Lecture 10:

Optimizing Object Detection:
A Case Study of R-CNN, Fast R-CNN, and Faster R-CNN

Visual Computing Systems
CMU 15-769, Fall 2016

Today’s task: object detection

Image classification: what Object detection: where is the tennis
is the object in this image? racket in this image? (if there is one at all?)

tennis racket

(MU 15-769, Fall 2016

Krizhevsky (AlexNet) image classification network

[Krizhevsky 2012]
. Output:
- d's“i:::;m e probability of label
l g (for 1000 class labels)
convlayer convlayer

\ convlayer convlayer convlayer
55
27
13 C. 13

< \1
1 5 1
h,.\' 4 — S — i
N 5| \-| — =]~ 5 ol N\~ — > - > o
1IN X &1 . T = |13 | \13 3& — % |13 dense | |dense
~ g

55 384

384 256 100C

556 Max
Max Max pooling 409 4096
Stride\| o | PO°liNg pooling
224

of 4

DNN produces feature vector
in 4K-dim space that is input
Network assigns input image one of 1000 potential labels. tomulti-way classifier
(“softmax”) to produce per-
label probabilities

(MU 15-769, Fall 2016

VGG-16 image classification network

[Simonyan 2015]
Input:
fixed size i
xed size image Output:
probability of label
(for 1000 class labels)

2R X285 xH12 (X T X012

v 1 X1 x4096 1 x l'.:x: l("llf)lﬁ)

ﬂ convolution+RelLU

f 1 max pooling

fully connected+RelLU

| softmax

._0‘..47/

Network assigns input image one of 1000 potential labels.

(MU 15-769, Fall 2016

Today: three object detection papers

B R-CNN [Girshick 2014}
B Fast R-CNN [Girshick 2015}
B Faster R-CNN [Ren, He, Girshick, Sun 2015]

m Each paper improves on both the wall-clock performance and
the detection accuracy of the previous

CMU 15-769, Fall 2016

Using AlexNet as a “subroutine in object detection

[Girshick 2014]

Search over all regions of the image for objects.
(“Sliding window” over image, repeated for multiple potential object scales)

for all region top-left positions (x,y):
for all region sizes (w,h):
cropped = image_ crop(image, bbox(x,y,w,h))
resized = image resize(227,227)
label = detect object(resized)
if (label != background)

// region defined by bbox(x,y,w,h) contains object
// of class ‘label’

CMU 15-769, Fall 2016

Optimization 1: filter detection work via object proposals
Selective search [Uijlings LJCV 2013]

Input: image
Output: list of regions (various scales) that are likely to contain objects
Idea: proposal algorithm filters parts of the image not likely to contain objects

(MU 15-769, Fall 2016

Object detection pipeline executed only on

proposed regions

[Girshick 2014]
Inputimage:
(of any size)
Object
_ 2 Proposal
generator

List of proposed
regions (~2000)

»@»

Crop/
Resample

for each proposed region

Pixel region
(of canonical size)

S

=

Classification
DNN

object

=»> label

CMU 15-769, Fall 2016

Object detection performance on Pascal VOC

Example training data

lanes

airp

ow

VOC 2010 test | aecro bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv |mAP
DPM v5 [18]T [49.2 53.8 13.1 153 355 534 49.7 27.0 17.2 28.8 147 17.8 464 512 477 10.8 342 20.7 43.8 383|334
UVA [34] 56.2 424 153 12.6 21.8 49.3 36.8 46.1 129 32.1 30.0 365 435 529 329 153 41.1 31.8 47.0 44.8| 35.1
Regionlets [36] | 65.0 48.9 259 246 245 56.1 545 51.2 17.0 289 30.2 358 40.2 557 435 143 439 32.6 54.0 459 39.7
SegDPM [16]T |61.4 53.4 256 252 355 51.7 50.6 50.8 19.3 33.8 26.8 404 483 544 47.1 148 38.7 350 52.8 43.1|40.4
R-CNN 67.1 64.1 46.7 32.0 30.5 564 572 659 27.0 473 409 66.6 578 659 53.6 2677 565 38.1 52.8 50.2|50.2

