## Lecture 10: Optimizing Object Detection: A Case Study of R-CNN, *Fast* R-CNN, and *Faster* R-CNN

Visual Computing Systems CMU 15-769, Fall 2016

## Today's task: object detection





## Image classification: what is the object in this image?

### tennis racket

## **Object detection: where is the tennis** racket in this image? (if there is one at all?)

## Krizhevsky (AlexNet) image classification network

[Krizhevsky 2012]



Network assigns input image one of 1000 potential labels.

DNN produces feature vector in 4K-dim space that is input to multi-way classifier ("softmax") to produce perlabel probabilities

## VGG-16 image classification network

### [Simonyan 2015]



## Network assigns input image one of 1000 potential labels.

## **Today: three object detection papers**

- **R-CNN [Girshick 2014]**
- **Fast R-CNN [Girshick 2015]**
- **Faster R-CNN** [Ren, He, Girshick, Sun 2015]
- Each paper improves on *both* the wall-clock performance and the detection accuracy of the previous

## Using AlexNet as a "subroutine in object detection [Girshick 2014]

## Search over all regions of the image for objects. ("Sliding window" over image, repeated for multiple potential object scales)

for all region top-left positions (x,y): for all region sizes (w,h): cropped = image\_crop(image, bbox(x,y,w,h)) resized = image\_resize(227,227) label = detect\_object(resized) if (label != background) // region defined by bbox(x,y,w,h) contains object // of class 'label'

## **Optimization 1: filter detection work via object proposals**



Input: image **Output:** list of regions (various scales) that are likely to contain objects Idea: proposal algorithm filters parts of the image not likely to contain objects

### **Selective search** [Uijlings IJCV 2013]

# **Object detection pipeline executed only on** proposed regions

[Girshick 2014]



# **Object detection performance on Pascal VOC**

### **Example training data**



| VOC 2010 test            | aero | bike | bird | boat | bottle | bus  | car  | cat  | chair | cow  | table | dog  | horse | mbike | person | plant | sheep | sofa | train | tv   | mAP  |
|--------------------------|------|------|------|------|--------|------|------|------|-------|------|-------|------|-------|-------|--------|-------|-------|------|-------|------|------|
| DPM v5 [18] <sup>†</sup> | 49.2 | 53.8 | 13.1 | 15.3 | 35.5   | 53.4 | 49.7 | 27.0 | 17.2  | 28.8 | 14.7  | 17.8 | 46.4  | 51.2  | 47.7   | 10.8  | 34.2  | 20.7 | 43.8  | 38.3 | 33.4 |
| UVA [34]                 | 56.2 | 42.4 | 15.3 | 12.6 | 21.8   | 49.3 | 36.8 | 46.1 | 12.9  | 32.1 | 30.0  | 36.5 | 43.5  | 52.9  | 32.9   | 15.3  | 41.1  | 31.8 | 47.0  | 44.8 | 35.1 |
| Regionlets [36]          | 65.0 | 48.9 | 25.9 | 24.6 | 24.5   | 56.1 | 54.5 | 51.2 | 17.0  | 28.9 | 30.2  | 35.8 | 40.2  | 55.7  | 43.5   | 14.3  | 43.9  | 32.6 | 54.0  | 45.9 | 39.7 |
| SegDPM $[16]^{\dagger}$  | 61.4 | 53.4 | 25.6 | 25.2 | 35.5   | 51.7 | 50.6 | 50.8 | 19.3  | 33.8 | 26.8  | 40.4 | 48.3  | 54.4  | 47.1   | 14.8  | 38.7  | 35.0 | 52.8  | 43.1 | 40.4 |
| R-CNN                    | 67.1 | 64.1 | 46.7 | 32.0 | 30.5   | 56.4 | 57.2 | 65.9 | 27.0  | 47.3 | 40.9  | 66.6 | 57.8  | 65.9  | 53.6   | 26.7  | 56.5  | 38.1 | 52.8  | 50.2 | 50.2 |

"Fine tuned" DNN weights obtained by "pretraining" for object classification on ImageNet for the 20 VOC categories (+ 1 "background" category)

# **Optimization 2: region of interest pooling**



Idea: the output of early convolutional layers of network on downsampled input region is approximated by resampling output of fullyconvolutional implementation of conv layers.

Performance optimization: can evaluate convolutional layers once on large input, then reuse intermediate output many times to approximate response of a subregion of image.

| ╬╍╬╍╬╍╊╍┠─┤                                    |             |   |   | ┝─┤        | _ |
|------------------------------------------------|-------------|---|---|------------|---|
| ╋╍╍┽╍╍╉╍╍┽╍╍┠╌╌┤                               |             | ╋ |   | ┝─┤        |   |
| ╉╍╍╂╍╍╂╍╸┫                                     |             | + | _ | $\vdash$   |   |
| <b>↓</b> • • • • • • • • • • • • • • • • • • • | KUI maxpool |   |   | $\square$  |   |
|                                                |             |   |   |            |   |
|                                                |             |   |   |            |   |
|                                                |             |   |   |            |   |
|                                                |             |   |   |            |   |
|                                                |             |   |   |            |   |
|                                                |             |   |   |            |   |
| + $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$          |             |   |   | $\square$  |   |
|                                                | кої тахроої |   |   |            |   |
|                                                |             | + | _ | $ \square$ |   |
|                                                |             | + |   | $\square$  |   |
|                                                |             |   |   |            |   |
|                                                |             |   |   |            |   |

