
Visual Computing Systems
CMU 15-769, Fall 2016

Lecture 11:

Optimizing Inference via
Approximation

 CMU 15-769, Fall 2016

Take-home midterm
▪ To be released Sunday morning 10/23. Hand-in noon Tuesday 10/25.

▪ Example forms of questions:

- Short answer questions

- Design exercise: choose between processor A and processor B for a
particular task and state reason

- Read a paper (similar to ones we’ve read in class) and offer an analysis of
it (or answer a few questions about it)

 CMU 15-769, Fall 2016

Assignment 2 coming out next week
▪ We have finished our “basics of deep learning” prep, now time to get hands on

▪ Assignment 2: implement a mini-deep learning framework in any
programming language you wish

▪ Released Tuesday 10/18, due Friday 11/4

▪ We will give you basic stater code in C and in Halide

▪ You will implement basic layers needed to train a mini-network

▪ We will have a “fun” class race on fastest forward evaluation and backward
evaluation

 CMU 15-769, Fall 2016

Course projects
▪ Project proposal is due 10/27

- Short proposal document (2-3 pages max)

- I will likely accept any project that “embodies the themes of the course” and passes the “will
the project answer a question that a student in the class not know the answer to” test

- For Ph.D. students, this means the idea is ambitious enough to be the seed for a research
project

▪ Project presentations are due during our final exam slot: 12/16

▪ May work in teams of 2 (in rare circumstances I’ll okay a team of 3)

▪ I’ll post a list of rough project ideas on the web over the weekend

 CMU 15-769, Fall 2016

Three ideas for accelerating inference
▪ Sparsification

- Remove unnecessary parts of DNN

▪ Quantization
- Represent values that remain more coarsely

▪ Exploiting temporal redundency (for video)
- Skip evaluating parts of a DNN that do not change significantly

with time

 CMU 15-769, Fall 2016

Why efficient inference?

 CMU 15-769, Fall 2016

Last time (and last class’ reading)
▪ Expert knowledge used to manually design more compact

and more efficient (to train and to evaluate) network
topologies

 CMU 15-769, Fall 2016

Finding a good network topology

▪ Common practice in modern network design: brute-force
parameter sweep

▪ Train multiple versions of a topology in parallel
- Vary number of layers, width fully-connected layers

- Vary number of filters in a cone layer

▪ Pick the smallest (most efficient) topology that yields
adequate performance (accuracy) on task at hand

 CMU 15-769, Fall 2016

Reminder: energy cost of data access

Operation Energy [pJ] Relative Cost

32 bit int ADD 0.1 1
32 bit float ADD 0.9 9
32 bit Register File 1 10
32 bit int MULT 3.1 31
32 bit float MULT 3.7 37
32 bit SRAM Cache 5 50
32 bit DRAM Memory 640 6400

1 10 100 1000 10000

Relative Energy Cost

Figure 1: Energy table for 45nm CMOS process [7]. Memory access is 3 orders of magnitude more
energy expensive than simple arithmetic.

To achieve this goal, we present a method to prune network connections in a manner that preserves the
original accuracy. After an initial training phase, we remove all connections whose weight is lower
than a threshold. This pruning converts a dense, fully-connected layer to a sparse layer. This first
phase learns the topology of the networks — learning which connections are important and removing
the unimportant connections. We then retrain the sparse network so the remaining connections can
compensate for the connections that have been removed. The phases of pruning and retraining may
be repeated iteratively to further reduce network complexity. In effect, this training process learns
the network connectivity in addition to the weights - much as in the mammalian brain [8][9], where
synapses are created in the first few months of a child’s development, followed by gradual pruning of
little-used connections, falling to typical adult values.

2 Related Work

Neural networks are typically over-parameterized, and there is significant redundancy for deep learn-
ing models [10]. This results in a waste of both computation and memory. There have been various
proposals to remove the redundancy: Vanhoucke et al. [11] explored a fixed-point implementation
with 8-bit integer (vs 32-bit floating point) activations. Denton et al. [12] exploited the linear
structure of the neural network by finding an appropriate low-rank approximation of the parameters
and keeping the accuracy within 1% of the original model. With similar accuracy loss, Gong et al.
[13] compressed deep convnets using vector quantization. These approximation and quantization
techniques are orthogonal to network pruning, and they can be used together to obtain further gains
[14].

There have been other attempts to reduce the number of parameters of neural networks by replacing
the fully connected layer with global average pooling. The Network in Network architecture [15]
and GoogLenet [16] achieves state-of-the-art results on several benchmarks by adopting this idea.
However, transfer learning, i.e. reusing features learned on the ImageNet dataset and applying them
to new tasks by only fine-tuning the fully connected layers, is more difficult with this approach. This
problem is noted by Szegedy et al. [16] and motivates them to add a linear layer on the top of their
networks to enable transfer learning.

Network pruning has been used both to reduce network complexity and to reduce over-fitting. An
early approach to pruning was biased weight decay [17]. Optimal Brain Damage [18] and Optimal
Brain Surgeon [19] prune networks to reduce the number of connections based on the Hessian of the
loss function and suggest that such pruning is more accurate than magnitude-based pruning such as
weight decay. However, second order derivative needs additional computation.

HashedNets [20] is a recent technique to reduce model sizes by using a hash function to randomly
group connection weights into hash buckets, so that all connections within the same hash bucket
share a single parameter value. This technique may benefit from pruning. As pointed out in Shi et al.
[21] and Weinberger et al. [22], sparsity will minimize hash collision making feature hashing even
more effective. HashedNets may be used together with pruning to give even better parameter savings.

2

Estimates for 45nm process
[Source: Mark Horowitz]

Significant fraction of energy expended moving data to processor ALUs

Recall: AlexNet has over 68m weights (>260MB if 4 bytes/weight)
Executing at 30fps, that’s 1.3 Watts just to read the weights

 CMU 15-769, Fall 2016

“Pruning” (sparsifying) a network

x0 x1 x2 x3

x0 x1 x2 x3

x0 x1 x2 x3

x0 x1 x2 x3

w0 w1 w2 w3
w0 w1 w2 w3

w0 w1 w2 w3

w0 w1 w2 w3

f

X

i

xiwi + b

!

b output

f(x) = max(0, x)

If weight is near zero, then
corresponding input has little
impact on output of neuron.

 CMU 15-769, Fall 2016

“Pruning” (sparsifying) a network

x0 x1 x2 x3

x0 x1 x2 x3

x0 x1 x2 x3

x0 x1 x2 x3

w0 w1 w2 w3

w0 w1 w2 w3

w0 w1 w2 w3

f

X

i

xiwi + b

!

b output

f(x) = max(0, x)

Idea: prune connections with
near zero weight

Remove entire units if all
connections are pruned.

Why not look for large dL/dwi?
More principled to look at second derivatives d2L/dwidwj, but costly…

 CMU 15-769, Fall 2016

Iterative pruning
▪ Step 1: train network (as normal)

▪ Step 2: remove connections with weight less than threshold
(threshold may be chosen based on std-dev of weights)
- The network is now sparse

▪ Step 3: retrain network using surviving connections
- Retraining (fine-tuning) is initialized with previously learned weights

▪ Repeat steps 2 and 3 as necessary
- Since a connection is gone forever once pruned, best to prune conservatively each

step, use multiple iterations to remove connections

- L2 regularization during training

Iterative process learns both topology (what connections are needed) and the
weights on those connections.

Incur increased training time to accelerate inference.
(recall design of networks like Inception sought to accelerate training as well)

[Han 2015]

 CMU 15-769, Fall 2016

Results of pruning

Table 4: For AlexNet, pruning reduces the number of weights by 9⇥ and computation by 3⇥.

Layer Weights FLOP Act% Weights% FLOP%
conv1 35K 211M 88% 84% 84%
conv2 307K 448M 52% 38% 33%
conv3 885K 299M 37% 35% 18%
conv4 663K 224M 40% 37% 14%
conv5 442K 150M 34% 37% 14%
fc1 38M 75M 36% 9% 3%
fc2 17M 34M 40% 9% 3%
fc3 4M 8M 100% 25% 10%
Total 61M 1.5B 54% 11% 30%

M

15M

30M

45M

60M

co
nv

1
co

nv
2

co
nv

3
co

nv
4

co
nv

5 fc1 fc2 fc3 tot
al

Remaining Parameters Pruned Parameters

Table 5: For VGG-16, pruning reduces the number of weights by 12⇥ and computation by 5⇥.

