Lecture 9: **Training Deep Neural Networks** (in parallel)

Visual Computing Systems CMU 15-769, Fall 2016

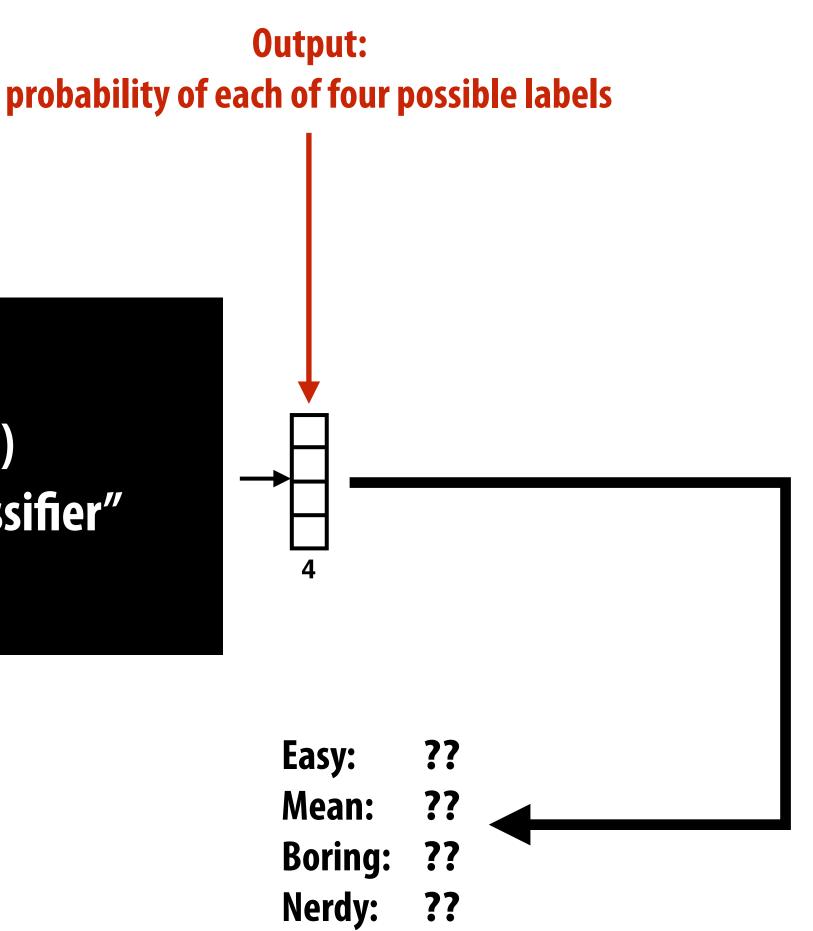
How would you describe this professor?

Easy? Mean? Boring? Nerdy?

Professor classification task

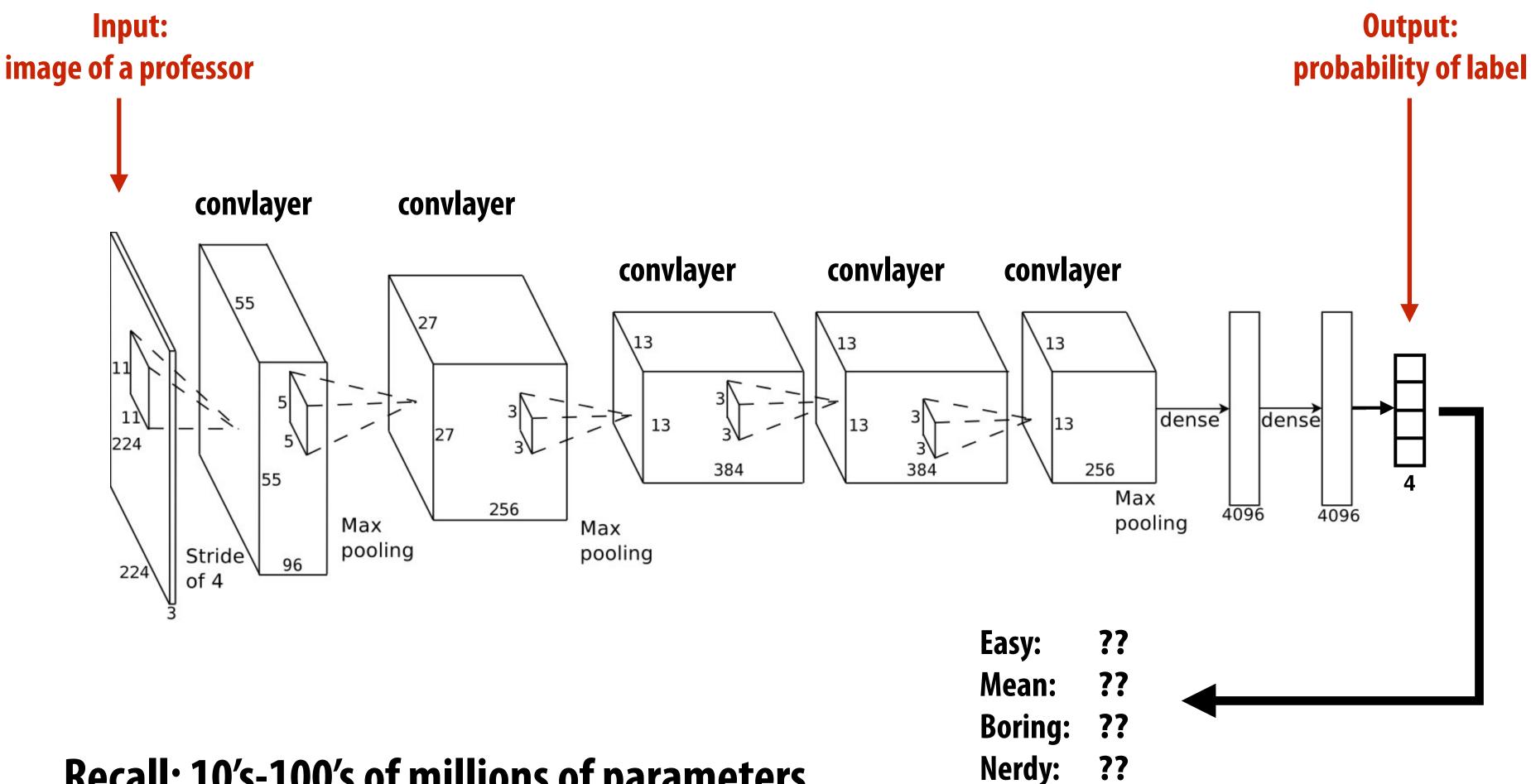
Classifies professors as easy, mean, boring, or nerdy based on their appearance.

Input: image of a professor



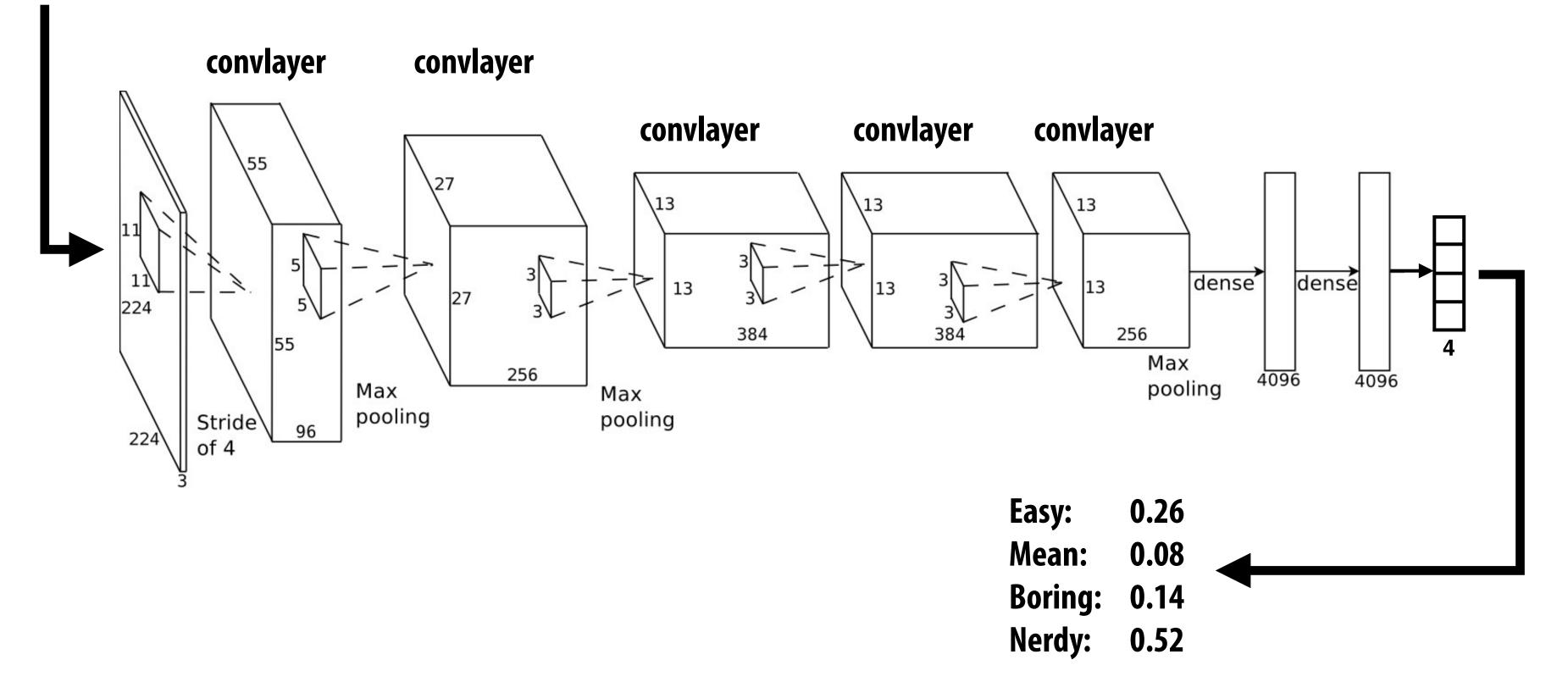
Professor classification network

Classifies professors as easy, mean, boring, or nerdy based on their appearance.



Recall: 10's-100's of millions of parameters

Professor classification network



Training data (ground truth answers)

[label omitted]

[label omitted]

[label omitted]

Nerdy

[label omitted] [label omitted]

[label omitted]

[label omitted]

Nerdy

[label omitted]

[label omitted]

[label omitted]

Nerdy

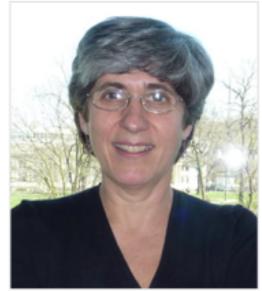
[label omitted]

[label omitted]

[label omitted]

[label omitted]

Nerdy



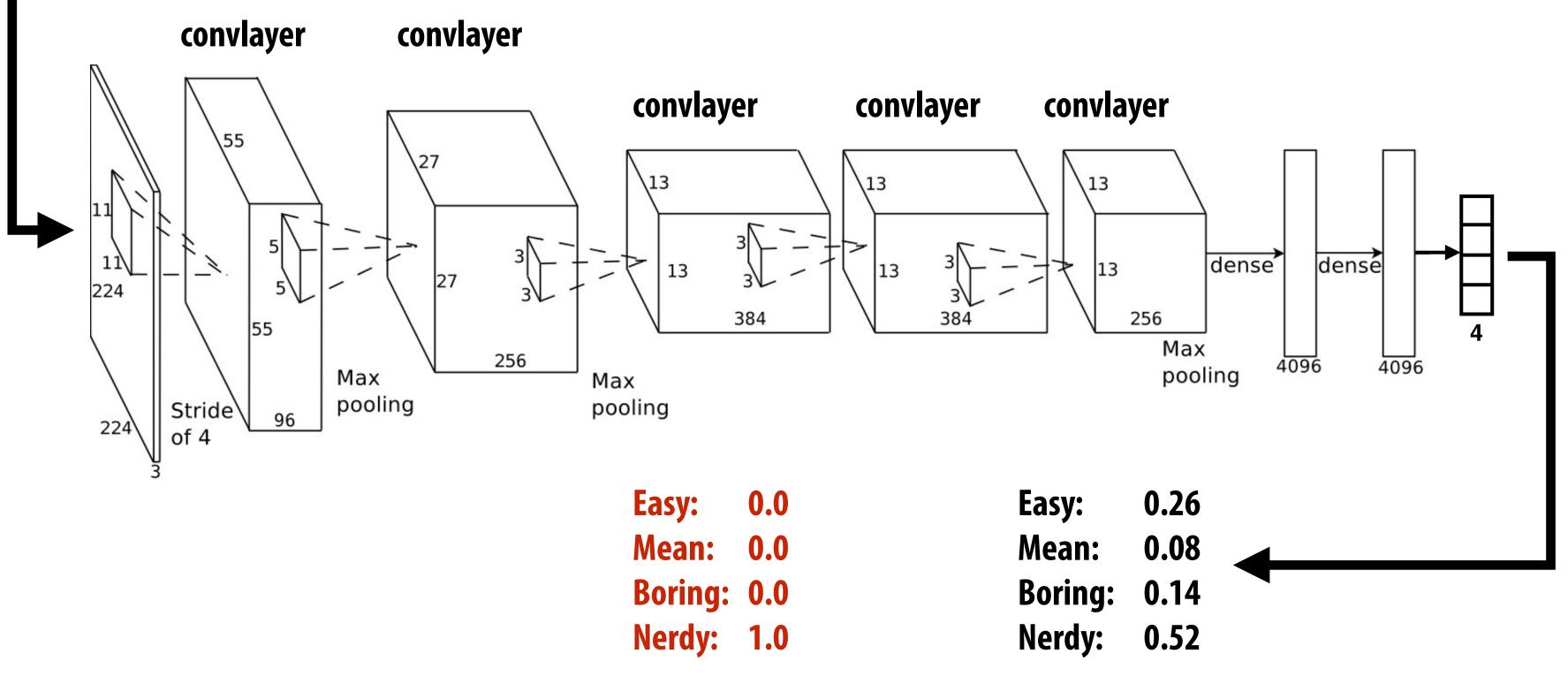
[label omitted]

