
Visual Computing Systems 
CMU 15-769, Fall 2016

Lecture 9:

Training Deep Neural Networks 
(in parallel)
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How would you describe this professor?
Easy? 
Mean? 
Boring? 
Nerdy?
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Professor classification task

4

Input: 
image of a professor

Output: 
probability of each of four possible labels 

Easy: 
Mean: 
Boring: 
Nerdy:

?? 
?? 
?? 
??

Classifies professors as easy, mean, boring, or nerdy based on their appearance. 

f (image) 
“professor classifier”
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Professor classification network

  

Our model

● Max-pooling layers follow first, second, and 
fifth convolutional layers

● The number of neurons in each layer is given 
by 253440, 186624, 64896, 64896, 43264, 
4096, 4096, 1000

4

Input: 
image of a professor

Output: 
probability of label 

convlayer convlayer

convlayer convlayer convlayer

Easy: 
Mean: 
Boring: 
Nerdy:

?? 
?? 
?? 
??

Classifies professors as easy, mean, boring, or nerdy based on their appearance. 

Recall: 10’s-100’s of millions of parameters



 CMU 15-769, Fall 2016

Professor classification network

  

Our model

● Max-pooling layers follow first, second, and 
fifth convolutional layers

● The number of neurons in each layer is given 
by 253440, 186624, 64896, 64896, 43264, 
4096, 4096, 1000

4

convlayer convlayer

convlayer convlayer convlayer

Easy: 
Mean: 
Boring: 
Nerdy:

0.26 
0.08 
0.14 
0.52
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Training data (ground truth answers)

NerdyNerdy

NerdyNerdy

[label omitted] [label omitted] [label omitted] Nerdy [label omitted] [label omitted] [label omitted]

[label omitted] [label omitted] [label omitted] [label omitted] [label omitted]

[label omitted] [label omitted] [label omitted] [label omitted] [label omitted]
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Professor classification network

  

Our model

● Max-pooling layers follow first, second, and 
fifth convolutional layers

● The number of neurons in each layer is given 
by 253440, 186624, 64896, 64896, 43264, 
4096, 4096, 1000

4

convlayer convlayer

convlayer convlayer convlayer

Easy: 
Mean: 
Boring: 
Nerdy:

0.26 
0.08 
0.14 
0.52

Easy: 
Mean: 
Boring: 
Nerdy:

0.0 
0.0 
0.0 
1.0

New image of Kayvon 
(not in training set)

Ground truth 
(what the answer should be)

Network output
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Error (loss)

Easy: 
Mean: 
Boring: 
Nerdy:

Easy: 
Mean: 
Boring: 
Nerdy:

0.0 
0.0 
0.0 
1.0

Ground truth: 
(what the answer should be) Network output: *

0.26 
0.08 
0.14 
0.52

* In practice a network using a softmax classifier outputs unnormalized, log probabilities (fj),  
   but I’m showing a probability distribution above for clarity 

Common example: softmax loss:
L = �log

 
e

fc
P

j e
fj

!
Output of network 

for correct category

Output of network 
for all categories
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Training
Goal of training: learning good values of network parameters so that the network 
outputs the correct classification result for any input image 

Idea: minimize loss for all the training examples (for which the correct answer is known) 

Intuition: if the network gets the answer correct for a wide range of training examples, 
then hopefully it has learned parameter values that yield the correct answer for future 
images as well.

L =
X

i

Li (total loss for entire training set is sum of losses Li for each training example xi)
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Intuition: gradient descent
Say you had a function f that contained hidden parameters p1 and p2:

And for some input xi, your training data says the function should output 0.

But for the current values of p1 and p2, it currently outputs 10.

And say I also gave you expressions for the derivative of f with 
respect to p1 and p2 so you could compute their value at xi.

How might you adjust the values p1 and p2 to reduce the error for this training example?

f(xi, p1, p2) = 10

p1

p2

red = high values of f 
blue = low values

rf = [2,�5]
df

dp1
= 2

df

dp2
= �5

f(xi)
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Basic gradient descent
while	(loss	too	high):	

			for	each	item	x_i	in	training	set:	
						grad	+=	evaluate_loss_gradient(f,	params,	loss_func,	x_i)	
						
			params	+=	-grad	*	step_size;

Mini-batch stochastic gradient descent (mini-batch SGD): 
choose a random (small) subset of the training examples to compute gradient in each 
iteration of the while loop

How do we compute dLoss/dp for a deep neural network with millions of parameters?



