Lecture 11:

Optimizing Inference via
Approximation

Visual Computing Systems
CMU 15-769, Fall 2016

Take-home midterm

m Tobereleased Sunday morning 10/23. Hand-in noon Tuesday 10/25.

m Example forms of questions:
- Short answer questions

- Design exercise: choose between processor A and processor B for a
particular task and state reason

- Read a paper (similar to ones we’ve read in class) and offer an analysis of
it (or answer a few questions about it)

CMU 15-769, Fall 2016

Assignment 2 coming out next week

®m We have finished our “basics of deep learning” prep, now time to get hands on

B Assignment 2: implement a mini-deep learning framework in any
programming language you wish
B Released Tuesday 10/18, due Friday 11/4
We will give you basic stater code in Cand in Halide

_
m You willimplement basic layers needed to train a mini-network
_

We will have a “fun” class race on fastest forward evaluation and backward
evaluation

CMU 15-769, Fall 2016

Course projects

m Project proposal is due 10/27

- Short proposal document (2-3 pages max)

-l will likely accept any project that “embodies the themes of the course” and passes the “will
the project answer a question that a student in the class not know the answer to” test

- For Ph.D. students, this means the idea is ambitious enough to be the seed for a research
project

m Project presentations are due during our final exam slot: 12/16
®m May work in teams of 2 (in rare circumstances I'll okay a team of 3)

m ['ll post a list of rough project ideas on the web over the weekend

CMU 15-769, Fall 2016

Three ideas for accelerating inference

m Sparsification
- Remove unnecessary parts of DNN

® (Quantization
- Represent values that remain more coarsely

m Exploiting temporal redundency (for video)

- Skip evaluating parts of a DNN that do not change significantly
with time

CMU 15-769, Fall 2016

Why efficient inference?

y

A

A

g 7

—

-

©

- R

ADVANCED
TECHNOLOGIES
CENTER

Speak now

Just say "Ok Google'

You don't need to touch the screen to get things done. When on
your home screen= or in Google Now, just say “Ok Google" to

aunch voice search, send a text, get directions or even play a song.

(MU 15-769, Fall 2016

Last time (and last class’ reading)

m Expert knowledge used to manually design more compact
and more efficient (to train and to evaluate) network
topologies

CMU 15-769, Fall 2016

Finding a good network topology

m Common practice in modern network design: brute-force
parameter sweep

® Train multiple versions of a topology in parallel

- Vary number of layers, width fully-connected layers

- Vary number of filters in a cone layer

B Pick the smallest (most efficient) topology that yields
adequate performance (accuracy) on task at hand

CMU 15-769, Fall 2016

Reminder: energy cost of data access

Significant fraction of energy expended moving data to processor ALUs

Operation Energy [pJ] Relative Cost
32 bit int ADD 0.1 1

32 bit float ADD 0.9 9

32 bit Register File 1 10

32 bit int MULT 3.1 31

32 bit float MULT 3.7 37

32 bit SRAM Cache S 50

32 bit DRAM Memory 640 6400

Estimates for 45nm process
[Source: Mark Horowitz]

Recall: AlexNet has over 68m weights (>260MB if 4 bytes/weight)
Executing at 30fps, that’s 1.3 Watts just to read the weights

CMU 15-769, Fall 2016

“Pruning” (sparsifying) a network

\ If weight is near zero, then
T1 ” corresponding input has little

impact on output of neuron.

b » output

(MU 15-769, Fall 2016

“Pruning” (sparsifying) a network

\ |dea: prune connections with
L1 Wa

near zero weight

b » output

Remove entire units if all

w3
/ connections are pruned.

f(z) = max (0, x)

Why not look for large dL/dw;?
More principled to look at second derivatives d2L/dw;dw;, but costly...

(MU 15-769, Fall 2016

Iterative pruning (Han 2015]

m Step 1: train network (as normal)

B Step 2: remove connections with weight less than threshold
(threshold may be chosen based on std-dev of weights)
- The network is now sparse

B Step 3: retrain network using surviving connections
- Retraining (fine-tuning) is initialized with previously learned weights

B Repeat steps 2 and 3 as necessary

- Since a connection is gone forever once pruned, best to prune conservatively each
step, use multiple iterations to remove connections

- L2 reqularization during training

Iterative process learns both topology (what connections are needed) and the
weights on those connections.

Incur increased training time to accelerate inference.