[label omitted]

Nerdy

Professor classification network

New image of Kayvon (not in training set)



Ground truth (what the answer should be) Network output

Error (loss)

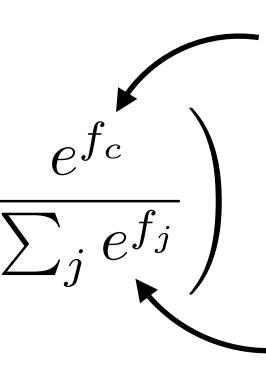
(wha	Ground t the answ	truth: er should be)	Netw
	Easy:	0.0	Easy
	Mean:	0.0	Mea
	Boring:	0.0	Bori
	Nerdy:	1.0	Nerd

Common example: softmax loss: $L = -log\left(\frac{e^{f_c}}{\sum_j e^{f_j}}\right)$

* In practice a network using a softmax classifier outputs unnormalized, log probabilities (*f_j*), but I'm showing a probability distribution above for clarity

vork output: *

- y: 0.26 an: 0.08 ing: 0.14
- dy: 0.52



Output of network for correct category

> Output of network for all categories

Training

Goal of training: learning good values of network parameters so that the network outputs the correct classification result for any input image

Idea: minimize loss for all the training examples (for which the correct answer is known)

 $L = \sum L_i$ (total loss for entire training set is sum of losses L_i for each training example x_i)

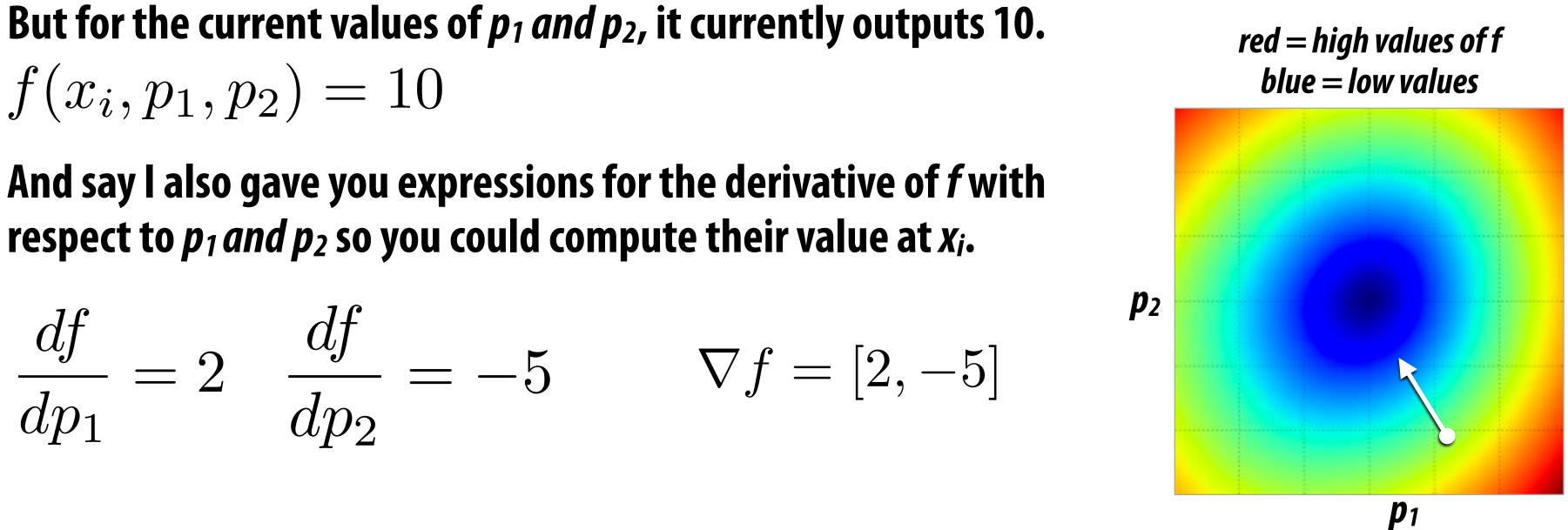
Intuition: if the network gets the answer correct for a wide range of training examples, then hopefully it has learned parameter values that yield the correct answer for future images as well.

Intuition: gradient descent

Say you had a function f that contained hidden parameters p_1 and p_2 : $f(x_i)$

And for some input x_i, your training data says the function should output 0.

 $f(x_i, p_1, p_2) = 10$



How might you adjust the values p_1 and p_2 to reduce the error for this training example?

Basic gradient descent

while (loss too high):

for each item x i in training set: grad += evaluate_loss_gradient(f, params, loss_func, x_i)

params += -grad * step_size;

Mini-batch stochastic gradient descent (mini-batch SGD): choose a random (small) subset of the training examples to compute gradient in each iteration of the while loop

How do we compute dLoss/dp for a deep neural network with millions of parameters?

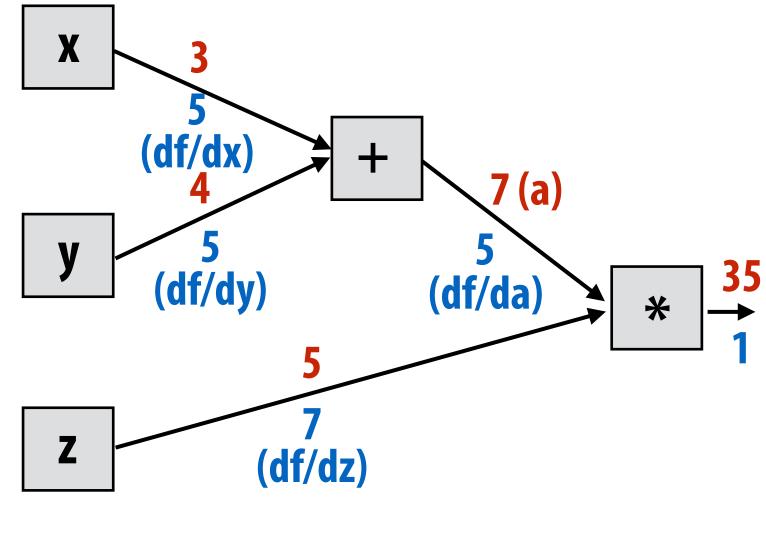
Derivatives using the chain rule

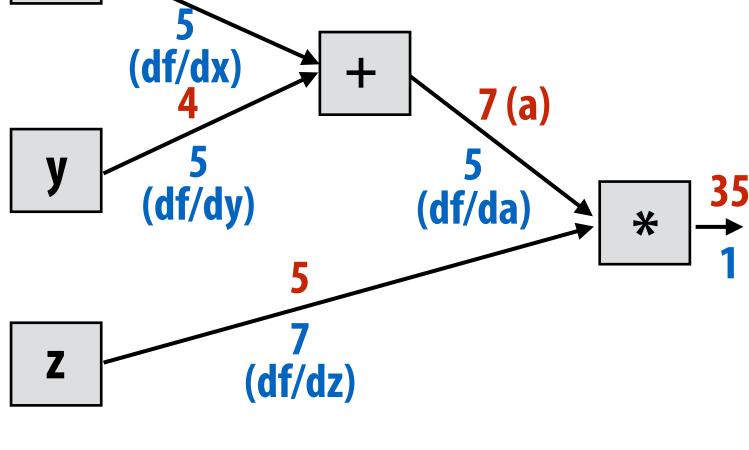
$$f(x, y, z) = (x + y)z = az$$
 Where: of

$$\frac{df}{da} = z \quad \frac{da}{dx} = 1 \quad \frac{da}{dy} = 1$$

So, by the derivative chain rule:

$$\frac{df}{dx} = \frac{df}{da}\frac{da}{dx} = z$$



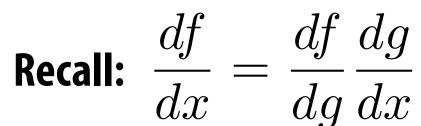


Red = output of node Blue = df/dnode

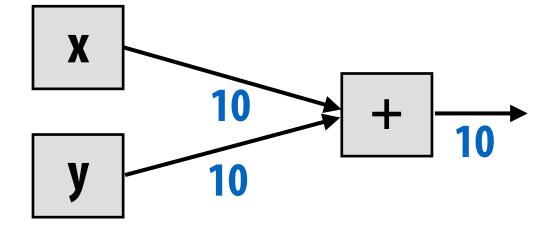
a = x + y

Backpropagation

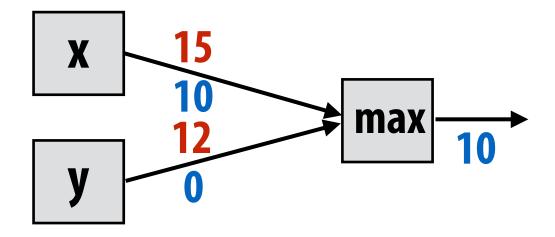
Red = output of node Blue = df/dnode



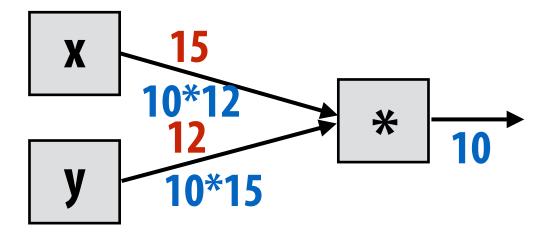
$$=\frac{dg}{dg}\frac{dg}{dx}$$



$$g(x,y) = x + y$$



$$g(x,y) = \max(x,y)$$



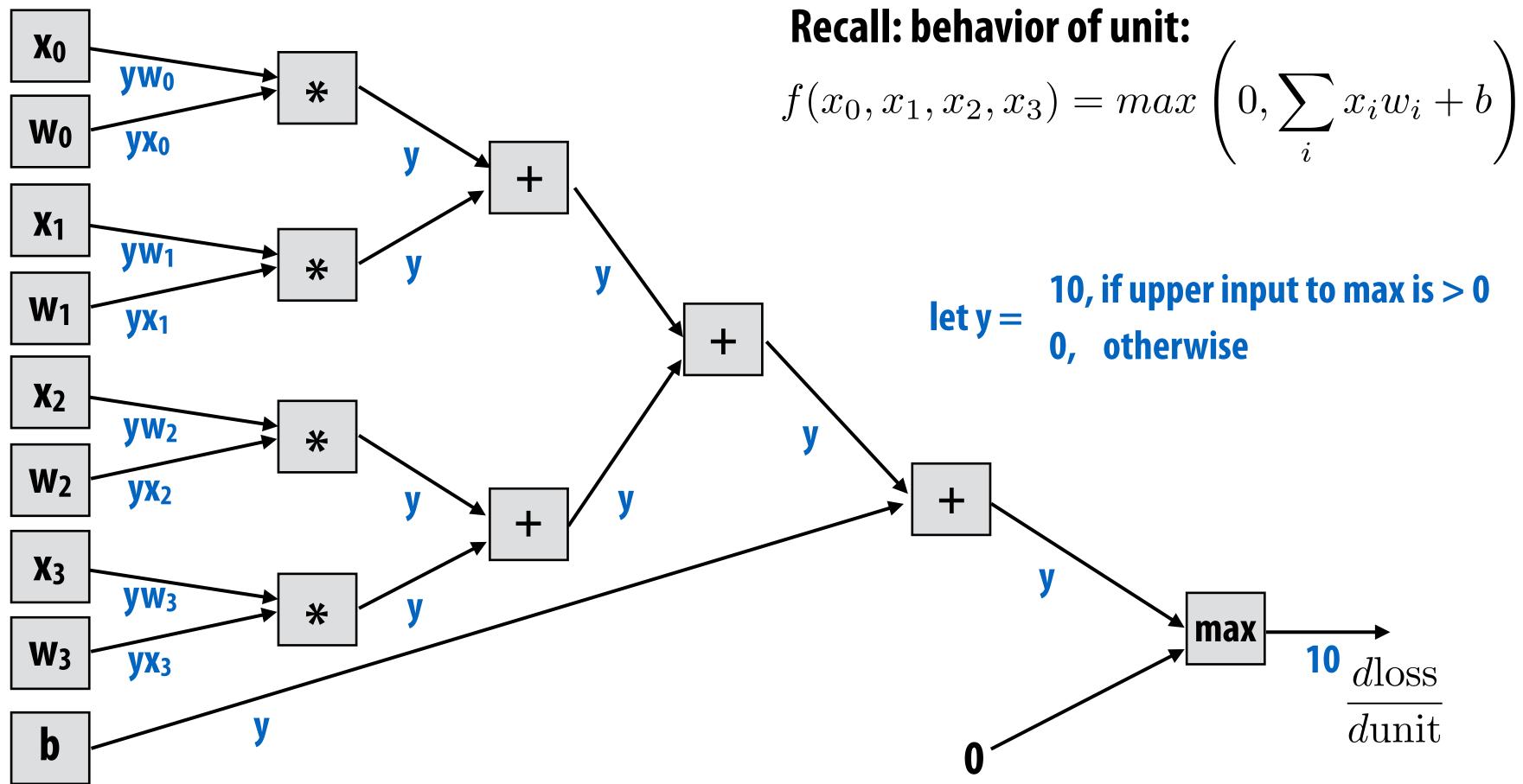
$$g(x,y) = xy$$

$\frac{dg}{dx} = 1, \ \frac{dg}{dy} = 1$

$$rac{dg}{dx} = rac{1, ext{ if } \mathbf{x} > \mathbf{y}}{\mathbf{0}, ext{ otherwise}}$$

$$\frac{dg}{dx} = y \,, \ \frac{dg}{dy} = x$$

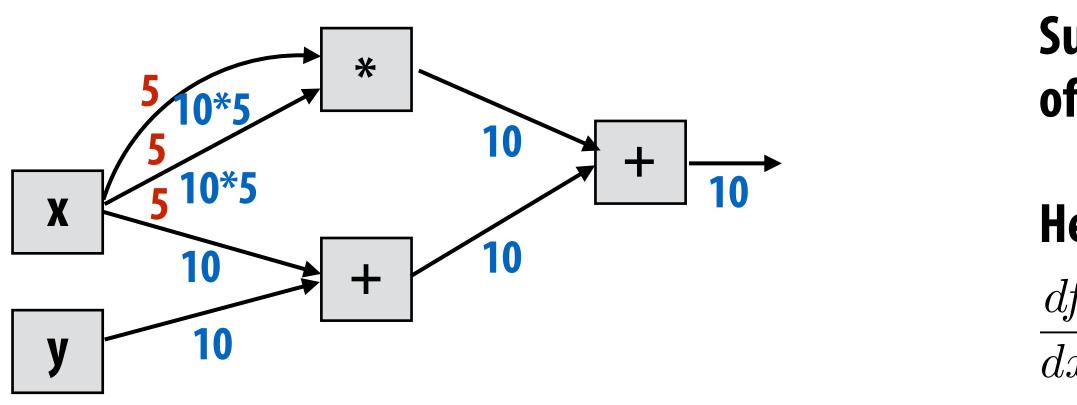
Backpropagating through single unit



Observe: output of prior layer must be retained in order to compute weight gradients for this unit during backprop.

