Lecture 12:

Imposing Task-Specific
Structure on DNNs

Visual Computing Systems
CMU 15-769, Fall 2016

Today

m Four examples of DNN authors imposing structure on
networks to better perform a desired task

m For each example, consider:
- What knowledge does the human inject?
- What does the computer learn?

Image compression networks roercicr 1
Cross-stitch networks: sharing lower DNN layers wisacvera0s
Spatial transformers usdemergnes201si

Convolutional pose machines for pose estimation weiceme

CMU 15-769, Fall 2016

Image compression using DNNs

CMU 15-769, Fall 2016

Review: JPG image compression

Lossy compression designed to retain information that is most
important to human perception

B Human-designed compact representation

415 —30 —61 27 56 —20 -2 0 16 11 10 16 24 40 51 617
1 -22 —61 10 13 -7 -9 5 12 12 14 19 26 53 60 55
47 7T 7T =25 —20 10 5 —6 14 13 16 24 40 57 69 56
49 12 34 -15 -10 6 2 2| f |14 17 22 20 51 87 80 62
12 -7 -13 -4 -2 2 -3 3 18 22 37 56 63 109 103 77
8 3 2 —6 -2 1 4 2 24 35 55 64 81 104 113 92
1 0 0 -2 -1 -3 4 -1 19 64 78 87 103 121 120 101
0 0 -1 -4 -1 0 1 2| 72 92 95 98 112 100 103 99
[] ® []
DCT Quantization Matrix

2% -3 —6 2 2 —1 0 0]

0 -2 -4 1 1 0 00

3 1 5 -1 -1 0 0 0

_ 4 1 2 -1 0 0 00

- 1 0 0 0 0 0 00

0 0 0 0 0 0 00

0 0 0 0 0 0 00

(0 0 0 0 0 0 00

Quantized DCT -

i il v Vv Ve

r”

; ??????j " RLE compression of zeros |

/??????; — | Entropy compression of non-—> (om pressed
NAANNAAN # e bits
1174774 ‘ J

Coefficient reordering
CMU 15-769, Fall 2016

Deep learning learns useful representations

m (an we apply deep learning techniques to obtain compact
image representations for efficient storage and transmission?

m (lass discussion: Why?

CMU 15-769, Fall 2016

Example use case
Compressing 32x32 8-bit RGB thumbnails (24 bpp)

Compact intermediate
(for storage/transmission)

/
7 L
: Output:
Input: Encoder Binarization Y Decoder approximation to
3.2"32"3 — (E) ™ Function (B)_> (D) — 32x32x3
Image image

v = D(B(E(z)))

Auto-encoder: learn to compress (encode) and reconstruct (decode)
the input signal

- Jointly train D, B, and E using supervision from Loss(x, x’)

CMU 15-769, Fall 2016

Progressive encoding: chain copies of autoencoder
(each iteration contributes bits)

Input:
:::ZZ);?; - Encoder Binarization — Decoder — Output: 32x32x3
idu :
i (E) Function (B) (D) F; (’rt_ 1)

Fi(ri—1) = Di(B(Ei(1¢-1)))

"o = input image to compress

Version 1: Version 2: (stateful E() and D() units)
each iteration predicts the residual each iteration predicts input image
Tt:Ft(rt—l)_rt—l Tt :Ft(rt_l) —T()

N /
*/I;/:ZFt(Tt—l) L :FN(TN—l)
t=1

In both cases, loss given by |7 H§ forall t

[Toderici ICLR 16] CMU 15-769, Fall 2016

Binarization

m Step 1: output of encoder passes through fully-connected layer with m
outputs (to “squeeze” to desired number of outputs)

B Step 2: quantize each output to a bit

B(x) = f(tanh(Wax + b))
-1 <0
@ ={1 150]

Add random perturbation during training (reqularization):

flo) =z +¢
: *1: 14z
o 1 —x with probability Jg :
—x — 1 with probability 5%,

[Toderici ICLR 16] CMU 15-769, Fall 2016

Version 1 autoencoder

F(ro) Compute
Encode (iter1) B) Decode (iter 1) ~
_ I * 0".
K l .
nput| Lt 51) 512 512 bi 2 2 2 | QUL Residual
Patch BN — 512 | 4 bits 512 = 51 512 — Patchy [LNESIduUa
| M
¢ T4 @
' A 4
512 | 512 | 512] 4 bits 512 = 512 [512 [»fredicted l Residual”| | Recon-
Residual . struction
|—'| e —— v’.. "" F(rO) + F(r1)
Encode (iter2) Decode (iter2)

