
Visual Computing Systems
CMU 15-769, Fall 2016

Lecture 10:

Optimizing Object Detection:
A Case Study of R-CNN, Fast R-CNN, and Faster R-CNN

 CMU 15-769, Fall 2016

Today’s task: object detection

Image classification: what
is the object in this image?

Object detection: where is the tennis
racket in this image? (if there is one at all?)

tennis racket

 CMU 15-769, Fall 2016

Krizhevsky (AlexNet) image classification network

Our model

● Max-pooling layers follow first, second, and
fifth convolutional layers

● The number of neurons in each layer is given
by 253440, 186624, 64896, 64896, 43264,
4096, 4096, 1000

Input:
fixed size image

Output:
probability of label

(for 1000 class labels)

convlayer convlayer

convlayer convlayer convlayer

Network assigns input image one of 1000 potential labels.

DNN produces feature vector
in 4K-dim space that is input

to multi-way classifier
(“softmax”) to produce per-

label probabilities

[Krizhevsky 2012]

 CMU 15-769, Fall 2016

VGG-16 image classification network

Network assigns input image one of 1000 potential labels.

Output:
probability of label

(for 1000 class labels)

Input:
fixed size image

[Simonyan 2015]

 CMU 15-769, Fall 2016

Today: three object detection papers
▪ R-CNN [Girshick 2014]

▪ Fast R-CNN [Girshick 2015]

▪ Faster R-CNN [Ren, He, Girshick, Sun 2015]

▪ Each paper improves on both the wall-clock performance and
the detection accuracy of the previous

 CMU 15-769, Fall 2016

Using AlexNet as a “subroutine in object detection

for	all	region	top-left	positions	(x,y):	
			for	all	region	sizes	(w,h):	
						cropped	=	image_crop(image,	bbox(x,y,w,h))	
						resized	=	image_resize(227,227)	
						label	=	detect_object(resized)		
						if	(label	!=	background)	
									//	region	defined	by	bbox(x,y,w,h)	contains	object	
									//	of	class	‘label’

Search over all regions of the image for objects.
(“Sliding window” over image, repeated for multiple potential object scales)

[Girshick 2014]

 CMU 15-769, Fall 2016

Optimization 1: filter detection work via object proposals

Figure 2: Two examples of our selective search showing the necessity of different scales. On the left we find many objects at different
scales. On the right we necessarily find the objects at different scales as the girl is contained by the tv.

whose power of discovering parts or objects is left unevaluated. In
this work, we use multiple complementary strategies to deal with
as many image conditions as possible. We include the locations
generated using [3] in our evaluation.

2.3 Other Sampling Strategies

Alexe et al. [2] address the problem of the large sampling space
of an exhaustive search by proposing to search for any object, in-
dependent of its class. In their method they train a classifier on the
object windows of those objects which have a well-defined shape
(as opposed to stuff like “grass” and “sand”). Then instead of a full
exhaustive search they randomly sample boxes to which they apply
their classifier. The boxes with the highest “objectness” measure
serve as a set of object hypotheses. This set is then used to greatly
reduce the number of windows evaluated by class-specific object
detectors. We compare our method with their work.

Another strategy is to use visual words of the Bag-of-Words
model to predict the object location. Vedaldi et al. [34] use jumping
windows [5], in which the relation between individual visual words
and the object location is learned to predict the object location in
new images. Maji and Malik [23] combine multiple of these rela-
tions to predict the object location using a Hough-transform, after
which they randomly sample windows close to the Hough maxi-
mum. In contrast to learning, we use the image structure to sample
a set of class-independent object hypotheses.

To summarize, our novelty is as follows. Instead of an exhaus-
tive search [8, 12, 16, 36] we use segmentation as selective search
yielding a small set of class independent object locations. In con-
trast to the segmentation of [4, 9], instead of focusing on the best
segmentation algorithm [3], we use a variety of strategies to deal
with as many image conditions as possible, thereby severely reduc-
ing computational costs while potentially capturing more objects
accurately. Instead of learning an objectness measure on randomly
sampled boxes [2], we use a bottom-up grouping procedure to gen-
erate good object locations.

3 Selective Search

In this section we detail our selective search algorithm for object
recognition and present a variety of diversification strategies to deal
with as many image conditions as possible. A selective search al-
gorithm is subject to the following design considerations:

Capture All Scales. Objects can occur at any scale within the im-
age. Furthermore, some objects have less clear boundaries
then other objects. Therefore, in selective search all object
scales have to be taken into account, as illustrated in Figure
2. This is most naturally achieved by using an hierarchical
algorithm.

Diversification. There is no single optimal strategy to group re-
gions together. As observed earlier in Figure 1, regions may
form an object because of only colour, only texture, or because
parts are enclosed. Furthermore, lighting conditions such as
shading and the colour of the light may influence how regions
form an object. Therefore instead of a single strategy which
works well in most cases, we want to have a diverse set of
strategies to deal with all cases.

Fast to Compute. The goal of selective search is to yield a set of
possible object locations for use in a practical object recogni-
tion framework. The creation of this set should not become a
computational bottleneck, hence our algorithm should be rea-
sonably fast.

3.1 Selective Search by Hierarchical Grouping

We take a hierarchical grouping algorithm to form the basis of our
selective search. Bottom-up grouping is a popular approach to seg-
mentation [6, 13], hence we adapt it for selective search. Because
the process of grouping itself is hierarchical, we can naturally gen-
erate locations at all scales by continuing the grouping process until
the whole image becomes a single region. This satisfies the condi-
tion of capturing all scales.

As regions can yield richer information than pixels, we want to
use region-based features whenever possible. To get a set of small
starting regions which ideally do not span multiple objects, we use

3

Input: image
Output: list of regions (various scales) that are likely to contain objects
Idea: proposal algorithm filters parts of the image not likely to contain objects

Selective search [Uijlings IJCV 2013]

 CMU 15-769, Fall 2016

Input image:
(of any size)

Object
Proposal

generator
Crop/

Resample
Classification

DNN

List of proposed
regions (~2000) Pixel region

(of canonical size)

object
label

Object detection pipeline executed only on
proposed regions

for each proposed region

[Girshick 2014]