10, if upper input to max is > 0

Multiple uses of an input variable



$$g(x, y) = (x + y) + x * x = a + b$$

$$\frac{da}{dx} = 1, \quad \frac{db}{dx} = 2x$$

$$\frac{dg}{dx} = \frac{dg}{da}\frac{da}{dx} + \frac{dg}{db}\frac{db}{dx} = 2x + 1$$

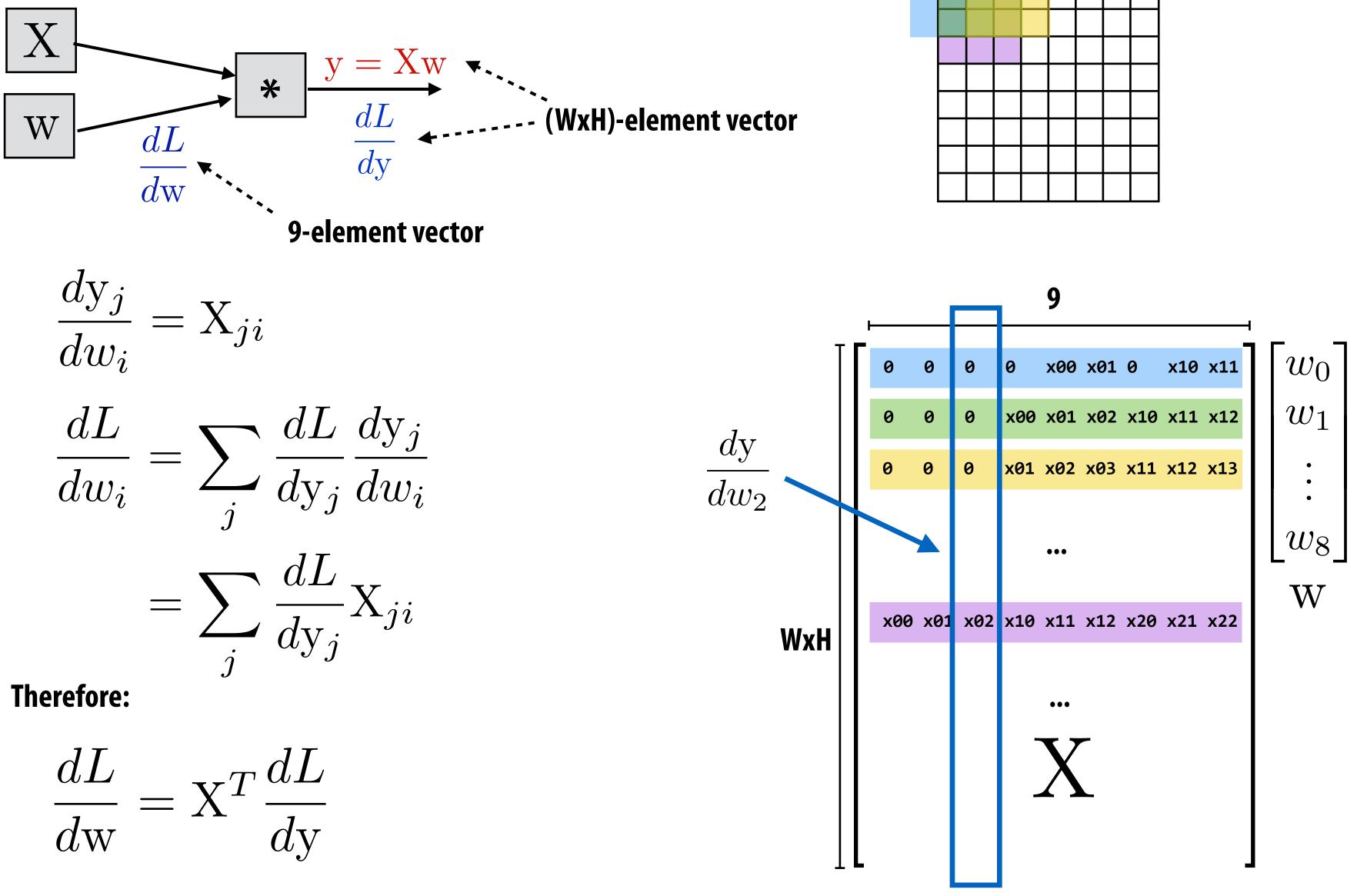
Implication: backpropagation through all units in a convolutional layer adds gradients computed from each unit to the overall gradient for the shared weights

Sum gradients from each use of variable:

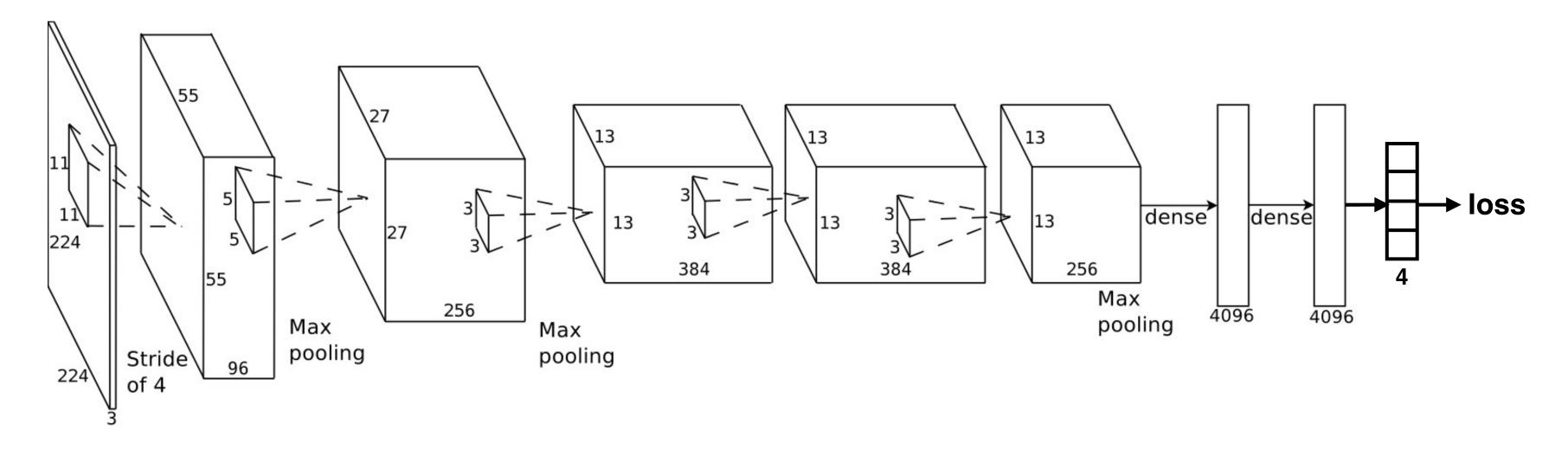
Here:

 $\frac{df}{dx} = \frac{df}{dg} \frac{dg}{dx}$ $= 10 \frac{dg}{dx}$ = 10(2x+1)= 10(10+1) = 110

Backpropagation: matrix form



Backpropagation through the entire professor classification network



For each training example *x_i* in mini-batch:

Perform forward evaluation to compute loss for x_i **Compute gradient of loss w.r.t. final layer's outputs** Backpropagate gradient to compute gradient of loss w.r.t. all network parameters Accumulate gradients (over all images in batch) Update all parameter values: w new = w old - step size * grad

Recall from last class: VGG memory footprint

Calculations assume 32-bit values (image batch size = 1)

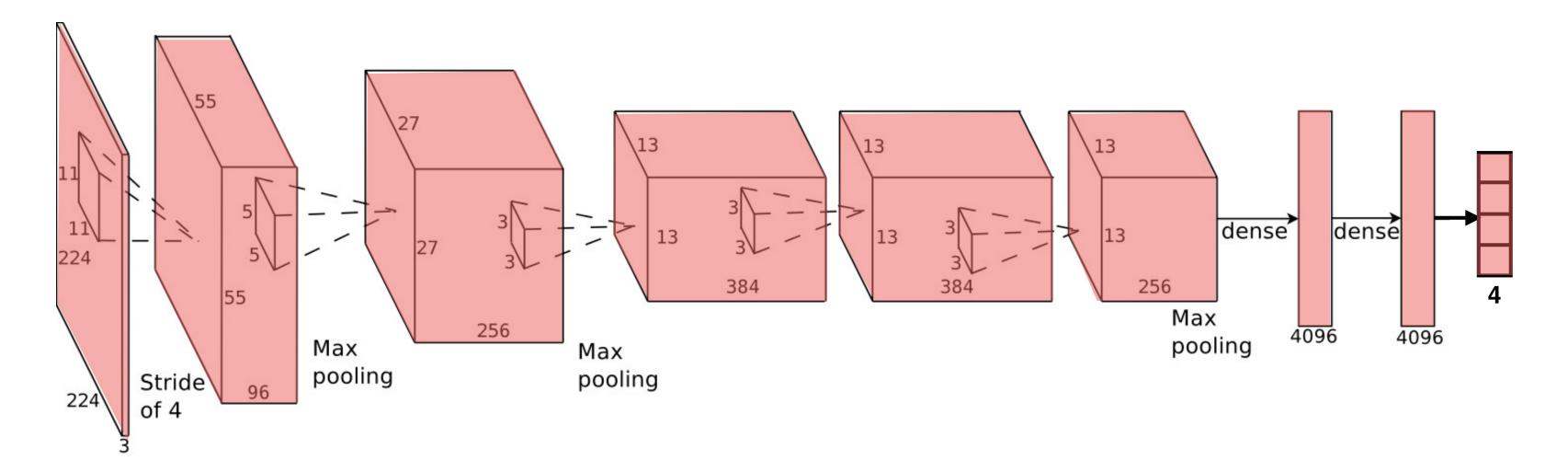
	weights m	iem:
input: 224 x 224 RGB image		
conv: (3x3x3) x 64	6.5 KB	
conv: (3x3x64) x 64	144 KB	
maxpool		
conv: (3x3x64) x 128	228 KB	
conv: (3x3x128) x 128	576 KB	
maxpool		
conv: (3x3x128) x 256	1.1 MB	
conv: (3x3x256) x 256	2.3 MB	
conv: (3x3x256) x 256	2.3 MB	
maxpool		
conv: (3x3x256) x 512	4.5 MB	
conv: (3x3x512) x 512	9 MB	
conv: (3x3x512) x 512	9 MB	
maxpool		
conv: (3x3x512) x 512	9 MB	
conv: (3x3x512) x 512	9 MB	
conv: (3x3x512) x 512	9 MB	
maxpool		Many weights in fully-
fully-connected 4096	392 MB	connected players
fully-connected 4096	64 MB	
fully-connected 1000	15.6 MB	
soft-max		

output size	
(per image)	(mem)
224x224x3	150K
224x224x64	12.3 MB
224x224x64	12.3 MB
112x112x64	3.1 MB
112x112x128	6.2 MB
112x112x128	6.2 MB
56x56x128	1.5 MB
56x56x256	3.1 MB
56x56x256	3.1 MB
56x56x256	3.1 MB
28x28x256	766 KB
28x28x512	1.5 MB
28x28x512	1.5 MB
28x28x512	1.5 MB
14x14x512	383 KB
7x7x512	98 KB
4096	16 KB
4096	16 KB
1000	4 KB
1000	4 KB

Storing convolution layer outputs (unit "activations") can get big in early layers with large input size and many filters

Note: multiply these numbers by N for batch size of N images

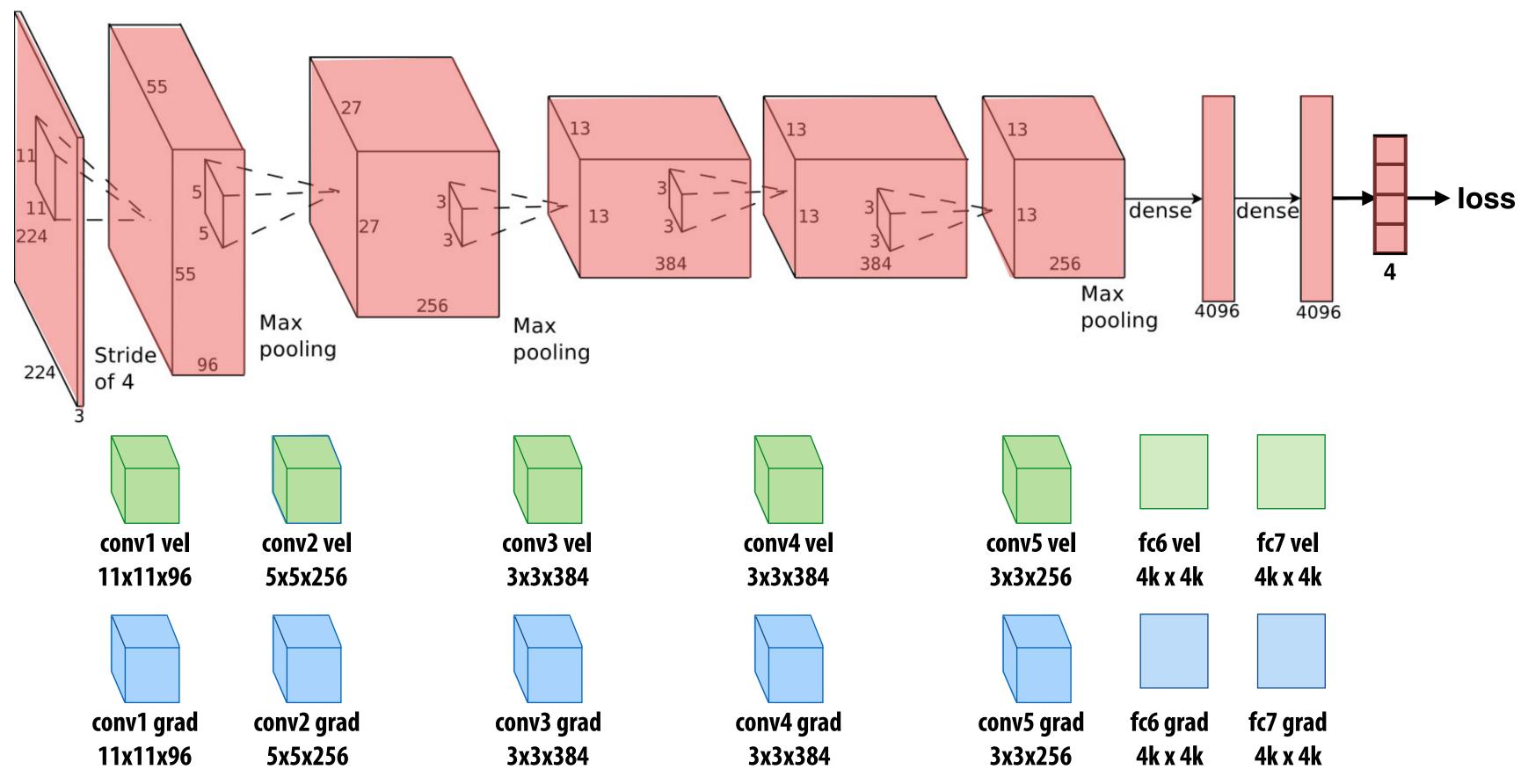
Data lifetimes during network evaluation



