
Visual Computing Systems
CMU 15-769, Fall 2016

Lecture 12:

Imposing Task-Specific
Structure on DNNs

 CMU 15-769, Fall 2016

Today
▪ Four examples of DNN authors imposing structure on

networks to better perform a desired task

▪ For each example, consider:
- What knowledge does the human inject?
- What does the computer learn?

▪ Image compression networks

▪ Cross-stitch networks: sharing lower DNN layers

▪ Spatial transformers

▪ Convolutional pose machines for pose estimation [Wei CVPR16]

[Jaderberg NIPS 2015]

[Misra CVPR 2016]

[Toderici ICLR 16]

 CMU 15-769, Fall 2016

Image compression using DNNs

 CMU 15-769, Fall 2016

Review: JPG image compression
▪ Lossy compression designed to retain information that is most

important to human perception

▪ Human-designed compact representation

Coefficient reordering

RLE compression of zeros

Entropy compression of non-
zeros

Compressed
bits

 CMU 15-769, Fall 2016

Deep learning learns useful representations

▪ Can we apply deep learning techniques to obtain compact
image representations for efficient storage and transmission?

▪ Class discussion: Why?

 CMU 15-769, Fall 2016

Example use case
Compressing 32x32 8-bit RGB thumbnails (24 bpp)

Input:
32x32x3

image

Output:
approximation to

32x32x3
image

Decoder
(D)

Encoder
(E)

Binarization
Function (B)

x

0 = D(B(E(x)))

x

0
x

0

Auto-encoder: learn to compress (encode) and reconstruct (decode)
the input signal

- Jointly train D, B, and E using supervision from Loss(x, x’)

Compact intermediate
(for storage/transmission)

 CMU 15-769, Fall 2016

Progressive encoding: chain copies of autoencoder
(each iteration contributes bits)

Input:
32x32x3
residual

Output: 32x32x3Decoder
(D)

Encoder
(E)

Binarization
Function (B)

= input image to compress

Ft(rt�1) = Dt(B(Et(rt�1)))

Ft(rt�1)rt�1

r0

rt = Ft(rt�1)� rt�1

Version 1:
each iteration predicts the residual

x

0 =
NX

t=1

Ft(rt�1)

Version 2: (stateful E() and D() units)
each iteration predicts input image

x

0 = FN (rN�1)

rt = Ft(rt�1)� r0

In both cases, loss given by krtk22 for all t
[Toderici ICLR 16]

 CMU 15-769, Fall 2016

Binarization
▪ Step 1: output of encoder passes through fully-connected layer with m

outputs (to “squeeze” to desired number of outputs)

▪ Step 2: quantize each output to a bit

f(x) = x+ ✏

B(x) = f(tanh(Wx+ b))

f(x) =

⇢
�1 x < 0
+1 x � 0

�

Add random perturbation during training (regularization):

Published as a conference paper at ICLR 2016

(1) bit vectors are trivially serializable/deserializable for image transmission over the wire, (2) control
of the network compression rate is achieved simply by putting constraints on the bit allowance, and
(3) a binary bottleneck helps force the network to learn efficient representations compared to standard
floating-point layers, which may have many redundant bit patterns that have no effect on the output.

The binarization process consists of two parts. The first part consists of generating the required
number of outputs (equal to the desired number of output bits) in the continuous interval [�1, 1]. The
second part involves taking this real-valued representation as input and producing a discrete output in
the set {�1, 1} for each value.

For the first step in the binarization process, we use a fully-connected layer with tanh activations.
For the second part, following Raiko et al. (2015), one possible binarization b(x) of x 2 [�1, 1] is
defined as:

b(x) = x+ ✏ 2 {�1, 1}, (4)

✏ ⇠
⇢
1� x with probability 1+x

2 ,

�x� 1 with probability 1�x

2 ,

(5)

where ✏ corresponds to quantization noise. We will use the regularization provided by the randomized
quantization to allow us to cleanly backpropagate gradients through this binarization layer.

Therefore, the full binary encoder function is:

B (x) = b

�
tanh(W

bin
x+ b

bin
)

�
. (6)

where W

bin and b

bin are the standard linear weights and bias that transform the activations from the
previous layer in the network. In all of our models, we use the above formulation for the forward
pass. For the backward pass of back-propagation, we take the derivative of the expectation (Raiko
et al., 2015). Since E[b(x)] = x for all x 2 [�1, 1], we pass the gradients through b unchanged.

In order to have a fixed representation for a particular input, once the networks are trained, only the
most likely outcome of b(x) is considered and b can be replaced by b

inf defined as:

b

inf
(x) =

⇢
�1 if x < 0,
+1 otherwise.

(7)

The compression rate is determined by the number of bits generated in each stage, which corresponds
to the number of rows in the W

bin matrix, and by the number of stages, controlled by the number of
repetitions of the residual autoencoder structure.

3.3 FEED-FORWARD FULLY-CONNECTED RESIDUAL ENCODER

In the simplest instantiation of our variable rate compression architecture, we set E and D to be
composed of stacked fully-connected layers. In order to make the search for architectures more
feasible we decided to set the number of outputs in each fully-connected layer to be constant (512)
and only used the tanh nonlinearity.

Given that E and D can be functions of the encoding stage number, and since the statistics of the
residuals change when going from stage t to t+ 1 we considered two distinct approaches: in the first
we share weights across all stages, while in the second, we learn the distinct weights independently
in each stage. The details of this architecture are given in Figure 1.

3.4 LSTM-BASED COMPRESSION

In this architecture, we explore the use of LSTM models for both the encoder and the decoder. In
particular, both E and D consist of stacked LSTM layers.

Following the LSTM formulation and notation proposed by Zaremba et al. (2014), we use superscripts
to indicate the layer number, and subscripts to indicate time steps. Let hl

t

2 Rn denote the hidden
state of l-th LSTM layer at time step t. We define T

l

n

: Rm ! Rn to be an affine transform
T

l

n

(x) = W

l

x+ b

l. Finally, let � denote element-wise multiplication, and let h0
t

be the input to the
first LSTM layer at time step t.

4

[Toderici ICLR 16]

 CMU 15-769, Fall 2016

Version 1 autoencoder
Published as a conference paper at ICLR 2016

Figure 1: The fully-connected residual autoencoder. We depict a two-iteration architecture, with the
goal of the first iteration being to encode the original input patch and the goal of the second iteration
being to encode the residual from the first level’s reconstruction. In our 64-bit results, reported in
Table 1, we have 16 iterations giving 4 bits each. The blocks marked with 512 are fully-connected
neural network layers with 512 units and tanh nonlinearities. The loss applied to the residuals in
training is a simple L2 measure.

Figure 2: The fully-connected LSTM residual encoder. The 512 LSTM blocks represent LSTM
layers with 512 units. This figure shows an unrolling of the LSTM, needed for training, to two time
steps. The actual architecture would have only the first row of blocks, with the functionality of the
second row (and subsequent recursions) being realized by feeding the residual from the previous
pass back into the first LSTM block. For the results reported in Table 1, this repeated feeding back
was done 16 times, to generate 64 bit representations. The vertical connections between the LSTM
stages in the unrolling shows the effect of the persistent memory instead each LSTM. The loss is
applied to the residuals in training is a simple L2 measure. Note that in contrast to Figure 1, in which
the network after the first step is used to predict the previous step’s residual error, in this LSTM
architecture, each step predicts the actual output.

Figure 3: The convolutional / deconvolutional residual encoder. The convolutional layers are depicted
as sharp rectangles, while the deconvolutional layers are depicted as rounded rectangles. The loss is
applied to the residuals.

5

Encode (iter1) Decode (iter 1)B()

Encode (iter2) Decode (iter2)

Compute
r1

F(r0)

F(r1) Compute
r2

F(r0)+F(r1)

Fully-connected version:

Input is 8x8 block

Each fully connected layer has 512 outputs and tanh non-linearity

Each iteration through auto encoder yields 4 bits (two iterations shown)
[Toderici ICLR 16]

 CMU 15-769, Fall 2016

Version 1 autoencoder (convolutional)

Convolutional version:
2 bits per spatial location of output per iteration

32x32 input → 8x8 spatial outputs (128 bits per iteration)

Published as a conference paper at ICLR 2016

Figure 1: The fully-connected residual autoencoder. We depict a two-iteration architecture, with the
goal of the first iteration being to encode the original input patch and the goal of the second iteration
being to encode the residual from the first level’s reconstruction. In our 64-bit results, reported in
Table 1, we have 16 iterations giving 4 bits each. The blocks marked with 512 are fully-connected
neural network layers with 512 units and tanh nonlinearities. The loss applied to the residuals in
training is a simple L2 measure.