 CMU 15-769, Fall 2016

Object detection performance on Pascal VOC
ai

rp
la

ne
s

co
w

Example training data

VOC 2010 test aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP
DPM v5 [18]† 49.2 53.8 13.1 15.3 35.5 53.4 49.7 27.0 17.2 28.8 14.7 17.8 46.4 51.2 47.7 10.8 34.2 20.7 43.8 38.3 33.4
UVA [34] 56.2 42.4 15.3 12.6 21.8 49.3 36.8 46.1 12.9 32.1 30.0 36.5 43.5 52.9 32.9 15.3 41.1 31.8 47.0 44.8 35.1
Regionlets [36] 65.0 48.9 25.9 24.6 24.5 56.1 54.5 51.2 17.0 28.9 30.2 35.8 40.2 55.7 43.5 14.3 43.9 32.6 54.0 45.9 39.7
SegDPM [16]† 61.4 53.4 25.6 25.2 35.5 51.7 50.6 50.8 19.3 33.8 26.8 40.4 48.3 54.4 47.1 14.8 38.7 35.0 52.8 43.1 40.4
R-CNN 67.1 64.1 46.7 32.0 30.5 56.4 57.2 65.9 27.0 47.3 40.9 66.6 57.8 65.9 53.6 26.7 56.5 38.1 52.8 50.2 50.2
R-CNN BB 71.8 65.8 53.0 36.8 35.9 59.7 60.0 69.9 27.9 50.6 41.4 70.0 62.0 69.0 58.1 29.5 59.4 39.3 61.2 52.4 53.7

Table 1: Detection average precision (%) on VOC 2010 test. R-CNN is most directly comparable to UVA and Regionlets since all
methods use selective search region proposals. Bounding box regression (BB) is described in Section 3.4. At publication time, SegDPM
was the top-performer on the PASCAL VOC leaderboard. †DPM and SegDPM use context rescoring not used by the other methods.

was selected by a grid search over {0, 0.1, . . . , 0.5} on a
validation set. We found that selecting this threshold care-
fully is important. Setting it to 0.5, as in [34], decreased
mAP by 5 points. Similarly, setting it to 0 decreased mAP
by 4 points. Positive examples are defined simply to be the
ground-truth bounding boxes for each class.

Once features are extracted and training labels are ap-
plied, we optimize one linear SVM per class. Since the
training data is too large to fit in memory, we adopt the
standard hard negative mining method [15, 32]. Hard neg-
ative mining converges quickly and in practice mAP stops
increasing after only a single pass over all images.

In supplementary material we discuss why the positive
and negative examples are defined differently in fine-tuning
versus SVM training. We also discuss why it’s necessary
to train detection classifiers rather than simply use outputs
from the final layer (fc8) of the fine-tuned CNN.

2.4. Results on PASCAL VOC 2010-12

Following the PASCAL VOC best practices [13], we
validated all design decisions and hyperparameters on the
VOC 2007 dataset (Section 3.2). For final results on the
VOC 2010-12 datasets, we fine-tuned the CNN on VOC
2012 train and optimized our detection SVMs on VOC 2012
trainval. We submitted test results to the evaluation server
only once for each of the two major algorithm variants (with
and without bounding box regression).

Table 1 shows complete results on VOC 2010. We com-
pare our method against four strong baselines, including
SegDPM [16], which combines DPM detectors with the
output of a semantic segmentation system [4] and uses ad-
ditional inter-detector context and image-classifier rescor-
ing. The most germane comparison is to the UVA system
from Uijlings et al. [34], since our systems use the same re-
gion proposal algorithm. To classify regions, their method
builds a four-level spatial pyramid and populates it with
densely sampled SIFT, Extended OpponentSIFT, and RGB-
SIFT descriptors, each vector quantized with 4000-word
codebooks. Classification is performed with a histogram
intersection kernel SVM. Compared to their multi-feature,
non-linear kernel SVM approach, we achieve a large im-
provement in mAP, from 35.1% to 53.7% mAP, while also

being much faster (Section 2.2). Our method achieves sim-
ilar performance (53.3% mAP) on VOC 2011/12 test.

3. Visualization, ablation, and modes of error

3.1. Visualizing learned features

First-layer filters can be visualized directly and are easy
to understand [23]. They capture oriented edges and oppo-
nent colors. Understanding the subsequent layers is more
challenging. Zeiler and Fergus present a visually attrac-
tive deconvolutional approach in [37]. We propose a simple
(and complementary) non-parametric method that directly
shows what the network learned.

The idea is to single out a particular unit (feature) in the
network and use it as if it were an object detector in its own
right. That is, we compute the unit’s activations on a large
set of held-out region proposals (about 10 million), sort the
proposals from highest to lowest activation, perform non-
maximum suppression, and then display the top-scoring re-
gions. Our method lets the selected unit “speak for itself”
by showing exactly which inputs it fires on. We avoid aver-
aging in order to see different visual modes and gain insight
into the invariances computed by the unit.

We visualize units from layer pool5, which is the max-
pooled output of the network’s fifth and final convolutional
layer. The pool5 feature map is 6 ⇥ 6 ⇥ 256 = 9216-
dimensional. Ignoring boundary effects, each pool5 unit has
a receptive field of 195⇥195 pixels in the original 227⇥227

pixel input. A central pool5 unit has a nearly global view,
while one near the edge has a smaller, clipped support.

Each row in Figure 3 displays the top 16 activations for
a pool5 unit from a CNN that we fine-tuned on VOC 2007
trainval. Six of the 256 functionally unique units are visu-
alized (the supplementary material includes more). These
units were selected to show a representative sample of what
the network learns. In the second row, we see a unit that
fires on dog faces and dot arrays. The unit corresponding to
the third row is a red blob detector. There are also detectors
for human faces and more abstract patterns such as text and
triangular structures with windows. The network appears
to learn a representation that combines a small number of
class-tuned features together with a distributed representa-

“Fine tuned” DNN weights obtained by “pretraining” for object classification on ImageNet for
the 20 VOC categories (+ 1 “background” category)

 CMU 15-769, Fall 2016

Optimization 2: region of interest pooling
RGB input image:

(of any size)

convlayer/
maxpool

… ROI pool

“Fully convolutional network”:
sequence of convolutions and pooling steps: output size dependent on input size

7x7xC

HxWxC

ROI maxpoolIdea: the output of early convolutional layers of
network on downsampled input region is
approximated by resampling output of fully-
convolutional implementation of conv layers.

Performance optimization: can evaluate
convolutional layers once on large input, then reuse
intermediate output many times to approximate
response of a subregion of image.