Layer Weights FLOP Act% Weights% FLOP%
conv1 1 2K 0.2B 53% 58% 58%
conv1 2 37K 3.7B 89% 22% 12%
conv2 1 74K 1.8B 80% 34% 30%
conv2 2 148K 3.7B 81% 36% 29%
conv3 1 295K 1.8B 68% 53% 43%
conv3 2 590K 3.7B 70% 24% 16%
conv3 3 590K 3.7B 64% 42% 29%
conv4 1 1M 1.8B 51% 32% 21%
conv4 2 2M 3.7B 45% 27% 14%
conv4 3 2M 3.7B 34% 34% 15%
conv5 1 2M 925M 32% 35% 12%
conv5 2 2M 925M 29% 29% 9%
conv5 3 2M 925M 19% 36% 11%
fc6 103M 206M 38% 4% 1%
fc7 17M 34M 42% 4% 2%
fc8 4M 8M 100% 23% 9%
total 138M 30.9B 64% 7.5% 21%

4.3 VGG-16 on ImageNet

With promising results on AlexNet, we also looked at a larger, more recent network, VGG-16 [27],
on the same ILSVRC-2012 dataset. VGG-16 has far more convolutional layers but still only three
fully-connected layers. Following a similar methodology, we aggressively pruned both convolutional
and fully-connected layers to realize a significant reduction in the number of weights, shown in
Table 5. We used five iterations of pruning an retraining.

The VGG-16 results are, like those for AlexNet, very promising. The network as a whole has
been reduced to 7.5% of its original size (13⇥ smaller). In particular, note that the two largest
fully-connected layers can each be pruned to less than 4% of their original size. This reduction is
critical for real time image processing, where there is little reuse of fully connected layers across
images (unlike batch processing during training).

5 Discussion

The trade-off curve between accuracy and number of parameters is shown in Figure 5. The more
parameters pruned away, the less the accuracy. We experimented with L1 and L2 regularization, with
and without retraining, together with iterative pruning to give five trade off lines. Comparing solid and
dashed lines, the importance of retraining is clear: without retraining, accuracy begins dropping much
sooner — with 1/3 of the original connections, rather than with 1/10 of the original connections.
It’s interesting to see that we have the “free lunch” of reducing 2⇥ the connections without losing
accuracy even without retraining; while with retraining we are ably to reduce connections by 9⇥.

6

Table 4: For AlexNet, pruning reduces the number of weights by 9⇥ and computation by 3⇥.

Layer Weights FLOP Act% Weights% FLOP%
conv1 35K 211M 88% 84% 84%
conv2 307K 448M 52% 38% 33%
conv3 885K 299M 37% 35% 18%
conv4 663K 224M 40% 37% 14%
conv5 442K 150M 34% 37% 14%
fc1 38M 75M 36% 9% 3%
fc2 17M 34M 40% 9% 3%
fc3 4M 8M 100% 25% 10%
Total 61M 1.5B 54% 11% 30%

M

15M

30M

45M

60M

co
nv

1
co

nv
2

co
nv

3
co

nv
4

co
nv

5 fc1 fc2 fc3 tot
al

Remaining Parameters Pruned Parameters

Table 5: For VGG-16, pruning reduces the number of weights by 12⇥ and computation by 5⇥.

Layer Weights FLOP Act% Weights% FLOP%
conv1 1 2K 0.2B 53% 58% 58%
conv1 2 37K 3.7B 89% 22% 12%
conv2 1 74K 1.8B 80% 34% 30%
conv2 2 148K 3.7B 81% 36% 29%
conv3 1 295K 1.8B 68% 53% 43%
conv3 2 590K 3.7B 70% 24% 16%
conv3 3 590K 3.7B 64% 42% 29%
conv4 1 1M 1.8B 51% 32% 21%
conv4 2 2M 3.7B 45% 27% 14%
conv4 3 2M 3.7B 34% 34% 15%
conv5 1 2M 925M 32% 35% 12%
conv5 2 2M 925M 29% 29% 9%
conv5 3 2M 925M 19% 36% 11%
fc6 103M 206M 38% 4% 1%
fc7 17M 34M 42% 4% 2%
fc8 4M 8M 100% 23% 9%
total 138M 30.9B 64% 7.5% 21%

4.3 VGG-16 on ImageNet

With promising results on AlexNet, we also looked at a larger, more recent network, VGG-16 [27],
on the same ILSVRC-2012 dataset. VGG-16 has far more convolutional layers but still only three
fully-connected layers. Following a similar methodology, we aggressively pruned both convolutional
and fully-connected layers to realize a significant reduction in the number of weights, shown in
Table 5. We used five iterations of pruning an retraining.

The VGG-16 results are, like those for AlexNet, very promising. The network as a whole has
been reduced to 7.5% of its original size (13⇥ smaller). In particular, note that the two largest
fully-connected layers can each be pruned to less than 4% of their original size. This reduction is
critical for real time image processing, where there is little reuse of fully connected layers across
images (unlike batch processing during training).

5 Discussion

The trade-off curve between accuracy and number of parameters is shown in Figure 5. The more
parameters pruned away, the less the accuracy. We experimented with L1 and L2 regularization, with
and without retraining, together with iterative pruning to give five trade off lines. Comparing solid and
dashed lines, the importance of retraining is clear: without retraining, accuracy begins dropping much
sooner — with 1/3 of the original connections, rather than with 1/10 of the original connections.
It’s interesting to see that we have the “free lunch” of reducing 2⇥ the connections without losing
accuracy even without retraining; while with retraining we are ably to reduce connections by 9⇥.

6

AlexNet: VGG-16:

Recall similar numbers from SqueezeNet paper: 33% weights survive (recall
SqueezeNet is fully convolutional… see convlayers above)

 CMU 15-769, Fall 2016

Efficiently storing the surviving connections

Indicies				1				4			9		...	
Value					1.8		0.5		2.1	

0 1.8 0 0 0.5 0 0 0 0 1.1 ...

Store surviving weights compactly in compressed sparse row (CSR) format

Reduce storage over head of indices by delta encoding them to fit in 8 bits
Indicies				1				3			6		...	
Value					1.8		0.5		2.1	

 CMU 15-769, Fall 2016

Efficiently storing the surviving connections
Weight sharing: make surviving connections share a small set of weights

- Cluster weights via k-means clustering
- Compress weights by only storing index of assigned cluster (lg(k) bits)
- Retraining only modifies the cluster centroids (so that back-prop is constrained

to not induce more unique weight values)

Published as a conference paper at ICLR 2016

Figure 2: Representing the matrix sparsity with relative index. Padding filler zero to prevent overflow.

2.09 -0.98 1.48 0.09

0.05 -0.14 -1.08 2.12

-0.91 1.92 0 -1.03

1.87 0 1.53 1.49

-0.03 -0.01 0.03 0.02

-0.01 0.01 -0.02 0.12

-0.01 0.02 0.04 0.01

-0.07 -0.02 0.01 -0.02

0.04

0.02

0.04

-0.03

-0.03 0.12 0.02 -0.07

0.03 0.01

0.02 -0.01 0.01 0.04

 -0.01 -0.02 -0.01 0.01

cluster

 weights
(32 bit float) centroids

gradient

3 0 2 1

1 1 0 3

0 3 1 0

3 1 2 2

cluster index
 (2 bit uint)

2.00

1.50

0.00

-1.00

-0.02

-0.02

group by

fine-tuned
centroids

reduce

1.96

1.48

-0.04

-0.97

1:

lr0:

2:

3:

Figure 3: Weight sharing by scalar quantization (top) and centroids fine-tuning (bottom).

We store the sparse structure that results from pruning using compressed sparse row (CSR) or
compressed sparse column (CSC) format, which requires 2a+n+1 numbers, where a is the number
of non-zero elements and n is the number of rows or columns.