Figure 2: The fully-connected LSTM residual encoder. The 512 LSTM blocks represent LSTM
layers with 512 units. This figure shows an unrolling of the LSTM, needed for training, to two time
steps. The actual architecture would have only the first row of blocks, with the functionality of the
second row (and subsequent recursions) being realized by feeding the residual from the previous
pass back into the first LSTM block. For the results reported in Table 1, this repeated feeding back
was done 16 times, to generate 64 bit representations. The vertical connections between the LSTM
stages in the unrolling shows the effect of the persistent memory instead each LSTM. The loss is
applied to the residuals in training is a simple L2 measure. Note that in contrast to Figure 1, in which
the network after the first step is used to predict the previous step’s residual error, in this LSTM
architecture, each step predicts the actual output.

Figure 3: The convolutional / deconvolutional residual encoder. The convolutional layers are depicted
as sharp rectangles, while the deconvolutional layers are depicted as rounded rectangles. The loss is
applied to the residuals.

5

Encode (iter1) B()

Decode (iter 1)
Upsampling by stride

then conv

Compute
r1

F(r0)

1x1 conv to convert to rgb not
shown (3 filters in layer)

[Toderici ICLR 16]

 CMU 15-769, Fall 2016

Version 2 autoencoder (LSTM-based)

LSTM version: predicts source image each iteration (not a residual)
LSTM units:
- Recurrent: output from iteration t-1 fed into unit in iteration t
- Stateful: each unit maintains its own hidden state

Published as a conference paper at ICLR 2016

Figure 1: The fully-connected residual autoencoder. We depict a two-iteration architecture, with the
goal of the first iteration being to encode the original input patch and the goal of the second iteration
being to encode the residual from the first level’s reconstruction. In our 64-bit results, reported in
Table 1, we have 16 iterations giving 4 bits each. The blocks marked with 512 are fully-connected
neural network layers with 512 units and tanh nonlinearities. The loss applied to the residuals in
training is a simple L2 measure.

Figure 2: The fully-connected LSTM residual encoder. The 512 LSTM blocks represent LSTM
layers with 512 units. This figure shows an unrolling of the LSTM, needed for training, to two time
steps. The actual architecture would have only the first row of blocks, with the functionality of the
second row (and subsequent recursions) being realized by feeding the residual from the previous
pass back into the first LSTM block. For the results reported in Table 1, this repeated feeding back
was done 16 times, to generate 64 bit representations. The vertical connections between the LSTM
stages in the unrolling shows the effect of the persistent memory instead each LSTM. The loss is
applied to the residuals in training is a simple L2 measure. Note that in contrast to Figure 1, in which
the network after the first step is used to predict the previous step’s residual error, in this LSTM
architecture, each step predicts the actual output.

Figure 3: The convolutional / deconvolutional residual encoder. The convolutional layers are depicted
as sharp rectangles, while the deconvolutional layers are depicted as rounded rectangles. The loss is
applied to the residuals.

5

Encode (iter1) B() Decode (iter1)

F(r0) ~ x’

(Convolutional form also exists)

[Toderici ICLR 16]

 CMU 15-769, Fall 2016

Compression results
Published as a conference paper at ICLR 2016

Original (32⇥32) JPEG compressed images

WebP compressed images

Compressed images with LSTM architecture

Compressed images with conv/deconv LSTM architecture

From left to right

Average bits per pixel (bpp)
JPEG 0.641 0.875 1.117 1.375
WebP 0.789 0.914 1.148 1.398
LSTM 0.625 0.875 1.125 1.375
(De)Convolutional LSTM 0.625 0.875 1.125 1.375

Figure 4: 32⇥32 image compression comparison between JPEG and convolutional/deconvolutional
LSTM architecture.

reduce JPEG encoding quality in order to produce 4:4:4 JPEGs at a comparable bitrate to the LSTM
models.

In terms of coding efficiency, we took an autoencoder architecture (one iteration of the model
presented in Section 3.5) with a given bit budget of either 64 or 128 bytes, and compared its SSIM
against the (de)convolutional LSTM encoder at these targets. In both cases, the LSTM model
produces SSIM values that are equivalent to the autoencoder, even though the resulting model is more
flexible.

5 CONCLUSION & FUTURE WORK

We describe various methods for variable-length encoding of image patches using neural networks,
and demonstrate that for the given benchmark, the fully-connected LSTM model can perform on par
with JPEG, while the convolutional/deconvolutional LSTM model is able to significantly outperform
JPEG on the SSIM perceptual metric.

9

Published as a conference paper at ICLR 2016

Original (32⇥32) JPEG compressed images

WebP compressed images

Compressed images with LSTM architecture

Compressed images with conv/deconv LSTM architecture

From left to right

Average bits per pixel (bpp)
JPEG 0.641 0.875 1.117 1.375
WebP 0.789 0.914 1.148 1.398
LSTM 0.625 0.875 1.125 1.375
(De)Convolutional LSTM 0.625 0.875 1.125 1.375

Figure 4: 32⇥32 image compression comparison between JPEG and convolutional/deconvolutional
LSTM architecture.

reduce JPEG encoding quality in order to produce 4:4:4 JPEGs at a comparable bitrate to the LSTM
models.

In terms of coding efficiency, we took an autoencoder architecture (one iteration of the model
presented in Section 3.5) with a given bit budget of either 64 or 128 bytes, and compared its SSIM
against the (de)convolutional LSTM encoder at these targets. In both cases, the LSTM model
produces SSIM values that are equivalent to the autoencoder, even though the resulting model is more
flexible.

5 CONCLUSION & FUTURE WORK

We describe various methods for variable-length encoding of image patches using neural networks,
and demonstrate that for the given benchmark, the fully-connected LSTM model can perform on par
with JPEG, while the convolutional/deconvolutional LSTM model is able to significantly outperform
JPEG on the SSIM perceptual metric.

9

Published as a conference paper at ICLR 2016

Original (32⇥32) JPEG compressed images

WebP compressed images

Compressed images with LSTM architecture

Compressed images with conv/deconv LSTM architecture

From left to right

Average bits per pixel (bpp)
JPEG 0.641 0.875 1.117 1.375
WebP 0.789 0.914 1.148 1.398
LSTM 0.625 0.875 1.125 1.375
(De)Convolutional LSTM 0.625 0.875 1.125 1.375

Figure 4: 32⇥32 image compression comparison between JPEG and convolutional/deconvolutional
LSTM architecture.

reduce JPEG encoding quality in order to produce 4:4:4 JPEGs at a comparable bitrate to the LSTM
models.

In terms of coding efficiency, we took an autoencoder architecture (one iteration of the model
presented in Section 3.5) with a given bit budget of either 64 or 128 bytes, and compared its SSIM
against the (de)convolutional LSTM encoder at these targets. In both cases, the LSTM model
produces SSIM values that are equivalent to the autoencoder, even though the resulting model is more
flexible.

5 CONCLUSION & FUTURE WORK

We describe various methods for variable-length encoding of image patches using neural networks,
and demonstrate that for the given benchmark, the fully-connected LSTM model can perform on par
with JPEG, while the convolutional/deconvolutional LSTM model is able to significantly outperform
JPEG on the SSIM perceptual metric.

9

Published as a conference paper at ICLR 2016

Original (32⇥32) JPEG compressed images

WebP compressed images

Compressed images with LSTM architecture

Compressed images with conv/deconv LSTM architecture

From left to right

Average bits per pixel (bpp)
JPEG 0.641 0.875 1.117 1.375
WebP 0.789 0.914 1.148 1.398
LSTM 0.625 0.875 1.125 1.375
(De)Convolutional LSTM 0.625 0.875 1.125 1.375

Figure 4: 32⇥32 image compression comparison between JPEG and convolutional/deconvolutional
LSTM architecture.

reduce JPEG encoding quality in order to produce 4:4:4 JPEGs at a comparable bitrate to the LSTM
models.

In terms of coding efficiency, we took an autoencoder architecture (one iteration of the model
presented in Section 3.5) with a given bit budget of either 64 or 128 bytes, and compared its SSIM
against the (de)convolutional LSTM encoder at these targets. In both cases, the LSTM model
produces SSIM values that are equivalent to the autoencoder, even though the resulting model is more
flexible.

5 CONCLUSION & FUTURE WORK

We describe various methods for variable-length encoding of image patches using neural networks,
and demonstrate that for the given benchmark, the fully-connected LSTM model can perform on par
with JPEG, while the convolutional/deconvolutional LSTM model is able to significantly outperform
JPEG on the SSIM perceptual metric.

9

Average bpp:

[Toderici ICLR 2016]

[Toderici ICLR 16]

 CMU 15-769, Fall 2016

Compression results

Published as a conference paper at ICLR 2016

Table 1: Comparison between the proposed methods for a given compression target size (in bytes) on
the 32x32 image benchmark.