Weights (read-only) reside in memory

After evaluating layer i, can free outputs from layer i-1

Data lifetimes during training



- Must retain outputs for all layers because they are needed to compute gradients during back-prop
- Parallel back-prop will require storage for per-weight gradients (more about this in a second)
- In practice: may also store per-weight gradient velocity (if using SGD with "momentum") or step cache in Adagrad

vel_new = mu * vel_old - step_size * grad w_new = w_old + vel_new

VGG memory footprint Calculations assume 32-bit values (image batch size = 1)

batch size

weights mem:

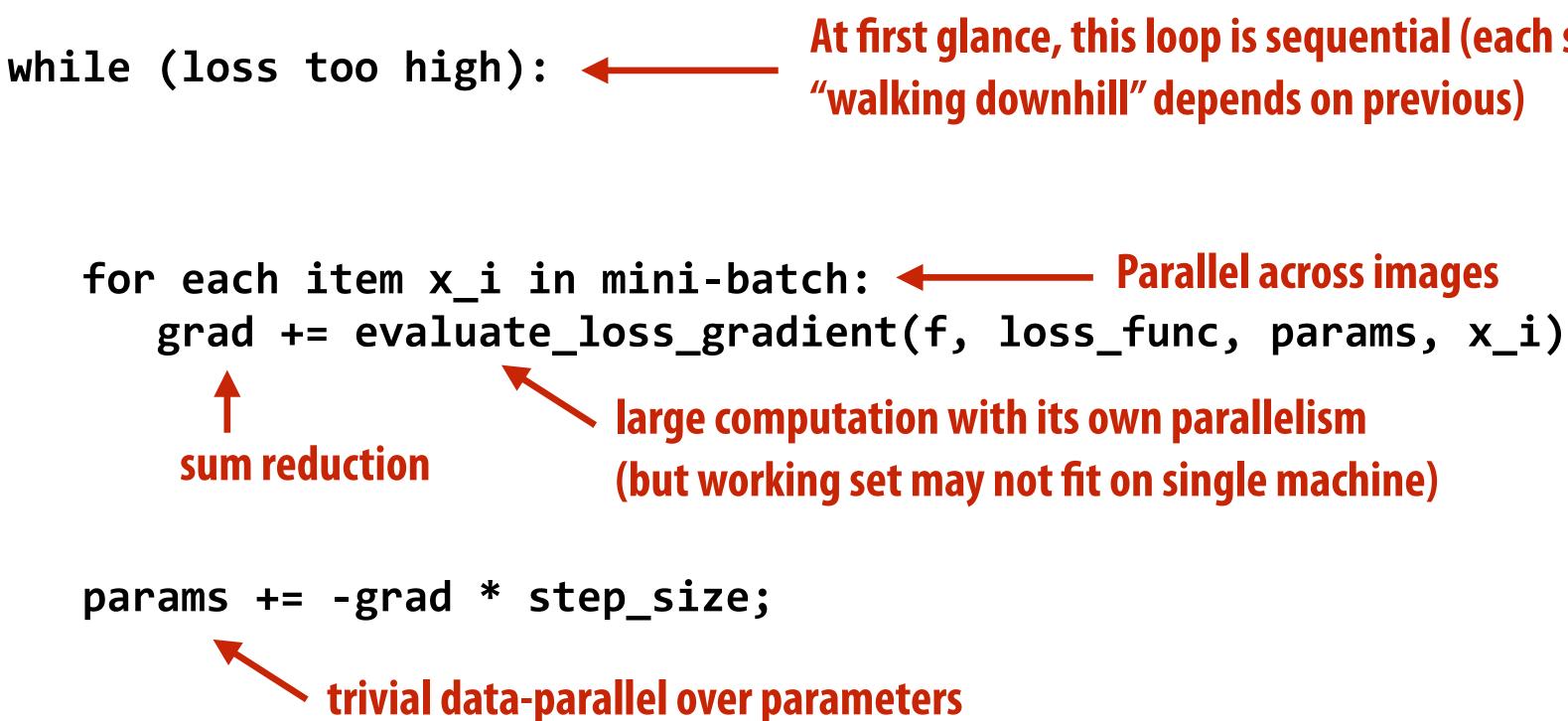
input: 224 x 224 RGB image	—	
conv: (3x3x3) x 64	6.5 KB	
conv: (3x3x64) x 64	144 KB	Must also store per- weight gradients
maxpool		weight gradients
conv: (3x3x64) x 128	228 KB	Many implementations
conv: (3x3x128) x 128	576 KB	also store gradient
maxpool		"momentum" as well (multiply by 3)
conv: (3x3x128) x 256	1.1 MB	(indicipity by 5)
conv: (3x3x256) x 256	2.3 MB	
conv: (3x3x256) x 256	2.3 MB	
maxpool		
conv: (3x3x256) x 512	4.5 MB	
conv: (3x3x512) x 512	9 MB	
conv: (3x3x512) x 512	9 MB	
maxpool		
conv: (3x3x512) x 512	9 MB	
conv: (3x3x512) x 512	9 MB	
conv: (3x3x512) x 512	9 MB	
maxpool		
fully-connected 4096	392 MB	
fully-connected 4096	64 MB	
fully-connected 1000	15.6 MB	
soft-max		

inputs/outputs get multiplied by mini-

Unlike forward evaluation: 1. cannot immediately free outputs once consumed by next level of network

output size 🖌	
(per image)	(mem)
224x224x3	150K
224x224x64	12.3 MB
224x224x64	12.3 MB
112x112x64	3.1 MB
112x112x128	6.2 MB
112x112x128	6.2 MB
56x56x128	1.5 MB
56x56x256	3.1 MB
56x56x256	3.1 MB
56x56x256	3.1 MB
28x28x256	766 KB
28x28x512	1.5 MB
28x28x512	1.5 MB
28x28x512	1.5 MB
14x14x512	383 KB
7x7x512	98 KB
4096	16 KB
4096	16 KB
1000	4 KB
1000	4 KB

SGD workload



At first glance, this loop is sequential (each step of "walking downhill" depends on previous)

DNN training workload

Huge computational expense

- Must evaluate the network (forward and backward) for millions of training images
- Must iterate for many iterations of gradient descent (100's of thousands)
- **Training modern networks takes days**

Large memory footprint

- Must maintain network layer outputs from forward pass
- Additional memory to store gradients/gradient velocity for each parameter
- **Recall parameters for popular VGG-16 network require ~500 MB of memory (training** requires GBs of memory for academic networks)
- Scaling to larger networks requires partitioning DNN across nodes to keep DNN + intermediates in memory

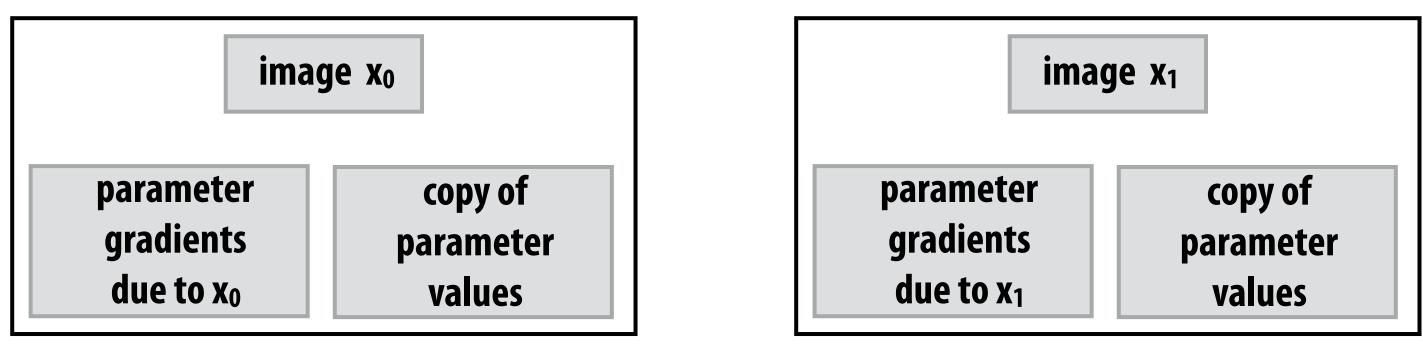
Dependencies / synchronization (not embarrassingly parallel)

- Each parameter update step depends on previous
- Many units contribute to same parameter gradients (fine-scale reduction)
- Different images in mini batch contribute to same parameter gradients

Data-parallel training (across images)

for each item x_i in mini-batch: grad += evaluate_loss_gradient(f, loss_func, params, x_i) params += -grad * step_size;

Consider parallelization of the outer for loop across machines in a cluster




```
partition mini-batch across nodes
for each item x_i in mini-batch assigned to local node:
   // just like single node training
   grad += evaluate_loss_gradient(f, loss_func, params, x_i)
barrier();
sum reduce gradients, communicate results to all nodes
barrier();
update copy of parameter values
```

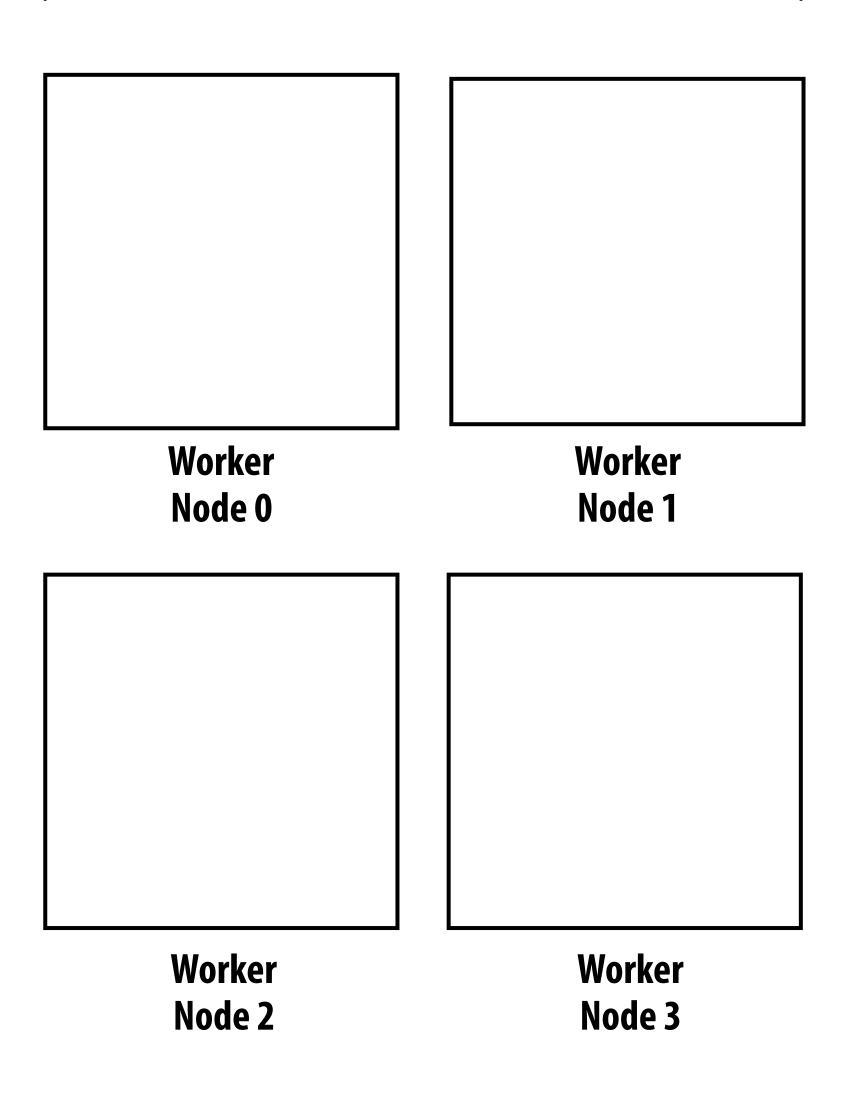

Challenges of computing at cluster scale

- **Slow communication between nodes**
 - Commodity clusters do not feature high-performance interconnects (e.g., infiniband) typical of supercomputers
- Nodes with different performance (even if machines are the same)
 - Workload imbalance at barriers (sync points between nodes)

Modern solution: exploit characteristics of SGD using asynchronous execution!