To compress further, we store the index difference instead of the absolute position, and encode this
difference in 8 bits for conv layer and 5 bits for fc layer. When we need an index difference larger
than the bound, we the zero padding solution shown in Figure 2: in case when the difference exceeds
8, the largest 3-bit (as an example) unsigned number, we add a filler zero.

3 TRAINED QUANTIZATION AND WEIGHT SHARING

Network quantization and weight sharing further compresses the pruned network by reducing the
number of bits required to represent each weight. We limit the number of effective weights we need to
store by having multiple connections share the same weight, and then fine-tune those shared weights.

Weight sharing is illustrated in Figure 3. Suppose we have a layer that has 4 input neurons and 4
output neurons, the weight is a 4⇥ 4 matrix. On the top left is the 4⇥ 4 weight matrix, and on the
bottom left is the 4⇥ 4 gradient matrix. The weights are quantized to 4 bins (denoted with 4 colors),
all the weights in the same bin share the same value, thus for each weight, we then need to store only
a small index into a table of shared weights. During update, all the gradients are grouped by the color
and summed together, multiplied by the learning rate and subtracted from the shared centroids from
last iteration. For pruned AlexNet, we are able to quantize to 8-bits (256 shared weights) for each
CONV layers, and 5-bits (32 shared weights) for each FC layer without any loss of accuracy.

To calculate the compression rate, given k clusters, we only need log2(k) bits to encode the index. In
general, for a network with n connections and each connection is represented with b bits, constraining
the connections to have only k shared weights will result in a compression rate of:

r =
nb

nlog2(k) + kb
(1)

For example, Figure 3 shows the weights of a single layer neural network with four input units and
four output units. There are 4⇥4 = 16 weights originally but there are only 4 shared weights: similar
weights are grouped together to share the same value. Originally we need to store 16 weights each

3

Sum weight gradients of all
weights in a cluster: use result to
update cluster center to avoid
divergence of weight values

 CMU 15-769, Fall 2016

Pruning, quantization, huffman-encoding of VGG-16

Published as a conference paper at ICLR 2016

Table 4: Compression statistics for AlexNet. P: pruning, Q: quantization, H:Huffman coding.

Layer #Weights Weights%
(P)

Weight
bits
(P+Q)

Weight
bits
(P+Q+H)

Index
bits
(P+Q)

Index
bits
(P+Q+H)

Compress
rate
(P+Q)

Compress
rate
(P+Q+H)

conv1 35K 84% 8 6.3 4 1.2 32.6% 20.53%
conv2 307K 38% 8 5.5 4 2.3 14.5% 9.43%
conv3 885K 35% 8 5.1 4 2.6 13.1% 8.44%
conv4 663K 37% 8 5.2 4 2.5 14.1% 9.11%
conv5 442K 37% 8 5.6 4 2.5 14.0% 9.43%
fc6 38M 9% 5 3.9 4 3.2 3.0% 2.39%
fc7 17M 9% 5 3.6 4 3.7 3.0% 2.46%
fc8 4M 25% 5 4 4 3.2 7.3% 5.85%
Total 61M 11%(9⇥) 5.4 4 4 3.2 3.7% (27⇥) 2.88% (35⇥)

Table 5: Compression statistics for VGG-16. P: pruning, Q:quantization, H:Huffman coding.

Layer #Weights Weights%
(P)

Weigh
bits
(P+Q)

Weight
bits
(P+Q+H)

Index
bits
(P+Q)

Index
bits
(P+Q+H)

Compress
rate
(P+Q)

Compress
rate
(P+Q+H)

conv1 1 2K 58% 8 6.8 5 1.7 40.0% 29.97%
conv1 2 37K 22% 8 6.5 5 2.6 9.8% 6.99%
conv2 1 74K 34% 8 5.6 5 2.4 14.3% 8.91%
conv2 2 148K 36% 8 5.9 5 2.3 14.7% 9.31%
conv3 1 295K 53% 8 4.8 5 1.8 21.7% 11.15%
conv3 2 590K 24% 8 4.6 5 2.9 9.7% 5.67%
conv3 3 590K 42% 8 4.6 5 2.2 17.0% 8.96%
conv4 1 1M 32% 8 4.6 5 2.6 13.1% 7.29%
conv4 2 2M 27% 8 4.2 5 2.9 10.9% 5.93%
conv4 3 2M 34% 8 4.4 5 2.5 14.0% 7.47%
conv5 1 2M 35% 8 4.7 5 2.5 14.3% 8.00%
conv5 2 2M 29% 8 4.6 5 2.7 11.7% 6.52%
conv5 3 2M 36% 8 4.6 5 2.3 14.8% 7.79%
fc6 103M 4% 5 3.6 5 3.5 1.6% 1.10%
fc7 17M 4% 5 4 5 4.3 1.5% 1.25%
fc8 4M 23% 5 4 5 3.4 7.1% 5.24%
Total 138M 7.5%(13⇥) 6.4 4.1 5 3.1 3.2% (31⇥) 2.05% (49⇥)

is critical for real time image processing, where there is little reuse of these layers across images
(unlike batch processing). This is also critical for fast object detection algorithms where one CONV
pass is used by many FC passes. The reduced layers will fit in an on-chip SRAM and have modest
bandwidth requirements. Without the reduction, the bandwidth requirements are prohibitive.

6 DISCUSSIONS

6.1 PRUNING AND QUANTIZATION WORKING TOGETHER

Figure 6 shows the accuracy at different compression rates for pruning and quantization together
or individually. When working individually, as shown in the purple and yellow lines, accuracy of
pruned network begins to drop significantly when compressed below 8% of its original size; accuracy
of quantized network also begins to drop significantly when compressed below 8% of its original
size. But when combined, as shown in the red line, the network can be compressed to 3% of original
size with no loss of accuracy. On the far right side compared the result of SVD, which is inexpensive
but has a poor compression rate.

The three plots in Figure 7 show how accuracy drops with fewer bits per connection for CONV layers
(left), FC layers (middle) and all layers (right). Each plot reports both top-1 and top-5 accuracy.
Dashed lines only applied quantization but without pruning; solid lines did both quantization and
pruning. There is very little difference between the two. This shows that pruning works well with
quantization.

Quantization works well on pruned network because unpruned AlexNet has 60 million weights to
quantize, while pruned AlexNet has only 6.7 million weights to quantize. Given the same amount of
centroids, the latter has less error.

7

 CMU 15-769, Fall 2016

Problem
▪ Techniques discussed above significantly reduce network size,

but turn a “HW-friendly” dense workload into a sparse one
- Many heavily-optimized CPU/GPU libraries for dense conv/fc layers

- Sparse matrix-vector product significantly less efficient on modern
processors

▪ Also incur new costs during inference time for decompression
- Huffman decode

- Process relative index offsets

- Lookup weight from weight id

 CMU 15-769, Fall 2016

Sparse, weight-sharing fully-connected layer

to dense form before operation [11]. Neither is able to
exploit weight sharing. This motivates building a special
engine that can operate on a compressed network.

III. DNN COMPRESSION AND PARALLELIZATION

A. Computation

A FC layer of a DNN performs the computation

b = f(Wa+ v) (1)

Where a is the input activation vector, b is the output
activation vector, v is the bias, W is the weight matrix, and
f is the non-linear function, typically the Rectified Linear
Unit(ReLU) [22] in CNN and some RNN. Sometimes v
will be combined with W by appending an additional one
to vector a, therefore we neglect the bias in the following
paragraphs.

For a typical FC layer like FC7 of VGG-16 or AlexNet,
the activation vectors are 4K long, and the weight matrix is
4K ⇥ 4K (16M weights). Weights are represented as single-
precision floating-point numbers so such a layer requires
64MB of storage. The output activations of Equation (1) are
computed element-wise as:

b
i

= ReLU

0

@
n�1X

j=0

W
ij

a
j

1

A (2)

Deep Compression [23] describes a method to compress
DNNs without loss of accuracy through a combination of
pruning and weight sharing. Pruning makes matrix W sparse
with density D ranging from 4% to 25% for our benchmark
layers. Weight sharing replaces each weight W

ij

with a four-
bit index I

ij

into a shared table S of 16 possible weight
values.