Fully-connected version:

Input is 8x8 block

() Compute

Each fully connected layer has 512 outputs and tanh non-linearity

Each iteration through auto encoder yields 4 bits (two iterations shown)

[Toderici ICLR 16]

)

(MU 15-769, Fall 2016

Version 1 autoencoder (convolutional)

1x1 conv to convert to rgb not
shown (3 filters in layer)

Decode (iter 1) F(ro) Compute

. Upsampling by stride : r
Encode (iter1) B() then conv o h
- ,.1’ ,”
i E l 5
Input 3x3 3x3 3x3 1x1 3x3 2x2 2x2 |y
P » 64 » 256 » 512 » 2 bits 128 512 512 'b Output » Residual’

Patch Stride 2| |Stride 1| [Stride 2| | Stride 1 Stride 1) (Stride 2] |Stride 2 Patch'’

[M\
¢ . N >q_>
3x3 3x3 3x3 1x1 3x3 2x2 2x2 v

64 Lo 256 Lo 512 | 2bits 128 512 512 Predicted]) Residual” Recon-
Stride 2| |Stride 1 Stride 2 Stride 1 Stride 1 Stride 2) |Stride 2 Residual struction

Convolutional version:
2 bits per spatial location of output per iteration

32x32 input — 8x8 spatial outputs (128 bits per iteration)

[Toderici ICLR 16] (MU 15-769, Fall 2016

(Convolutional form also exists)

Version 2 autoencoder (LSTM-based)

F(ro) ~ X’
Encode (iter1) B() Decode (iter1)
1 3 l

Input 512 512 , 512 512 Output)

Patch [212 [LsTmM [] LSTM "‘4 bits (= | s [LsTv [2] 512 [patarr [LRESidua
N N 5 S

512 512 | 512 512 Output .

512 LsTM 1 LSTM —>| 4 bits LsTM 1 LsT™ 512 " —>| Res?ual

LSTM version: predicts source image each iteration (not a residual)

LSTM units:

= Recurrent: output from iteration t-1 fed into unit in iteration t

- Stateful: each unit maintains its own hidden state

[Toderici ICLR 16]

CMU 15-769, Fall 2016

Compression results [Toderici ICLR 2016

Original (32x32) JPEG compressed images

Compressed images with LSTM architecture

Compressed 1images with conv/deconv LSTM architecture

From left to right
Average bpp: JPEG 0.641 0875 1.117 1.375
LSTM 0.625 0.875 1.125 1.375
[Toderici ICLR 16] (De)Convolutional LSTM 0.625 0.875 1.125 1.375 CMU 15-769, Fall 2016

Compression results

/ SSIM: structural similarity index

SSIM / 64B Target

SSIM / 128B Target

Patch Size , ,
(Header-less Size) (Header-less Size)

0.70 0.80

Header-less JPEG 8X 8
(72.5 bytes avg.) (133 bytes avg.)

0.66 0.77

Header-less JPEG 2000
(73 bytes avg.) (156 bytes avg.)

0.62 0.73

Header-less WebP
(80.7 bytes avg.) (128.2 bytes avg.)
Fully Conne.cted Residual Encoder Q8 0.46 0.48
(Shared Weights)
Full Residual E
u. y. Connec.:ted esidual Encoder Q8 0.65 0.75

(Distinct Weights)
LSTM Compressor 8x8 0.69 0.31
CODV/DGCOI.lV Residual Encoder 19530 0.45 0.46
(Shared Weights)
C0.r1V./Dec0n\./ Residual Encoder 19530 0.65 075
(Distinct Weights)
Convolutional/Deconvolutional Autoencoder 32x32 0.76 0.86
Conv/Deconv LSTM Compressor 32x32 0.77 0.87

[Toderici ICLR 16]

CMU 15-769, Fall 2016

Summary / thoughts

B |dea: learn how to compress thumbnail-sized images by trying to
compress large database of tiny images

- Loss is not perceptually motivated (if there was a differentiable perceptual loss
metric, they would have used it instead of L2 on pixel residual)

m [mprovement on JPG for small images, future work extends to large
images by exploiting global redundancy [Toderici 2016]

m Why use learning for this problem?