ROI maxpool

 CMU 15-769, Fall 2016

Optimization 2: region of interest pooling

for	all	proposed	regions	(x,y,w,h):			//	1000’s	regions/image	
			cropped	=	image_crop(image,	bbox(x,y,w,h))	
			resized	=	image_resize(227,227)	
			label	=	detect_object(resized)	

conv5_response	=	evaluate_conv_layers(image)	
for	all	proposed	regions	(x,y,w,h):	
			region_conv5	=	roi_pool(conv5_response,	bbox(x,y,w,h))	
			label	=	evaluate_fully_connected_layers(region_conv5)		

Form of “approximate common subexpression elimination”

computed once per image

redundant work (many regions
overlap, so responses at lower
network layers are computed
many times

 CMU 15-769, Fall 2016

Fast R-CNN pipeline
Input image:
(of any size)

Object
Proposal

generator
ROI

pooling layer

Fully-
connected

layers

List of proposed
regions (~2000)

Pixel region
(of canonical size) object

label

for each proposed region

DNN
(conv layers only!)

Response maps

bbox

class-label
softmax

bbox
regression

softmax

Evaluation speed: 146x faster than R-CNN (47sec/img →0.32 sec/img)
[This number excludes cost of proposals]

Training speed: 9x faster than R-CNN
Training mini-batch: pick N images, pick 128/N boxes from each image (allows sharing of conv-layer
pre-computation for multiple image-box training samples)
Simultaneously train class predictions and bbox predictions: joint loss = class label loss + bbox loss
Note: training updates weights in BOTH fully connected/softmax layers AND cons layers

method train set aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv mAP

SPPnet BB [11]† 07 \ diff 73.9 72.3 62.5 51.5 44.4 74.4 73.0 74.4 42.3 73.6 57.7 70.3 74.6 74.3 54.2 34.0 56.4 56.4 67.9 73.5 63.1

R-CNN BB [10] 07 73.4 77.0 63.4 45.4 44.6 75.1 78.1 79.8 40.5 73.7 62.2 79.4 78.1 73.1 64.2 35.6 66.8 67.2 70.4 71.1 66.0

FRCN [ours] 07 74.5 78.3 69.2 53.2 36.6 77.3 78.2 82.0 40.7 72.7 67.9 79.6 79.2 73.0 69.0 30.1 65.4 70.2 75.8 65.8 66.9

FRCN [ours] 07 \ diff 74.6 79.0 68.6 57.0 39.3 79.5 78.6 81.9 48.0 74.0 67.4 80.5 80.7 74.1 69.6 31.8 67.1 68.4 75.3 65.5 68.1

FRCN [ours] 07+12 77.0 78.1 69.3 59.4 38.3 81.6 78.6 86.7 42.8 78.8 68.9 84.7 82.0 76.6 69.9 31.8 70.1 74.8 80.4 70.4 70.0

Table 1. VOC 2007 test detection average precision (%). All methods use VGG16. Training set key: 07: VOC07 trainval, 07 \ diff: 07
without “difficult” examples, 07+12: union of 07 and VOC12 trainval. †SPPnet results were prepared by the authors of [11].

method train set aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv mAP

BabyLearning Prop. 77.7 73.8 62.3 48.8 45.4 67.3 67.0 80.3 41.3 70.8 49.7 79.5 74.7 78.6 64.5 36.0 69.9 55.7 70.4 61.7 63.8

R-CNN BB [10] 12 79.3 72.4 63.1 44.0 44.4 64.6 66.3 84.9 38.8 67.3 48.4 82.3 75.0 76.7 65.7 35.8 66.2 54.8 69.1 58.8 62.9

SegDeepM 12+seg 82.3 75.2 67.1 50.7 49.8 71.1 69.6 88.2 42.5 71.2 50.0 85.7 76.6 81.8 69.3 41.5 71.9 62.2 73.2 64.6 67.2

FRCN [ours] 12 80.1 74.4 67.7 49.4 41.4 74.2 68.8 87.8 41.9 70.1 50.2 86.1 77.3 81.1 70.4 33.3 67.0 63.3 77.2 60.0 66.1

FRCN [ours] 07++12 82.0 77.8 71.6 55.3 42.4 77.3 71.7 89.3 44.5 72.1 53.7 87.7 80.0 82.5 72.7 36.6 68.7 65.4 81.1 62.7 68.8

Table 2. VOC 2010 test detection average precision (%). BabyLearning uses a network based on [17]. All other methods use VGG16.
Training set key: 12: VOC12 trainval, Prop.: proprietary dataset, 12+seg: 12 with segmentation annotations, 07++12: union of VOC07
trainval, VOC07 test, and VOC12 trainval.

method train set aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv mAP

BabyLearning Prop. 78.0 74.2 61.3 45.7 42.7 68.2 66.8 80.2 40.6 70.0 49.8 79.0 74.5 77.9 64.0 35.3 67.9 55.7 68.7 62.6 63.2

NUS NIN c2000 Unk. 80.2 73.8 61.9 43.7 43.0 70.3 67.6 80.7 41.9 69.7 51.7 78.2 75.2 76.9 65.1 38.6 68.3 58.0 68.7 63.3 63.8

R-CNN BB [10] 12 79.6 72.7 61.9 41.2 41.9 65.9 66.4 84.6 38.5 67.2 46.7 82.0 74.8 76.0 65.2 35.6 65.4 54.2 67.4 60.3 62.4

FRCN [ours] 12 80.3 74.7 66.9 46.9 37.7 73.9 68.6 87.7 41.7 71.1 51.1 86.0 77.8 79.8 69.8 32.1 65.5 63.8 76.4 61.7 65.7

FRCN [ours] 07++12 82.3 78.4 70.8 52.3 38.7 77.8 71.6 89.3 44.2 73.0 55.0 87.5 80.5 80.8 72.0 35.1 68.3 65.7 80.4 64.2 68.4

Table 3. VOC 2012 test detection average precision (%). BabyLearning and NUS NIN c2000 use networks based on [17]. All other
methods use VGG16. Training set key: see Table 2, Unk.: unknown.

to this CaffeNet as model S, for “small.” The second net-
work is VGG CNN M 1024 from [3], which has the same
depth as S, but is wider. We call this network model M,
for “medium.” The final network is the very deep VGG16
model from [20]. Since this model is the largest, we call
it model L. In this section, all experiments use single-scale
training and testing (s = 600; see Section 5.2 for details).

4.2. VOC 2010 and 2012 results

On these datasets, we compare Fast R-CNN (FRCN, for
short) against the top methods on the comp4 (outside data)
track from the public leaderboard (Table 2, Table 3).3 For
the NUS NIN c2000 and BabyLearning methods, there are
no associated publications at this time and we could not
find exact information on the ConvNet architectures used;
they are variants of the Network-in-Network design [17].
All other methods are initialized from the same pre-trained
VGG16 network.