 CMU 15-769, Fall 2016

Derivatives using the chain rule

f(x, y, z) = (x+ y)z = az

a = x+ yWhere:

df

da
= z

df

dx

=
df

da

da

dx

= z

da

dx

= 1

So, by the derivative chain rule:

x

y

z

+

*

3

4

5

7 (a)
5 

(df/da)

5 
(df/dx)

5 
(df/dy)

7 
(df/dz)

35

da

dy
= 1

1

Red = output of node
Blue = df/dnode
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Backpropagation

x

y
+ 10

10

10 dg

dx

= 1 ,
dg

dy

= 1g(x, y) = x+ y

df

dx

=
df

dg

dg

dx

x

y
max

10
0

10
15

12 g(x, y) = max(x, y)

dg

dx

=
1, if x > y
0, otherwise

x

y 10
10*15

10*12
15

12 * g(x, y) = xy

dg

dx

= y ,

dg

dy

= x

Red = output of node
Blue = df/dnode Recall:
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Backpropagating through single unit

f(x0, x1, x2, x3) = max

 
0,
X

i

xiwi + b

!Recall: behavior of unit:x0

*

max

w0

x1

*w1

x2

*w2

x3

*w3

+

+

+

b

+

0

dloss

dunit

10

y

y

y

y

y

y

y

y

y

yx3

let y =   
10, if upper input to max is > 0 
0,    otherwise

yx2

yx1

yx0

Observe: output of prior layer must be retained in order to compute 
weight gradients for this unit during backprop.

yw0

yw1

yw2

yw3
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Multiple uses of an input variable

x
+

10

y

*
+10

10

10

10

10*5

10*5

5
5
5

g(x, y) = (x+ y) + x ⇤ x = a+ b

da

dx

= 1 ,
db

dx

= 2x

dg

dx

=
dg

da

da

dx

+
dg

db

db

dx

= 2x+ 1

Sum gradients from each use 
of variable: 

Here:
df

dx

=
df

dg

dg

dx

= 10
dg

dx

= 10(2x+ 1)

= 10(10 + 1) = 110

Implication: backpropagation through all units in a convolutional layer adds 
gradients computed from each unit to the overall gradient for the shared weights
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Backpropagation: matrix form

2

6664

w0

w1
...
w8

3

7775

9

0			0			0			0			x00	x01	0			x10	x11

0			0			0			x00	x01	x02	x10	x11	x12

0			0			0			x01	x02	x03	x11	x12	x13

WxH

...

x00	x01	x02	x10	x11	x12	x20	x21	x22

...

X

w

*
X

w
y = Xw

dL

dy
(WxH)-element vector

9-element vector

dyj
dwi

= Xji

dL

dw
= XT dL

dy

dL

dw

Therefore:

dy

dw2

dL

dwi
=

X

j

dL

dyj

dyj
dwi

=
X

j

dL

dyj
Xji



 CMU 15-769, Fall 2016

Backpropagation through the entire professor 
classification network

  

Our model

● Max-pooling layers follow first, second, and 
fifth convolutional layers

● The number of neurons in each layer is given 
by 253440, 186624, 64896, 64896, 43264, 
4096, 4096, 1000

4

loss

For each training example xi  in mini-batch: 
Perform forward evaluation to compute loss for xi 
Compute gradient of loss w.r.t. final layer’s outputs 
Backpropagate gradient to compute gradient of loss w.r.t. all network parameters 
Accumulate gradients (over all images in batch) 

Update all parameter values:  w_new	=	w_old	-	step_size	*	grad



 CMU 15-769, Fall 2016

Recall from last class: VGG memory footprint

input: 224 x 224 RGB image 
conv: (3x3x3) x 64 
conv: (3x3x64) x 64 
maxpool 
conv: (3x3x64) x 128 
conv: (3x3x128) x 128 
maxpool 
conv: (3x3x128) x 256 
conv: (3x3x256) x 256 
conv: (3x3x256) x 256 
maxpool 
conv: (3x3x256) x 512 
conv: (3x3x512) x 512 
conv: (3x3x512) x 512 
maxpool 
conv: (3x3x512) x 512 
conv: (3x3x512) x 512 
conv: (3x3x512) x 512 
maxpool 
fully-connected 4096 
fully-connected 4096 
fully-connected 1000 
soft-max