- Potential for higher quality encode (learn better representations
than humans can manually craft)

- General mechanism to specialize representations for task

- [Toderici 2016]: specific to thumbnail images
- What about camera-viewpoint specific compression?

- Task-based definition of loss rather than pixels (compress subject to still being

able to recognize objects)
CMU 15-769, Fall 2016

Camera speaﬁc compressmn7

~ Security cameras (stationary)

Head mounted cameras

On-vehicle cameras

(MU 15-769, Fall 2016

Cross-Stitch Networks

CMU 15-769, Fall 2016

Recall object classification networks

Lower levels of network “shared” across all categories
(Lower level convolutions produce useful features)

Input:
fixed size image
g Output:
probability of label
(for 1000 class labels)
"" [12
X s 4 1x1x4096 1x1x 1000

r"—_ﬂ convolution+ReLU

1 max pooling

fully connected+RelLU

| softmax

VGG-16

(MU 15-769, Fall 2016

Recall Faster R-CNN

Lower conv layers shared between two tasks:
(1) object bounding box prediction and (2) object detection

1x1 conv
512 3x3 conv ﬁIFers (2-way softmax)
(3x3x512x512 weights) 512 (9%2) weights List of proposed
“~h : ;
objectness score regions
Input image: _ 2
(of any size) (for 9 boxes) e i Iﬁl
/ 7 - bbox offset I. []
DNN - 1 (for 9 boxes)
=) (conv layers) =»> 1x1 conv
(bbox regressor)
1% 512 x (9x4) weights
Response maps
/ WxHx512 for each proposed region
Pixel region class-label softmax
(of canonical size) *object
ROI FU"Y' IabEI
pooling layer =» =) connected
layers
mp bbox
bbox regression
softmax

CMU 15-769, Fall 2016

Multi-task learning

m For better accuracy

- Representations learned to successfully perform multiple tasks A, B, C
may be more general, less prone to overfitting, etc.

- One task serves as a form of supervision for another (as there are
effectively more examples available to train the shared lower layers of

the network)

m Forincreased computational efficiency

- Share early layer computations across many tasks (consider performing
N related tasks on an input video stream)

CMU 15-769, Fall 2016

Example: various topologies for multi-class learning

Generic Network
All Parameters Shared

(a) -

Split fc8
-0.16
-5.7
(b)
0.85

-0.4

Reducing sharing between tasks —

A

Specific Network

” No Parameters Shared

—> —> —> —> —>
Split fc7 Split fc6 Split convbh Split conv4 Split conv3 Split conv2
Attributes Classification (mAP) Object Detection (mAP)
0.69 0.37 0.24 0.1
-0.06 -0.09 , -
1.2 -0.8 1 0.4 0.34
-2.2
Surface Normal (Median Error) Semantic Segmentation (mean IU)
0.65 065 038 085
0.52 011 0.28 0.22 0.52
-0.28
-0.62
-1.32
Semantic Segmentation Normal estimation

sssssasasssessanasasass

Shared Layers
Task A layers
Task B layers

Difference
between
Split
Network
and Specific
Network

(Ssplit — Sspecific)

[Image from: Misra et al. CVPR 2016]

(MU 15-769, Fall 2016

ldea: learn how much to share weights

Output
Activation Maps

Input

Activation Maps Cross-stitch unit

Shared
Task A Tadk A
Shared
Task B Tadk B

Setting &’AB or OBA to 0 implies no input sharing.

Setting row’s coefficients to same value implies full sharing .

-
TR

1]

[Image from: Misra et al. CVPR 2016]

) a’;?’j
QAB A
OBB 1)

_ _:L’B i

CMU 15-769, Fall 2016

Example cross-stitch network

(Two cross-stitched AlexNet’s)

convl, pooll conv2, pool2 convd conv4 conv)d, poold fc6 fc7 fc8
Z
e, —
o o
z - - — Z
- >
>