Fast R-CNN achieves the top result on VOC12 with a
mAP of 65.7% (and 68.4% with extra data). It is also two
orders of magnitude faster than the other methods, which
are all based on the “slow” R-CNN pipeline. On VOC10,

3
http://host.robots.ox.ac.uk:8080/leaderboard

(accessed April 18, 2015)

SegDeepM [25] achieves a higher mAP than Fast R-CNN
(67.2% vs. 66.1%). SegDeepM is trained on VOC12 train-
val plus segmentation annotations; it is designed to boost
R-CNN accuracy by using a Markov random field to reason
over R-CNN detections and segmentations from the O2P
[1] semantic-segmentation method. Fast R-CNN can be
swapped into SegDeepM in place of R-CNN, which may
lead to better results. When using the enlarged 07++12
training set (see Table 2 caption), Fast R-CNN’s mAP in-
creases to 68.8%, surpassing SegDeepM.

4.3. VOC 2007 results

On VOC07, we compare Fast R-CNN to R-CNN and
SPPnet. All methods start from the same pre-trained
VGG16 network and use bounding-box regression. The
VGG16 SPPnet results were computed by the authors of
[11]. SPPnet uses five scales during both training and test-
ing. The improvement of Fast R-CNN over SPPnet illus-
trates that even though Fast R-CNN uses single-scale train-
ing and testing, fine-tuning the conv layers provides a large
improvement in mAP (from 63.1% to 66.9%). R-CNN
achieves a mAP of 66.0%. As a minor point, SPPnet was
trained without examples marked as “difficult” in PASCAL.
Removing these examples improves Fast R-CNN mAP to
68.1%. All other experiments use “difficult” examples.

method train set aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv mAP

SPPnet BB [11]† 07 \ diff 73.9 72.3 62.5 51.5 44.4 74.4 73.0 74.4 42.3 73.6 57.7 70.3 74.6 74.3 54.2 34.0 56.4 56.4 67.9 73.5 63.1

R-CNN BB [10] 07 73.4 77.0 63.4 45.4 44.6 75.1 78.1 79.8 40.5 73.7 62.2 79.4 78.1 73.1 64.2 35.6 66.8 67.2 70.4 71.1 66.0

FRCN [ours] 07 74.5 78.3 69.2 53.2 36.6 77.3 78.2 82.0 40.7 72.7 67.9 79.6 79.2 73.0 69.0 30.1 65.4 70.2 75.8 65.8 66.9

FRCN [ours] 07 \ diff 74.6 79.0 68.6 57.0 39.3 79.5 78.6 81.9 48.0 74.0 67.4 80.5 80.7 74.1 69.6 31.8 67.1 68.4 75.3 65.5 68.1

FRCN [ours] 07+12 77.0 78.1 69.3 59.4 38.3 81.6 78.6 86.7 42.8 78.8 68.9 84.7 82.0 76.6 69.9 31.8 70.1 74.8 80.4 70.4 70.0

Table 1. VOC 2007 test detection average precision (%). All methods use VGG16. Training set key: 07: VOC07 trainval, 07 \ diff: 07
without “difficult” examples, 07+12: union of 07 and VOC12 trainval. †SPPnet results were prepared by the authors of [11].

method train set aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv mAP

BabyLearning Prop. 77.7 73.8 62.3 48.8 45.4 67.3 67.0 80.3 41.3 70.8 49.7 79.5 74.7 78.6 64.5 36.0 69.9 55.7 70.4 61.7 63.8

R-CNN BB [10] 12 79.3 72.4 63.1 44.0 44.4 64.6 66.3 84.9 38.8 67.3 48.4 82.3 75.0 76.7 65.7 35.8 66.2 54.8 69.1 58.8 62.9

SegDeepM 12+seg 82.3 75.2 67.1 50.7 49.8 71.1 69.6 88.2 42.5 71.2 50.0 85.7 76.6 81.8 69.3 41.5 71.9 62.2 73.2 64.6 67.2

FRCN [ours] 12 80.1 74.4 67.7 49.4 41.4 74.2 68.8 87.8 41.9 70.1 50.2 86.1 77.3 81.1 70.4 33.3 67.0 63.3 77.2 60.0 66.1

FRCN [ours] 07++12 82.0 77.8 71.6 55.3 42.4 77.3 71.7 89.3 44.5 72.1 53.7 87.7 80.0 82.5 72.7 36.6 68.7 65.4 81.1 62.7 68.8

Table 2. VOC 2010 test detection average precision (%). BabyLearning uses a network based on [17]. All other methods use VGG16.
Training set key: 12: VOC12 trainval, Prop.: proprietary dataset, 12+seg: 12 with segmentation annotations, 07++12: union of VOC07
trainval, VOC07 test, and VOC12 trainval.

method train set aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv mAP

BabyLearning Prop. 78.0 74.2 61.3 45.7 42.7 68.2 66.8 80.2 40.6 70.0 49.8 79.0 74.5 77.9 64.0 35.3 67.9 55.7 68.7 62.6 63.2

NUS NIN c2000 Unk. 80.2 73.8 61.9 43.7 43.0 70.3 67.6 80.7 41.9 69.7 51.7 78.2 75.2 76.9 65.1 38.6 68.3 58.0 68.7 63.3 63.8

R-CNN BB [10] 12 79.6 72.7 61.9 41.2 41.9 65.9 66.4 84.6 38.5 67.2 46.7 82.0 74.8 76.0 65.2 35.6 65.4 54.2 67.4 60.3 62.4

FRCN [ours] 12 80.3 74.7 66.9 46.9 37.7 73.9 68.6 87.7 41.7 71.1 51.1 86.0 77.8 79.8 69.8 32.1 65.5 63.8 76.4 61.7 65.7

FRCN [ours] 07++12 82.3 78.4 70.8 52.3 38.7 77.8 71.6 89.3 44.2 73.0 55.0 87.5 80.5 80.8 72.0 35.1 68.3 65.7 80.4 64.2 68.4

Table 3. VOC 2012 test detection average precision (%). BabyLearning and NUS NIN c2000 use networks based on [17]. All other
methods use VGG16. Training set key: see Table 2, Unk.: unknown.

to this CaffeNet as model S, for “small.” The second net-
work is VGG CNN M 1024 from [3], which has the same
depth as S, but is wider. We call this network model M,
for “medium.” The final network is the very deep VGG16
model from [20]. Since this model is the largest, we call
it model L. In this section, all experiments use single-scale
training and testing (s = 600; see Section 5.2 for details).

4.2. VOC 2010 and 2012 results

On these datasets, we compare Fast R-CNN (FRCN, for
short) against the top methods on the comp4 (outside data)
track from the public leaderboard (Table 2, Table 3).3 For
the NUS NIN c2000 and BabyLearning methods, there are
no associated publications at this time and we could not
find exact information on the ConvNet architectures used;
they are variants of the Network-in-Network design [17].
All other methods are initialized from the same pre-trained
VGG16 network.

