:**
 - Step 1: canonicalize
 - Step 2: perform task (e.g., detect)
- Why not jointly learn network to perform task, and network to canonicalize the input?
 - (In other words, learn to be spatial invariant)

Spatial transformer network

$$\begin{pmatrix} x_i^s \\ y_i^s \end{pmatrix} = \mathcal{T}_{\theta}(G_i) = \mathbf{A}_{\theta} \begin{pmatrix} x_i^t \\ y_i^t \\ 1 \end{pmatrix} = \begin{bmatrix} \theta_{11} & \theta_{12} & \theta_{13} \\ \theta_{21} & \theta_{22} & \theta_{23} \end{bmatrix} \begin{pmatrix} x_i^t \\ y_i^t \\ 1 \end{pmatrix}$$

[Jaderberg NIPS 2015]

Convolutional Pose Machines

Problem statement

Given image containing a human, output the (x,y) position of each of the human's P parts (parts are joints)

PCK elbow, FLIC

Fall 2016

Knowledge

- There are P parts
 - No connectivity or constraints are given
- Context is useful: for any part p_i, knowing the position of other parts may be useful to localizing p_i
 - If I know where the knee is, that should provide information about where the foot is likely to be
- Iteratively update belief about distributions until convergence

Convolutional pose machine (CPM)

Stage 1: estimate part positions from local information (160x160 receptive field)

Stage N: accepts original image (locally computed parts) and previously predicted locations of all parts from stage N-1

Example contextual refinement

Localization of shoulder, head, neck (easy to detect in stage 1) help eliminate incorrect distribution (from stage 1) for position of elbow

[Wei CVPR16]

stage 2

R. Elbow

R. Elbow

Takeaway

- **Designers of modern networks impose structure on topology** based on human knowledge of how a solution to the task at hand should proceed (topology suggests basic structure of solution)
 - e.g., share these layers
 - e.q., canonicalize and then detect
 - e.g., the number of joints in a human
- Use end-to-end learning to learn the "details" that would be hard (or tedious) for a human to craft
 - e.g., how much to share for each layer
 - e.g., how to canonicalize
 - e.g., how does context help localize human joints in an image