+/ N/ NNV

2 Cross-stitch

oo units

@ 87 '\ Y ‘\ 8% ‘\ @ *\ 8 ‘\
< |

-

21 3
2 —_— — —_ =
~ =
vy

[Image from: Misra et al. CVPR 2016] CMU 15-769, Fall 2016

Example result: segmentation + normal

Surface Normal Segmentation
Angle Distance Within ¢°
(Lower Better) (Higher Better) (Higher Better)
Method Mean Med. 11.25 22.5 30 pixacc mlU {wlU
348 190 383 535 59.2 - - -
One-task . L. o466 184 331
Ensemble 344 185 387 542 59.7 - - -
- - - - - 48.2 189 33.8
Split conv4 3477 19.1 382 534 592 478 19.2 338
MTL-shared 3477 189 3777 535 588 459 16.6 30.1
Cross-stitch [ours] 34.1 18.2 39.0 544 60.2 472 193 34.0

[Misra et al. CVPR 2016]

CMU 15-769, Fall 2016

Spatial Transformer Networks

CMU 15-769, Fall 2016

Common pattern

m Train DNN for perform task on canonical image form

m Example, R-CNN expects contents of boxes to be scaled to
fixed-size input

- This is a crop of original image, followed by resample

for all candidate boxes (x,y,w,h):
cropped = image crop(image, bbox(x,y,w,h))
resized = image resize(227,227)
label = detect _object(resized)
if (label != background)
// region defined by bbox(x,y,w,h) contains object
// of class ‘label’

m Recall Faster R-CNN: given pixel pattern... predict box,
then crop/resample to canonicalize box’s contents

CMU 15-769, Fall 2016

Generalization: learning to canonicalize

®m Modular thinking:
- Step 1: canonicalize
- Step 2: perform task (e.q., detect)

m Why not jointly learn network to perform task, and network
to canonicalize the input?

- (In other words, learn to be spatial invariant)

CMU 15-769, Fall 2016

Spatial transformer network

..
‘ﬂ .§

Input
activation

.= ~

..................................

- ~ .

activation

Transformed

Given input activation

predict appropriate

transform parameters

[Jaderberg NIPS 2015]

Spatial Transformer \

..................

Resample to perform affine

transformation of input
(differentiable resampling operation)

i1

H,
e
U

= 8
N Do~

O
(\)
W

ek

e

7

(MU 15-769, Fall 2016

Convolutional Pose Machines

CMU 15-769, Fall 2016

Problem statement

B Given image containing a human, output the (x,y) position of
each of the human’s P parts (parts are joints)

[Wei CVPR16] (MU 15-769, Fall 2016

Knowledge

m There are P parts
- No connectivity or constraints are given

m (Context is useful: for any part p;, knowing the position of other
parts may be useful to localizing p;

- If | know where the knee is, that should provide information
about where the foot is likely to be

m |teratively update belief about distributions until convergence

CMU 15-769, Fall 2016

Convolutional pose machine (CPM)

Convolutional

Pose Machines o
(T-stage)
P | Pooling il
- €| Convolution 1/)2
(C) Stage 1 i“';’”"“ 9x9 | 2x
< mxwscs || € | P
%“1"’”_‘" 9x9 2x [[9x9| 2x [|9x9|| 2x [[5x5[|9x9 [1x1| 1x1
mee yofplc|pPlc|Pllc|lc|c|c
hxwa' | ~ | ~
: 1 1
|
" £ b ey s
g ﬂid
Ox9 26 x 26 60 x 60 96 x 96 160 x 160 240 x 240 400 x 400

Stage 1: estimate part
positions from local
information (160x160
receptive field)

[Wei CVPR16]

Stage N: accepts original image
(locally computed parts) and
previously predicted locations of all
parts from stage N-1

(MU 15-769, Fall 2016

Example contextual refinement

stage 1 stage 2 stage 3

R. Elbow R. Shoulder Neck Head R. Elbow R. Elbow

Localization of shoulder, head, neck (easy to detect in stage 1) help eliminate
incorrect distribution (from stage 1) for position of elbow

[Wei CVPR16] (MU 15-769, Fall 2016

Takeaway

m Designers of modern networks impose structure on topology
based on human knowledge of how a solution to the task at hand

should proceed (topology suggests basic structure of solution)
- e.g., share these layers

- e.g., canonicalize and then detect

- e.g., the number of joints in a human

B Use end-to-end learning to learn the “details” that would be hard
(or tedious) for a human to craft

- e.g., how much to share for each layer

- e.g., how to canonicalize
- e.g., how does context help localize human joints in an image

CMU 15-769, Fall 2016