“Fine tuned” DNN weights obtained by “pretraining” for object classification on ImageNet for
the 20 VOC categories (+ 1 “background” category)

(MU 15-769, Fall 2016

Optimization 2: region of interest pooling

RGB input image:
(of any size) “Fully convolutional network”:
/ sequence of convolutions and pooling steps: output size dependent on input size

convlayer/

maxpool ROI pool

e 2 > —

4 /

HxWx(

14

HEEEEEEENENENEN
. SEmssmmmmEEEas
|dea: the output of early co.nvolutloqal I.ayers of I T 2 ROI maxpool
network on downsampled input region is IO O O 0 L O I
approximated by resampling output of fully- ========= Eﬁﬁﬂ =
convolutional implementation of conv layers. i
Performance optimization: can evaluate ROImazies

convolutional layers once on large input, then reuse
intermediate output many times to approximate
response of a subregion of image.

CMU 15-769, Fall 2016

Optimization 2: region of interest pooling

/]

Form of “approximate common subexpression elimination”

for all proposed regions (x,y,w,h):
cropped = image_crop(image, bbox(x,y,w,h))
resized = 1mage_r'e.51ze(22?,227) redundant work (many regions
label = detect_object(resized) — overlap, so responses at lower

network layers are computed

l many times

. computed once perimage
conv5_response = evaluate conv_layers(image) «— P P g

for all proposed regions (x,y,w,h):
region_conv5 = roi_pool(conv5 response, bbox(x,y,w,h))
label = evaluate fully connected layers(region conv5)

CMU 15-769, Fall 2016

Fast R-CNN pipeline wisviccos:

Input image: List of proposed for each proposed region
(OfaHYSiZE) regions (~2000) prop g
Obiect class-label
1 ij osal ——H— Iﬁl Pixel region softmax
> enzrator = Iii!l N (of canonical size) *object
| ROI Fll"y- label
7 pooling layer =» = co:mected
: ’ ayers
~ DNN =) bbox
(conv layers only!) -»>
bbox
/ 1%
regression
Response maps softmax

Evaluation speed: 146x faster than R-CNN (47sec/img —0.32 sec/img)
[This number excludes cost of proposals]

Training speed: 9x faster than R-CNN

Training mini-batch: pick N images, pick 128/N boxes from each image (allows sharing of conv-layer
pre-computation for multiple image-box training samples)

Simultaneously train class predictions and bhox predictions: joint loss = class label loss + bhox loss
Note: training updates weights in BOTH fully connected/softmax layers AND cons layers

method train set | aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv | mAP
R-CNN BB [10] |12 79.3 724 63.1 440 444 646 663 849 388 673 484 823 750 7677 657 358 662 548 69.1 58.8| 62.9
FRCN [ours] 12 80.1 744 67.7 494 414 742 688 87.8 41.9 70.1 502 86.1 77.3 81.1 704 333 670 633 77.2 60.0| 66.1

CMU 15-769, Fall 2016

Problem: bottleneck is now generating proposals

Selective search [Uijlings 13] ~ 10 sec/image on (PU
EdgeBoxes [Zitnick 14] ~ 0.2 sec/image on CPU

Input im?ge: List of proposed for each proposed region
(of any size) regions (~2000)
: class-label
/| Object Pixel region softmax
1 Proposal = - (of canonical size) object
generator Il 201 Fully- »Iabel
pooling layer =»> = co:meecried
/] , a
\ DNN D ’ mp bbox
(conv layers only!)
_./ bbox
/ regression
Response maps softmax

Idea: why not predict regions from the convolutional feature maps that must be
computed for detection anyway? (share computation between proposals and detection)

CMU 15-769, Fall 2016

Faster R-CNN using a region proposal network (RPN)

[Ren 2015]

List of proposed
regions for each proposed

Input image: :
region

(of any size) Region proposal =
/ network = Iﬁl \
7 C]
DNN 1kl 0!