With deep compression, the per-activation computation of
Equation (2) becomes

b
i

= ReLU

0

@
X

j2Xi\Y

S[I
ij

]a
j

1

A (3)

Where X
i

is the set of columns j for which W
ij

6= 0, Y
is the set of indices j for which a

j

6= 0, I
ij

is the index
to the shared weight that replaces W

ij

, and S is the table
of shared weights. Here X

i

represents the static sparsity of
W and Y represents the dynamic sparsity of a. The set X

i

is fixed for a given model. The set Y varies from input to
input.

Accelerating Equation (3) is needed to accelerate a com-
pressed DNN. We perform the indexing S[I

ij

] and the
multiply-add only for those columns for which both W

ij

and a
j

are non-zero, so that both the sparsity of the matrix
and the vector are exploited. This results in a dynamically ir-
regular computation. Performing the indexing itself involves

~a
�

0 0 a2 0 a4 a5 0 a7
�

⇥ ~b

PE0

PE1

PE2

PE3

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

w0,0 0 w0,2 0 w0,4 w0,5 w0,6 0

0 w1,1 0 w1,3 0 0 w1,6 0

0 0 w2,2 0 w2,4 0 0 w2,7

0 w3,1 0 0 0 w0,5 0 0

0 w4,1 0 0 w4,4 0 0 0

0 0 0 w5,4 0 0 0 w5,7

0 0 0 0 w6,4 0 w6,6 0

w7,0 0 0 w7,4 0 0 w7,7 0

w8,0 0 0 0 0 0 0 w8,7

w9,0 0 0 0 0 0 w9,6 w9,7

0 0 0 0 w10,4 0 0 0

0 0 w11,2 0 0 0 0 w11,7

w12,0 0 w12,2 0 0 w12,5 0 w12,7

w13,0w13,2 0 0 0 0 w13,6 0

0 0 w14,2w14,3w14,4w14,5 0 0

0 0 w15,2w15,3 0 w15,5 0 0

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

=

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

b0

b1

�b2

b3

�b4

b5

b6

�b7

�b8

�b9

b10

�b11

�b12

b13

b14

�b15

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

ReLU)

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

b0

b1

0

b3

0

b5

b6

0

0

0

b10

0

0

b13

b14

0

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

1

Figure 2. Matrix W and vectors a and b are interleaved over 4 PEs.
Elements of the same color are stored in the same PE.

Virtual	
Weight

W0,0 W8,0 W12,0 W4,1 W0,2 W12,2 W0,4 W4,4 W0,5 W12,5 W0,6 W8,7 W12,7

Relative	  
Row	Index 0 1 0 1 0 2 0 0 0 2 0 2 0

Column	
Pointer 0 3 4 6 6 8 10 11 13

	 	 	

Figure 3. Memory layout for the relative indexed, indirect weighted and
interleaved CSC format, corresponding to PE0 in Figure 2.

bit manipulations to extract four-bit I
ij

and an extra load
(which is almost assured a cache hit).

B. Representation

To exploit the sparsity of activations we store our encoded
sparse weight matrix W in a variation of compressed sparse
column (CSC) format [24].

For each column W
j

of matrix W we store a vector v
that contains the non-zero weights, and a second, equal-
length vector z that encodes the number of zeros before
the corresponding entry in v. Each entry of v and z is
represented by a four-bit value. If more than 15 zeros appear
before a non-zero entry we add a zero in vector v. For
example, we encode the following column

[0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 3]

as v = [1, 2,0, 3], z = [2, 0,15, 2]. v and z of all columns
are stored in one large pair of arrays with a pointer vector p
pointing to the beginning of the vector for each column. A
final entry in p points one beyond the last vector element so
that the number of non-zeros in column j (including padded
zeros) is given by p

j+1 � p
j

.
Storing the sparse matrix by columns in CSC format

makes it easy to exploit activation sparsity. We simply
multiply each non-zero activation by all of the non-zero
elements in its corresponding column.

to dense form before operation [11]. Neither is able to
exploit weight sharing. This motivates building a special
engine that can operate on a compressed network.

III. DNN COMPRESSION AND PARALLELIZATION

A. Computation

A FC layer of a DNN performs the computation

b = f(Wa+ v) (1)

Where a is the input activation vector, b is the output
activation vector, v is the bias, W is the weight matrix, and
f is the non-linear function, typically the Rectified Linear
Unit(ReLU) [22] in CNN and some RNN. Sometimes v
will be combined with W by appending an additional one
to vector a, therefore we neglect the bias in the following
paragraphs.

For a typical FC layer like FC7 of VGG-16 or AlexNet,
the activation vectors are 4K long, and the weight matrix is
4K ⇥ 4K (16M weights). Weights are represented as single-
precision floating-point numbers so such a layer requires
64MB of storage. The output activations of Equation (1) are
computed element-wise as:

b
i

= ReLU

0

@
n�1X

j=0

W
ij

a
j

1

A (2)

Deep Compression [23] describes a method to compress
DNNs without loss of accuracy through a combination of
pruning and weight sharing. Pruning makes matrix W sparse
with density D ranging from 4% to 25% for our benchmark
layers. Weight sharing replaces each weight W

ij

with a four-
bit index I

ij

into a shared table S of 16 possible weight
values.

With deep compression, the per-activation computation of
Equation (2) becomes

b
i

= ReLU

0

@
X

j2Xi\Y

S[I
ij

]a
j

1

A (3)

Where X
i

is the set of columns j for which W
ij

6= 0, Y
is the set of indices j for which a

j

6= 0, I
ij

is the index
to the shared weight that replaces W

ij

, and S is the table
of shared weights. Here X

i

represents the static sparsity of
W and Y represents the dynamic sparsity of a. The set X

i

is fixed for a given model. The set Y varies from input to
input.

Accelerating Equation (3) is needed to accelerate a com-
pressed DNN. We perform the indexing S[I

ij

] and the
multiply-add only for those columns for which both W

ij

and a
j

are non-zero, so that both the sparsity of the matrix
and the vector are exploited. This results in a dynamically ir-
regular computation. Performing the indexing itself involves

~a
�

0 0 a2 0 a4 a5 0 a7
�

⇥ ~b

PE0

PE1

PE2

PE3

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

w0,0 0 w0,2 0 w0,4 w0,5 w0,6 0

0 w1,1 0 w1,3 0 0 w1,6 0

0 0 w2,2 0 w2,4 0 0 w2,7

0 w3,1 0 0 0 w0,5 0 0

0 w4,1 0 0 w4,4 0 0 0

0 0 0 w5,4 0 0 0 w5,7

0 0 0 0 w6,4 0 w6,6 0

w7,0 0 0 w7,4 0 0 w7,7 0

w8,0 0 0 0 0 0 0 w8,7

w9,0 0 0 0 0 0 w9,6 w9,7

0 0 0 0 w10,4 0 0 0

0 0 w11,2 0 0 0 0 w11,7

w12,0 0 w12,2 0 0 w12,5 0 w12,7

w13,0w13,2 0 0 0 0 w13,6 0

0 0 w14,2w14,3w14,4w14,5 0 0

0 0 w15,2w15,3 0 w15,5 0 0

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

=

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

b0

b1

�b2

b3

�b4

b5

b6

�b7

�b8

�b9

b10

�b11

�b12

b13

b14

�b15

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

ReLU)

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

b0

b1

0

b3

0

b5

b6

0

0

0

b10

0

0

b13

b14

0

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

1

Figure 2. Matrix W and vectors a and b are interleaved over 4 PEs.
Elements of the same color are stored in the same PE.

Virtual	
Weight

W0,0 W8,0 W12,0 W4,1 W0,2 W12,2 W0,4 W4,4 W0,5 W12,5 W0,6 W8,7 W12,7

Relative	  
Row	Index 0 1 0 1 0 2 0 0 0 2 0 2 0

Column	
Pointer 0 3 4 6 6 8 10 11 13

	 	 	

Figure 3. Memory layout for the relative indexed, indirect weighted and
interleaved CSC format, corresponding to PE0 in Figure 2.

bit manipulations to extract four-bit I
ij

and an extra load
(which is almost assured a cache hit).