Patch Size
SSIM / 64B Target
(Header-less Size)

SSIM / 128B Target
(Header-less Size)

Header-less JPEG 8⇥8
0.70

(72.5 bytes avg.)
0.80

(133 bytes avg.)

Header-less JPEG 2000
0.66

(73 bytes avg.)
0.77

(156 bytes avg.)

Header-less WebP
0.62

(80.7 bytes avg.)
0.73

(128.2 bytes avg.)

Fully Connected Residual Encoder
(Shared Weights)

8⇥8 0.46 0.48

Fully Connected Residual Encoder
(Distinct Weights)

8⇥8 0.65 0.75

LSTM Compressor 8⇥8 0.69 0.81

Conv/Deconv Residual Encoder
(Shared Weights)

32⇥32 0.45 0.46

Conv/Deconv Residual Encoder
(Distinct Weights)

32⇥32 0.65 0.75

Convolutional/Deconvolutional Autoencoder 32⇥32 0.76 0.86
Conv/Deconv LSTM Compressor 32⇥32 0.77 0.87

Table 1 summarizes the results on the 32⇥32 benchmark, comparing our two LSTM approaches to
two JPEG codecs and to WebP. To avoid unfairly penalizing the codecs due to the unavoidable cost
of their file headers, we exclude the header size from all metrics. Note also that since these standard
codecs can not be tuned to an exact byte budget (e.g., 64 bytes excluding the file header), we search
for the encoder quality setting that leads to a file whose size is as close as possible, but never less
than, the target size. On average, this leads to each JPEG and WebP image consuming slightly more
space than we allow for the LSTM models.

4.4 ANALYSIS

These 32⇥32 images contain considerable detail that is perceptually relevant. As can be seen in
Figure 4, compressing these images without destroying salient visual information or hallucinating
false details is challenging. At these very low bitrates and spatial resolution, JPEG block artifacts
become extremely prominent, and WebP either introduces blocking or overly blurs the image
depending on the strength of the internal filter. Color smearing artifacts due to the codecs’ default
(4:2:0) chroma subsampling are also clearly visible.

Compared to JPEG, the non-convolutional LSTM model slightly reduces inter-block boundaries on
some images but can also lead to increased color bleeding (e.g., on mandrill as shown in Figure 4).
Furthermore, the visual quality never exceeds JPEG on average as measured by SSIM and shown in
Figure 5. This motivates the (de)convolutional LSTM model, which eliminates block artifacts while
avoiding excessive smoothing. It strikes the best balance between preserving real detail and avoiding
color smearing, false gradients, and hallucinated detail not present in the original image.

Note that the (de)convolutional LSTM model exhibits perceptual quality levels that are equal to
or better than both JPEG and WebP at 4% – 12% lower average bitrate. We see this improvement
despite the fact that, unlike JPEG and WebP, the LSTMs do not perform chroma subsampling as a
preprocess. However, at the JPEG quality levels used in Figure 4, disabling subsampling (i.e., using
4:4:4 encoding) leads to a costly increase in JPEG’s bitrate: 1.32-1.77 bpp instead of 1.05-1.406 bpp,
or 26% greater. This means that if we desired to preserve chroma fidelity, we would need to drastically

8

SSIM: structural similarity index

[Toderici ICLR 16]

 CMU 15-769, Fall 2016

Summary / thoughts
▪ Idea: learn how to compress thumbnail-sized images by trying to

compress large database of tiny images
- Loss is not perceptually motivated (if there was a differentiable perceptual loss

metric, they would have used it instead of L2 on pixel residual)

▪ Improvement on JPG for small images, future work extends to large
images by exploiting global redundancy [Toderici 2016]

▪ Why use learning for this problem?
- Potential for higher quality encode (learn better representations

than humans can manually craft)
- General mechanism to specialize representations for task

- [Toderici 2016]: specific to thumbnail images
- What about camera-viewpoint specific compression?
- Task-based definition of loss rather than pixels (compress subject to still being

able to recognize objects)

 CMU 15-769, Fall 2016

Camera-specific compression?
Security cameras (stationary)

Head mounted cameras

On-vehicle cameras

 CMU 15-769, Fall 2016

Cross-Stitch Networks

 CMU 15-769, Fall 2016

Recall object classification networks
Lower levels of network “shared” across all categories
(Lower level convolutions produce useful features)

Output:
probability of label

(for 1000 class labels)

Input:
fixed size image

VGG-16

 CMU 15-769, Fall 2016

Recall Faster R-CNN
Lower conv layers shared between two tasks:
(1) object bounding box prediction and (2) object detection

Input image:
(of any size)

DNN
(conv layers)

Response maps
WxHx512

512 3x3 conv filters
(3x3x512x512 weights)

objectness score
(for 9 boxes)

1x1 conv
(2-way softmax)

512 x (9*2) weights

bbox offset
(for 9 boxes)

1x1 conv
(bbox regressor)

512 x (9x4) weights

ROI
pooling layer

Fully-
connected

layers

Pixel region
(of canonical size) object

label

for each proposed region

bbox

class-label softmax

bbox regression
softmax

List of proposed
regions

 CMU 15-769, Fall 2016

Multi-task learning
▪ For better accuracy

- Representations learned to successfully perform multiple tasks A, B, C
may be more general, less prone to overfitting, etc.

- One task serves as a form of supervision for another (as there are
effectively more examples available to train the shared lower layers of
the network)

▪ For increased computational efficiency
- Share early layer computations across many tasks (consider performing

N related tasks on an input video stream)

 CMU 15-769, Fall 2016

Example: various topologies for multi-class learning
Generic Network

All Parameters Shared
Specific Network

No Parameters Shared
Reducing sharing between tasks

Shared Layers
Task A layers
Task B layers

-5.7

-2.2
-1.2 -0.8 -1 -0.4

0.1

-0.16

0.69

-0.06 -0.09

0.37 0.24

-0.34

Attributes Classification (mAP) Object Detection (mAP)

0.85
0.52 0.65

0.28
0.65 0.52

0.85

-0.4

0.11

-0.62

0.22
0.8

-0.28

-1.32

Surface Normal (Median Error) Semantic Segmentation (mean IU)

Difference
between

Split
Network

and Specific
Network

(Ss𝑝𝑙𝑖𝑡 − Sspecific)

Split fc8 Split fc7 Split fc6 Split conv5 Split conv4 Split conv3 Split conv2

(a)

(b)

Figure 2: We train a variety of multi-task (two-task) architectures by splitting at different layers in a ConvNet [32] for two
pairs of tasks. For each of these networks, we plot their performance on each task relative to the task-specific network. We
notice that the best performing multi-task architecture depends on the individual tasks and does not transfer across different
pairs of tasks.

So given a pair of tasks, how should one pick a network
architecture? To empirically study this question, we pick
two varied pairs of tasks:

• We first pair semantic segmentation (SemSeg) and sur-
face normal prediction (SN). We believe the two tasks are
closely related to each other since segmentation bound-
aries also correspond to surface normal boundaries. For
this pair of tasks, we use NYU-v2 [47] dataset.

• For our second pair of tasks we use detection (Det) and
Attribute prediction (Attr). Again we believe that two
tasks are related: for example, a box labeled as “car”
would also be a positive example of “has wheel” at-
tribute. For this experiment, we use the attribute PAS-
CAL dataset [12, 16].

We exhaustively enumerate all the possible Split archi-
tectures as shown in Figure 2(a) for these two pairs of tasks
and show their respective performance in Figure 2(b). The
best performance for both the SemSeg and SN tasks is using
the “Split conv4” architecture (splitting at conv4), while
for the Det task it is using the Split conv2, and for Attr with
Split fc6. These results indicate two things – 1) Networks
learned in a multi-task fashion have an edge over networks
trained with one task; and 2) The best Split architecture for
multi-task learning depends on the tasks at hand.

While the gain from multi-task learning is encouraging,
getting the most out of it is still cumbersome in practice.
This is largely due to the task dependent nature of picking
architectures and the lack of a principled way of exploring

them. Additionally, enumerating all possible architectures
for each set of tasks is impractical. This paper proposes
cross-stitch units, using which a single network can capture
all these Split-architectures (and more). It automatically
learns an optimal combination of shared and task-specific
representations. We demonstrate that such a cross-stitched
network can achieve better performance than the networks
found by brute-force enumeration and search.