Fast R-CNN achieves the top result on VOC12 with a
mAP of 65.7% (and 68.4% with extra data). It is also two
orders of magnitude faster than the other methods, which
are all based on the “slow” R-CNN pipeline. On VOC10,

3
http://host.robots.ox.ac.uk:8080/leaderboard

(accessed April 18, 2015)

SegDeepM [25] achieves a higher mAP than Fast R-CNN
(67.2% vs. 66.1%). SegDeepM is trained on VOC12 train-
val plus segmentation annotations; it is designed to boost
R-CNN accuracy by using a Markov random field to reason
over R-CNN detections and segmentations from the O2P
[1] semantic-segmentation method. Fast R-CNN can be
swapped into SegDeepM in place of R-CNN, which may
lead to better results. When using the enlarged 07++12
training set (see Table 2 caption), Fast R-CNN’s mAP in-
creases to 68.8%, surpassing SegDeepM.

4.3. VOC 2007 results

On VOC07, we compare Fast R-CNN to R-CNN and
SPPnet. All methods start from the same pre-trained
VGG16 network and use bounding-box regression. The
VGG16 SPPnet results were computed by the authors of
[11]. SPPnet uses five scales during both training and test-
ing. The improvement of Fast R-CNN over SPPnet illus-
trates that even though Fast R-CNN uses single-scale train-
ing and testing, fine-tuning the conv layers provides a large
improvement in mAP (from 63.1% to 66.9%). R-CNN
achieves a mAP of 66.0%. As a minor point, SPPnet was
trained without examples marked as “difficult” in PASCAL.
Removing these examples improves Fast R-CNN mAP to
68.1%. All other experiments use “difficult” examples.

method train set aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv mAP

SPPnet BB [11]† 07 \ diff 73.9 72.3 62.5 51.5 44.4 74.4 73.0 74.4 42.3 73.6 57.7 70.3 74.6 74.3 54.2 34.0 56.4 56.4 67.9 73.5 63.1

R-CNN BB [10] 07 73.4 77.0 63.4 45.4 44.6 75.1 78.1 79.8 40.5 73.7 62.2 79.4 78.1 73.1 64.2 35.6 66.8 67.2 70.4 71.1 66.0

FRCN [ours] 07 74.5 78.3 69.2 53.2 36.6 77.3 78.2 82.0 40.7 72.7 67.9 79.6 79.2 73.0 69.0 30.1 65.4 70.2 75.8 65.8 66.9

FRCN [ours] 07 \ diff 74.6 79.0 68.6 57.0 39.3 79.5 78.6 81.9 48.0 74.0 67.4 80.5 80.7 74.1 69.6 31.8 67.1 68.4 75.3 65.5 68.1

FRCN [ours] 07+12 77.0 78.1 69.3 59.4 38.3 81.6 78.6 86.7 42.8 78.8 68.9 84.7 82.0 76.6 69.9 31.8 70.1 74.8 80.4 70.4 70.0

Table 1. VOC 2007 test detection average precision (%). All methods use VGG16. Training set key: 07: VOC07 trainval, 07 \ diff: 07
without “difficult” examples, 07+12: union of 07 and VOC12 trainval. †SPPnet results were prepared by the authors of [11].

method train set aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv mAP

BabyLearning Prop. 77.7 73.8 62.3 48.8 45.4 67.3 67.0 80.3 41.3 70.8 49.7 79.5 74.7 78.6 64.5 36.0 69.9 55.7 70.4 61.7 63.8

R-CNN BB [10] 12 79.3 72.4 63.1 44.0 44.4 64.6 66.3 84.9 38.8 67.3 48.4 82.3 75.0 76.7 65.7 35.8 66.2 54.8 69.1 58.8 62.9

SegDeepM 12+seg 82.3 75.2 67.1 50.7 49.8 71.1 69.6 88.2 42.5 71.2 50.0 85.7 76.6 81.8 69.3 41.5 71.9 62.2 73.2 64.6 67.2

FRCN [ours] 12 80.1 74.4 67.7 49.4 41.4 74.2 68.8 87.8 41.9 70.1 50.2 86.1 77.3 81.1 70.4 33.3 67.0 63.3 77.2 60.0 66.1

FRCN [ours] 07++12 82.0 77.8 71.6 55.3 42.4 77.3 71.7 89.3 44.5 72.1 53.7 87.7 80.0 82.5 72.7 36.6 68.7 65.4 81.1 62.7 68.8

Table 2. VOC 2010 test detection average precision (%). BabyLearning uses a network based on [17]. All other methods use VGG16.
Training set key: 12: VOC12 trainval, Prop.: proprietary dataset, 12+seg: 12 with segmentation annotations, 07++12: union of VOC07
trainval, VOC07 test, and VOC12 trainval.

method train set aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv mAP

BabyLearning Prop. 78.0 74.2 61.3 45.7 42.7 68.2 66.8 80.2 40.6 70.0 49.8 79.0 74.5 77.9 64.0 35.3 67.9 55.7 68.7 62.6 63.2

NUS NIN c2000 Unk. 80.2 73.8 61.9 43.7 43.0 70.3 67.6 80.7 41.9 69.7 51.7 78.2 75.2 76.9 65.1 38.6 68.3 58.0 68.7 63.3 63.8

R-CNN BB [10] 12 79.6 72.7 61.9 41.2 41.9 65.9 66.4 84.6 38.5 67.2 46.7 82.0 74.8 76.0 65.2 35.6 65.4 54.2 67.4 60.3 62.4

FRCN [ours] 12 80.3 74.7 66.9 46.9 37.7 73.9 68.6 87.7 41.7 71.1 51.1 86.0 77.8 79.8 69.8 32.1 65.5 63.8 76.4 61.7 65.7

FRCN [ours] 07++12 82.3 78.4 70.8 52.3 38.7 77.8 71.6 89.3 44.2 73.0 55.0 87.5 80.5 80.8 72.0 35.1 68.3 65.7 80.4 64.2 68.4

Table 3. VOC 2012 test detection average precision (%). BabyLearning and NUS NIN c2000 use networks based on [17]. All other
methods use VGG16. Training set key: see Table 2, Unk.: unknown.

to this CaffeNet as model S, for “small.” The second net-
work is VGG CNN M 1024 from [3], which has the same
depth as S, but is wider. We call this network model M,
for “medium.” The final network is the very deep VGG16
model from [20]. Since this model is the largest, we call
it model L. In this section, all experiments use single-scale
training and testing (s = 600; see Section 5.2 for details).