Parameter server design

Pool of worker nodes



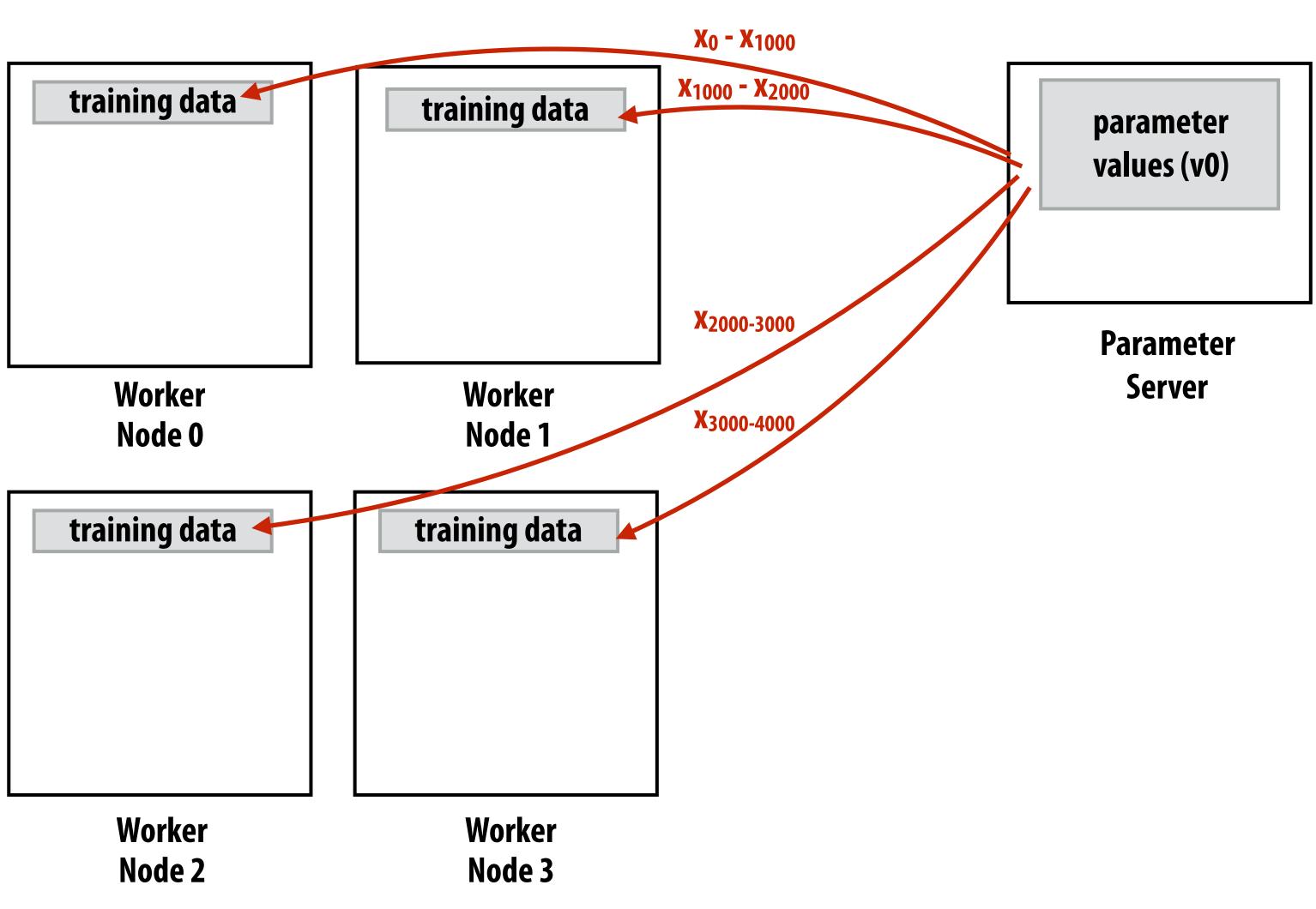
Parameter Server [Li OSDI14] Google's DistBelief [Dean NIPS12] Microsoft's Project Adam [Chilimbi OSDI14]

values

Parameter Server

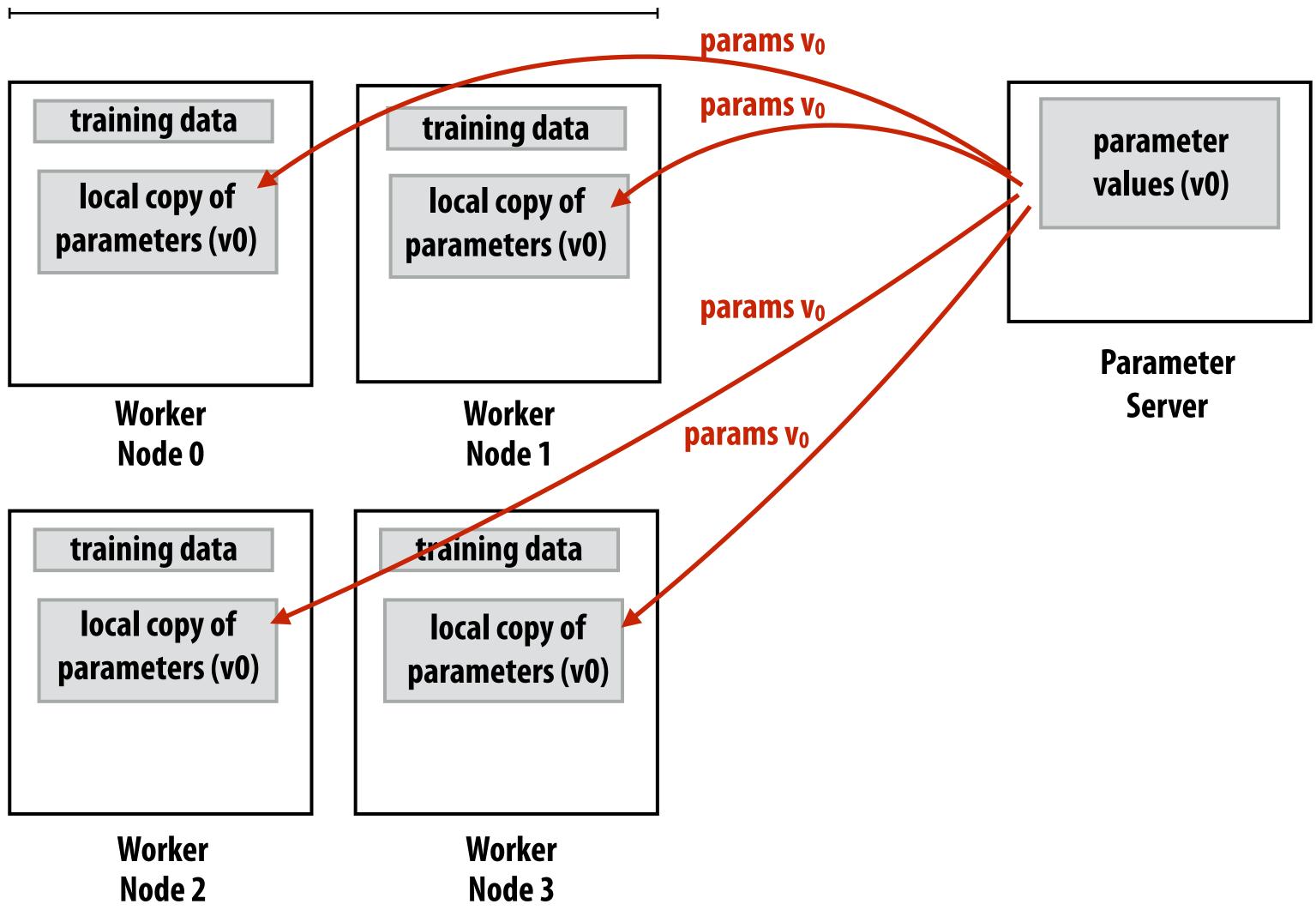
Training data partitioned among workers

Pool of worker nodes



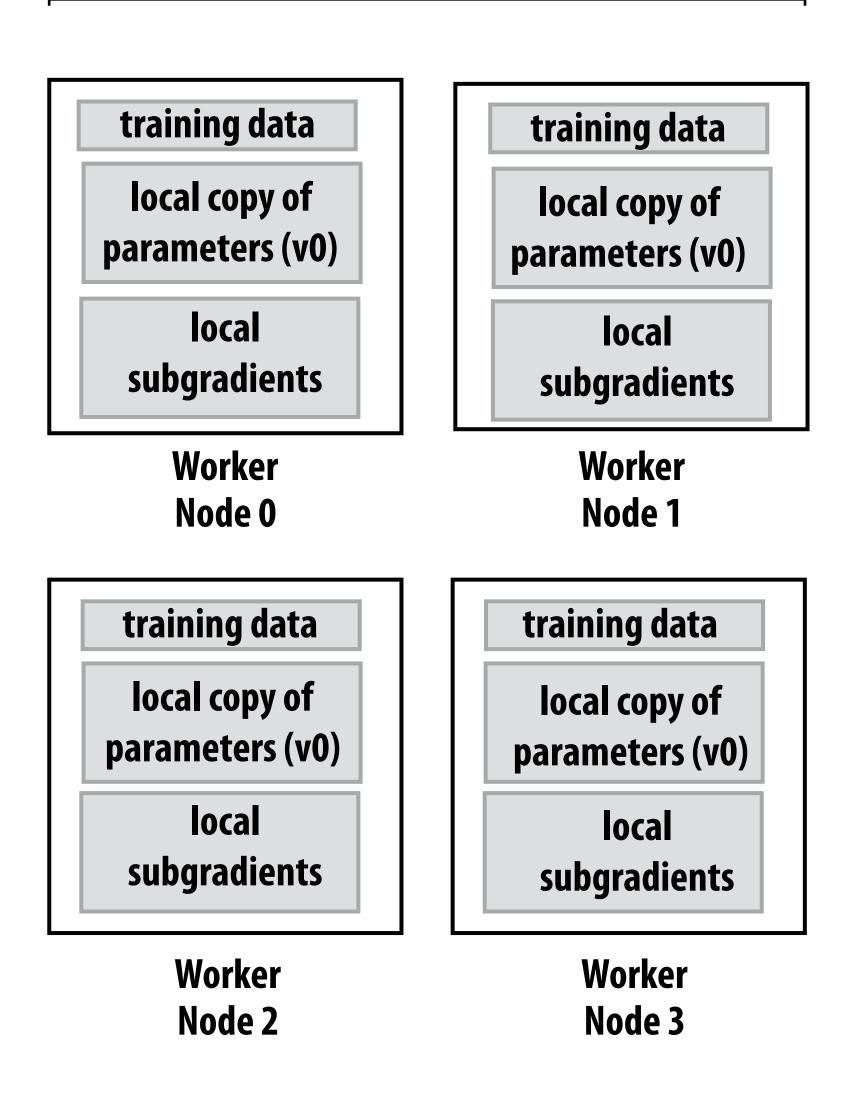
Copy of parameters sent to workers

Pool of worker nodes



Workers independently compute local "subgradients"

Pool of worker nodes

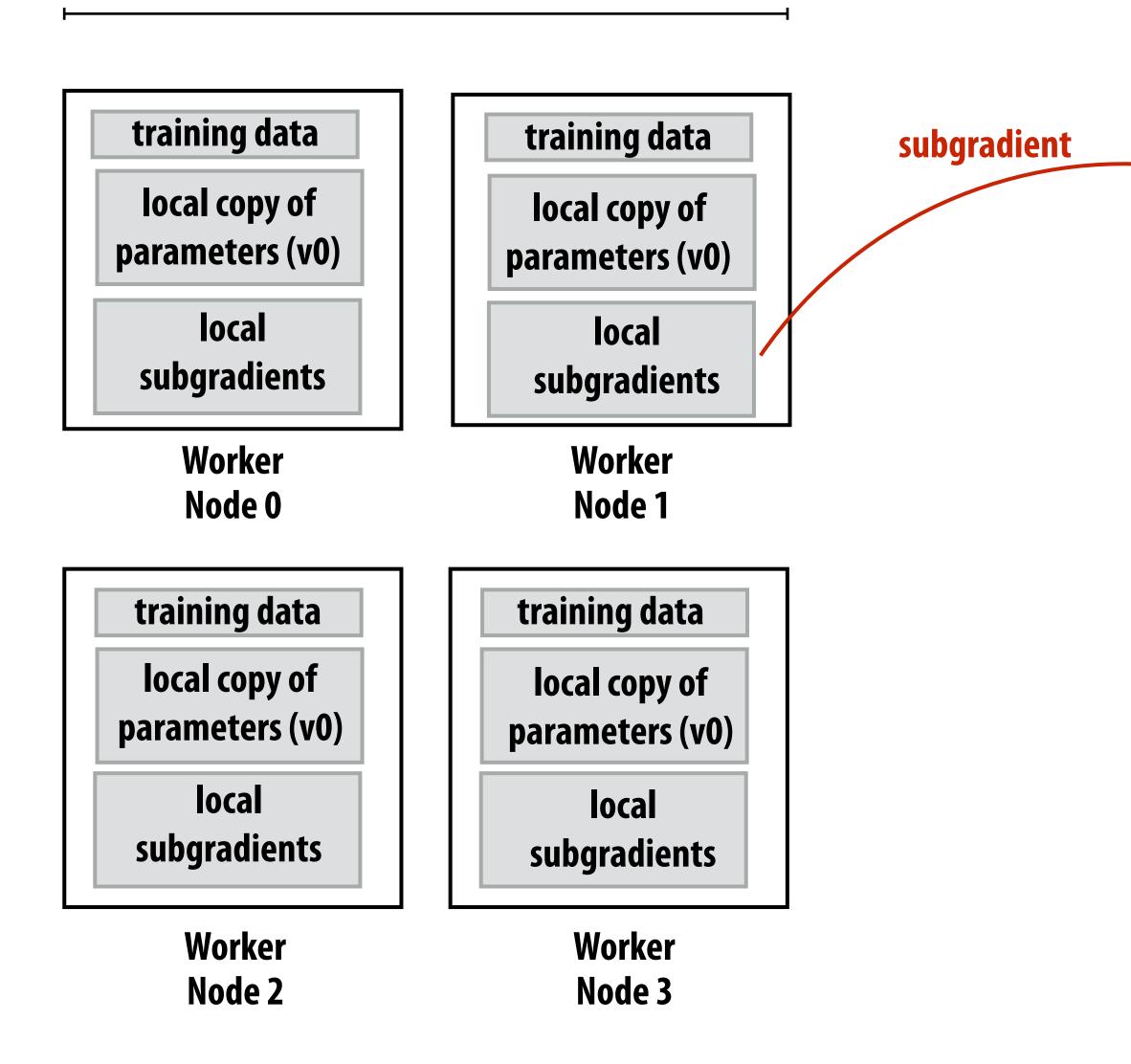


parameter values (v0)