2. Related Work

Generic Multi-task learning [5, 48] has a rich history in
machine learning. The term multi-task learning (MTL) it-
self has been broadly used [2, 14, 28, 42, 54, 55] as an
umbrella term to include representation learning and se-
lection [4, 13, 31, 37], transfer learning [39, 41, 56] etc.
and their widespread applications in other fields, such as
genomics [38], natural language processing [7, 8, 35] and
computer vision [3, 10, 30, 31, 40, 51, 53, 58]. In fact, many
times multi-task learning is implicitly used without refer-
ence; a good example being fine-tuning or transfer learn-
ing [41], now a mainstay in computer vision, can be viewed
as sequential multi-task learning [5]. Given the broad scope,
in this section we focus only on multi-task learning in the
context of ConvNets used in computer vision.

Multi-task learning is generally used with ConvNets in
computer vision to model related tasks jointly, e.g. pose es-
timation and action recognition [22], surface normals and
edge labels [52], face landmark detection and face de-
tection [57, 59], auxiliary tasks in detection [21], related

tuned to segmentation as shown in 4.1, and even score
highly on the standard metric, their output is dissatisfyingly
coarse (see Figure 4). The 32 pixel stride at the final predic-
tion layer limits the scale of detail in the upsampled output.

We address this by adding skips [1] that combine the
final prediction layer with lower layers with finer strides.
This turns a line topology into a DAG, with edges that skip
ahead from lower layers to higher ones (Figure 3). As they
see fewer pixels, the finer scale predictions should need
fewer layers, so it makes sense to make them from shallower
net outputs. Combining fine layers and coarse layers lets the
model make local predictions that respect global structure.
By analogy to the jet of Koenderick and van Doorn [21], we
call our nonlinear feature hierarchy the deep jet.

We first divide the output stride in half by predicting
from a 16 pixel stride layer. We add a 1 ⇥ 1 convolution
layer on top of pool4 to produce additional class predic-
tions. We fuse this output with the predictions computed
on top of conv7 (convolutionalized fc7) at stride 32 by
adding a 2⇥ upsampling layer and summing6 both predic-
tions (see Figure 3). We initialize the 2⇥ upsampling to bi-
linear interpolation, but allow the parameters to be learned
as described in Section 3.3. Finally, the stride 16 predic-
tions are upsampled back to the image. We call this net
FCN-16s. FCN-16s is learned end-to-end, initialized with
the parameters of the last, coarser net, which we now call
FCN-32s. The new parameters acting on pool4 are zero-
initialized so that the net starts with unmodified predictions.
The learning rate is decreased by a factor of 100.

Learning this skip net improves performance on the val-
idation set by 3.0 mean IU to 62.4. Figure 4 shows im-
provement in the fine structure of the output. We compared
this fusion with learning only from the pool4 layer, which
resulted in poor performance, and simply decreasing the
learning rate without adding the skip, which resulted in an
insignificant performance improvement without improving
the quality of the output.

We continue in this fashion by fusing predictions from
pool3 with a 2⇥ upsampling of predictions fused from
pool4 and conv7, building the net FCN-8s. We obtain
a minor additional improvement to 62.7 mean IU, and find
a slight improvement in the smoothness and detail of our
output. At this point our fusion improvements have met di-
minishing returns, both with respect to the IU metric which
emphasizes large-scale correctness, and also in terms of the
improvement visible e.g. in Figure 4, so we do not continue
fusing even lower layers.

Refinement by other means Decreasing the stride of
pooling layers is the most straightforward way to obtain
finer predictions. However, doing so is problematic for our
VGG16-based net. Setting the pool5 stride to 1 requires
our convolutionalized fc6 to have kernel size 14 ⇥ 14 to

6Max fusion made learning difficult due to gradient switching.

FCN-32s FCN-16s FCN-8s Ground truth

Figure 4. Refining fully convolutional nets by fusing information
from layers with different strides improves segmentation detail.
The first three images show the output from our 32, 16, and 8
pixel stride nets (see Figure 3).

Table 2. Comparison of skip FCNs on a subset7 of PASCAL VOC
2011 segval. Learning is end-to-end, except for FCN-32s-fixed,
where only the last layer is fine-tuned. Note that FCN-32s is FCN-
VGG16, renamed to highlight stride.

pixel
acc.

mean
acc.

mean
IU

f.w.
IU

FCN-32s-fixed 83.0 59.7 45.4 72.0
FCN-32s 89.1 73.3 59.4 81.4
FCN-16s 90.0 75.7 62.4 83.0
FCN-8s 90.3 75.9 62.7 83.2

maintain its receptive field size. In addition to their com-
putational cost, we had difficulty learning such large filters.
We attempted to re-architect the layers above pool5 with
smaller filters, but did not achieve comparable performance;
one possible explanation is that the ILSVRC initialization
of the upper layers is important.

Another way to obtain finer predictions is to use the shift-
and-stitch trick described in Section 3.2. In limited exper-
iments, we found the cost to improvement ratio from this
method to be worse than layer fusion.

4.3. Experimental framework

Optimization We train by SGD with momentum. We
use a minibatch size of 20 images and fixed learning rates of
10�3, 10�4, and 5�5 for FCN-AlexNet, FCN-VGG16, and
FCN-GoogLeNet, respectively, chosen by line search. We
use momentum 0.9, weight decay of 5�4 or 2�4, and dou-
bled learning rate for biases, although we found training to
be sensitive to the learning rate alone. We zero-initialize the
class scoring layer, as random initialization yielded neither
better performance nor faster convergence. Dropout was in-
cluded where used in the original classifier nets.

Fine-tuning We fine-tune all layers by back-
propagation through the whole net. Fine-tuning the
output classifier alone yields only 70% of the full fine-
tuning performance as compared in Table 2. Training from
scratch is not feasible considering the time required to
learn the base classification nets. (Note that the VGG net is
trained in stages, while we initialize from the full 16-layer

Semantic Segmentation Normal estimation

[Image from: Misra et al. CVPR 2016]

 CMU 15-769, Fall 2016

Idea: learn how much to share weights

Shared
Task A

Shared
Task B

Cross-stitch unitInput
Activation Maps

Output
Activation Maps

Task A

Task B

Figure 3: We model shared representations by learning a
linear combination of input activation maps. At each layer
of the network, we learn such a linear combination of the
activation maps from both the tasks. The next layers’ filters
operate on this shared representation.

classes for image classification [50] etc. Usually these
methods share some features (layers in ConvNets) amongst
tasks and have some task-specific features. This sharing or
split-architecture (as explained in Section 1.1) is decided
after experimenting with splits at multiple layers and pick-
ing the best one. Of course, depending on the task at hand,
a different Split architecture tends to work best, and thus
given new tasks, new split architectures need to be explored.
In this paper, we propose cross-stitch units as a principled
approach to explore and embody such Split architectures,
without having to train all of them.

In order to demonstrate the robustness and effectiveness
of cross-stitch units in multi-task learning, we choose var-
ied tasks on multiple datasets. In particular, we select four
well established and diverse tasks on different types of im-
age datasets: 1) We pair semantic segmentation [27, 45, 46]
and surface normal estimation [11, 18, 52], both of which
require predictions over all pixels, on the NYU-v2 indoor
dataset [47]. These two tasks capture both semantic and
geometric information about the scene. 2) We choose
the task of object detection [17, 20, 21, 44] and attribute
prediction [1, 15, 33] on web-images from the PASCAL
dataset [12, 16]. These tasks make predictions about lo-
calized regions of an image.

3. Cross-stitch Networks

In this paper, we present a novel approach to multi-
task learning for ConvNets by proposing cross-stitch units.
Cross-stitch units try to find the best shared representations
for multi-task learning. They model these shared represen-
tations using linear combinations, and learn the optimal lin-
ear combinations for a given set of tasks. We integrate these
cross-stitch units into a ConvNet and provide an end-to-end
learning framework. We use detailed ablative studies to bet-
ter understand these units and their training procedure. Fur-
ther, we demonstrate the effectiveness of these units for two

different pairs of tasks. To limit the scope of this paper, we
only consider tasks which take the same single input, e.g.,
an image as opposed to say an image and a depth-map [25].

3.1. Split Architectures

Given a single input image with multiple labels, one can
design “Split architectures” as shown in Figure 2. These
architectures have both a shared representation and a task
specific representation. ‘Splitting’ a network at a lower
layer allows for more task-specific and fewer shared lay-
ers. One extreme of Split architectures is splitting at the
lowest convolution layer which results in two separate net-
works altogether, and thus only task-specific representa-
tions. The other extreme is using “sibling” prediction lay-
ers (as in [21]), which allows for a more shared representa-
tion. Thus, Split architectures allow for a varying amount
of shared and task-specific representations.