Calculations assume 32-bit values (image batch size = 1)
weights mem:

output size 
(per image)

— 
6.5 KB 
144 KB 
— 
228 KB 
576 KB 
— 
1.1 MB 
2.3 MB 
2.3 MB 
— 
4.5 MB 
9 MB 
9 MB 
— 
9 MB 
9 MB 
9 MB 
— 
392 MB 
64 MB 
15.6 MB

224x224x3 
224x224x64 
224x224x64 
112x112x64 
112x112x128 
112x112x128 
56x56x128 
56x56x256 
56x56x256 
56x56x256 
28x28x256 
28x28x512 
28x28x512 
28x28x512 
14x14x512 
14x14x512 
14x14x512 
14x14x512 
7x7x512 
4096 
4096 
1000 
1000

150K 
12.3 MB 
12.3 MB 
3.1 MB 
6.2 MB 
6.2 MB 
1.5 MB 
3.1 MB 
3.1 MB 
3.1 MB 
766 KB 
1.5 MB 
1.5 MB 
1.5 MB 
383 KB 
383 KB 
383 KB 
383 KB 
98 KB 
16 KB 
16 KB 
4 KB 
4 KB

(mem)

Many weights in fully-
connected players

Storing convolution 
layer outputs (unit 
“activations”) can get 
big in early layers with 
large input size and 
many filters 

Note: multiply these 
numbers by N for batch 
size of N images
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Data lifetimes during network evaluation

  

Our model

● Max-pooling layers follow first, second, and 
fifth convolutional layers

● The number of neurons in each layer is given 
by 253440, 186624, 64896, 64896, 43264, 
4096, 4096, 1000

4

After evaluating layer i, can free outputs from layer i-1

Weights (read-only) reside in memory
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Data lifetimes during training

  

Our model

● Max-pooling layers follow first, second, and 
fifth convolutional layers

● The number of neurons in each layer is given 
by 253440, 186624, 64896, 64896, 43264, 
4096, 4096, 1000

4

- Must retain outputs for all layers because they are needed to compute gradients during back-prop 
- Parallel back-prop will require storage for per-weight gradients (more about this in a second) 
- In practice: may also store per-weight gradient velocity (if using SGD with “momentum”) or step 

cache in Adagrad

loss

fc7 grad 
4k x 4k

fc6 grad 
4k x 4k

conv4 grad 
3x3x384

conv5 grad 
3x3x256

conv3 grad 
3x3x384

conv2 grad 
5x5x256

conv1 grad 
11x11x96

fc7 vel 
4k x 4k

fc6 vel 
4k x 4k

conv4 vel 
3x3x384

conv5 vel 
3x3x256

conv3 vel 
3x3x384

conv2 vel 
5x5x256

conv1 vel 
11x11x96

vel_new	=	mu	*	vel_old	-	step_size	*	grad		
w_new	=	w_old	+	vel_new
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VGG memory footprint

input: 224 x 224 RGB image 
conv: (3x3x3) x 64 
conv: (3x3x64) x 64 
maxpool 
conv: (3x3x64) x 128 
conv: (3x3x128) x 128 
maxpool 
conv: (3x3x128) x 256 
conv: (3x3x256) x 256 
conv: (3x3x256) x 256 
maxpool 
conv: (3x3x256) x 512 
conv: (3x3x512) x 512 
conv: (3x3x512) x 512 
maxpool 
conv: (3x3x512) x 512 
conv: (3x3x512) x 512 
conv: (3x3x512) x 512 
maxpool 
fully-connected 4096 
fully-connected 4096 
fully-connected 1000 
soft-max

Calculations assume 32-bit values (image batch size = 1)
weights mem:

output size 
(per image)

— 
6.5 KB 
144 KB 
— 
228 KB 
576 KB 
— 
1.1 MB 
2.3 MB 
2.3 MB 
— 
4.5 MB 
9 MB 
9 MB 
— 
9 MB 
9 MB 
9 MB 
— 
392 MB 
64 MB 
15.6 MB