4.2. VOC 2010 and 2012 results

On these datasets, we compare Fast R-CNN (FRCN, for
short) against the top methods on the comp4 (outside data)
track from the public leaderboard (Table 2, Table 3).3 For
the NUS NIN c2000 and BabyLearning methods, there are
no associated publications at this time and we could not
find exact information on the ConvNet architectures used;
they are variants of the Network-in-Network design [17].
All other methods are initialized from the same pre-trained
VGG16 network.

Fast R-CNN achieves the top result on VOC12 with a
mAP of 65.7% (and 68.4% with extra data). It is also two
orders of magnitude faster than the other methods, which
are all based on the “slow” R-CNN pipeline. On VOC10,

3
http://host.robots.ox.ac.uk:8080/leaderboard

(accessed April 18, 2015)

SegDeepM [25] achieves a higher mAP than Fast R-CNN
(67.2% vs. 66.1%). SegDeepM is trained on VOC12 train-
val plus segmentation annotations; it is designed to boost
R-CNN accuracy by using a Markov random field to reason
over R-CNN detections and segmentations from the O2P
[1] semantic-segmentation method. Fast R-CNN can be
swapped into SegDeepM in place of R-CNN, which may
lead to better results. When using the enlarged 07++12
training set (see Table 2 caption), Fast R-CNN’s mAP in-
creases to 68.8%, surpassing SegDeepM.

4.3. VOC 2007 results

On VOC07, we compare Fast R-CNN to R-CNN and
SPPnet. All methods start from the same pre-trained
VGG16 network and use bounding-box regression. The
VGG16 SPPnet results were computed by the authors of
[11]. SPPnet uses five scales during both training and test-
ing. The improvement of Fast R-CNN over SPPnet illus-
trates that even though Fast R-CNN uses single-scale train-
ing and testing, fine-tuning the conv layers provides a large
improvement in mAP (from 63.1% to 66.9%). R-CNN
achieves a mAP of 66.0%. As a minor point, SPPnet was
trained without examples marked as “difficult” in PASCAL.
Removing these examples improves Fast R-CNN mAP to
68.1%. All other experiments use “difficult” examples.

[Girshick 2015]

 CMU 15-769, Fall 2016

Problem: bottleneck is now generating proposals

Input image:
(of any size)

Object
Proposal

generator
ROI

pooling layer

Fully-
connected

layers

List of proposed
regions (~2000)

Pixel region
(of canonical size) object

label

for each proposed region

DNN
(conv layers only!)

Response maps

bbox

class-label
softmax

bbox
regression

softmax

Selective search [Uijlings 13] ~ 10 sec/image on CPU
EdgeBoxes [Zitnick 14] ~ 0.2 sec/image on CPU

Idea: why not predict regions from the convolutional feature maps that must be
computed for detection anyway? (share computation between proposals and detection)

 CMU 15-769, Fall 2016

Faster R-CNN using a region proposal network (RPN)

Input image:
(of any size)

DNN
(conv layers only!)

Response maps

Region proposal
network

List of proposed
regions

ROI
pooling layer

for each proposed
region

…

[Ren 2015]

 CMU 15-769, Fall 2016

Faster R-CNN using a region proposal network (RPN)

Input image:
(of any size)

DNN
(conv layers only!)

Response maps
WxHx512

512 3x3 conv filters
(3x3x512x512 weights)

objectness score
(for 9 boxes)

1x1 conv
(2-way softmax)

512 x (9*2) weights

bbox offset
(for 9 boxes)

1x1 conv
(bbox regressor)

512 x (9x4) weights
4

car : 1.000

dog : 0.997

person : 0.992

person : 0.979

horse : 0.993

conv feature map

intermediate layer
256-d

2k scores 4k coordinates

sliding window

reg layercls layer

k anchor boxes

bus : 0.996

person : 0.736

boat : 0.970

person : 0.989

person : 0.983
person : 0.983

person : 0.925

cat : 0.982

dog : 0.994

Figure 3: Left: Region Proposal Network (RPN). Right: Example detections using RPN proposals on PASCAL
VOC 2007 test. Our method detects objects in a wide range of scales and aspect ratios.

anchors. An anchor is centered at the sliding window
in question, and is associated with a scale and aspect
ratio (Figure 3, left). By default we use 3 scales and
3 aspect ratios, yielding k = 9 anchors at each sliding
position. For a convolutional feature map of a size
W ⇥H (typically ⇠2,400), there are WHk anchors in
total.

Translation-Invariant Anchors
An important property of our approach is that it

is translation invariant, both in terms of the anchors
and the functions that compute proposals relative to
the anchors. If one translates an object in an image,
the proposal should translate and the same function
should be able to predict the proposal in either lo-
cation. This translation-invariant property is guaran-
teed by our method5. As a comparison, the MultiBox
method [27] uses k-means to generate 800 anchors,
which are not translation invariant. So MultiBox does
not guarantee that the same proposal is generated if
an object is translated.

The translation-invariant property also reduces the
model size. MultiBox has a (4 + 1)⇥ 800-dimensional
fully-connected output layer, whereas our method has
a (4 + 2) ⇥ 9-dimensional convolutional output layer
in the case of k = 9 anchors. As a result, our output
layer has 2.8 ⇥ 10

4 parameters (512 ⇥ (4 + 2) ⇥ 9

for VGG-16), two orders of magnitude fewer than
MultiBox’s output layer that has 6.1⇥ 10

6 parameters
(1536 ⇥ (4 + 1) ⇥ 800 for GoogleNet [34] in MultiBox
[27]). If considering the feature projection layers, our
proposal layers still have an order of magnitude fewer
parameters than MultiBox6. We expect our method
to have less risk of overfitting on small datasets, like
PASCAL VOC.

5. As is the case of FCNs [7], our network is translation invariant
up to the network’s total stride.

6. Considering the feature projection layers, our proposal layers’
parameter count is 3 ⇥ 3 ⇥ 512 ⇥ 512 + 512 ⇥ 6 ⇥ 9 = 2.4 ⇥ 106;
MultiBox’s proposal layers’ parameter count is 7⇥ 7⇥ (64 + 96 +
64 + 64)⇥ 1536 + 1536⇥ 5⇥ 800 = 27⇥ 106.