3.2. Unifying Split Architectures

Given that Split architectures hold promise for multi-task
learning, an obvious question is – At which layer of the
network should one split? This decision is highly dependent
on the input data and tasks at hand. Rather than enumerating
the possibilities of Split architectures for every new input
task, we propose a simple architecture that can learn how
much shared and task specific representation to use.

3.3. Cross-stitch units

Consider a case of multi task learning with two tasks A
and B on the same input image. For the sake of explanation,
consider two networks that have been trained separately for
these tasks. We propose a new unit, cross-stitch unit, that
combines these two networks into a multi-task network in
a way such that the tasks supervise how much sharing is
needed, as illustrated in Figure 3. At each layer of the net-
work, we model sharing of representations by learning a lin-
ear combination of the activation maps [4, 31] using a cross-
stitch unit. Given two activation maps xA, xB from layer
l for both the tasks, we learn linear combinations x̃A, x̃B

(Eq 1) of both the input activations and feed these combi-
nations as input to the next layers’ filters. This linear com-
bination is parameterized using ↵. Specifically, at location
(i, j) in the activation map,

2

4
x̃

ij

A

x̃

ij

B

3

5 =

↵AA ↵AB

↵

BA

↵BB

�2

4
x

ij

A

x

ij

B

3

5 (1)

We refer to this the cross-stitch operation, and the unit that
models it for each layer l as the cross-stitch unit. The net-
work can decide to make certain layers task specific by set-
ting ↵AB or ↵BA to zero, or choose a more shared represen-
tation by assigning a higher value to them.

Figure 3: We model shared representations by learning a
linear combination of input activation maps. At each layer
of the network, we learn such a linear combination of the
activation maps from both the tasks. The next layers’ filters
operate on this shared representation.

classes for image classification [50] etc. Usually these
methods share some features (layers in ConvNets) amongst
tasks and have some task-specific features. This sharing or
split-architecture (as explained in Section 1.1) is decided
after experimenting with splits at multiple layers and pick-
ing the best one. Of course, depending on the task at hand,
a different Split architecture tends to work best, and thus
given new tasks, new split architectures need to be explored.
In this paper, we propose cross-stitch units as a principled
approach to explore and embody such Split architectures,
without having to train all of them.

In order to demonstrate the robustness and effectiveness
of cross-stitch units in multi-task learning, we choose var-
ied tasks on multiple datasets. In particular, we select four
well established and diverse tasks on different types of im-
age datasets: 1) We pair semantic segmentation [27, 45, 46]
and surface normal estimation [11, 18, 52], both of which
require predictions over all pixels, on the NYU-v2 indoor
dataset [47]. These two tasks capture both semantic and
geometric information about the scene. 2) We choose
the task of object detection [17, 20, 21, 44] and attribute
prediction [1, 15, 33] on web-images from the PASCAL
dataset [12, 16]. These tasks make predictions about lo-
calized regions of an image.

3. Cross-stitch Networks

In this paper, we present a novel approach to multi-
task learning for ConvNets by proposing cross-stitch units.
Cross-stitch units try to find the best shared representations
for multi-task learning. They model these shared represen-
tations using linear combinations, and learn the optimal lin-
ear combinations for a given set of tasks. We integrate these
cross-stitch units into a ConvNet and provide an end-to-end
learning framework. We use detailed ablative studies to bet-
ter understand these units and their training procedure. Fur-
ther, we demonstrate the effectiveness of these units for two

different pairs of tasks. To limit the scope of this paper, we
only consider tasks which take the same single input, e.g.,
an image as opposed to say an image and a depth-map [25].

3.1. Split Architectures

Given a single input image with multiple labels, one can
design “Split architectures” as shown in Figure 2. These
architectures have both a shared representation and a task
specific representation. ‘Splitting’ a network at a lower
layer allows for more task-specific and fewer shared lay-
ers. One extreme of Split architectures is splitting at the
lowest convolution layer which results in two separate net-
works altogether, and thus only task-specific representa-
tions. The other extreme is using “sibling” prediction lay-
ers (as in [21]), which allows for a more shared representa-
tion. Thus, Split architectures allow for a varying amount
of shared and task-specific representations.

3.2. Unifying Split Architectures

Given that Split architectures hold promise for multi-task
learning, an obvious question is – At which layer of the
network should one split? This decision is highly dependent
on the input data and tasks at hand. Rather than enumerating
the possibilities of Split architectures for every new input
task, we propose a simple architecture that can learn how
much shared and task specific representation to use.

3.3. Cross-stitch units

Consider a case of multi task learning with two tasks A
and B on the same input image. For the sake of explanation,
consider two networks that have been trained separately for
these tasks. We propose a new unit, cross-stitch unit, that
combines these two networks into a multi-task network in
a way such that the tasks supervise how much sharing is
needed, as illustrated in Figure 3. At each layer of the net-
work, we model sharing of representations by learning a lin-
ear combination of the activation maps [4, 31] using a cross-
stitch unit. Given two activation maps xA, xB from layer
l for both the tasks, we learn linear combinations x̃A, x̃B

(Eq 1) of both the input activations and feed these combi-
nations as input to the next layers’ filters. This linear com-
bination is parameterized using ↵. Specifically, at location
(i, j) in the activation map,

2

4
x̃

ij

A

x̃

ij

B

3

5 =

↵AA ↵AB

↵

BA

↵BB

�2

4
x

ij

A

x

ij

B

3

5 (1)

We refer to this the cross-stitch operation, and the unit that
models it for each layer l as the cross-stitch unit. The net-
work can decide to make certain layers task specific by set-
ting ↵AB or ↵BA to zero, or choose a more shared represen-
tation by assigning a higher value to them.

Setting or to 0 implies no input sharing.
Setting row’s coefficients to same value implies full sharing .

↵AB ↵BA

[Image from: Misra et al. CVPR 2016]

 CMU 15-769, Fall 2016

Example cross-stitch network

Backpropagating through cross-stitch units. Since
cross-stitch units are modeled as linear combination, their
partial derivatives for loss L with tasks A,B are computed
as

2

664

@L

@x

ij
A

@L

@x

ij
B

3

775 =

↵AA ↵BA

↵AB ↵BB

�
2

664

@L

@x̃

ij
A

@L

@x̃

ij
B

3

775 (2)

@L

@↵AB
=

@L

@x̃

ij

B

x

ij

A ,
@L

@↵AA
=

@L

@x̃

ij

A

x

ij

A (3)

We denote ↵AB,↵BA by ↵D and call them the different-
task values because they weigh the activations of another
task. Likewise, ↵AA,↵BB are denoted by ↵S, the same-task
values, since they weigh the activations of the same task.
By varying ↵D and ↵S values, the unit can freely move be-
tween shared and task-specific representations, and choose
a middle ground if needed.

4. Design decisions for cross-stitching

We use the cross-stitch unit for multi-task learning in
ConvNets. For the sake of simplicity, we assume multi-task
learning with two tasks. Figure 4 shows this architecture
for two tasks A and B. The sub-network in Figure 4(top)
gets direct supervision from task A and indirect supervision
(through cross-stitch units) from task B. We call the sub-
network that gets direct supervision from task A as network
A, and correspondingly the other as B. Cross-stitch units
help regularize both tasks by learning and enforcing shared
representations by combining activation (feature) maps. As
we show in our experiments, in the case where one task
has less labels than the other, such regularization helps the
“data-starved” tasks.

Next, we enumerate the design decisions when using
cross-stitch units with networks, and in later sections per-
form ablative studies on each of them.
Cross-stitch units initialization and learning rates: The
↵ values of a cross-stitch unit model linear combinations
of feature maps. Their initialization in the range [0, 1] is
important for stable learning, as it ensures that values in
the output activation map (after cross-stitch unit) are of the
same order of magnitude as the input values before linear
combination. We study the impact of different initializa-
tions and learning rates for cross-stitch units in Section 5.
Network initialization: Cross-stitch units combine to-
gether two networks as shown in Figure 4. However, an
obvious question is – how should one initialize the networks
A and B? We can initialize networks A and B by networks
that were trained on these tasks separately, or have the same
initialization and train them jointly.

conv1, pool1 conv2, pool2

Cross-stitch
units

conv3 conv4 conv5, pool5 fc6 fc7 fc8

T
ask A

T
ask B

N
etw

ork B
N

etw
ork A

Im
age

Figure 4: Using cross-stitch units to stitch two AlexNet [32]
networks. In this case, we apply cross-stitch units only af-
ter pooling layers and fully connected layers. Cross-stitch
units can model shared representations as a linear combi-
nation of input activation maps. This network tries to learn
representations that can help with both tasks A and B. We
call the sub-network that gets direct supervision from task
A as network A (top) and the other as network B (bottom).