-»> (conv layers only!) -»> pooling layer

V

Response maps

CMU 15-769, Fall 2016

Faster R-CNN using a region proposal network (RPN)

512 3x3 conv filters
(3x3x512x5|12 weights)
Input |m?ge: : 1x1 conv
(of any size) ' (2-way softmax)
/ ; 512 x (9%*2) weights
77 objectness score
DNN »> (for 9 boxes)
> (conv layers only!) > >
1% > bbox offset
Response maps (for 9 boxes)
/ WxHx512 1x1 conv
(bbox regressor)
512 x (9x4) weights
. . scores coordinates « k anchor boxes
3x3 conv projects into 512-element vector per ~ - e coordinat 1
spatial position (assuming VGG input conv layers, ' \ t o
receptive field for each output is ~228x228 pixels) 256.d

t intermediate layer

At each point assume 9 “anchor boxes” of various

aspect ratios and scales E

Given 512-element vector predict “objectness score” sliding window
of each anchor + bbox correction to anchor conv feature map

CMU 15-769, Fall 2016

Training faster R-CNN

512 3x3 conv filters
(3x3x512x512 weights)

; 1x1 conv
. (2-way softmax)
' 512x(9*2) weights List of proposed
\ 4 :

Input image: > objectness score regions

(of any size) (for 9 boxes) E- i Iﬁl

/] 5 LI5S
77 bbox offset
DNN ~ ™ (for 9 boxes)
= (conv layers) =»> 1x1 conv
(bbox regressor)
/ 512 x (9x4) weights
Response maps
WxHx512 for each proposed region
_./ Pixel region class-label softmax
(of canonical size) »object
pooling layer =»> =»> co:mected
. . ayers
Goal: want to jointly learn y mp bbox
- Region prediction network weights
. . . . bb ’
- Object classification network weights °forfi?,:§f(s'°"

- While constraining initial conv layers to be the same (for efficiency) MU 5769, Fall 2076

Alternating training strategy

Train RPN

Then use trained RPN to train Fast R-CNN
Use conv layers from R-CNN to initialize RPN
Fine-tune RPN

Use updated RPN to fine tune Fast R-CNN
Repeat...

m Notice: solution learns to predict boxes that are “good for
object-detection task”

- “End-to-end” optimization for object-detection task

- Compare to using off-the-shelf object-proposal algorithm

CMU 15-769, Fall 2016

Faster R-CNN results

Specializing region proposals for object-detection task yields better accuracy.

SS = selective search

method # proposa]s data mAP (%)
SS 2000 12 65.7
SS 2000 07++12 683.4
RPN+VGG, shared’ 300 12 67.0
RPN+VGG, shared? 300 07++12 70.4

Shared convolutions improve algorithm performance:

Times in ms
model system conv proposal region-wise total rate
VGG SS + Fast R-CNN 146 1510 174 1830 0.5 fps
VGG RPN + Fast R-CNN 141 10 47 198 5 fps

CMU 15-769, Fall 2016

Summary

B Detailed knowledge of algorithm and properties of DNN used to gain
algorithmic speedups

- Not just “tune the schedule of the loops”

m Key insight: sharing results of convolutional layer computations:

- Between different proposed regions

- Between region proposal logic and detection logic

m Push for “end-to-end” training

- (Clean: back-propagate through entire algorithm to train all components at once

- Better accuracy: globally optimize the various parts of the algorithm to be optimal
for task (here: how to propose boxes learned simultaneously with detection logic)

- (Can constrain learning to preserve performance characteristics (conv layer weights
must age shared across RPN and detection task)

CMU 15-769, Fall 2016

Emerging theme

(from today’s lecture and the Inception, SqueezeNet, and related readings)

m Computer vision practitioners are “programming” via low-
level manipulation of DNN topology

- See shift from reasoning about individual layers to writing up of basic
“microarchitecture” modules (e.g., Inception module)

m What programming model constructs or “automated
compilation” tools could help raise the level of abstraction?

CMU 15-769, Fall 2016