(recall design of networks like Inception sought to accelerate training as well)
(MU 15-769, Fall 2016

Results of pruning

AlexNet:

Layer | Weights FLOP Act% Weights% FLOP%
convl | 35K 211M 88% 84 9% 84 9%
conv2 | 307K 448M 32% 38% 33%
conv3 | 885K 200M 37% 35% 18%
conv4 | 663K 224M 40% 37% 14%
convd | 442K 150M 34% 37% 14%
fcl 38M SM 36% 9% 3%
fc2 17M 34M 40% 9% 3%
fc3 4M M 100% 25% 10%
Total | 61M 1.5B 54% 11% 30 %

VGG-16:

Layer Weights FLOP Act% Weights% FLOP%
convl_1 | 2K 0.2B 53% 58% 58%
convl_2 | 37K 3.7B 89% 22% 12%
conv2_1 | 74K 1.8B 80% 34% 30%
conv2_2 | 148K 3.7B 81% 36% 29%
conv3_1 | 295K 1.8B 68% 53% 43%
conv3_2 | 590K 3.7B 70% 24% 16%
conv3_3 | 590K 3.7B 64 % 42 % 29%
convd_1 | 1M 1.8B 51% 32% 21%
conv4d_2 | 2M 3.7B 45% 27% 14%
convd_3 | 2M 3.7B 34% 34% 15%
convdi_1 | 2M 025M 32% 35% 12%
convy_2 | 2M 025M 29% 29% 9%
convd.3 | 2M 025M 19% 36% 11%
fco 103M 206M 38% 4% 1%
fc7 17M 34M 42 % 4% 2%
fc8 4M SM 100% 23% 9%
total 138M 309B 64% 7.5 % 21%

Recall similar numbers from SqueezeNet paper: 33% weights survive (recall

SqueezeNet is fully convolutional... see convlayers above)

CMU 15-769, Fall 2016

Efficiently storing the surviving connections

Store surviving weights compactly in compressed sparse row (CSR) format

Indicies 1 4 9
Value 1.8 0.5 2.1

%)

1.8

%)

%)

a.s‘e‘e‘e‘e

1.1 .-

Reduce storage over head of indices by delta encoding them to fit in 8 bits

Indicies 1 3 6
Value 1.8 0.5 2.1

CMU 15-769, Fall 2016

Efficiently storing the surviving connections

Weight sharing: make surviving connections share a small set of weights
- Cluster weights via k-means clustering
- Compress weights by only storing index of assigned cluster (Ig(k) bits)

- Retraining only modifies the cluster centroids (so that back-prop is constrained
to not induce more unique weight values)

weights cluster index fine-tuned
(32 bit float) (2 bit uint) centroids centroids
-0.98 3 0 2 1 3:- -
-0.14 | -1. cluster 1 1 0 3 2:1 1.50 1.48
= A
0 3 1 0 1:| 0.00 -0.04
3 1 2 2 0:| -1.00 xIr |-097
gradient Sum weight gradients of all
-0.01 . weights in a cluster: use result to
update cluster center to avoid
0.01 | -0. 0.03 | 0.01 | -0.02 reduce 0.02 . .
> divergence of weight values
0.02 | -0.01 | 0.01 | 0.04 | -0.02 0.04
-0.01 | -0.02 | -0.01 | 0.01 -0.03

(MU 15-769, Fall 2016

Pruning, quantization, huffman-encoding of VGG-16

. Weigh Weight Index Index Compress Compress

Layer #Weights g)fslghts% bits bits bits bits rate rate
P+Q) (P+Q+H) *P+Q) (P+Q+H) (P+Q) (P+Q+H)

convl_1 | 2K 58% 8 6.8 S 1.7 40.0% 29.97%
convl_2 | 37K 22% 8 6.5 S 2.6 9.8% 6.99%
conv2_1 | 74K 34% 8 5.6 S 2.4 14.3% 8.91%
conv2_2 | 148K 36% 8 3.9 S 2.3 14.7% 9.31%
conv3_1 | 295K 533% 8 4.8 S 1.8 21.7% 11.15%
conv3_2 | 590K 24% 8 4.6 S 2.9 9.7% 3.67%
conv3_3 | 590K 42 % 8 4.6 S 2.2 17.0% 8.96%
convd_1 | 1M 32% 8 4.6 S 2.6 13.1% 7.29%
conv4_2 | 2M 2'7% 8 4.2 S 2.9 10.9% 5.93%
conv4_3 | 2M 34% 8 4.4 S 2.5 14.0% 7.47%
convd_1 | 2M 35% 8 4.] S 2.5 14.3% 8.00%
convd 2 | 2M 29% 8 4.6 S 2.7 11.7% 6.52%
convd_3 | 2M 36% 8 4.6 S 2.3 14.8% 7.79%
fc6 103M 4% S 3.6 S 3.5 1.6% 1.10%
fc’7 17M 4% S 4 S 4.3 1.5% 1.25%
fc8 4M 23% S 4 S 3.4 7.1% 5.24%
Total 138M 7.5%(13%x) 64 4.1 S 3.1 32% (31x) 2.05% (49x%)