Parameter Server

Worker sends subgradient to parameter server

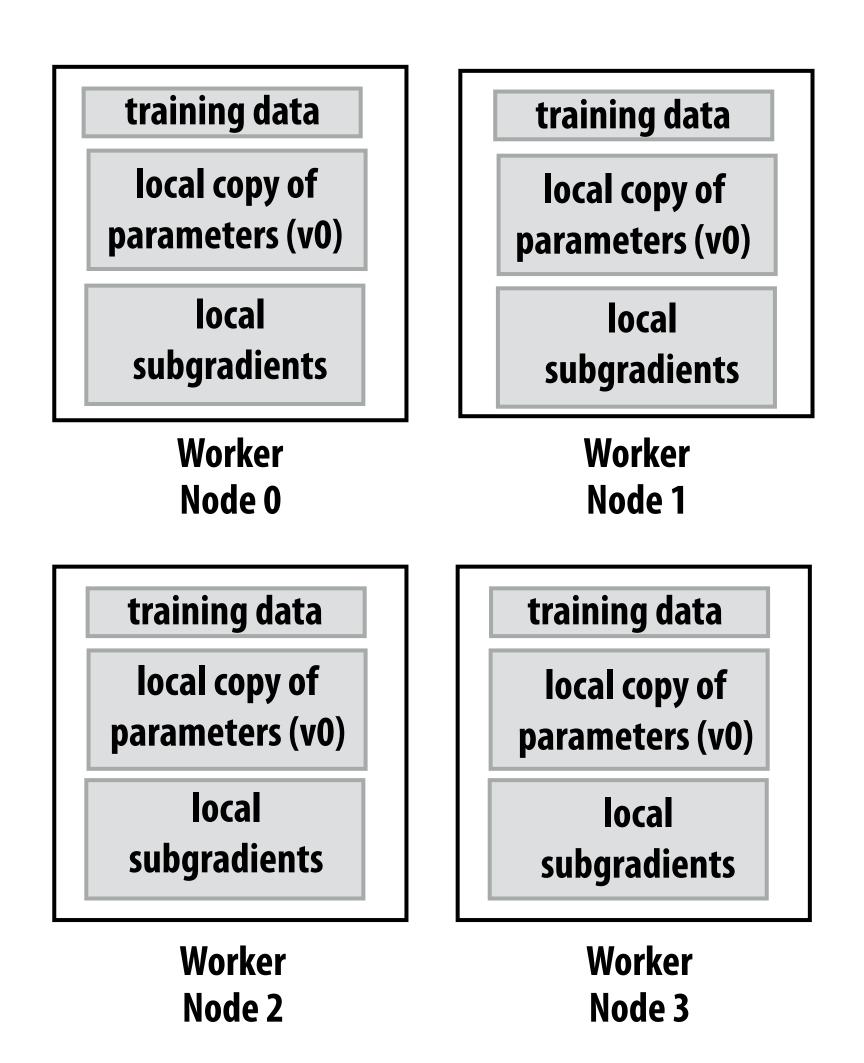
Pool of worker nodes

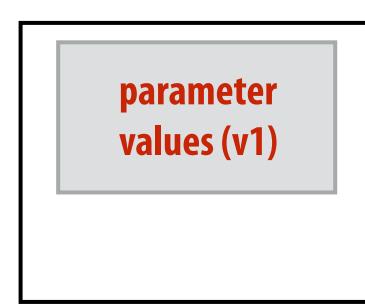


parameter values (v0)

Parameter Server

Server updates global parameter values based on subgradient

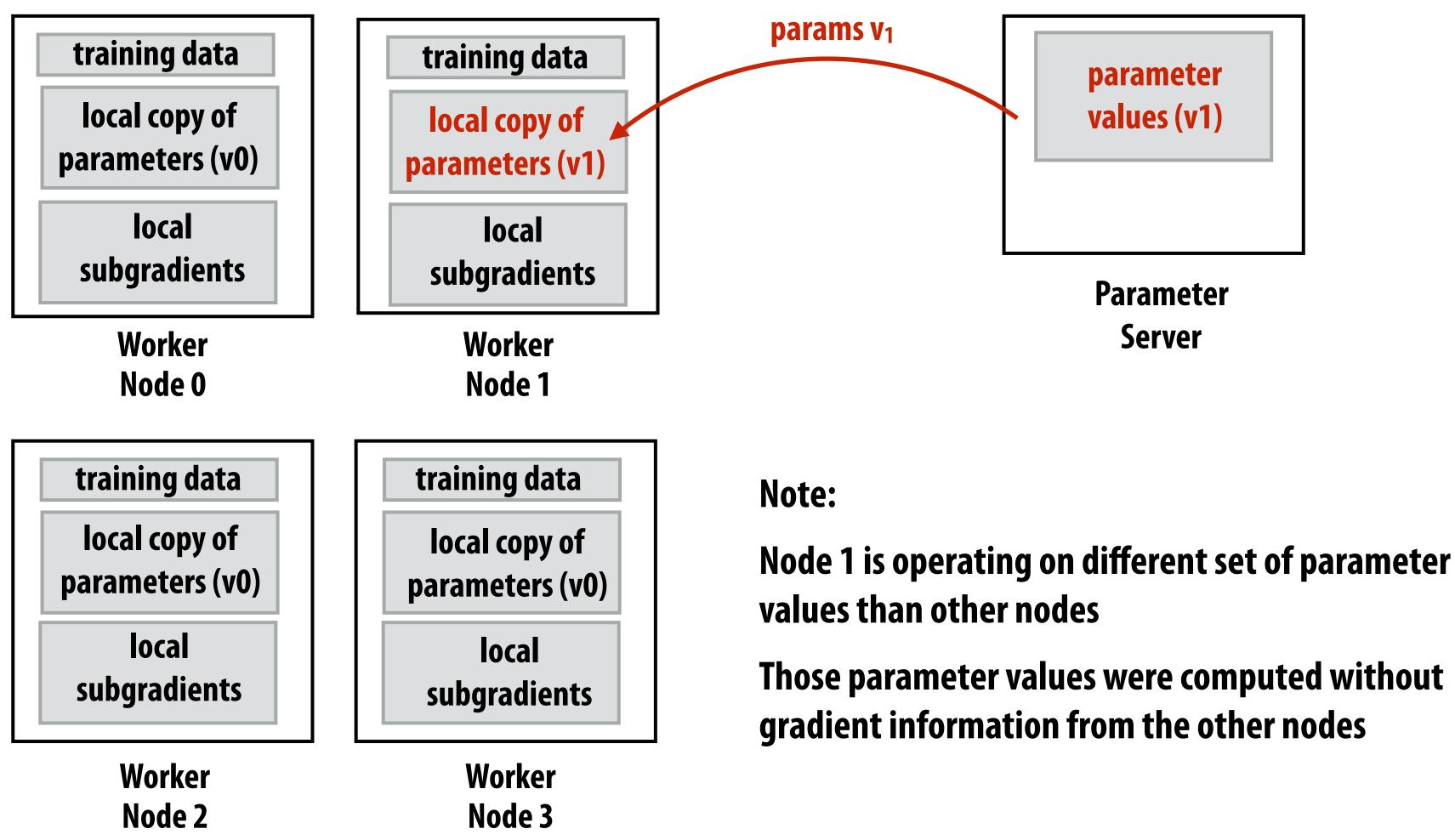




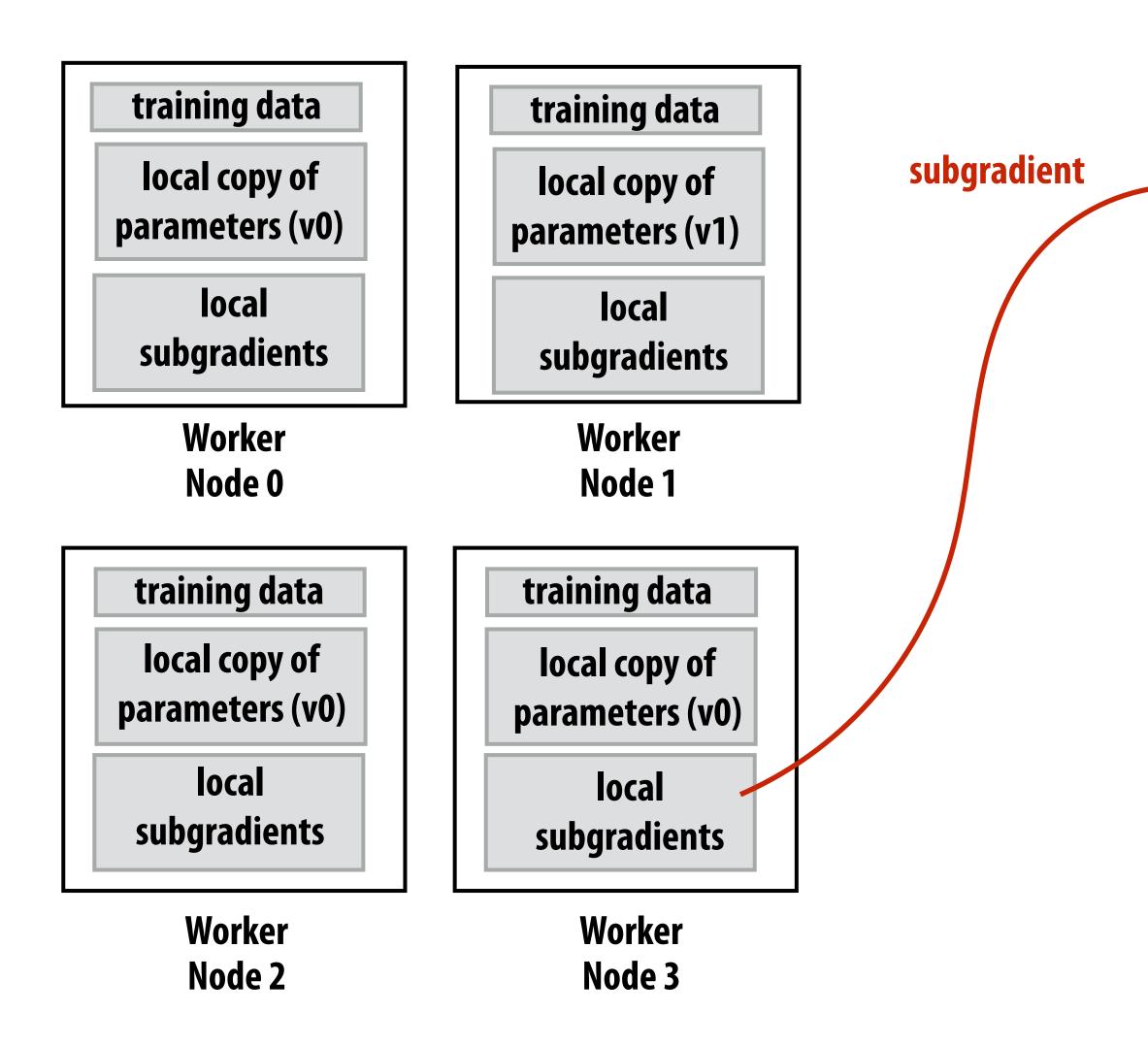
Parameter Server

params += -subgrad * step_size;

Updated parameters sent to worker Worker proceeds with another gradient computation step



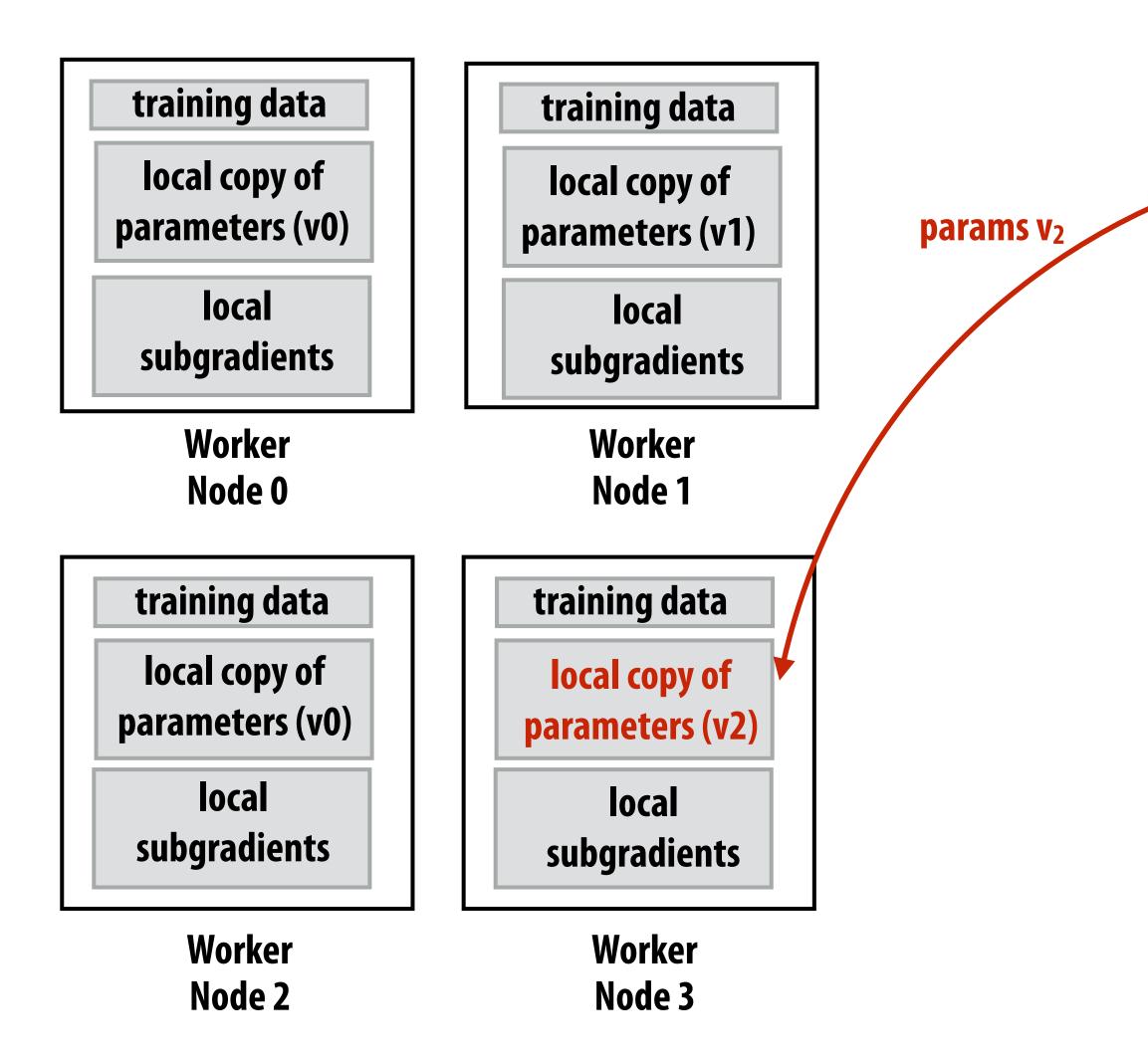
Updated parameters sent to worker (again)



parameter values (v1)