224x224x3 
224x224x64 
224x224x64 
112x112x64 
112x112x128 
112x112x128 
56x56x128 
56x56x256 
56x56x256 
56x56x256 
28x28x256 
28x28x512 
28x28x512 
28x28x512 
14x14x512 
14x14x512 
14x14x512 
14x14x512 
7x7x512 
4096 
4096 
1000 
1000

150K 
12.3 MB 
12.3 MB 
3.1 MB 
6.2 MB 
6.2 MB 
1.5 MB 
3.1 MB 
3.1 MB 
3.1 MB 
766 KB 
1.5 MB 
1.5 MB 
1.5 MB 
383 KB 
383 KB 
383 KB 
383 KB 
98 KB 
16 KB 
16 KB 
4 KB 
4 KB

(mem)

inputs/outputs get 
multiplied by mini- 
batch size

Unlike forward evaluation: 
1. cannot immediately free 

outputs once consumed 
by next level of network

Must also store per-
weight gradients 

Many implementations 
also store  gradient 
“momentum” as well 
(multiply by 3) 
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SGD workload

while	(loss	too	high):	

				
				
			for	each	item	x_i	in	mini-batch:	
						grad	+=	evaluate_loss_gradient(f,	loss_func,	params,	x_i)	
						
				
				
				
			params	+=	-grad	*	step_size;

At first glance, this loop is sequential (each step of 
“walking downhill” depends on previous)

Parallel across images

sum reduction
large computation with its own parallelism 
(but working set may not fit on single machine) 

trivial data-parallel over parameters
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DNN training workload
▪ Huge computational expense 

- Must evaluate the network (forward and backward) for millions of training images 
- Must iterate for many iterations of gradient descent (100’s of thousands) 
- Training modern networks takes days 

▪ Large memory footprint 
- Must maintain network layer outputs from forward pass 
- Additional memory to store gradients/gradient velocity for each parameter 
- Recall parameters for popular VGG-16 network require ~500 MB of memory (training 

requires GBs of memory for academic networks) 
- Scaling to larger networks requires partitioning DNN across nodes to keep DNN + 

intermediates in memory 

▪ Dependencies /synchronization (not embarrassingly parallel) 
- Each parameter update step depends on previous 
- Many units contribute to same parameter gradients (fine-scale reduction) 
- Different images in mini batch contribute to same parameter gradients
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Data-parallel training (across images)
			for	each	item	x_i	in	mini-batch:	
						grad	+=	evaluate_loss_gradient(f,	loss_func,	params,	x_i)	
			params	+=	-grad	*	step_size;

Consider parallelization of the outer for loop across machines in a cluster

image  x0

parameter
gradients 
due to x0

Node 0 

copy of 
parameter 

values

image  x1

parameter
gradients 
due to x1

copy of 
parameter 

values

Node 1 

			partition	mini-batch	across	nodes	
			for	each	item	x_i	in	mini-batch	assigned	to	local	node:	
						//	just	like	single	node	training	
						grad	+=	evaluate_loss_gradient(f,	loss_func,	params,	x_i)	
			barrier();	
			sum	reduce	gradients,	communicate	results	to	all	nodes	
			barrier();	
			update	copy	of	parameter	values
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Challenges of computing at cluster scale
▪ Slow communication between nodes 

- Commodity clusters do not feature high-performance 
interconnects (e.g., infiniband) typical of supercomputers 

▪ Nodes with different performance (even if machines are the same) 
- Workload imbalance at barriers (sync points between nodes)

Modern solution: exploit characteristics of SGD using 
asynchronous execution!
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Parameter server design

Worker 
Node 0 

Parameter 
Server

parameter 
values

Pool of worker nodes

Worker 
Node 1 

Worker 
Node 2 

Worker 
Node 3 

Parameter Server [Li OSDI14] 
Google’s DistBelief [Dean NIPS12] 
Microsoft’s Project Adam [Chilimbi OSDI14] 
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Training data partitioned among workers

Worker 
Node 0 

Parameter 
Server

Pool of worker nodes

x0 - x1000

x1000 - x2000

Worker 
Node 1 

x2000-3000

x3000-4000

training data training data

training data training data

Worker 
Node 2 

Worker 
Node 3 

parameter 
values (v0)
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Copy of parameters sent to workers