Multi-Scale Anchors as Regression References
Our design of anchors presents a novel scheme

for addressing multiple scales (and aspect ratios). As
shown in Figure 1, there have been two popular ways
for multi-scale predictions. The first way is based on
image/feature pyramids, e.g., in DPM [8] and CNN-
based methods [9], [1], [2]. The images are resized at
multiple scales, and feature maps (HOG [8] or deep
convolutional features [9], [1], [2]) are computed for
each scale (Figure 1(a)). This way is often useful but
is time-consuming. The second way is to use sliding
windows of multiple scales (and/or aspect ratios) on
the feature maps. For example, in DPM [8], models
of different aspect ratios are trained separately using
different filter sizes (such as 5⇥7 and 7⇥5). If this way
is used to address multiple scales, it can be thought
of as a “pyramid of filters” (Figure 1(b)). The second
way is usually adopted jointly with the first way [8].

As a comparison, our anchor-based method is built
on a pyramid of anchors, which is more cost-efficient.
Our method classifies and regresses bounding boxes
with reference to anchor boxes of multiple scales and
aspect ratios. It only relies on images and feature
maps of a single scale, and uses filters (sliding win-
dows on the feature map) of a single size. We show by
experiments the effects of this scheme for addressing
multiple scales and sizes (Table 8).

Because of this multi-scale design based on anchors,
we can simply use the convolutional features com-
puted on a single-scale image, as is also done by
the Fast R-CNN detector [2]. The design of multi-
scale anchors is a key component for sharing features
without extra cost for addressing scales.

3.1.2 Loss Function

For training RPNs, we assign a binary class label
(of being an object or not) to each anchor. We as-
sign a positive label to two kinds of anchors: (i) the
anchor/anchors with the highest Intersection-over-
Union (IoU) overlap with a ground-truth box, or (ii) an
anchor that has an IoU overlap higher than 0.7 with

3x3 conv projects into 512-element vector per
spatial position (assuming VGG input conv layers,
receptive field for each output is ~228x228 pixels)

At each point assume 9 “anchor boxes” of various
aspect ratios and scales

Given 512-element vector predict “objectness score”
of each anchor + bbox correction to anchor

 CMU 15-769, Fall 2016

Training faster R-CNN

Goal: want to jointly learn
- Region prediction network weights
- Object classification network weights
- While constraining initial conv layers to be the same (for efficiency)

Input image:
(of any size)

DNN
(conv layers)

Response maps
WxHx512

512 3x3 conv filters
(3x3x512x512 weights)

objectness score
(for 9 boxes)

1x1 conv
(2-way softmax)

512 x (9*2) weights

bbox offset
(for 9 boxes)

1x1 conv
(bbox regressor)

512 x (9x4) weights

ROI
pooling layer

Fully-
connected

layers

Pixel region
(of canonical size) object

label

for each proposed region

bbox

class-label softmax

bbox regression
softmax

List of proposed
regions

 CMU 15-769, Fall 2016

Alternating training strategy
▪ Train RPN

▪ Then use trained RPN to train Fast R-CNN

▪ Use conv layers from R-CNN to initialize RPN

▪ Fine-tune RPN

▪ Use updated RPN to fine tune Fast R-CNN

▪ Repeat…

▪ Notice: solution learns to predict boxes that are “good for
object-detection task”
- “End-to-end” optimization for object-detection task

- Compare to using off-the-shelf object-proposal algorithm

 CMU 15-769, Fall 2016

Faster R-CNN results

8

Table 3: Detection results on PASCAL VOC 2007 test set. The detector is Fast R-CNN and VGG-16. Training
data: “07”: VOC 2007 trainval, “07+12”: union set of VOC 2007 trainval and VOC 2012 trainval. For RPN,
the train-time proposals for Fast R-CNN are 2000. †: this number was reported in [2]; using the repository
provided by this paper, this result is higher (68.1).

method # proposals data mAP (%)
SS 2000 07 66.9†

SS 2000 07+12 70.0
RPN+VGG, unshared 300 07 68.5

RPN+VGG, shared 300 07 69.9
RPN+VGG, shared 300 07+12 73.2
RPN+VGG, shared 300 COCO+07+12 78.8

Table 4: Detection results on PASCAL VOC 2012 test set. The detector is Fast R-CNN and VGG-16. Training
data: “07”: VOC 2007 trainval, “07++12”: union set of VOC 2007 trainval+test and VOC 2012 trainval. For
RPN, the train-time proposals for Fast R-CNN are 2000. †: http://host.robots.ox.ac.uk:8080/anonymous/HZJTQA.html. ‡:
http://host.robots.ox.ac.uk:8080/anonymous/YNPLXB.html. §: http://host.robots.ox.ac.uk:8080/anonymous/XEDH10.html.

method # proposals data mAP (%)
SS 2000 12 65.7
SS 2000 07++12 68.4

RPN+VGG, shared† 300 12 67.0
RPN+VGG, shared‡ 300 07++12 70.4
RPN+VGG, shared§ 300 COCO+07++12 75.9

Table 5: Timing (ms) on a K40 GPU, except SS proposal is evaluated in a CPU. “Region-wise” includes NMS,
pooling, fully-connected, and softmax layers. See our released code for the profiling of running time.

model system conv proposal region-wise total rate
VGG SS + Fast R-CNN 146 1510 174 1830 0.5 fps
VGG RPN + Fast R-CNN 141 10 47 198 5 fps

ZF RPN + Fast R-CNN 31 3 25 59 17 fps

100 proposals at test-time, indicating that the top-
ranked RPN proposals are accurate. On the other
extreme, using the top-ranked 6000 RPN proposals
(without NMS) has a comparable mAP (55.2%), sug-
gesting NMS does not harm the detection mAP and
may reduce false alarms.

Next, we separately investigate the roles of RPN’s
cls and reg outputs by turning off either of them
at test-time. When the cls layer is removed at test-
time (thus no NMS/ranking is used), we randomly
sample N proposals from the unscored regions. The
mAP is nearly unchanged with N = 1000 (55.8%), but
degrades considerably to 44.6% when N = 100. This
shows that the cls scores account for the accuracy of
the highest ranked proposals.

On the other hand, when the reg layer is removed
at test-time (so the proposals become anchor boxes),
the mAP drops to 52.1%. This suggests that the high-
quality proposals are mainly due to the regressed box
bounds. The anchor boxes, though having multiple
scales and aspect ratios, are not sufficient for accurate
detection.

We also evaluate the effects of more powerful net-
works on the proposal quality of RPN alone. We use
VGG-16 to train the RPN, and still use the above
detector of SS+ZF. The mAP improves from 56.8%

(using RPN+ZF) to 59.2% (using RPN+VGG). This is a
promising result, because it suggests that the proposal
quality of RPN+VGG is better than that of RPN+ZF.
Because proposals of RPN+ZF are competitive with
SS (both are 58.7% when consistently used for training
and testing), we may expect RPN+VGG to be better
than SS. The following experiments justify this hy-
pothesis.