CMU 15-769, Fall 2016

Problem

B Techniques discussed above significantly reduce network size,
but turn a “HW-friendly” dense workload into a sparse one

- Many heavily-optimized CPU/GPU libraries for dense conv/fc layers

- Sparse matrix-vector product significantly less efficient on modern
processors

m Also incur new costs during inference time for decompression

- Huffman decode
- Process relative index offsets

- Lookup weight from weight id

CMU 15-769, Fall 2016

Sparse, weight-sharing fully-connected layer

Fully-connected layer:

n—1

by = ReLU Z Wija; Matrix-vector multiplication of activation
:O o o o

’ vector a against weight matrix W

Sparse, weight-sharing representation:
lij = index for weight W;;

S[] = table of shared weight values

Xi = list of non-zero indices in row i

Y =list of non-zero indices in a

Note: activations are /

sparse due to RelLU

CMU 15-769, Fall 2016

Efficient inference engine (EIE) ASIC

Custom hardware for decode and evaluate sparse, compressed DNNs

Hardware represents weight matrix in compressed sparse column (C5C)
format to exploit sparsity in activations:

for each nonzero a_j in a:
for each nonzero M _ij in column M _j:

b i +=M_ij * a_j

More detailed version: for =0 to length(a):

intl6* a values; if (a[j] == 0) continue;

PTR* M_j start; col values = M_j values[M j start[j]l];
int4* M _j values; col indices = M_j indices[M_j start[j]];
int4* M_j _indices; col nonzeros = M_j start[j+1]-M_j start[j];
int16* lookup; for i=0, i_count=0 to col_nonzeros:

i += col indices[i_count]
b[i] += lookup[M j values[i]] *
a_values[j count]

* Keep in mind there’s a unique lookup table for each chunk of matrix values CMU 15-769, Fall 2016

Parallelization of sparse-matrix-vector product

Stride rows of matrix across processing elements
Output activations strided across processing elements

a (0 0 a9 0 a4y as 0 ary;)

X b

PEO (’UJQ,()E 0 i’wo,zi 0 iw0,4iw0,5iwo,6i 0 \ / bo\ (bo \
PE1 0 ywipz, 0 jwiz, 0 , 0 jwig, O b1 b1
PE2| 0 1 0 1wzat 0 1twagr 0 1 0 1wyy —b, 0
PE3 0 'w31! 0 ! 0 ' 0 lwes 0 ! O b3 b3
0 wg1r O + 0 (wgqr 0 0 0 1 O —by 0
0 ' 0 ' 0 'wsg' 010 ' 0 'wsy b bs
0,0, 0 ;0 wega, 0 jwee, O be be
W70 : 0 i 0 iw7’4 i 0 i 0 iw7,7 i 0 I Re:l;U 0
wgoe! 000 0! 000 'wsgr —bsg 0
wgor 0, 0 ; 0 0 | 0 wgg wyr7 —bg 0
000 0 woa 00 0 b1o b1
0 ' 0 ‘wizz 0 ' 0 ' 0 ' 0 wis by 0
wizo 0 iz 0 + 0 wizs 0 wiay —b1s 0
w13,0iw13,zi 0 i 0 i 0 i 0 iw13,65 0 b13 b13
0 | 0 wig2wigzwigsawias 0 | 0 b14 D14

K 0 : 0 !’w15,2;”w15,3; 0 ;w15,5; 0 : 0) \—515/ \ 0 /

Weights stored local to PEs. Must broadcast non-zero a_j’s to all PEs

Accumulation of each output b_iis local to PE
(MU 15-769, Fall 2016

EIE unit for quantized sparse/matrix vector
product

Tuple representing non-zero activation (a;j, j) arrives and is enqueued

Encoded m

: Detect
Act Index Weight

Weight
Decode

i g

Address
Absolute Address
. | Accum
Relativé

Even Ptr SRAM Ban

Matrix

Odd Ptr SRAM Bank

Pointer Read Sparse Matrix Access bl Arithmetic Unit Act R/W
X

(MU 15-769, Fall 2016

EIE Efficiency

E CPU Dense (Baseline) ECPU Compressed ©EGPU Dense GPU Compressed MmGPU Dense B mMGPU Compressed BEIE
1018x

507x 618x
1000x 248x

210x 189x

115x 98x

Q. 100x 56x 9X 22x say 83X = 60x 48x
- N 25X 24 X 25 -
8 10x 2 14 3x > § > < - 9X r % 2 9X v % 3x
8. X % 1x .1 1x _ 1x \ 2 1x 2 % 1x 1x \
n 1x i y s % ! i s §' ° & §' e ‘Q' 2
S ERE N TR » i LR L T
Alex-6 Alex-7 Alex-8 VGG-6 VGG-7 VGG-8 NT-We NT-Wd NT-LSTM Geo Mean

Figure 6. Speedups of GPU, mobile GPU and EIE compared with CPU running uncompressed DNN model. There is no batching in all cases.