Worker 
Node 0 

Parameter 
Server

Pool of worker nodes

Worker 
Node 1 

training data training data

training data training data

local copy of 
parameters (v0)

Worker 
Node 2 

Worker 
Node 3 

parameter 
values (v0)local copy of 

parameters (v0)

local copy of 
parameters (v0)

local copy of 
parameters (v0)

params v0

params v0

params v0

params v0
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Workers independently compute local “subgradients"

Worker 
Node 0 

Parameter 
Server

Pool of worker nodes

Worker 
Node 1 

training data training data

training data training data

Worker 
Node 2 

Worker 
Node 3 

local 
subgradients

parameter 
values (v0)

local 
subgradients

local 
subgradients

local 
subgradients

local copy of 
parameters (v0)

local copy of 
parameters (v0)

local copy of 
parameters (v0)

local copy of 
parameters (v0)
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Worker sends subgradient to parameter server

Worker 
Node 0 

Parameter 
Server

parameter 
values (v0)

Pool of worker nodes

Worker 
Node 1 

training data training data

training data training data

Worker 
Node 2 

Worker 
Node 3 

subgradient

local 
subgradients

local 
subgradients

local 
subgradients

local 
subgradients

local copy of 
parameters (v0)

local copy of 
parameters (v0)

local copy of 
parameters (v0)

local copy of 
parameters (v0)
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Server updates global parameter values based on 
subgradient

Worker 
Node 0 

Parameter 
Server

parameter 
values (v1)

Worker 
Node 1 

training data training data

training data training data

Worker 
Node 2 

Worker 
Node 3 

local 
subgradients

local 
subgradients

local 
subgradients

local 
subgradients

local copy of 
parameters (v0)

local copy of 
parameters (v0)

local copy of 
parameters (v0)

local copy of 
parameters (v0)

params	+=	-subgrad	*	step_size;
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Updated parameters sent to worker 
Worker proceeds with another gradient computation step

Worker 
Node 0 

Parameter 
Server

parameter 
values (v1)

Worker 
Node 1 

training data training data

training data training data

Worker 
Node 2 

Worker 
Node 3 

local 
subgradients

local 
subgradients

local 
subgradients

local 
subgradients

local copy of 
parameters (v0)

local copy of 
parameters (v1)

local copy of 
parameters (v0)

local copy of 
parameters (v0)

Note:  

Node 1 is operating on different set of parameter 
values than other nodes 

Those parameter values were computed without 
gradient information from the other nodes

params v1
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Updated parameters sent to worker (again)

Worker 
Node 0 

Parameter 
Server

parameter 
values (v1)

Worker 
Node 1 

training data training data

training data training data

Worker 
Node 2 

Worker 
Node 3 

local 
subgradients

local 
subgradients

local 
subgradients

local 
subgradients

local copy of 
parameters (v0)

local copy of 
parameters (v1)

local copy of 
parameters (v0)

local copy of 
parameters (v0)

subgradient
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Worker continues with updated parameters

Worker 
Node 0 

Parameter 
Server

parameter 
values (v2)

Worker 
Node 1 

training data training data

training data training data

Worker 
Node 2 

Worker 
Node 3 

local 
subgradients

local 
subgradients

local 
subgradients

local 
subgradients

local copy of 
parameters (v0)

local copy of 
parameters (v1)

local copy of 
parameters (v0)

local copy of 
parameters (v2)

params v2
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Summary: asynchronous parameter update
▪ Idea: avoid global synchronization on all parameter updates 

between each SGD iteration 
- Design reflects realities of cluster computing: 

- Slow interconnects 
- Unpredictable machine performance 

▪ Solution: asynchronous (and partial) subgradient updates 

▪ Will impact convergence of SGD 
- Node N working on iteration i may not have parameter values that result the 

results of the i-1 prior SGD iterations
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Bottleneck?

