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So far, the discussion in this class has focused 
on generating efficient code for multi-core 

processors such as CPUs and GPUs. 
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Consider the complexity of executing an 
instruction on a modern processor…

Read instruction
Decode instruction
Check for dependencies/pipeline hazards
Identify available execution resource
Use decoded operands to control register file SRAM (retrieve data)
Move data from register file to selected execution resource
Perform arithmetic operation
Move data from execution resource to register file
Use decoded operands to control write to register file SRAM

Translate op to uops, access uop cache, etc. 

Address translation, communicate with icache, access icache, etc. 

Question: 
How does SIMD execution reduce overhead when executing certain types of computations? 
What properties must these computations have?
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Fraction of energy consumed by different parts of 
instruction pipeline (H.264 video encoding)

 
 

acc = 0; 
acc = AddShft(acc, x0, x1
acc = AddShft(acc, x

, 20); 
-1, x2

acc = AddShft(acc, x
, -5); 

-2, x3
xn = Sat(acc); 

, 1); 

 

Figure 5. FME upsampling after fusion of two multiplications and two 
additions. AddShft takes two inputs, multiplies both with the 
multiplicand and adds the result. Multiplication is performed using 
shifts and adds. Operation fusion results in 3 instructions instead of 
the RISC’s 5 add/sub and 4 multiplication instructions. 

 

Table 5. Fused operations added to each unit and the resulting 
performance and energy gains. FME required fusion of large 
subgraphs to get significant performance improvement. 

 
# of 

fused 
ops 

Op 
Depth 

Energy 
Gain 

Perf 
Gain 

IME 4 3-5 1.5 1.6 
FME 2 18-34 1.9 2.4 
Intra 8 3-7 1.9 2.1 

CABAC 5 3-7 1.1 1.1 

Table 5 presents the number of fused operations created for each 
H.264 algorithm, the average size of the fused instruction 
subgraphs, and the total energy and performance gain achieved 
through fusion.  Interestingly, IME and FME do not share any 
instructions, though Intra and FME share instructions for the 
Hadamard transform. DCT transform also implements the same 

transform instructions. CABAC’s fused operations provide 
negligible performance and energy gains of 1.1x.  Fused 
instructions give the largest advantage for FME, on average 
doubling the energy/performance advantage of SIMD/VLIW. 
Employing fused operations in combination with SIMD/VLIW 
results in an overall performance improvement of 15x for the 
H.264 encoder, and an energy efficiency gain of almost 10x, but 
still uses greater than 50x more energy than an ASIC.   
The basic problem is clear.  For H.264, the basic operations are 
very simple and low energy.  In our base machine we over-
estimate the energy consumed by the functional units, since we 
count the entire 32–wide functional unit energy.  When we move 
to the SIMD machine, we tailor the functional unit to the desired 
width, which reduces the required energy. However, executing 
10s of narrow width operations per instruction still leaves a 
machine that is spending 90% of its energy on overhead functions, 
with only 10% going to the functional units. 

4.3 Algorithm Specific Instructions 
To bridge the remaining gap, we must create instructions that can 
execute 100s of operations in a single instruction.  To achieve this 
parallelism requires creating instructions that are tightly 
connected to custom data storage elements with algorithm-
specific communication links to supply the large amounts of data 
required, and thus tend to be very closely tied to the specific 
algorithmic methods being optimized. These storage elements can 
then be directly wired to custom designed multiple input and 
possibly multiple output functional units, directly implementing 
the required communication for the function in hardware.  

Once this hardware is in place, the machine can issue “magic” 
instructions that can accomplish large amounts of computation at 
very low costs. This type of structure eliminates almost all the 

Figure 4. Datapath energy breakdown for H.264. IF is instruction fetch/decode (including the I-cache). D-$ is the D-cache. Pip is the 
pipeline registers, busses, and clocking. Ctl is random control.  RF is the register file. FU is the functional elements. Only the top bar 
(FU), or perhaps the top two (FU + RF) contribute useful work in the processor.  For this application it is hard to achieve much more 
than 10% of the power in the FU without adding custom hardware units.  This data was estimated from processor simulations. 

42

FU = functional units
RF = register fetch
Ctrl = misc pipeline control

Pip = pipeline registers (interstage)

IF = instruction fetch + instruction cache
D-$ = data cache

integer motion estimation fractional (subpixel) 
motion estimation

intraframe prediction, 
DTC, quantization

arithmetic encoding

no SIMD/VLIW vs. SIMD/VLIW
[Hameed et al. ISCA 2010]
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DSPs
▪ Typically simpler instruction stream control paths  
▪ Complex instructions (e.g., SIMD/VLIW): perform many operations per instruction