@ CPU Dense (Baseline) ®BCPU Compressed ©GPU Dense GPU Compressed MmGPU Dense B mGPU Compressed BEIE
119,797x

X . 61,533x ’ 76,784x
g | TSSSZX n e 11,828x 9,485x 10,904x 8,053x =t
;c:_b 1000x
"u] 100x o 17x| 78x 101 — 6 102 . - . —
> 0 { O 14X _ 14x 15x <0
> 10x ' \ l 2)(5)(8 : 6x6x 6x 6X T 4x 5X[T]— 6x7X
5 G G I G I I (G
- Alex-6 Alex-7 Alex-8 VGG-6 VGG-7 VGG-8 NT-We NT-Wd NT-LSTM Geo Mean
CPU: Core i7 5930k (6 cores)
GPU: GTX Titan X Warning: these are not end-to-end: just fully
mGPU: Tegra K1 connected layers! And recall most of the

, compute is in the convo layers!
Sources of energy savings:

= Compression allows all weights to be stored in SRAM (few DRAM loads)
= Low-precision 16-bit fixed-point math (5x more efficient than 32-bit fixed math)

= Skip math on inputs activations that are zero (65% less math)
(MU 15-769, Fall 2016

Thoughts

m EIE paper highlights performance on fully connected layers
(see graph above)

- Final layers of networks like AlexNet, VGG...
- Common in recurrent network topologies like LSTMs

m But many state-of-the-art image processing networks have
moved to fully convolutional solutions

- Recall Inception, SqueezeNet, etc..

CMU 15-769, Fall 2016

A fully convolutional network for image segmentation

224x224 224x224
1255 Convolution network Upsampling network 7,
4 56x56 56x56
28x%28 28x28
// 14x14 . _ . 14x14
1x1 1x1
Max Mp%)éling Unpooling . /
/ﬁ_/_/_/_ ax pooling R _ N Unpooling LN NN
AN ax POOING _ eeeemmemmmee —~ ——___Unpooling WU
/rax , POOING L T Unpooling
AV pooling ...--==" T~ AN
..... - ~npooling
N 4 \
32x upsampled
image convl pooll convZz pool2 conv3 pool3 conv4 pool4 convo pools conve-7 prediction (FCN-32s)
. - 16x upsampled
2X conv . } .
* t prediction (FCN-16s)
*
FCN-32s FCN-16s FCN-8s Ground truth Sx upsampled
4x conv7 prediction (FCN-8s)
2x pool4
pool3

> -

(MU 15-769, Fall 2016

Temporal stablllty of deep features

Difference

0.30”
0.25}
0.20}
Q5 |-
0.10}

0.05

0.00

.3?5:_‘ o &

— fcl
— pool4

10

20

30 40
Frame Number

50

60

70

0.30

0.25}

0.20}

0.15}

0.10}

0.05}

0.00

e, T

— fc7
— pool4

10

20

3IO 40
Frame Number

50

60

70

Observation;

Deeper features feature more

temporal stability

(more semantic information changes

less rapidly in a scene)

(MU 15-769, Fall 2016

Clockwork network: reuse deeper layer outputs
in subsequent frames

Stage 1 Stage 2 Stage 3
| I I Frame Timing of FCN-8s
Clock 1 Clock 2 Clock 3 f [EStage 1 (60.0ms)
@, ___________ »@T - *@1 ~ Stage 2 (18.7ms)
| Conv1 ! ! [Stage 3 (23.0ms)
? ! Conv2 ? : ? :
! Conv3 Convd 1 Convs fB8 fc7 Deconv
c C
L : L > : :-> Score 2x — > standard
l - = =-» clockwork
L e e : : > > |] > Deconv
Fuse 2x
_>
4096 4096
384 384 384 Score o | | Deconv
256 Fuse 8x
96 Score —>
| e
., [

Evaluate lower (early) layers each frame
Optionally combine (fresh) output of lower layers with output of higher layers from previous frames.

CMU 15-769, Fall 2016

Today: three types of optimizations

m Static, manual: human construction of new, more efficient
topologies (e.g., Inception, SqueezeNet)

m Static, automatic analysis driven: (e.g., deep compression) analyze
contents of network to determine how to prune topology or
quantize weights

B Dynamic: analyze network activations during inference to
determine when subsequent work can be elided (e.g., clockwork
network)

Note: EIE hardware also exploited dynamic sparsity in activations (e.g., due to ReLUs), but this
was not an approximation technique like the ones above

m (ustom specialized hardware to handle irregularity introduced
by these optimizations

CMU 15-769, Fall 2016