Performance of VGG-16. Table 3 shows the results
of VGG-16 for both proposal and detection. Using
RPN+VGG, the result is 68.5% for unshared features,
slightly higher than the SS baseline. As shown above,
this is because the proposals generated by RPN+VGG
are more accurate than SS. Unlike SS that is pre-
defined, the RPN is actively trained and benefits from
better networks. For the feature-shared variant, the
result is 69.9%—better than the strong SS baseline, yet
with nearly cost-free proposals. We further train the
RPN and detection network on the union set of PAS-
CAL VOC 2007 trainval and 2012 trainval. The mAP
is 73.2%. Figure 5 shows some results on the PASCAL
VOC 2007 test set. On the PASCAL VOC 2012 test set
(Table 4), our method has an mAP of 70.4% trained
on the union set of VOC 2007 trainval+test and VOC
2012 trainval. Table 6 and Table 7 show the detailed
numbers.

8

Table 3: Detection results on PASCAL VOC 2007 test set. The detector is Fast R-CNN and VGG-16. Training
data: “07”: VOC 2007 trainval, “07+12”: union set of VOC 2007 trainval and VOC 2012 trainval. For RPN,
the train-time proposals for Fast R-CNN are 2000. †: this number was reported in [2]; using the repository
provided by this paper, this result is higher (68.1).

method # proposals data mAP (%)
SS 2000 07 66.9†

SS 2000 07+12 70.0
RPN+VGG, unshared 300 07 68.5

RPN+VGG, shared 300 07 69.9
RPN+VGG, shared 300 07+12 73.2
RPN+VGG, shared 300 COCO+07+12 78.8

Table 4: Detection results on PASCAL VOC 2012 test set. The detector is Fast R-CNN and VGG-16. Training
data: “07”: VOC 2007 trainval, “07++12”: union set of VOC 2007 trainval+test and VOC 2012 trainval. For
RPN, the train-time proposals for Fast R-CNN are 2000. †: http://host.robots.ox.ac.uk:8080/anonymous/HZJTQA.html. ‡:
http://host.robots.ox.ac.uk:8080/anonymous/YNPLXB.html. §: http://host.robots.ox.ac.uk:8080/anonymous/XEDH10.html.

method # proposals data mAP (%)
SS 2000 12 65.7
SS 2000 07++12 68.4

RPN+VGG, shared† 300 12 67.0
RPN+VGG, shared‡ 300 07++12 70.4
RPN+VGG, shared§ 300 COCO+07++12 75.9

Table 5: Timing (ms) on a K40 GPU, except SS proposal is evaluated in a CPU. “Region-wise” includes NMS,
pooling, fully-connected, and softmax layers. See our released code for the profiling of running time.

model system conv proposal region-wise total rate
VGG SS + Fast R-CNN 146 1510 174 1830 0.5 fps
VGG RPN + Fast R-CNN 141 10 47 198 5 fps

ZF RPN + Fast R-CNN 31 3 25 59 17 fps

100 proposals at test-time, indicating that the top-
ranked RPN proposals are accurate. On the other
extreme, using the top-ranked 6000 RPN proposals
(without NMS) has a comparable mAP (55.2%), sug-
gesting NMS does not harm the detection mAP and
may reduce false alarms.

Next, we separately investigate the roles of RPN’s
cls and reg outputs by turning off either of them
at test-time. When the cls layer is removed at test-
time (thus no NMS/ranking is used), we randomly
sample N proposals from the unscored regions. The
mAP is nearly unchanged with N = 1000 (55.8%), but
degrades considerably to 44.6% when N = 100. This
shows that the cls scores account for the accuracy of
the highest ranked proposals.

On the other hand, when the reg layer is removed
at test-time (so the proposals become anchor boxes),
the mAP drops to 52.1%. This suggests that the high-
quality proposals are mainly due to the regressed box
bounds. The anchor boxes, though having multiple
scales and aspect ratios, are not sufficient for accurate
detection.

We also evaluate the effects of more powerful net-
works on the proposal quality of RPN alone. We use
VGG-16 to train the RPN, and still use the above
detector of SS+ZF. The mAP improves from 56.8%

(using RPN+ZF) to 59.2% (using RPN+VGG). This is a
promising result, because it suggests that the proposal
quality of RPN+VGG is better than that of RPN+ZF.
Because proposals of RPN+ZF are competitive with
SS (both are 58.7% when consistently used for training
and testing), we may expect RPN+VGG to be better
than SS. The following experiments justify this hy-
pothesis.

Performance of VGG-16. Table 3 shows the results
of VGG-16 for both proposal and detection. Using
RPN+VGG, the result is 68.5% for unshared features,
slightly higher than the SS baseline. As shown above,
this is because the proposals generated by RPN+VGG
are more accurate than SS. Unlike SS that is pre-
defined, the RPN is actively trained and benefits from
better networks. For the feature-shared variant, the
result is 69.9%—better than the strong SS baseline, yet
with nearly cost-free proposals. We further train the
RPN and detection network on the union set of PAS-
CAL VOC 2007 trainval and 2012 trainval. The mAP
is 73.2%. Figure 5 shows some results on the PASCAL
VOC 2007 test set. On the PASCAL VOC 2012 test set
(Table 4), our method has an mAP of 70.4% trained
on the union set of VOC 2007 trainval+test and VOC
2012 trainval. Table 6 and Table 7 show the detailed
numbers.

Specializing region proposals for object-detection task yields better accuracy.
SS = selective search

Shared convolutions improve algorithm performance:
Times in ms

 CMU 15-769, Fall 2016

Summary
▪ Detailed knowledge of algorithm and properties of DNN used to gain

algorithmic speedups
- Not just “tune the schedule of the loops”

▪ Key insight: sharing results of convolutional layer computations:
- Between different proposed regions

- Between region proposal logic and detection logic

▪ Push for “end-to-end” training
- Clean: back-propagate through entire algorithm to train all components at once

- Better accuracy: globally optimize the various parts of the algorithm to be optimal
for task (here: how to propose boxes learned simultaneously with detection logic)

- Can constrain learning to preserve performance characteristics (conv layer weights
must age shared across RPN and detection task)

 CMU 15-769, Fall 2016

Emerging theme
(from today’s lecture and the Inception, SqueezeNet, and related readings)

▪ Computer vision practitioners are “programming” via low-
level manipulation of DNN topology
- See shift from reasoning about individual layers to writing up of basic

“microarchitecture” modules (e.g., Inception module)

▪ What programming model constructs or “automated
compilation” tools could help raise the level of abstraction?