B. Representation

To exploit the sparsity of activations we store our encoded
sparse weight matrix W in a variation of compressed sparse
column (CSC) format [24].

For each column W
j

of matrix W we store a vector v
that contains the non-zero weights, and a second, equal-
length vector z that encodes the number of zeros before
the corresponding entry in v. Each entry of v and z is
represented by a four-bit value. If more than 15 zeros appear
before a non-zero entry we add a zero in vector v. For
example, we encode the following column

[0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 3]

as v = [1, 2,0, 3], z = [2, 0,15, 2]. v and z of all columns
are stored in one large pair of arrays with a pointer vector p
pointing to the beginning of the vector for each column. A
final entry in p points one beyond the last vector element so
that the number of non-zeros in column j (including padded
zeros) is given by p

j+1 � p
j

.
Storing the sparse matrix by columns in CSC format

makes it easy to exploit activation sparsity. We simply
multiply each non-zero activation by all of the non-zero
elements in its corresponding column.

Fully-connected layer:
Matrix-vector multiplication of activation
vector a against weight matrix W

Sparse, weight-sharing representation:
Iij = index for weight Wij

S[] = table of shared weight values
Xi = list of non-zero indices in row i
Y = list of non-zero indices in a

Note: activations are
sparse due to ReLU

 CMU 15-769, Fall 2016

Efficient inference engine (EIE) ASIC
Custom hardware for decode and evaluate sparse, compressed DNNs

Hardware represents weight matrix in compressed sparse column (CSC)
format to exploit sparsity in activations:

for	each	nonzero	a_j	in	a:	
				for	each	nonzero	M_ij	in	column	M_j:		
						b_i	+=	M_ij	*	a_j

int16*	a_values;	
PTR*			M_j_start;			//	column	j	
int4*		M_j_values;		
int4*		M_j_indices;	
int16*	lookup;	//	lookup	table	for	
															//	cluster	values

More detailed version: for	j=0	to	length(a):	
				if	(a[j]	==	0)	continue;		//	scan	to	nonzero	
				col_values	=	M_j_values[M_j_start[j]];	
				col_indices	=	M_j_indices[M_j_start[j]];	
				col_nonzeros	=	M_j_start[j+1]-M_j_start[j];	
				for	i=0,	i_count=0	to	col_nonzeros:	
							i	+=	col_indices[i_count]		
							b[i]	+=	lookup[M_j_values[i]]	*	
															a_values[j_count]

* Keep in mind there’s a unique lookup table for each chunk of matrix values

 CMU 15-769, Fall 2016

Parallelization of sparse-matrix-vector product
Stride rows of matrix across processing elements
Output activations strided across processing elements

to dense form before operation [11]. Neither is able to
exploit weight sharing. This motivates building a special
engine that can operate on a compressed network.

III. DNN COMPRESSION AND PARALLELIZATION

A. Computation

A FC layer of a DNN performs the computation

b = f(Wa+ v) (1)

Where a is the input activation vector, b is the output
activation vector, v is the bias, W is the weight matrix, and
f is the non-linear function, typically the Rectified Linear
Unit(ReLU) [22] in CNN and some RNN. Sometimes v
will be combined with W by appending an additional one
to vector a, therefore we neglect the bias in the following
paragraphs.

For a typical FC layer like FC7 of VGG-16 or AlexNet,
the activation vectors are 4K long, and the weight matrix is
4K ⇥ 4K (16M weights). Weights are represented as single-
precision floating-point numbers so such a layer requires
64MB of storage. The output activations of Equation (1) are
computed element-wise as:

b
i

= ReLU

0

@
n�1X

j=0

W
ij

a
j

1

A (2)

Deep Compression [23] describes a method to compress
DNNs without loss of accuracy through a combination of
pruning and weight sharing. Pruning makes matrix W sparse
with density D ranging from 4% to 25% for our benchmark
layers. Weight sharing replaces each weight W

ij

with a four-
bit index I

ij

into a shared table S of 16 possible weight
values.

With deep compression, the per-activation computation of
Equation (2) becomes

b
i

= ReLU

0

@
X

j2Xi\Y

S[I
ij

]a
j

1

A (3)

Where X
i

is the set of columns j for which W
ij

6= 0, Y
is the set of indices j for which a

j

6= 0, I
ij

is the index
to the shared weight that replaces W

ij

, and S is the table
of shared weights. Here X

i

represents the static sparsity of
W and Y represents the dynamic sparsity of a. The set X

i

is fixed for a given model. The set Y varies from input to
input.

Accelerating Equation (3) is needed to accelerate a com-
pressed DNN. We perform the indexing S[I

ij

] and the
multiply-add only for those columns for which both W

ij

and a
j

are non-zero, so that both the sparsity of the matrix
and the vector are exploited. This results in a dynamically ir-
regular computation. Performing the indexing itself involves

~a
�

0 0 a2 0 a4 a5 0 a7
�

⇥ ~b

PE0

PE1

PE2

PE3

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

w0,0 0 w0,2 0 w0,4 w0,5 w0,6 0

0 w1,1 0 w1,3 0 0 w1,6 0

0 0 w2,2 0 w2,4 0 0 w2,7

0 w3,1 0 0 0 w0,5 0 0

0 w4,1 0 0 w4,4 0 0 0

0 0 0 w5,4 0 0 0 w5,7

0 0 0 0 w6,4 0 w6,6 0

w7,0 0 0 w7,4 0 0 w7,7 0

w8,0 0 0 0 0 0 0 w8,7

w9,0 0 0 0 0 0 w9,6 w9,7

0 0 0 0 w10,4 0 0 0

0 0 w11,2 0 0 0 0 w11,7

w12,0 0 w12,2 0 0 w12,5 0 w12,7

w13,0w13,2 0 0 0 0 w13,6 0

0 0 w14,2w14,3w14,4w14,5 0 0

0 0 w15,2w15,3 0 w15,5 0 0

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

=

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

b0

b1

�b2

b3

�b4

b5

b6

�b7

�b8

�b9

b10

�b11

�b12

b13

b14

�b15

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

ReLU)

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

b0

b1

0

b3

0

b5

b6

0

0

0

b10

0

0

b13

b14

0

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

1

Figure 2. Matrix W and vectors a and b are interleaved over 4 PEs.
Elements of the same color are stored in the same PE.

Virtual	
Weight

W0,0 W8,0 W12,0 W4,1 W0,2 W12,2 W0,4 W4,4 W0,5 W12,5 W0,6 W8,7 W12,7

Relative	  
Row	Index 0 1 0 1 0 2 0 0 0 2 0 2 0

Column	
Pointer 0 3 4 6 6 8 10 11 13

	 	 	

Figure 3. Memory layout for the relative indexed, indirect weighted and
interleaved CSC format, corresponding to PE0 in Figure 2.

bit manipulations to extract four-bit I
ij

and an extra load
(which is almost assured a cache hit).

B. Representation

To exploit the sparsity of activations we store our encoded
sparse weight matrix W in a variation of compressed sparse
column (CSC) format [24].

For each column W
j

of matrix W we store a vector v
that contains the non-zero weights, and a second, equal-
length vector z that encodes the number of zeros before
the corresponding entry in v. Each entry of v and z is
represented by a four-bit value. If more than 15 zeros appear
before a non-zero entry we add a zero in vector v. For
example, we encode the following column

[0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 3]

as v = [1, 2,0, 3], z = [2, 0,15, 2]. v and z of all columns
are stored in one large pair of arrays with a pointer vector p
pointing to the beginning of the vector for each column. A
final entry in p points one beyond the last vector element so
that the number of non-zeros in column j (including padded
zeros) is given by p

j+1 � p
j

.
Storing the sparse matrix by columns in CSC format

makes it easy to exploit activation sparsity. We simply
multiply each non-zero activation by all of the non-zero
elements in its corresponding column.