Worker 
Node 0 

Parameter 
Server

parameter 
values (v2)

Worker 
Node 1 

training data training data

training data training data

Worker 
Node 2 

Worker 
Node 3 

local 
subgradients

local 
subgradients

local 
subgradients

local 
subgradients

local copy of 
parameters (v0)

local copy of 
parameters (v1)

local copy of 
parameters (v0)

local copy of 
parameters (v2)

What if there is heavy contention for parameter server?
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Shard the parameter server

Worker 
Node 0 

Parameter 
Server 0

parameter 
values 

(chunk 0)

Worker 
Node 1 

training data training data

training data training data

Worker 
Node 2 

Worker 
Node 3 

local 
subgradients

local 
subgradients

local 
subgradients

local 
subgradients

local copy of 
parameters (v0)

local copy of 
parameters (v1)

local copy of 
parameters (v0)

local copy of 
parameters (v2)

Partition parameters across servers 
Worker sends chunk of subgradients to owning parameter server

Parameter 
Server 1

parameter 
values 

(chunk 1)

subgradient 
(chunk 0)

subgradient 
(chunk 1)

Reduces data transmission load on individual servers 
(less important: also reduces cost of parameter update)
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What if model parameters do not fit on one worker?

Worker 
Node 0 

Parameter 
Server 0

parameter 
values 

(chunk 0)

Worker 
Node 1 

training data training data

training data training data

Worker 
Node 2 

Worker 
Node 3 

local 
subgradients

local 
subgradients

local 
subgradients

local 
subgradients

local copy of 
parameters (v0)

local copy of 
parameters (v1)

local copy of 
parameters (v0)

local copy of 
parameters (v2)

Parameter 
Server 1

parameter 
values 

(chunk 1)

Recall high footprint of training large networks 
(particularly with large mini-batch sizes) 
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Model parallelism

  

Our model

● Max-pooling layers follow first, second, and 
fifth convolutional layers

● The number of neurons in each layer is given 
by 253440, 186624, 64896, 64896, 43264, 
4096, 4096, 1000

4

Worker 
Node 0 

Worker 
Node 1 

Partition network parameters across nodes 
(spatial partitioning to reduce communication) 

Reduce internode communication through network design:  
- Use small spatial convolutions (1x1 convolutions)  
- Reduce/shrink fully-connected layers  

Convolutional layers: only 
need to community outputs 

near spatial partition 

Fully-connected layers: 
all data owned by a node 
must by communicated to 

other nodes
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Training data-parallel and model-parallel execution

Worker 
Node 0 

Parameter 
Server 0

parameter 
values 

(chunk 0)

Worker 
Node 1 

training data training data

training data training data

Worker 
Node 2 

Worker 
Node 3 

local 
subgradients 

chunk 1

local 
subgradients 

chunk 0

local copy of 
parameters (v1): 

chunk 0

local copy of 
parameters (v1): 

chunk 1

Parameter 
Server 1

parameter 
values 

(chunk 1)

Working on subgradient computation 
for a single copy of the model

local copy of 
parameters (v0): 

chunk 0

local copy of 
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Using supercomputers for training?
▪ Fast interconnects critical for model-parallel training 

- Fine-grained communication of outputs and gradients 

▪ Fast interconnect diminishes need for async training algorithms 
- Avoid randomness in training due to computation schedule (there remains 

randomness due to SGD algorithm)

OakRidge Titan Supercomputer NVIDIA DGX-1: 8 Pascal GPUs connected 
via high speed NV-Link interconnect
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Accelerating data-parallel training
▪ Use a high-performance Cray Gemini interconnect (Titan supercomputer) 

▪ Use combining tree for accumulating gradients (rather than a single parameter server) 

▪ Use larger batch size (reduce frequency of communication) but offset by increasing 
learning rate  

FireCaffe [Iandola 16]

to 21 days on a single GPU. Finally, on 128 GPUs, we achieve a 47x speedup over single-GPU GoogLeNet training, while
matching the single-GPU accuracy.

Table 3. Accelerating the training of ultra-deep, computationally intensive models on ImageNet-1k.
Hardware Net Epochs Batch

size
Initial Learning

Rate
Train
time

Speedup Top-1
Accuracy

Top-5
Accuracy

Caffe 1 NVIDIA K20 GoogLeNet
[41]

64 32 0.01 21 days 1x 68.3% 88.7%

FireCaffe
(ours)

32 NVIDIA K20s (Titan
supercomputer)

GoogLeNet 72 1024 0.08 23.4
hours

20x 68.3% 88.7%

FireCaffe
(ours)

128 NVIDIA K20s (Titan
supercomputer)

GoogLeNet 72 1024 0.08 10.5
hours

47x 68.3% 88.7%

8. Complementary approaches to accelerate DNN training
We have discussed related work throughout the paper, but we now provide a brief survey of additional techniques to

accelerate deep neural network training. Several of the following techniques could be used in concert with FireCaffe to
further accelerate DNN training.