5. Ablative analysis
We now describe the experimental setup in detail, which

is common throughout the ablation studies.
Datasets and Tasks: For ablative analysis we consider the
tasks of semantic segmentation (SemSeg) and Surface Nor-
mal Prediction (SN) on the NYU-v2 [47] dataset. We use
the standard train/test splits from [18]. For semantic seg-
mentation, we follow the setup from [24] and evaluate on
the 40 classes using the standard metrics from their work
Setup for Surface Normal Prediction: Following [52], we
cast the problem of surface normal prediction as classifi-
cation into one of 20 categories. For evaluation, we con-
vert the model predictions to 3D surface normals and apply
the Manhattan-World post-processing following the method
in [52]. We evaluate all our methods using the metrics
from [18]. These metrics measure the error in the ground
truth normals and the predicted normals in terms of their
angular distance (measured in degrees). Specifically, they
measure the mean and median error in angular distance,
in which case lower error is better (denoted by ‘Mean’
and ‘Median’ error). They also report percentage of pix-
els which have their angular distance under a threshold (de-
noted by ‘Within t

�’ at a threshold of 11.25�, 22.5�, 30�), in
which case a higher number indicates better performance.
Networks: For semantic segmentation (SemSeg) and
surface normal (SN) prediction, we use the Fully-
Convolutional Network (FCN 32-s) architecture from [36]
based on CaffeNet [29] (essentially AlexNet [32]). For both
the tasks of SemSeg and SN, we use RGB images at full
resolution, and use mirroring and color data augmentation.
We then finetune the network (referred to as one-task net-
work) from ImageNet [9] for each task using hyperparame-

(Two cross-stitched AlexNet’s)

[Image from: Misra et al. CVPR 2016]

 CMU 15-769, Fall 2016

Example result: segmentation + normal
estimation task

Table 5: Surface normal prediction and semantic segmenta-
tion results on the NYU-v2 [47] dataset. Our method out-
performs the baselines for both the tasks.

Surface Normal Segmentation

Angle Distance Within t�

(Lower Better) (Higher Better) (Higher Better)
Method Mean Med. 11.25 22.5 30 pixacc mIU fwIU

One-task 34.8 19.0 38.3 53.5 59.2 - - -
- - - - - 46.6 18.4 33.1

Ensemble 34.4 18.5 38.7 54.2 59.7 - - -
- - - - - 48.2 18.9 33.8

Split conv4 34.7 19.1 38.2 53.4 59.2 47.8 19.2 33.8

MTL-shared 34.7 18.9 37.7 53.5 58.8 45.9 16.6 30.1

Cross-stitch [ours] 34.1 18.2 39.0 54.4 60.2 47.2 19.3 34.0

Figure 6: Change in performance (meanIU metric) for se-
mantic segmentation categories over the baseline is indi-
cated by blue bars. We sort the categories (in increasing
order from left to right) by the number of pixel labels in
the train set, and indicate the number of pixel labels by a
solid black line. The performance gain for categories with
lesser data (towards the left) is more when compared to the
baseline one-task network.

ure 6). Some classes like wall, floor have many more in-
stances than other classes like bag, whiteboard etc. Fig-
ure 6 also shows the per-class gain in performance using
our method over the baseline one-task network. We see that
cross-stitch units considerably improve the performance of
“data-starved” categories (e.g., bag, whiteboard).

6.4. Object detection and attribute prediction

We train a cross-stitch network for the tasks of object de-
tection and attribute prediction. We compare against base-
line one-task networks and the best split architectures per
task (found after enumeration and search, Section 1.1). Ta-
ble 6 shows the results for object detection and attribute pre-
diction on PASCAL VOC 2008 [12, 16]. Our method shows
improvements over the baseline for attribute prediction. It
is worth noting that because we use a background class for
detection, and not attributes (described in ‘Scaling losses’
in Section 6), detection has many more data points than at-
tribute classification (only 25% of a mini-batch has attribute
labels). Thus, we see an improvement for the data-starved

Table 6: Object detection and attribute prediction results on
the attribute PASCAL [16] 2008 dataset

Method Detection (mAP) Attributes (mAP)

One-task 44.9 -
- 60.9

Ensemble 46.1 -
- 61.1

Split conv2 44.6 61.0
Split fc7 44.8 59.7

MTL-shared 42.7 54.1

Cross-stitch [ours] 45.2 63.0

task of attribute prediction. It is also interesting to note that
the detection task prefers a shared representation (best per-
formance by Split fc7), whereas the attribute task prefers a
task-specific network (best performance by Split conv2).

6.5. Data-starved categories for attribute prediction

Following a similar analysis to Section 6.3, we plot the
relative performance of our cross-stitch approach over the
baseline one-task attribute prediction network in Figure 5.
The performance gain for attributes with smaller number
of training examples is considerably large compared to the
baseline (4.6% and 4.3% mAP for the top 10 and 20 at-
tributes with the least data respectively). This shows that
our proposed cross-stitch method provides significant gains
for data-starved tasks by learning shared representations.

7. Conclusion
We present cross-stitch units which are a generalized

way of learning shared representations for multi-task learn-
ing in ConvNets. Cross-stitch units model shared represen-
tations as linear combinations, and can be learned end-to-
end in a ConvNet. These units generalize across different
types of tasks and eliminate the need to search through sev-
eral multi-task network architectures on a per task basis. We
show detailed ablative experiments to see effects of hyper-
parameters, initialization etc. when using these units. We
also show considerable gains over the baseline methods for
data-starved categories. Studying other properties of cross-
stitch units, such as where in the network should they be
used and how should their weights be constrained, is an in-
teresting future direction.

Acknowledgments: We would like to thank Alyosha Efros
and Carl Doersch for helpful discussions. This work was sup-
ported in part by ONR MURI N000141612007 and the US Army
Research Laboratory (ARL) under the CTA program (Agreement
W911NF-10-2-0016). AS was supported by the MSR fellowship.
We thank NVIDIA for donating GPUs.

[Misra et al. CVPR 2016]

 CMU 15-769, Fall 2016

Spatial Transformer Networks

 CMU 15-769, Fall 2016

Common pattern
▪ Train DNN for perform task on canonical image form

▪ Example, R-CNN expects contents of boxes to be scaled to
fixed-size input
- This is a crop of original image, followed by resample

for	all	candidate	boxes	(x,y,w,h):	
				cropped	=	image_crop(image,	bbox(x,y,w,h))	
				resized	=	image_resize(227,227)	
				label	=	detect_object(resized)		
				if	(label	!=	background)	
						//	region	defined	by	bbox(x,y,w,h)	contains	object	
						//	of	class	‘label’

▪ Recall Faster R-CNN: given pixel pattern… predict box,
then crop/resample to canonicalize box’s contents

 CMU 15-769, Fall 2016

Generalization: learning to canonicalize
▪ Modular thinking:

- Step 1: canonicalize
- Step 2: perform task (e.g., detect)

▪ Why not jointly learn network to perform task, and network
to canonicalize the input?
- (In other words, learn to be spatial invariant)

 CMU 15-769, Fall 2016

Spatial transformer network

]

]]

]

U V

Localisation net

Sampler

Spatial Transformer

Grid !
generator

]
T✓(G)✓

Figure 2: The architecture of a spatial transformer module. The input feature map U is passed to a localisation
network which regresses the transformation parameters ✓. The regular spatial grid G over V is transformed to
the sampling grid T✓(G), which is applied to U as described in Sect. 3.3, producing the warped output feature
map V . The combination of the localisation network and sampling mechanism defines a spatial transformer.

need for a differentiable attention mechanism, while [14] use a differentiable attention mechansim
by utilising Gaussian kernels in a generative model. The work by Girshick et al. [11] uses a region
proposal algorithm as a form of attention, and [7] show that it is possible to regress salient regions
with a CNN. The framework we present in this paper can be seen as a generalisation of differentiable
attention to any spatial transformation.

3 Spatial Transformers
In this section we describe the formulation of a spatial transformer. This is a differentiable module
which applies a spatial transformation to a feature map during a single forward pass, where the
transformation is conditioned on the particular input, producing a single output feature map. For
multi-channel inputs, the same warping is applied to each channel. For simplicity, in this section we
consider single transforms and single outputs per transformer, however we can generalise to multiple
transformations, as shown in experiments.

The spatial transformer mechanism is split into three parts, shown in Fig. 2. In order of computation,
first a localisation network (Sect. 3.1) takes the input feature map, and through a number of hidden
layers outputs the parameters of the spatial transformation that should be applied to the feature map
– this gives a transformation conditional on the input. Then, the predicted transformation parameters
are used to create a sampling grid, which is a set of points where the input map should be sampled to
produce the transformed output. This is done by the grid generator, described in Sect. 3.2. Finally,
the feature map and the sampling grid are taken as inputs to the sampler, producing the output map
sampled from the input at the grid points (Sect. 3.3).