Weights stored local to PEs. Must broadcast non-zero a_j’s to all PEs
Accumulation of each output b_i is local to PE

 CMU 15-769, Fall 2016

EIE unit for quantized sparse/matrix vector
product

Pointer Read Act R/W

Act Queue

Sparse Matrix Access

Sparse
Matrix
SRAM

 Arithmetic Unit

Regs

Col
Start/
End

Addr

Act Index

Weight
Decoder

Address
Accum

Dest
Act

Regs

Act
SRAM

Act Value

Encoded
Weight

Relative
Index

Src
Act

Regs
Absolute Address

Bypass

Leading
NZero
Detect

Even Ptr SRAM Bank

Odd Ptr SRAM Bank ReLU

(b)
Figure 4. (a) The architecture of Leading Non-zero Detection Node. (b) The architecture of Processing Element.

C. Parallelizing Compressed DNN

We distribute the matrix and parallelize our matrix-vector
computation by interleaving the rows of the matrix W over
multiple processing elements (PEs). With N PEs, PE

k

holds
all rows W

i

, output activations b
i

, and input activations a
i

for which i (mod N) = k. The portion of column W
j

in
PE

k

is stored in the CSC format described in Section III-B
but with the zero counts referring only to zeros in the subset
of the column in this PE. Each PE has its own v, x, and p
arrays that encode its fraction of the sparse matrix.

Figure 2 shows an example multiplying an input activation
vector a (of length 8) by a 16⇥8 weight matrix W yielding
an output activation vector b (of length 16) on N = 4 PEs.
The elements of a, b, and W are color coded with their PE
assignments. Each PE owns 4 rows of W , 2 elements of a,
and 4 elements of b.

We perform the sparse matrix ⇥ sparse vector operation
by scanning vector a to find its next non-zero value a

j

and broadcasting a
j

along with its index j to all PEs.
Each PE then multiplies a

j

by the non-zero elements in
its portion of column W

j

— accumulating the partial sums
in accumulators for each element of the output activation
vector b. In the CSC representation these non-zeros weights
are stored contiguously so each PE simply walks through its
v array from location p

j

to p
j+1 � 1 to load the weights.

To address the output accumulators, the row number i
corresponding to each weight W

ij

is generated by keeping
a running sum of the entries of the x array.

In the example of Figure 2, the first non-zero is a2 on
PE2. The value a2 and its column index 2 is broadcast
to all PEs. Each PE then multiplies a2 by every non-
zero in its portion of column 2. PE0 multiplies a2 by
W0,2 and W12,2; PE1 has all zeros in column 2 and so
performs no multiplications; PE2 multiplies a2 by W2,2

and W14,2, and so on. The result of each product is summed
into the corresponding row accumulator. For example PE0

computes b0 = b0 + W0,2a2 and b12 = b12 + W12,2a2.
The accumulators are initialized to zero before each layer
computation.

The interleaved CSC representation facilitates exploitation
of both the dynamic sparsity of activation vector a and
the static sparsity of the weight matrix W . We exploit

activation sparsity by broadcasting only non-zero elements
of input activation a. Columns corresponding to zeros in a
are completely skipped. The interleaved CSC representation
allows each PE to quickly find the non-zeros in each column
to be multiplied by a

j

. This organization also keeps all of the
computation except for the broadcast of the input activations
local to a PE. The interleaved CSC representation of matrix
in Figure 2 is shown in Figure 3.

This process may suffer load imbalance because each PE
may have a different number of non-zeros in a particular
column. We will see in Section IV how this load imbalance
can be reduced by queuing.

IV. HARDWARE IMPLEMENTATION

Figure 4 shows the architecture of EIE. A Central Control
Unit (CCU) controls an array of PEs that each computes one
slice of the compressed network. The CCU also receives
non-zero input activations from a distributed leading non-
zero detection network and broadcasts these to the PEs.

Almost all computation in EIE is local to the PEs except
for the collection of non-zero input activations that are
broadcast to all PEs. However, the timing of the activation
collection and broadcast is non-critical as most PEs take
many cycles to consume each input activation.

Activation Queue and Load Balancing. Non-zero ele-
ments of the input activation vector a

j

and their correspond-
ing index j are broadcast by the CCU to an activation queue
in each PE. The broadcast is disabled if any PE has a full
queue. At any point in time each PE processes the activation
at the head of its queue.

The activation queue allows each PE to build up a backlog
of work to even out load imbalance that may arise because
the number of non zeros in a given column j may vary
from PE to PE. In Section VI we measure the sensitivity of
performance to the depth of the activation queue.

Pointer Read Unit. The index j of the entry at the head
of the activation queue is used to look up the start and end
pointers p

j

and p
j+1 for the v and x arrays for column j.

To allow both pointers to be read in one cycle using single-
ported SRAM arrays, we store pointers in two SRAM banks
and use the LSB of the address to select between banks. p

j

and p
j+1 will always be in different banks. EIE pointers are

16-bits in length.

Tuple representing non-zero activation (aj, j) arrives and is enqueued

 CMU 15-769, Fall 2016

EIE Efficiency

1x 1x 1x 1x 1x 1x 1x 1x 1x 1x
2x

5x
1x

9x 10x

1x
2x 3x 2x 3x

14x
25x

14x 24x 22x
10x 9x 15x 9x 15x

56x 94x

21x

210x 135x

16x
34x 33x 25x

48x

0.6x
1.1x

0.5x
1.0x 1.0x

0.3x 0.5x 0.5x 0.5x 0.6x

3x
5x

1x

8x 9x

1x
3x 2x 1x

3x

248x
507x

115x

1018x 618x

92x 63x 98x 60x
189x

0.1x

1x

10x

100x

1000x

Alex-6 Alex-7 Alex-8 VGG-6 VGG-7 VGG-8 NT-We NT-Wd NT-LSTM Geo Mean

Sp
ee
du
p

CPU Dense (Baseline) CPU Compressed GPU Dense GPU Compressed mGPU Dense mGPU Compressed EIE

Figure 6. Speedups of GPU, mobile GPU and EIE compared with CPU running uncompressed DNN model. There is no batching in all cases.

1x 1x 1x 1x 1x 1x 1x 1x 1x 1x
5x

9x
3x

17x 20x

2x
6x 6x 4x 6x7x 12x 7x 10x 10x

5x 6x 6x 5x 7x
26x 37x

10x

78x 61x

8x
25x 14x 15x 23x

10x 15x
7x 13x 14x

5x 8x 7x 7x 9x

37x 59x
18x

101x 102x

14x
39x 25x 20x 36x

34,522x 61,533x
14,826x

119,797x 76,784x

11,828x 9,485x 10,904x 8,053x
24,207x

1x

10x

100x

1000x

10000x

100000x

Alex-6 Alex-7 Alex-8 VGG-6 VGG-7 VGG-8 NT-We NT-Wd NT-LSTM Geo MeanEn
er

gy
 E

ffi
ci

en
cy

CPU Dense (Baseline) CPU Compressed GPU Dense GPU Compressed mGPU Dense mGPU Compressed EIE

Figure 7. Energy efficiency of GPU, mobile GPU and EIE compared with CPU running uncompressed DNN model. There is no batching in all cases.

energy numbers. We annotated the toggle rate from the RTL
simulation to the gate-level netlist, which was dumped to
switching activity interchange format (SAIF), and estimated
the power using Prime-Time PX.

Comparison Baseline. We compare EIE with three dif-
ferent off-the-shelf computing units: CPU, GPU and mobile
GPU.

1) CPU. We use Intel Core i-7 5930k CPU, a Haswell-E
class processor, that has been used in NVIDIA Digits Deep
Learning Dev Box as a CPU baseline. To run the benchmark
on CPU, we used MKL CBLAS GEMV to implement the
original dense model and MKL SPBLAS CSRMV for the
compressed sparse model. CPU socket and DRAM power
are as reported by the pcm-power utility provided by Intel.

2) GPU. We use NVIDIA GeForce GTX Titan X GPU,
a state-of-the-art GPU for deep learning as our baseline
using nvidia-smi utility to report the power. To run
the benchmark, we used cuBLAS GEMV to implement
the original dense layer. For the compressed sparse layer,
we stored the sparse matrix in in CSR format, and used
cuSPARSE CSRMV kernel, which is optimized for sparse
matrix-vector multiplication on GPUs.