8.1. Accelerating convolution on GPUs
In the DNN architectures discussed in this paper, more than 90% of the floating-point operations in forward and back-

ward propagation reside in convolution layers, so accelerating convolution is key to getting the most out of each GPU.
Recently, a number of techniques have been developed to accelerate convolution on GPUs. Unlike CPUs, NVIDIA GPUs
have an inverted memory hierarchy, where the register file is larger than the L1 cache. Volkov and Demmel [44] pioneered
a communication-avoiding strategy to accelerate matrix multiplication on GPUs by staging as much data as possible in reg-
isters while maximizing data reuse. Iandola et al. [23] extended the communication-avoiding techniques to accelerate 2D
convolution; and cuDNN [7] and maxDNN [30] extended the techniques to accelerate 3D convolution. FireCaffe can be
coupled with current and future GPU hardware and convolution libraries for further speedups.

8.2. Reducing communication among servers
Reducing the quantity of data communicated per batch is a useful way to increase the speed and scalability of DNN

training. There is an inherent tradeoff here: as gradients are more aggressively quantized, training speed goes up, but the
model’s accuracy may go down compared to a non-quantized baseline. While FireCaffe uses 32-bit floating-point values
for weight gradients, Jeffrey Dean stated in a recent keynote speech that Google often uses 16-bit floating-point values for
communication between servers in DNN training [11]. Along the same lines, Wawrzynek et al. used 16-bit weights and
8-bit activations in distributed neural network training [45]. Going one step further, Seide et al. used 1-bit gradients for
backpropagation, albeit with a drop in the accuracy of the trained model [37]. Finally, a related strategy to reduce communi-
cation between servers is to discard (and not communicate) gradients whose numerical values fall below a certain threshold.
Amazon presented such a thresholding strategy in a recent paper on scaling up DNN training for speech recognition [40].
However, Amazon’s evaluation uses a proprietary dataset, so it is not clear how this type of thresholding impacts the accuracy
compared to a well-understood baseline.

So far in this section, we have discussed strategies for compressing or quantizing data to communicate in distributed DNN
training. There has also been a series of studies on applying dimensionality reduction to DNNs once they have been trained.
Jaderberg et al. [26] and Zhang et al. [50] both use PCA to compress the weights of DNN models by up to 5x, albeit with
a substantial reduction in the model’s classification accuracy. Han et al. [20] use a combination of pruning, quantization,
and Huffman encoding to compress the weights of pretrained models by 35x with no reduction in accuracy. Thus far, these
algorithms have only been able to accelerate DNNs at test time.

9. Conclusions
Long training times impose a severe limitation on progress in deep neural network research and productization. Acceler-

ating DNN training has several benefits. First, faster DNN training enables models to be trained on ever-increasing dataset
sizes in a tractable amount of time. Accelerating DNN training also enables product teams to bring DNN-based products
to market more rapidly. Finally, there are a number of compelling use-cases for real-time DNN training, such as robot self-
learning. These and other compelling applications led us to focus on the problem of accelerating DNN training, and our work
has culminated in the FireCaffe distributed DNN training system.
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Dataset: ImageNet 1K

Result: reasonably scalability without 
asynchronous parameter update: for modern DNNs 
with fewer weights (due to no fully connected 
layers) such as GoogLeNet

Measuring communication only  
(if computation were free) 

Figure 4. Comparing communication overhead with a parameter server vs. a reduction tree. This is for the Network-in-Network DNN
architecture, so each GPU worker contributes 30MB of gradient updates.

7. Evaluation of FireCaffe-accelerated training on ImageNet
In this section, we evaluate how FireCaffe can accelerate DNN training on a cluster of GPUs. We train GoogLeNet [41]

and Network-in-Network [32] on up to 128 GPU servers in the Titan supercomputer (described in Section 2), leveraging
FireCaffe’s reduction tree data parallelism (Section 6.2). We begin by describing our evaluation methodology, and then we
analyze the results.