# **Optimization 2: region of interest pooling**

## Form of "approximate common subexpression elimination"

for all proposed regions (x,y,w,h): // 1000's regions/image cropped = image\_crop(image, bbox(x,y,w,h)) resized = image\_resize(227,227) label = detect object(resized)

conv5\_response = evaluate\_conv\_layers(image) for all proposed regions (x,y,w,h): region\_conv5 = roi\_pool(conv5\_response, bbox(x,y,w,h)) label = evaluate\_fully\_connected\_layers(region\_conv5)

redundant work (many regions overlap, so responses at lower network layers are computed many times



# Fast R-CNN pipeline [Girshick 2015]



*Response maps* 

### Evaluation speed: 146x faster than R-CNN (47sec/img $\rightarrow$ 0.32 sec/img)

[This number excludes cost of proposals]

### **Training speed: 9x faster than R-CNN**

Training mini-batch: pick N images, pick 128/N boxes from each image (allows sharing of conv-layer) pre-computation for multiple image-box training samples) Simultaneously train class predictions and bbox predictions: joint loss = class label loss + bbox loss Note: training updates weights in BOTH fully connected/softmax layers AND cons layers

| method        | train set | aero | bike | bird | boat | bottle | bus  | car  | cat  | chair | cow  | table | dog  | horse | mbike | persn | plant | sheep | sofa | train | tv   | mAP  |
|---------------|-----------|------|------|------|------|--------|------|------|------|-------|------|-------|------|-------|-------|-------|-------|-------|------|-------|------|------|
| R-CNN BB [10] | 12        | 79.3 | 72.4 | 63.1 | 44.0 | 44.4   | 64.6 | 66.3 | 84.9 | 38.8  | 67.3 | 48.4  | 82.3 | 75.0  | 76.7  | 65.7  | 35.8  | 66.2  | 54.8 | 69.1  | 58.8 | 62.9 |
| FRCN [ours]   | 12        | 80.1 | 74.4 | 67.7 | 49.4 | 41.4   | 74.2 | 68.8 | 87.8 | 41.9  | 70.1 | 50.2  | 86.1 | 77.3  | 81.1  | 70.4  | 33.3  | 67.0  | 63.3 | 77.2  | 60.0 | 66.1 |

## **Problem: bottleneck is now generating proposals**



Idea: why not predict regions from the convolutional feature maps that must be computed for detection anyway? (share computation between proposals and detection)

## **Faster R-CNN using a region proposal network (RPN)** [Ren 2015]

![](_page_13_Figure_1.jpeg)

## Faster R-CNN using a region proposal network (RPN)

![](_page_14_Figure_1.jpeg)

![](_page_15_Figure_0.jpeg)

- While constraining initial conv layers to be the same (for efficiency)

# **Alternating training strategy**

- Train RPN
- Then use trained RPN to train Fast R-CNN
- Use conv layers from R-CNN to initialize RPN
- **Fine-tune RPN**
- **Use updated RPN to fine tune Fast R-CNN**
- Repeat...
- Notice: solution learns to predict boxes that are "good for object-detection task"
  - "End-to-end" optimization for object-detection task
  - **Compare to using off-the-shelf object-proposal algorithm**

## **Faster R-CNN results**

## Specializing region proposals for object-detection task yields better accuracy.

### SS = selective search

| method                       | # proposals | data   |      |
|------------------------------|-------------|--------|------|
| SS                           | 2000        | 12     | 65.7 |
| SS                           | 2000        | 07++12 | 68.4 |
| RPN+VGG, shared <sup>†</sup> | 300         | 12     | 67.0 |
| RPN+VGG, shared <sup>‡</sup> | 300         | 07++12 | 70.4 |

## Shared convolutions improve algorithm performance:

### Times in ms

| model | system           | conv | proposal | region-wise | total | rate    |
|-------|------------------|------|----------|-------------|-------|---------|
| VGG   | SS + Fast R-CNN  | 146  | 1510     | 174         | 1830  | 0.5 fps |
| VGG   | RPN + Fast R-CNN | 141  | 10       | 47          | 198   | 5 fps   |

# Summary

- **Detailed knowledge of algorithm and properties of DNN used to gain** algorithmic speedups
  - Not just "tune the schedule of the loops"
- Key insight: sharing results of convolutional layer computations:
  - **Between different proposed regions**
  - Between region proposal logic and detection logic
- Push for "end-to-end" training
  - **Clean:** back-propagate through entire algorithm to train all components at once
  - Better accuracy: globally optimize the various parts of the algorithm to be optimal for task (here: how to propose boxes learned simultaneously with detection logic)
  - Can constrain learning to preserve performance characteristics (conv layer weights must age shared across RPN and detection task)

# **Emerging theme**

(from today's lecture and the Inception, SqueezeNet, and related readings)

- Computer vision practitioners are "programming" via lowlevel manipulation of DNN topology
  - See shift from reasoning about individual layers to writing up of basic "microarchitecture" modules (e.g., Inception module)
- What programming model constructs or "automated compilation" tools could help raise the level of abstraction?