3) Mobile GPU. We use NVIDIA Tegra K1 that has
192 CUDA cores as our mobile GPU baseline. We used
cuBLAS GEMV for the original dense model and cuS-
PARSE CSRMV for the compressed sparse model. Tegra K1
doesn’t have software interface to report power consumption,
so we measured the total power consumption with a power-
meter, then assumed 15% AC to DC conversion loss, 85%
regulator efficiency and 15% power consumed by peripheral
components [26], [27] to report the AP+DRAM power for
Tegra K1.

Benchmarks. We compare the performance on two sets
of models: uncompressed DNN model and the compressed
DNN model. The uncompressed DNN model is obtained
from Caffe model zoo [28] and NeuralTalk model zoo [7];
The compressed DNN model is produced as described

Table III
BENCHMARK FROM STATE-OF-THE-ART DNN MODELS

Layer Size Weight% Act% FLOP% Description

Alex-6 9216, 9% 35.1% 3% Compressed4096
AlexNet [1] forAlex-7 4096, 9% 35.3% 3% large scale image4096
classificationAlex-8 4096, 25% 37.5% 10%1000

VGG-6 25088, 4% 18.3% 1% Compressed4096 VGG-16 [3] for
VGG-7 4096, 4% 37.5% 2% large scale image4096 classification and
VGG-8 4096, 23% 41.1% 9% object detection1000

NT-We 4096, 10% 100% 10% Compressed
600 NeuralTalk [7]

NT-Wd 600, 11% 100% 11% with RNN and
8791 LSTM for

NTLSTM 1201, 10% 100% 11% automatic
2400 image captioning

in [16], [23]. The benchmark networks have 9 layers in total
obtained from AlexNet, VGGNet, and NeuralTalk. We use
the Image-Net dataset [29] and the Caffe [28] deep learning
framework as golden model to verify the correctness of the
hardware design.

VI. EXPERIMENTAL RESULTS

Figure 5 shows the layout (after place-and-route) of
an EIE processing element. The power/area breakdown is
shown in Table II. We brought the critical path delay down
to 1.15ns by introducing 4 pipeline stages to update one
activation: codebook lookup and address accumulation (in
parallel), output activation read and input activation multiply
(in parallel), shift and add, and output activation write. Ac-
tivation read and write access a local register and activation
bypassing is employed to avoid a pipeline hazard. Using
64 PEs running at 800MHz yields a performance of 102
GOP/s. Considering 10⇥ weight sparsity and 3⇥ activation
sparsity, this requires a dense DNN accelerator 3TOP/s to
have equivalent application throughput.

CPU: Core i7 5930k (6 cores)
GPU: GTX Titan X
mGPU: Tegra K1

Sources of energy savings:
- Compression allows all weights to be stored in SRAM (few DRAM loads)
- Low-precision 16-bit fixed-point math (5x more efficient than 32-bit fixed math)
- Skip math on inputs activations that are zero (65% less math)

Warning: these are not end-to-end: just fully
connected layers! And recall most of the

compute is in the convo layers!

 CMU 15-769, Fall 2016

Thoughts
▪ EIE paper highlights performance on fully connected layers

(see graph above)
- Final layers of networks like AlexNet, VGG…
- Common in recurrent network topologies like LSTMs

▪ But many state-of-the-art image processing networks have
moved to fully convolutional solutions
- Recall Inception, SqueezeNet, etc..

 CMU 15-769, Fall 2016

A fully convolutional network for image segmentation

Upsampling network

tuned to segmentation as shown in 4.1, and even score
highly on the standard metric, their output is dissatisfyingly
coarse (see Figure 4). The 32 pixel stride at the final predic-
tion layer limits the scale of detail in the upsampled output.

We address this by adding skips [1] that combine the
final prediction layer with lower layers with finer strides.
This turns a line topology into a DAG, with edges that skip
ahead from lower layers to higher ones (Figure 3). As they
see fewer pixels, the finer scale predictions should need
fewer layers, so it makes sense to make them from shallower
net outputs. Combining fine layers and coarse layers lets the
model make local predictions that respect global structure.
By analogy to the jet of Koenderick and van Doorn [21], we
call our nonlinear feature hierarchy the deep jet.

We first divide the output stride in half by predicting
from a 16 pixel stride layer. We add a 1 ⇥ 1 convolution
layer on top of pool4 to produce additional class predic-
tions. We fuse this output with the predictions computed
on top of conv7 (convolutionalized fc7) at stride 32 by
adding a 2⇥ upsampling layer and summing6 both predic-
tions (see Figure 3). We initialize the 2⇥ upsampling to bi-
linear interpolation, but allow the parameters to be learned
as described in Section 3.3. Finally, the stride 16 predic-
tions are upsampled back to the image. We call this net
FCN-16s. FCN-16s is learned end-to-end, initialized with
the parameters of the last, coarser net, which we now call
FCN-32s. The new parameters acting on pool4 are zero-
initialized so that the net starts with unmodified predictions.
The learning rate is decreased by a factor of 100.

Learning this skip net improves performance on the val-
idation set by 3.0 mean IU to 62.4. Figure 4 shows im-
provement in the fine structure of the output. We compared
this fusion with learning only from the pool4 layer, which
resulted in poor performance, and simply decreasing the
learning rate without adding the skip, which resulted in an
insignificant performance improvement without improving
the quality of the output.

We continue in this fashion by fusing predictions from
pool3 with a 2⇥ upsampling of predictions fused from
pool4 and conv7, building the net FCN-8s. We obtain
a minor additional improvement to 62.7 mean IU, and find
a slight improvement in the smoothness and detail of our
output. At this point our fusion improvements have met di-
minishing returns, both with respect to the IU metric which
emphasizes large-scale correctness, and also in terms of the
improvement visible e.g. in Figure 4, so we do not continue
fusing even lower layers.

Refinement by other means Decreasing the stride of
pooling layers is the most straightforward way to obtain
finer predictions. However, doing so is problematic for our
VGG16-based net. Setting the pool5 stride to 1 requires
our convolutionalized fc6 to have kernel size 14 ⇥ 14 to

6Max fusion made learning difficult due to gradient switching.

FCN-32s FCN-16s FCN-8s Ground truth

Figure 4. Refining fully convolutional nets by fusing information
from layers with different strides improves segmentation detail.
The first three images show the output from our 32, 16, and 8
pixel stride nets (see Figure 3).

Table 2. Comparison of skip FCNs on a subset7 of PASCAL VOC
2011 segval. Learning is end-to-end, except for FCN-32s-fixed,
where only the last layer is fine-tuned. Note that FCN-32s is FCN-
VGG16, renamed to highlight stride.

pixel
acc.

mean
acc.

mean
IU

f.w.
IU

FCN-32s-fixed 83.0 59.7 45.4 72.0
FCN-32s 89.1 73.3 59.4 81.4
FCN-16s 90.0 75.7 62.4 83.0
FCN-8s 90.3 75.9 62.7 83.2

maintain its receptive field size. In addition to their com-
putational cost, we had difficulty learning such large filters.
We attempted to re-architect the layers above pool5 with
smaller filters, but did not achieve comparable performance;
one possible explanation is that the ILSVRC initialization
of the upper layers is important.

Another way to obtain finer predictions is to use the shift-
and-stitch trick described in Section 3.2. In limited exper-
iments, we found the cost to improvement ratio from this
method to be worse than layer fusion.

4.3. Experimental framework

Optimization We train by SGD with momentum. We
use a minibatch size of 20 images and fixed learning rates of
10�3, 10�4, and 5�5 for FCN-AlexNet, FCN-VGG16, and
FCN-GoogLeNet, respectively, chosen by line search. We
use momentum 0.9, weight decay of 5�4 or 2�4, and dou-
bled learning rate for biases, although we found training to
be sensitive to the learning rate alone. We zero-initialize the
class scoring layer, as random initialization yielded neither
better performance nor faster convergence. Dropout was in-
cluded where used in the original classifier nets.