Parameter Server

Worker continues with updated parameters



parameter values (v2)

Parameter Server

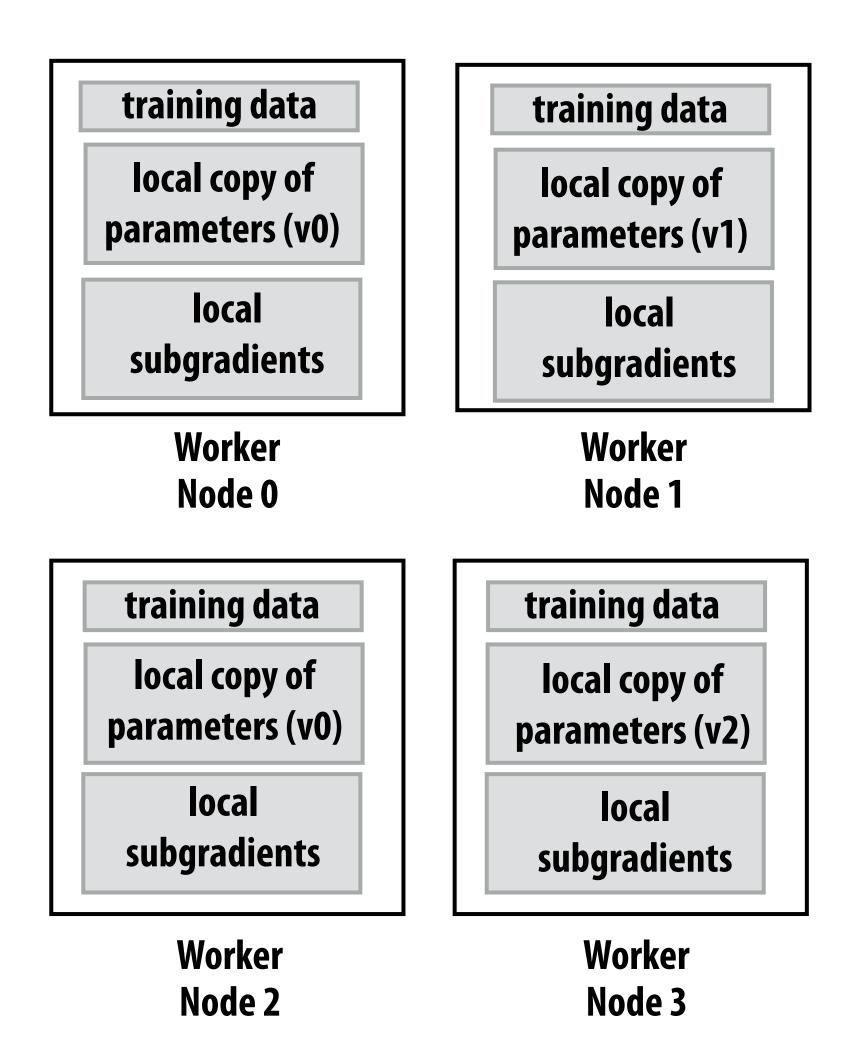
Summary: asynchronous parameter update Idea: avoid global synchronization on all parameter updates

- between each SGD iteration
 - **Design reflects realities of cluster computing:**
 - **Slow interconnects**
 - **Unpredictable machine performance**

Solution: asynchronous (and partial) subgradient updates

- Will impact convergence of SGD
 - Node N working on iteration *i* may not have parameter values that result the results of the *i*-1 prior SGD iterations

Bottleneck? What if there is heavy contention for parameter server?



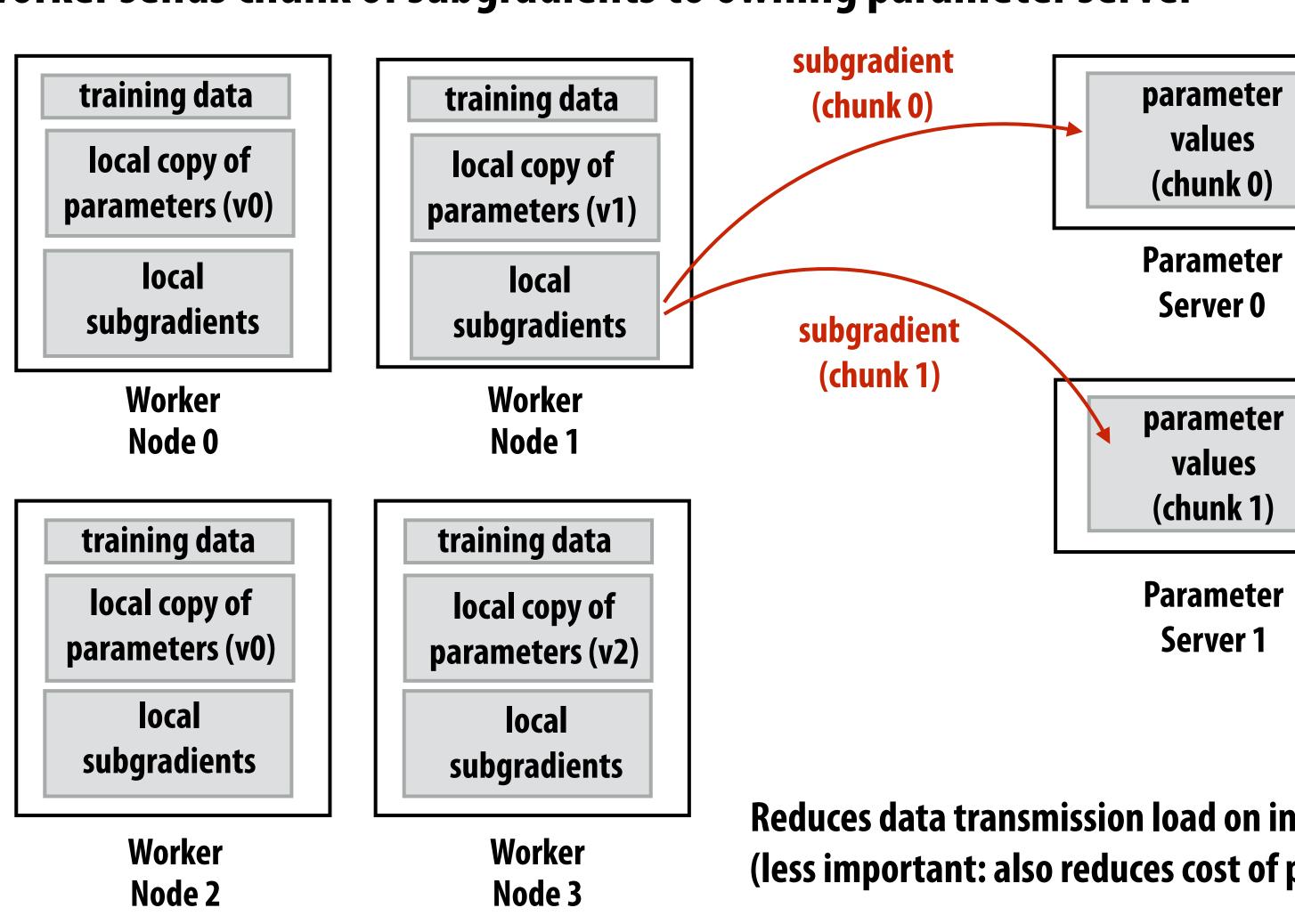
parameter values (v2)

Parameter Server

Shard the parameter server

Partition parameters across servers

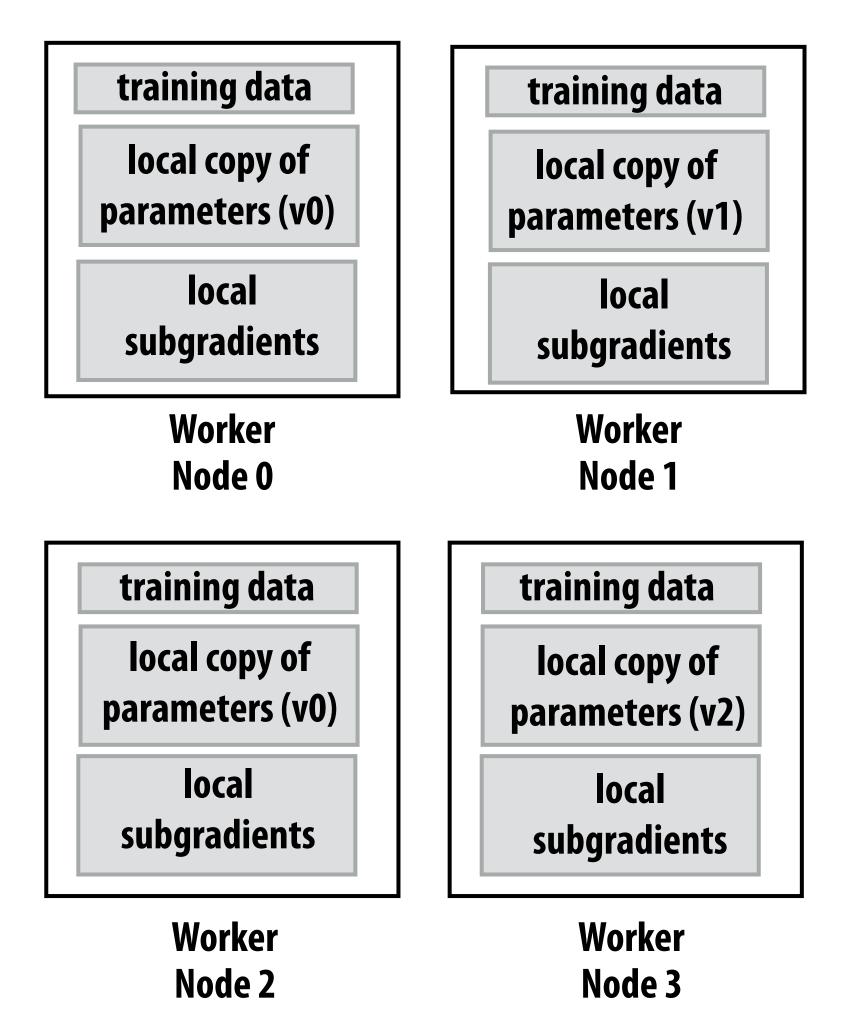
Worker sends chunk of subgradients to owning parameter server



Reduces data transmission load on individual servers (less important: also reduces cost of parameter update)

What if model parameters do not fit on one worker?

Recall high footprint of training large networks (particularly with large mini-batch sizes)



parameter

values (chunk 0)

Parameter Server 0

parameter

values

(chunk 1)