The combination of these three components forms a spatial transformer and will now be described
in more detail in the following sections.

3.1 Localisation Network

The localisation network takes the input feature map U 2 RH⇥W⇥C with width W , height H and
C channels and outputs ✓, the parameters of the transformation T✓ to be applied to the feature map:
✓ = floc(U). The size of ✓ can vary depending on the transformation type that is parameterised,
e.g. for an affine transformation ✓ is 6-dimensional as in (10).

The localisation network function floc() can take any form, such as a fully-connected network or
a convolutional network, but should include a final regression layer to produce the transformation
parameters ✓.

3.2 Parameterised Sampling Grid

To perform a warping of the input feature map, each output pixel is computed by applying a sampling
kernel centered at a particular location in the input feature map (this is described fully in the next
section). By pixel we refer to an element of a generic feature map, not necessarily an image. In
general, the output pixels are defined to lie on a regular grid G = {Gi} of pixels Gi = (xt

i, y
t
i),

forming an output feature map V 2 RH0⇥W 0⇥C , where H 0 and W 0 are the height and width of the
grid, and C is the number of channels, which is the same in the input and output.

3

(a) (b)

Figure 3: Two examples of applying the parameterised sampling grid to an image U producing the output V .
(a) The sampling grid is the regular grid G = TI(G), where I is the identity transformation parameters. (b)
The sampling grid is the result of warping the regular grid with an affine transformation T✓(G).
For clarity of exposition, assume for the moment that T✓ is a 2D affine transformation A✓. We will
discuss other transformations below. In this affine case, the pointwise transformation is

✓
xs

i

ys
i

◆
= T✓(Gi) = A✓

0

@
xt

i

yt
i

1

1

A
=

✓11 ✓12 ✓13

✓21 ✓22 ✓23

�0

@
xt

i

yt
i

1

1

A (1)

where (xt
i, y

t
i) are the target coordinates of the regular grid in the output feature map, (xs

i , y
s
i) are

the source coordinates in the input feature map that define the sample points, and A✓ is the affine
transformation matrix. We use height and width normalised coordinates, such that �1 xt

i, y
t
i 1

when within the spatial bounds of the output, and �1 xs
i , y

s
i 1 when within the spatial bounds

of the input (and similarly for the y coordinates). The source/target transformation and sampling is
equivalent to the standard texture mapping and coordinates used in graphics [8].

The transform defined in (10) allows cropping, translation, rotation, scale, and skew to be applied
to the input feature map, and requires only 6 parameters (the 6 elements of A✓) to be produced by
the localisation network. It allows cropping because if the transformation is a contraction (i.e. the
determinant of the left 2⇥ 2 sub-matrix has magnitude less than unity) then the mapped regular grid
will lie in a parallelogram of area less than the range of xs

i , y
s
i . The effect of this transformation on

the grid compared to the identity transform is shown in Fig. 3.

The class of transformations T✓ may be more constrained, such as that used for attention

A✓ =

s 0 tx
0 s ty

�
(2)

allowing cropping, translation, and isotropic scaling by varying s, tx, and ty . The transformation
T✓ can also be more general, such as a plane projective transformation with 8 parameters, piece-
wise affine, or a thin plate spline. Indeed, the transformation can have any parameterised form,
provided that it is differentiable with respect to the parameters – this crucially allows gradients to be
backpropagated through from the sample points T✓(Gi) to the localisation network output ✓. If the
transformation is parameterised in a structured, low-dimensional way, this reduces the complexity
of the task assigned to the localisation network. For instance, a generic class of structured and dif-
ferentiable transformations, which is a superset of attention, affine, projective, and thin plate spline
transformations, is T✓ = M✓B, where B is a target grid representation (e.g. in (10), B is the regu-
lar grid G in homogeneous coordinates), and M✓ is a matrix parameterised by ✓. In this case it is
possible to not only learn how to predict ✓ for a sample, but also to learn B for the task at hand.

3.3 Differentiable Image Sampling

To perform a spatial transformation of the input feature map, a sampler must take the set of sampling
points T✓(G), along with the input feature map U and produce the sampled output feature map V .

Each (xs
i , y

s
i) coordinate in T✓(G) defines the spatial location in the input where a sampling kernel

is applied to get the value at a particular pixel in the output V . This can be written as

V c
i =

HX

n

WX

m

U c
nmk(xs

i � m; �x)k(ys
i � n; �y) 8i 2 [1 . . . H 0W 0

] 8c 2 [1 . . . C] (3)

4

(a) (b)

Figure 3: Two examples of applying the parameterised sampling grid to an image U producing the output V .
(a) The sampling grid is the regular grid G = TI(G), where I is the identity transformation parameters. (b)
The sampling grid is the result of warping the regular grid with an affine transformation T✓(G).
For clarity of exposition, assume for the moment that T✓ is a 2D affine transformation A✓. We will
discuss other transformations below. In this affine case, the pointwise transformation is

✓
xs

i

ys
i

◆
= T✓(Gi) = A✓

0

@
xt

i

yt
i

1

1

A
=

✓11 ✓12 ✓13

✓21 ✓22 ✓23

�0

@
xt

i

yt
i

1

1

A (1)

where (xt
i, y

t
i) are the target coordinates of the regular grid in the output feature map, (xs

i , y
s
i) are

the source coordinates in the input feature map that define the sample points, and A✓ is the affine
transformation matrix. We use height and width normalised coordinates, such that �1 xt

i, y
t
i 1

when within the spatial bounds of the output, and �1 xs
i , y

s
i 1 when within the spatial bounds

of the input (and similarly for the y coordinates). The source/target transformation and sampling is
equivalent to the standard texture mapping and coordinates used in graphics [8].

The transform defined in (10) allows cropping, translation, rotation, scale, and skew to be applied
to the input feature map, and requires only 6 parameters (the 6 elements of A✓) to be produced by
the localisation network. It allows cropping because if the transformation is a contraction (i.e. the
determinant of the left 2⇥ 2 sub-matrix has magnitude less than unity) then the mapped regular grid
will lie in a parallelogram of area less than the range of xs

i , y
s
i . The effect of this transformation on

the grid compared to the identity transform is shown in Fig. 3.

The class of transformations T✓ may be more constrained, such as that used for attention

A✓ =

s 0 tx
0 s ty

�
(2)

allowing cropping, translation, and isotropic scaling by varying s, tx, and ty . The transformation
T✓ can also be more general, such as a plane projective transformation with 8 parameters, piece-
wise affine, or a thin plate spline. Indeed, the transformation can have any parameterised form,
provided that it is differentiable with respect to the parameters – this crucially allows gradients to be
backpropagated through from the sample points T✓(Gi) to the localisation network output ✓. If the
transformation is parameterised in a structured, low-dimensional way, this reduces the complexity
of the task assigned to the localisation network. For instance, a generic class of structured and dif-
ferentiable transformations, which is a superset of attention, affine, projective, and thin plate spline
transformations, is T✓ = M✓B, where B is a target grid representation (e.g. in (10), B is the regu-
lar grid G in homogeneous coordinates), and M✓ is a matrix parameterised by ✓. In this case it is
possible to not only learn how to predict ✓ for a sample, but also to learn B for the task at hand.

3.3 Differentiable Image Sampling

To perform a spatial transformation of the input feature map, a sampler must take the set of sampling
points T✓(G), along with the input feature map U and produce the sampled output feature map V .

Each (xs
i , y

s
i) coordinate in T✓(G) defines the spatial location in the input where a sampling kernel

is applied to get the value at a particular pixel in the output V . This can be written as

V c
i =

HX

n

WX

m

U c
nmk(xs

i � m; �x)k(ys
i � n; �y) 8i 2 [1 . . . H 0W 0

] 8c 2 [1 . . . C] (3)

4

Input
activation

Transformed
activation

Given input activation
predict appropriate

transform parameters

Resample to perform affine
transformation of input

(differentiable resampling operation)

[Jaderberg NIPS 2015]

 CMU 15-769, Fall 2016

Convolutional Pose Machines

 CMU 15-769, Fall 2016

Problem statement
▪ Given image containing a human, output the (x,y) position of

each of the human’s P parts (parts are joints)

M
PI
I

FL
IC

LS
P

Figure 10: Qualitative results of our method on the MPII, LSP and FLIC datasets respectively. We see that the method is able to handle non-standard
poses and resolve ambiguities between symmetric parts for a variety of different relative camera views.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10

20

30

40

50

60

70

80

90

100

Viewpoint clusters

P
C

K
h

 0
.5

,
%

PCKh by Viewpoint

Ours
Pishchulin et al., CVPR’16
Tompson et al., CVPR’15
Carreira et al., CVPR’16
Tompson et al., NIPS’14

Figure 11: Comparing PCKh-0.5 across various viewpoints in the
MPII dataset. Our method is significantly better in all the viewpoints.

ing data). Note that adding MPII data here significantly
boosts our performance, due to its labeling quality being
much better than LSP. Because of the noisy label in the LSP
dataset, Pishchulin et al. [28] reproduced the dataset with
original high resolution images and better labeling quality.