Fine-tuning We fine-tune all layers by back-
propagation through the whole net. Fine-tuning the
output classifier alone yields only 70% of the full fine-
tuning performance as compared in Table 2. Training from
scratch is not feasible considering the time required to
learn the base classification nets. (Note that the VGG net is
trained in stages, while we initialize from the full 16-layer

 CMU 15-769, Fall 2016

Temporal stability of deep features
Clockwork Convnets for Video Semantic Segmentation 5

Fig. 2: The proportional difference between adjacent frames of semantic predictions
from a mid-level layer (pool4, green) and the deepest layer (fc7, blue) are shown
for the first 75 frames of two videos. We see that for a video with lots of motion (left)
the difference values are large while for a relatively static video (right) the difference
values are small. In both cases, the differences of the deeper fc7 are smaller than the
differences of the shallower pool4. The “velocity” of deep features is slow relative to
shallow features and most of all the input. At the same time, the differences between
shallow and deep layers are dependent since the features are compositional.

While deeper layers are more stable than shallower layers, for videos with enough
motion the score maps throughout the network may change substantially. For example,
in Figure 2 we show the differences for the first 75 frames of a video with large motion
(left) and with small motion (right). We would like our network to adaptively update
only when the deepest, most semantic layer (fc7) score map is likely to change. We
notice that though the intermediate layer (pool4) difference is always larger than the
deepest layer difference for any given frame, the pool4 differences are much larger
for the video with large motion than for the video with relatively small motion. This
observation forms the motivation for using the intermediate differences as an indicator
to determine the firing of an adaptive clock.

4 A Clockwork Network

We adapt the fully convolutional network (FCN) approach for image-to-image mapping
[1] to video frame processing. While it is straightforward to perform inference with a
still-image segmentation network on every video frame, this naı̈ve computation is inef-
ficient. Furthermore, disregarding the sequential nature of the input not only sacrifices
efficiency but discards potential temporal recognition cues. The temporal coherence of
video suggests the persistence of visual features from prior frames to inform inference
on the current frame. To this end we define the clockwork FCN, inspired by the clock-
work recurrent network [4], to carry temporal information across frames. A generalized
notion of clockwork relates both of these networks.

We consider both throughput and latency in the execution of deep networks across
video sequences. The inference time of the regular FCN-8s at ⇠ 100ms per frame of
size 500⇥500 on a standard GPU can be too slow for video. We first define fixed clocks
then extend to adaptive and potentially learned clockwork to drive network processing.
Whatever the task, any video network can be accelerated by our clockwork technique.

Clockwork Convnets for Video Semantic Segmentation 5

Fig. 2: The proportional difference between adjacent frames of semantic predictions
from a mid-level layer (pool4, green) and the deepest layer (fc7, blue) are shown
for the first 75 frames of two videos. We see that for a video with lots of motion (left)
the difference values are large while for a relatively static video (right) the difference
values are small. In both cases, the differences of the deeper fc7 are smaller than the
differences of the shallower pool4. The “velocity” of deep features is slow relative to
shallow features and most of all the input. At the same time, the differences between
shallow and deep layers are dependent since the features are compositional.

While deeper layers are more stable than shallower layers, for videos with enough
motion the score maps throughout the network may change substantially. For example,
in Figure 2 we show the differences for the first 75 frames of a video with large motion
(left) and with small motion (right). We would like our network to adaptively update
only when the deepest, most semantic layer (fc7) score map is likely to change. We
notice that though the intermediate layer (pool4) difference is always larger than the
deepest layer difference for any given frame, the pool4 differences are much larger
for the video with large motion than for the video with relatively small motion. This
observation forms the motivation for using the intermediate differences as an indicator
to determine the firing of an adaptive clock.

4 A Clockwork Network

We adapt the fully convolutional network (FCN) approach for image-to-image mapping
[1] to video frame processing. While it is straightforward to perform inference with a
still-image segmentation network on every video frame, this naı̈ve computation is inef-
ficient. Furthermore, disregarding the sequential nature of the input not only sacrifices
efficiency but discards potential temporal recognition cues. The temporal coherence of
video suggests the persistence of visual features from prior frames to inform inference
on the current frame. To this end we define the clockwork FCN, inspired by the clock-
work recurrent network [4], to carry temporal information across frames. A generalized
notion of clockwork relates both of these networks.

We consider both throughput and latency in the execution of deep networks across
video sequences. The inference time of the regular FCN-8s at ⇠ 100ms per frame of
size 500⇥500 on a standard GPU can be too slow for video. We first define fixed clocks
then extend to adaptive and potentially learned clockwork to drive network processing.
Whatever the task, any video network can be accelerated by our clockwork technique.

Observation:
Deeper features feature more
temporal stability

(more semantic information changes
less rapidly in a scene)

 CMU 15-769, Fall 2016

Clockwork network: reuse deeper layer outputs
in subsequent frames 6 E. Shelhamer⇤, K. Rakelly⇤, J. Hoffman⇤, and T. Darrell

Conv2
Conv3 Conv4 Conv5

fc6 fc7
Score

Deconv
2x

Score

Score

Fuse
Deconv

2x

Fuse
Deconv

8x

96

256
384 384 384

4096 4096

Conv1

Stage 1 Stage 2 Stage 3

Stage 1 (60.0ms)

Stage 2 (18.7ms)

Stage 3 (23.0ms)

Frame Timing of FCN-8s

Clock 1 Clock 2 Clock 3

clockwork

standard

Fig. 3: The clockwork FCN with its stages and corresponding clocks.

A schematic of our clockwork FCN is shown in Figure 3.
There are several choice points in defining a clockwork architecture. We define a

novel, generalized clockwork framework, which can purposely schedule deeper lay-
ers more slowly than shallower layers. We form our modules by grouping the layers
of a convnet to span the feature hierarchy. Our networks persists both state and out-
put across time steps. The clockwork recurrent network of [4], designed for long-term
dependency modeling of time series, is an instance of our more general scheme for
clockwork computation. The differences in architecture and outputs over time between
clockwork recurrence and our clockwork are shown in Figure 4.

While different, these nets can be expressed by generalized clockwork equations

y
(t)
H = fT

⇣
C

(t)
H � fH(y

(t�1)
H) + C

(t)
I � fI(x

(t)
)

⌘
(1)

y
(t)
O = fO

⇣
C

(t)
O � fH(y

(t)
H)

⌘
(2)

with the state update defined by Equation 1 and the output defined by Equation 2. The
data x(t), hidden state y

(t)
H output y(t)O vary with time t. The functions fI , fH , fO, fT

define input, hidden state, output, and transition operations respectively and are fixed
across time. The input, hidden, and output clocks C

(t)
I , C

(t)
H , C

(t)
O modulate network

operations by the elementwise product � with the corresponding function evaluations.
We recover the standard recurrent network (SRN), clockwork recurrent network (clock
RN), and our network (clock FCN) in this family of equations. The settings of functions
and clocks are collected in Table 2.

Inspired by the clockwork RN, we investigate persisting features and scheduling
layers to process video with a semantic segmentation convnet. Recalling the lessened
semantic rate of deeper layers observed in Section 3, the skip layers in FCNs originally
included to preserve resolution by fusing outputs are repurposed for this staged compu-
tation. We cache features and outputs over time at each step to harness the continuity of
video. In contrast, the clockwork RN persists state but output is only made according to
the clock, and each clockwork RN module is connected to itself and all slower modules
across time whereas a module in our network is only connected to itself across time.

Evaluate lower (early) layers each frame

Optionally combine (fresh) output of lower layers with output of higher layers from previous frames.

 CMU 15-769, Fall 2016

Today: three types of optimizations
▪ Static, manual: human construction of new, more efficient

topologies (e.g., Inception, SqueezeNet)

▪ Static, automatic analysis driven: (e.g., deep compression) analyze
contents of network to determine how to prune topology or
quantize weights

▪ Dynamic: analyze network activations during inference to
determine when subsequent work can be elided (e.g., clockwork
network)

Note: EIE hardware also exploited dynamic sparsity in activations (e.g., due to ReLUs), but this
was not an approximation technique like the ones above

▪ Custom specialized hardware to handle irregularity introduced
by these optimizations