7.1. Evaluation Methodology
We now describe a few practices that aid in comparing advancements in accelerating the training of deep neural networks.

1. Evaluate the speed and accuracy of DNN training on a publicly-available dataset.
In a recent study, Azizpour et al. applied DNNs to more than 10 different visual recognition challenge datasets, including
human attribute prediction, fine-grained flower classification, and indoor scene recognition [5]. The accuracy obtained by
Azizpour et al. ranged from 56% on scene recognition to 91% on human attribute prediction. As you can see, the accuracy
of DNNs and other machine learning algorithms depends highly on the specifics of the application and dataset to which they
are applied. Thus, when researchers report improvements in training speed or accuracy on proprietary datasets, there is no
clear way to compare the improvements with the related literature. For example, Baidu [46] and Amazon [40] recently pre-
sented results on accelerating DNN training. Amazon and Baidu2 each reported their training time numbers on a proprietary
dataset, so it’s not clear how to compare these results with the related literature. In contrast, we conduct our evaluation on a
publicly-available dataset, ImageNet-1k [13], which contains more than 1 million training images, and each image is labeled
as containing 1 of 1000 object categories. ImageNet-1k is a widely-studied dataset, so we can easily compare our accuracy,
training speed, and scalability results with other studies that use this data.

2. Report hyperparameter settings such as weight initialization, momentum, batch size, and learning rate.
Glorot et al. [18], Breuel [6], and Xu et al. [48] have each shown that seemingly-subtle hyperparameter settings such as
weight initialization can have a big impact on the speed and accuracy produced in DNN training. When training Network-
in-Network (NiN) [32], we initialize the weights with a gaussian distribution centered at 0, and we set the standard deviation
(std) to 0.01 for 1x1 convolution layers, and we use std=0.05 for other layers. For NiN, we initialize the bias terms to a
constant value of 0, we set the weight decay to 0.0005, and we set momentum to 0.9. These settings are consistent with the
Caffe configuration files released by the NiN authors [32].

Frustratingly, in Google’s technical reports on GoogLeNet [41, 25], training details such as batch size, momentum, and
learning rate are not disclosed. Fortunately, Wu et al. [47] and Guadarrama [19] each reproduced GoogLeNet and released
all the details of their training protocols. As in [19], we train GoogLeNet with momentum=0.9 and weight decay=0.0002, we

2Baidu evaluated their training times using proprietary dataset [46]. Baidu also did some ImageNet experiments, but Baidu did not report the training
time on ImageNet.

7
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Parallelizing mini-batch on one machine
			for	each	item	x_i	in	mini-batch:	
						grad	+=	evaluate_loss_gradient(f,	loss_func,	params,	x_i)	
			params	+=	-grad	*	step_size;

Consider parallelization of the outer for loop across cores

image  x0

parameter
gradients 
due to x0

Core 0

image  x1

parameter
gradients 
due to x1

Core 1

Good: completely independent computations (until gradient reduction)
Bad: complete duplication of parameter gradient state (100’s MB per core)

final 
parameter
gradients

parameter 
values
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Asynchronous update on one node
			for	each	item	x_i	in	mini-batch:	
						grad	+=	evaluate_loss_gradient(f,	loss_func,	params,	x_i)	
			params	+=	-grad	*	step_size;

Cores update shared set of gradients.  
Skip taking locks / synchronizing across cores: perform “approximate reduction”

image  x0

Core 0

image  x1

Core 1

parameter
gradients

parameter 
values

Project Adam [Chilimbi OSDI14] 
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Summary: training large networks in parallel
▪ Most systems rely on asynchronous update to efficiently use 

clusters of commodity machines 
- Modification of SGD algorithm to meet constraints of modern parallel systems 
- Open question: effects on convergence are problem dependent and not 

particularly well understood 
- Tighter integration / faster interconnects may provide alternative to these 

methods (facilitate tightly orchestrated solutions much like supercomputing 
applications) 

▪ Although modern DNN designs (with fewer weights) and 
efficient use of high performance interconnects (much like 
any parallel computing problem) enables scalability without 
asynchronous execution. 