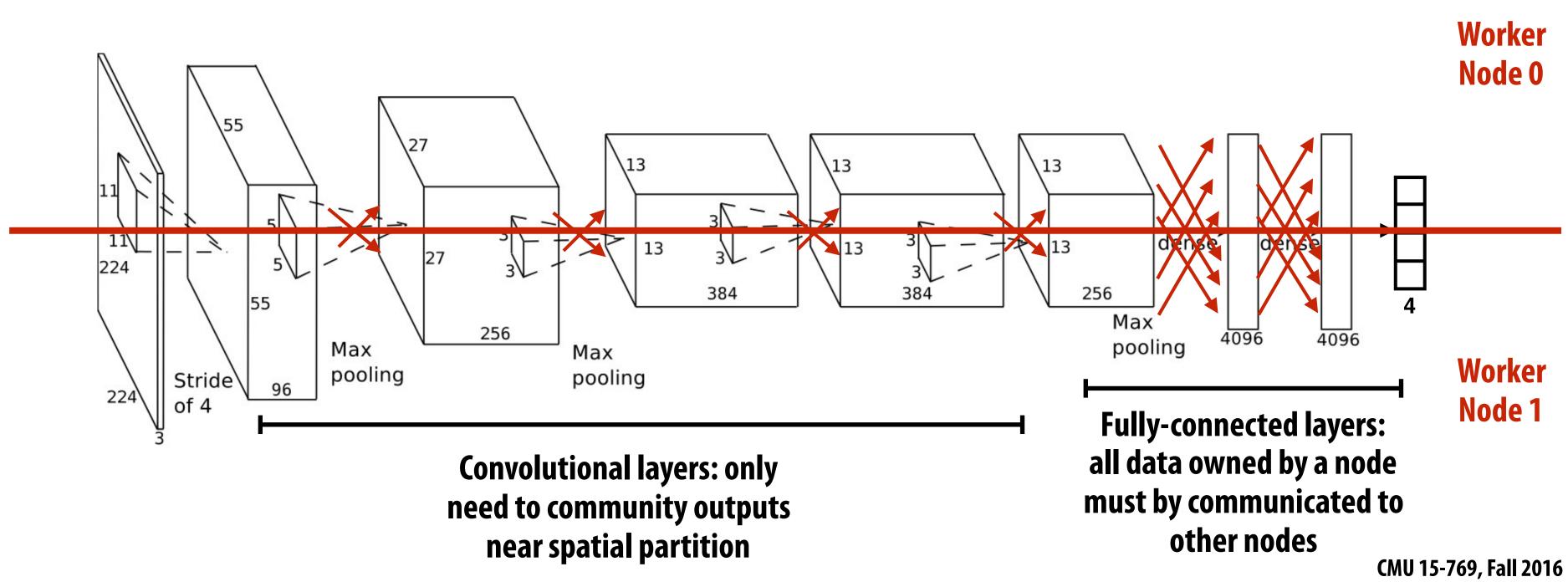
Parameter Server 1

Model parallelism

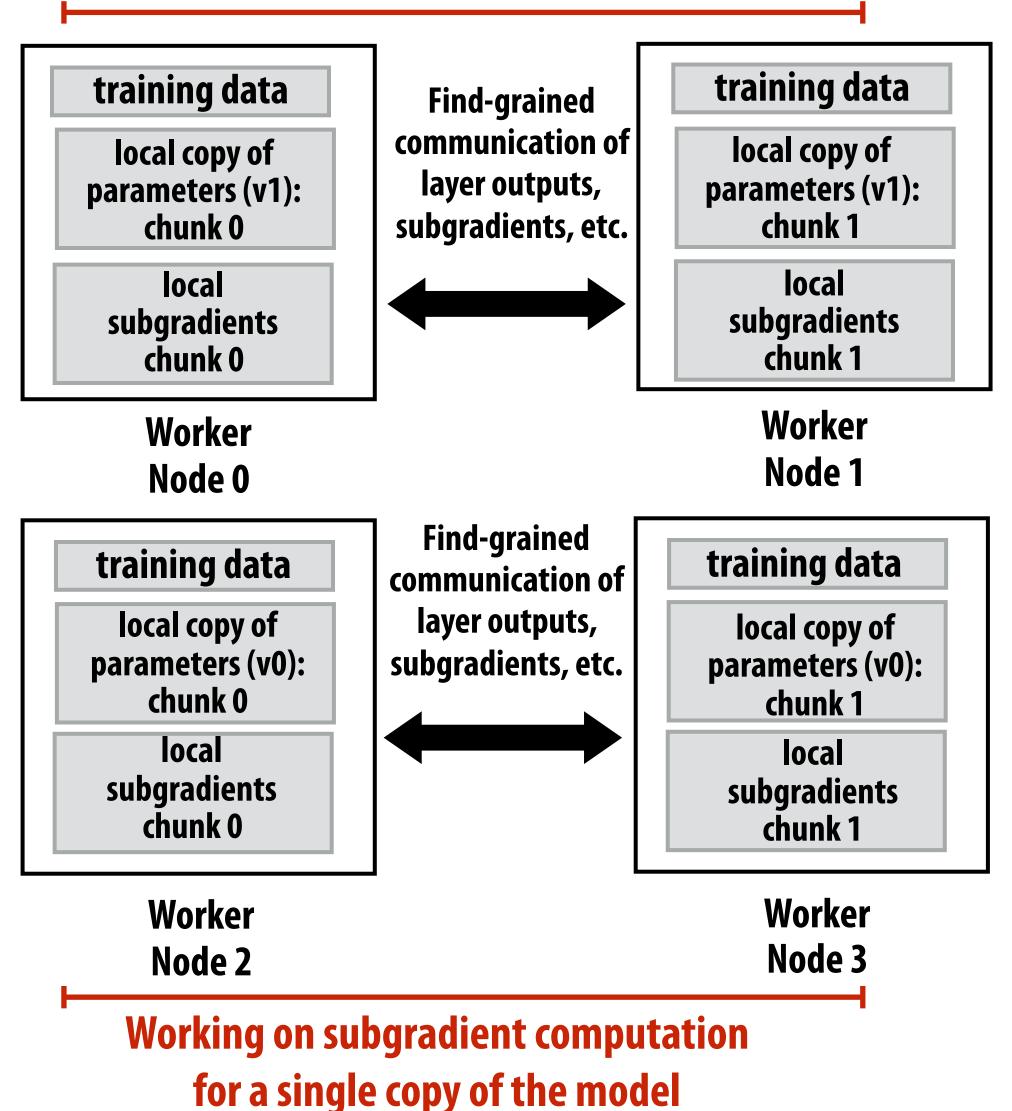
Partition network parameters across nodes (spatial partitioning to reduce communication)

Reduce internode communication through network design:

- Use small spatial convolutions (1x1 convolutions)
- **Reduce/shrink fully-connected layers**



Training data-parallel and model-parallel execution



parameter

values

(chunk 0)

Parameter Server 0

parameter

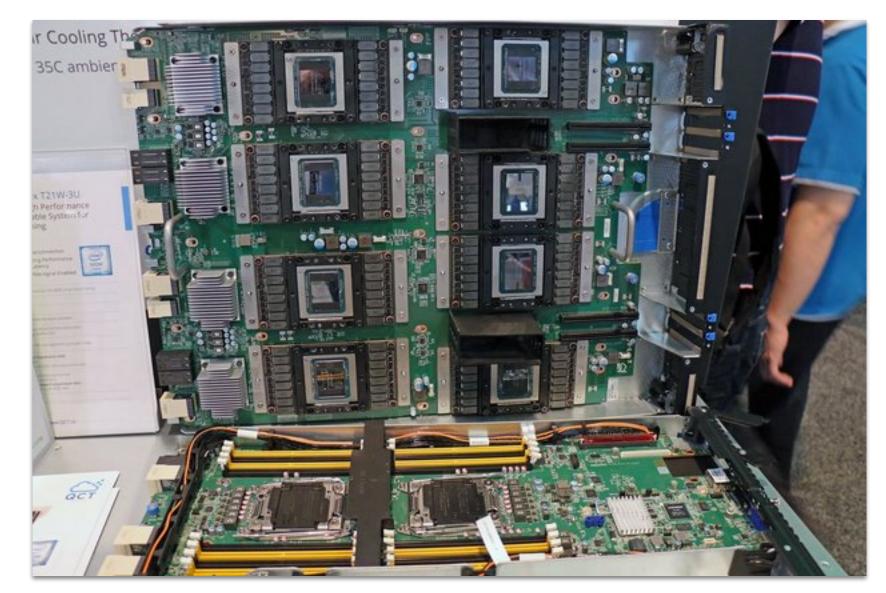
values

(chunk 1)

Parameter Server 1

Using supercomputers for training?

- Fast interconnects critical for model-parallel training
 - Fine-grained communication of outputs and gradients
- Fast interconnect diminishes need for async training algorithms
 - Avoid randomness in training due to computation schedule (there remains randomness due to SGD algorithm)



NVIDIA DGX-1:8 Pascal GPUs connected via high speed NV-Link interconnect

Accelerating data-parallel training FireCaffe [landola 16]

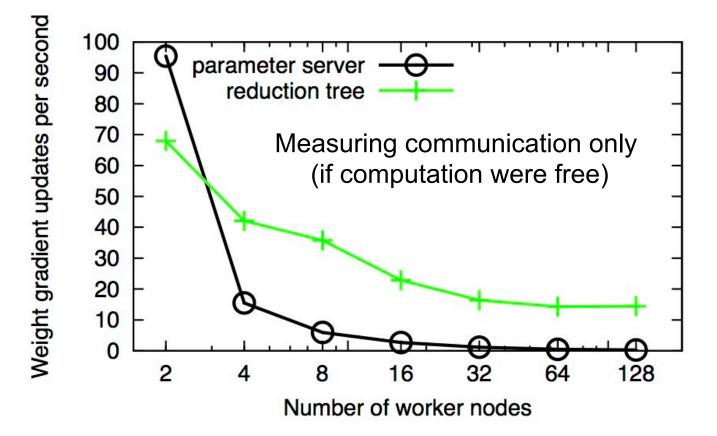
- Use a high-performance Cray Gemini interconnect (Titan supercomputer)
- Use combining tree for accumulating gradients (rather than a single parameter server)
- Use larger batch size (reduce frequency of communication) but offset by increasing learning rate

	Hardware	Net	Epochs	Batch	Initial Learning	Train	Speedup	Top-1	Top-5
				size	Rate	time		Accuracy	Accuracy
Caffe	1 NVIDIA K20	GoogLeNet [41]	64	32	0.01	21 days	1x	68.3%	88.7%
FireCaffe (ours)	32 NVIDIA K20s (Titan supercomputer)	GoogLeNet	72	1024	0.08	23.4 hours	20x	68.3%	88.7%
FireCaffe (ours)	128 NVIDIA K20s (Titan supercomputer)	GoogLeNet	72	1024	0.08	10.5 hours	47x	68.3%	88.7%

Dataset: ImageNet 1K

Result: reasonably scalability without asynchronous parameter update: for modern DNNs with fewer weights (due to no fully connected layers) such as GoogLeNet

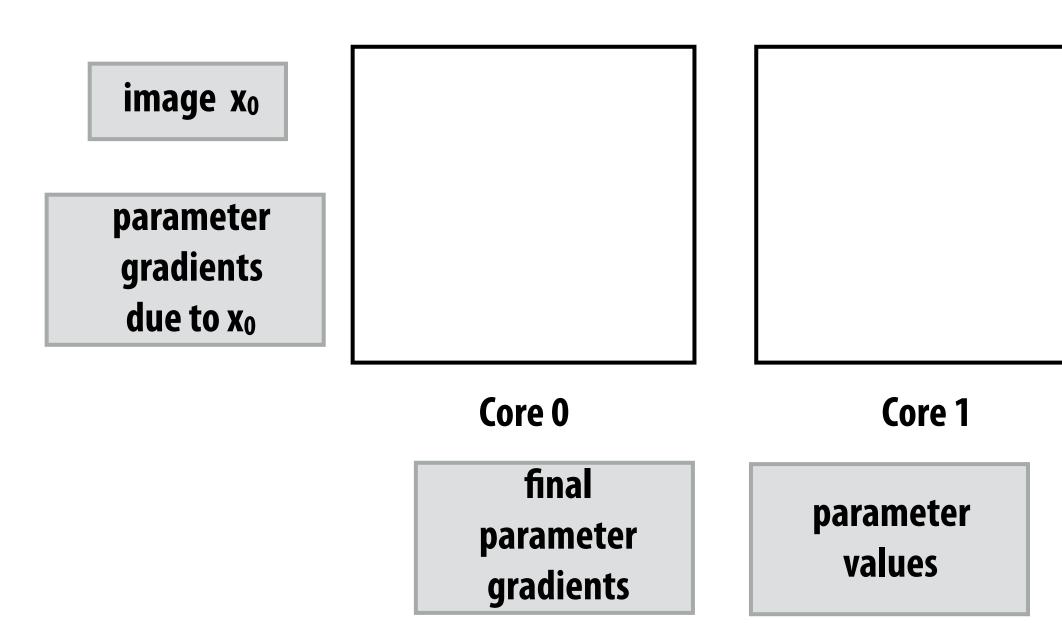
tan supercomputer) er than a single parameter server) ation) but offset by increasing



Parallelizing mini-batch on one machine

for each item x_i in mini-batch: grad += evaluate_loss_gradient(f, loss_func, params, x_i) params += -grad * step_size;

Consider parallelization of the outer for loop across cores



Good: completely independent computations (until gradient reduction) Bad: complete duplication of parameter gradient state (100's MB per core)

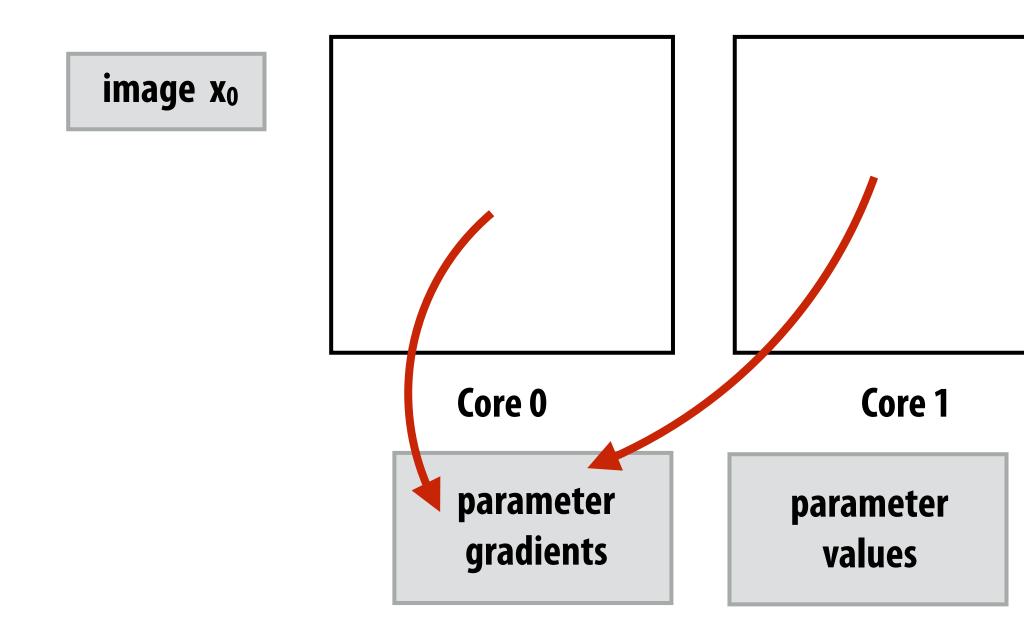
image x₁

parameter gradients due to x₁

Asynchronous update on one node

```
for each item x_i in mini-batch:
  grad += evaluate_loss_gradient(f, loss_func, params, x_i)
params += -grad * step_size;
```

Cores update shared set of gradients. Skip taking locks / synchronizing across cores: perform "approximate reduction"



Project Adam [Chilimbi OSDI14]

image x₁

Summary: training large networks in parallel

- Most systems rely on asynchronous update to efficiently use clusters of commodity machines
 - Modification of SGD algorithm to meet constraints of modern parallel systems
 - **Open question: effects on convergence are problem dependent and not** particularly well understood
 - **Tighter integration / faster interconnects may provide alternative to these** methods (facilitate tightly orchestrated solutions much like supercomputing applications)
- Although modern DNN designs (with fewer weights) and efficient use of high performance interconnects (much like any parallel computing problem) enables scalability without asynchronous execution.