FLIC Dataset. We evaluate our method on the FLIC
Dataset [32] which consists of 3987 images for training and
1016 images for testing. We report accuracy as per the met-
ric introduced in Sapp et al. [32] for the elbow and wrist
joints in Figure 12. Again, we outperform all prior art at
PCK@0.2 with 97.59% on elbows and 95.03% on wrists. In
higher precision region our advantage is even more signifi-
cant: 14.8 percentage points on wrists and 12.7 percentage
points on elbows at PCK@0.05, and 8.9 percentage points
on wrists and 9.3 percentage points on elbows at PCK@0.1.

0 0.05 0.1 0.15 0.2
0

10

20

30

40

50

60

70

80

90

100
PCK wrist, FLIC

Normalized distance

D
et

ec
ti

o
n
 r

at
e

%

Ours 4−Stage

Tompson et al., CVPR’15

Tompson et al., NIPS’14

Chen et al., NIPS’14

Toshev et al., CVPR’14

Sapp et al., CVPR’13

0 0.05 0.1 0.15 0.2

PCK elbow, FLIC

Normalized distance

Figure 12: Quantitative results on the FLIC dataset for the elbow and
wrist joints with a 4-stage CPM. We outperform all competing methods.

5. Discussion

Convolutional pose machines provide an end-to-end ar-
chitecture for tackling structured prediction problems in
computer vision without the need for graphical-model style
inference. We showed that a sequential architecture com-
posed of convolutional networks is capable of implicitly
learning a spatial models for pose by communicating in-
creasingly refined uncertainty-preserving beliefs between
stages. Problems with spatial dependencies between vari-
ables arise in multiple domains of computer vision such as
semantic image labeling, single image depth prediction and
object detection and future work will involve extending our
architecture to these problems. Our approach achieves state
of the art accuracy on all primary benchmarks, however we
do observe failure cases mainly when multiple people are
in close proximity. Handling multiple people in a single
end-to-end architecture is also a challenging problem and
an interesting avenue for future work.

[Wei CVPR16]

 CMU 15-769, Fall 2016

Knowledge
▪ There are P parts

- No connectivity or constraints are given

▪ Context is useful: for any part pi, knowing the position of other
parts may be useful to localizing pi
- If I know where the knee is, that should provide information

about where the foot is likely to be

▪ Iteratively update belief about distributions until convergence

 CMU 15-769, Fall 2016

Convolutional pose machine (CPM)

Stage 1: estimate part
positions from local

information (160x160
receptive field)

Stage N: accepts original image
(locally computed parts) and

previously predicted locations of all
parts from stage N-1

[Wei CVPR16]

 CMU 15-769, Fall 2016

Example contextual refinement

NeckR. Elbow R. Shoulder Head R. Elbow

stage 1 stage 3

R. Elbow

stage 2

Figure 3: Spatial context from belief maps of easier-to-detect parts can
provide strong cues for localizing difficult-to-detect parts. The spatial con-
texts from shoulder, neck and head can help eliminate wrong (red) and
strengthen correct (green) estimations on the belief map of right elbow in
the subsequent stages.

tecture [21]. In practice, to achieve certain precision, we
normalize input cropped images to size 368⇥368 (see Sec-
tion 4.2 for details), and the receptive field of the network
shown above is 160 ⇥ 160 pixels. The network can effec-
tively be viewed as sliding a deep network across an im-
age and regressing from the local image evidence in each
160 ⇥ 160 image patch to a P + 1 sized output vector that
represents a score for each part at that image location.

3.2.2 Sequential Prediction with Learned Spatial
Context Features

While the detection rate on landmarks with consistent ap-
pearance, such as the head and shoulders, can be favorable,
the accuracies are often much lower for landmarks lower
down the kinematic chain of the human skeleton due to their
large variance in configuration and appearance. The land-
scape of the belief maps around a part location, albeit noisy,
can, however, be very informative. Illustrated in Figure 3,
when detecting challenging parts such as right elbow, the
belief map for right shoulder with a sharp peak can be used
as a strong cue. A predictor in subsequent stages (gt>1) can
use the spatial context (t>1(·)) of the noisy belief maps in
a region around the image location z and improve its pre-
dictions by leveraging the fact that parts occur in consis-
tent geometric configurations. In the second stage of a pose
machine, the classifier g2 accepts as input the image fea-
tures x

2
z and features computed on the beliefs via the fea-

ture function for each of the parts in the previous stage.
The feature function serves to encode the landscape of
the belief maps from the previous stage in a spatial region
around the location z of the different parts. For a convo-
lutional pose machine, we do not have an explicit function
that computes context features. Instead, we define as be-
ing the receptive field of the predictor on the beliefs from
the previous stage.

The design of the network is guided by achieving a re-
ceptive field at the output layer of the second stage network
that is large enough to allow the learning of potentially com-
plex and long-range correlations between parts. By sim-
ply supplying features on the outputs of the previous stage

50 100 150 200 250 300

0.7

0.75

0.8

0.85

Effective Receptive Field (Pixels)

A
cc

u
ra

cy

FLIC Wrists: Effect of Receptive Field

Right Wrist
Left Wrist

50 100 150 200 250 300

0.7

0.75

0.8

0.85

Effective Receptive Field (Pixels)

A
cc

u
ra

cy

FLIC Elbows: Effect of Receptive Field

Right Elbow
Left Elbow

Figure 4: Large receptive fields for spatial context. We show that net-
works with large receptive fields are effective at modeling long-range spa-
tial interactions between parts. Note that these experiments are operated
with smaller normalized images than our best setting.

(as opposed to specifying potential functions in a graphical
model), the convolutional layers in the subsequent stage al-
low the classifier to freely combine contextual information
by picking the most predictive features. The belief maps
from the first stage are generated from a network that ex-
amined the image locally with a small receptive field. In
the second stage, we design a network that drastically in-
creases the equivalent receptive field. Large receptive fields
can be achieved either by pooling at the expense of preci-
sion, increasing the kernel size of the convolutional filters at
the expense of increasing the number of parameters, or by
increasing the number of convolutional layers at the risk of
encountering vanishing gradients during training. Our net-
work design and corresponding receptive field for the sub-
sequent stages (t � 2) is shown in Figure 2d. We choose to
use multiple convolutional layers to achieve large receptive
field on the 8⇥ downscaled heatmaps, as it allows us to be
parsimonious with respect to the number of parameters of
the model. We found that our stride-8 network performs as
well as a stride-4 one even at high precision region, while it
makes us easier to achieve larger receptive fields. We also
repeat similar structure for image feature maps to make the
spatial context be image-dependent and allow error correc-
tion, following the structure of pose machine.

We find that accuracy improves with the size of the re-
ceptive field. In Figure 4 we show the improvement in ac-
curacy on the FLIC dataset [32] as the size of the receptive
field on the original image is varied by varying the architec-
ture without significantly changing the number of param-
eters, through a series of experimental trials on input im-
ages normalized to a size of 304 ⇥ 304. We see that the
accuracy improves as the effective receptive field increases,
and starts to saturate around 250 pixels, which also hap-
pens to be roughly the size of the normalized object. This
improvement in accuracy with receptive field size suggests
that the network does indeed encode long range interactions
between parts and that doing so is beneficial. In our best
performing setting in Figure 2, we normalize cropped im-
ages into a larger size of 368 ⇥ 368 pixels for better preci-
sion, and the receptive field of the second stage output on
the belief maps of the first stage is set to 31 ⇥ 31, which is
equivalently 400⇥ 400 pixels on the original image, where
the radius can usually cover any pair of the parts. With more

Localization of shoulder, head, neck (easy to detect in stage 1) help eliminate
incorrect distribution (from stage 1) for position of elbow

[Wei CVPR16]

 CMU 15-769, Fall 2016

Takeaway
▪ Designers of modern networks impose structure on topology

based on human knowledge of how a solution to the task at hand
should proceed (topology suggests basic structure of solution)
- e.g., share these layers
- e.g., canonicalize and then detect
- e.g., the number of joints in a human

▪ Use end-to-end learning to learn the “details” that would be hard
(or tedious) for a human to craft
- e.g., how much to share for each layer
- e.g., how to canonicalize
- e.g., how does context help localize human joints in an image