8 
Qualcomm Technologies, Inc. All Rights Reserved 

Maximizing the signal processing code work/packet 
Example from inner loop of FFT: Executing 29 “simple RISC ops” in 1 cycle 
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{ R17:16 = MEMD(R0++M1)       
  MEMD(R6++M1) = R25:24      
  R20 = CMPY(R20, R8):<<1:rnd:sat    
  R11:10 = VADDH(R11:10, R13:12) 
 }:endloop0 

 

Complex multiply with 
round and saturation 

Vector 4x16-bit Add 

64-bit Load and  

Zero-overhead loops 
• Dec count 
• Compare 
• Jump top 

64-bit Store with 
post-update 
addressing  

Example: Qualcomm Hexagon 
Used for modem, audio, and (increasingly) image 
processing on Qualcomm Snapdragon SoC processors 

Below: innermost loop of FFT 
29 “RISC” ops per cycle

7 
Qualcomm Technologies, Inc. All Rights Reserved 

Instruction Unit 

VLIW: Area & power efficient multi-issue 

Data Unit 
(Load/ 
Store/  
ALU) 

Data Unit 
(Load/ 
Store/  
ALU) 

Execution 
Unit  

(64-bit 
Vector) 

Execution 
Unit  

(64-bit 
Vector) 

Data Cache 

L2 
Cache 
/ TCM 

Instruction 
Cache 

• Dual 64-bit 
load/store 
units 

• Also 32-bit 
ALU 

Variable sized 
instruction packets  
(1 to 4 instructions 
per Packet) 

• Dual 64-bit execution units 
• Standard 8/16/32/64bit data 

types 
• SIMD vectorized MPY / ALU 

/ SHIFT, Permute, BitOps 
• Up to 8 16b MAC/cycle 
• 2 SP FMA/cycle 

Register File 
Register File 

Register File/Thread 

• Unified 32x32bit 
General Register 
File is best for 
compiler.  

• No separate Address 
or Accum Regs 

• Per-Thread 

Device 
DDR 

Memory 



 CMU 15-769, Fall 2016

Contrast to custom circuit to perform the operation
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Example: 8-bit logical OR
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Recall use of custom circuits in modern SoC

Audio encode/decode 
Video encode/decode 
High-frame rate camera RAW processing (ISP) 
Data compression 

Example: NVIDIA Tegra X1
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Aside: Anton supercomputer
▪ Supercomputer containing custom circuits for molecular dynamics 

- Simulates time evolution of proteins 

▪ ASIC for computing particle-particle interaction in a single cycle 
- Anton 1: 512 particle-particle interaction units

[Developed by DE Shaw Research]
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FPGAs (field programmable gate arrays)
▪ FPGA chip provides array of logic blocks, connected by interconnect  

▪ Programmer defines behavior of logic blocks via hardware description language 
(HDL) like Verilog or VHDL

Programmable lookup table (LUT)
Flip flop (a register)
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Specifying combinatorial logic via LUT
▪ Example: 6-input, 1 output LUT in Xilinx Virtex-7 FPGAs 

- Think of a LUT6 as a 64 element table

LUT6

 

B. Wide input multiplexers 
 

Modern Xilinx FPGAs also contain MUXFX multiplexers dedicated for the design of wide input 
multiplexers. In addition to the basic LUTs, SLICEL and SLICEM contain three multiplexers 
(F7AMUX, F7BMUX, and F8MUX). These multiplexers are used to combine up to four function 
generators to provide any function of seven or eight inputs in a slice. F7AMUX and F7BMUX are 
used to generate seven input functions from a slice while F8MUX is used to combine all slices to 
generate eight input functions. With more than eight inputs can be implemented using multiple slices. 
As a LUT4 can support a maximum of 2:1 MUX as shown in figure 5 .With LUT6 we can implement 
4:1 MUX shown in figure 6. 
  
We can implement 8 to 1 multiplexer using two 6-input LUTs and F7 Mux as shown in figure 7 while 
a slice can implement 16:1 Mux as shown in figure 8. In modern FPGAs (Spartan 6, Virtex 5, Virtex 
6) each column of CLBs contain two slice columns. One column is a SLICEX column, the other 
column alternates between SLICEL and SLICEMs. 
 

 
 
 
 
 
 
 
 
 
 
 
 

Applied Mechanics and Materials Vols. 241-244 2551

Image credit: [Zia 2013]
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In OutExample: 
6-input AND

40-input AND constructed by chaining 
outputs of eight LUT6’s (delay = 3)
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Question
▪ What is the role of an ISA? (e.g., x86)

Answer: interface between program definition (software) and 
hardware implementation

Compilers produce sequence of instructions 

Hardware executes sequences of instructions as efficiently as possible 
(As shown earlier in lecture, many circuits used to implement/preserve 
this abstraction, not execute the computation needed by the program)



 CMU 15-769, Fall 2016

New ways of defining hardware
▪ Verilog/VHDL present very low level programming abstractions for 

modeling circuits (RTL abstraction: register transfer level) 
- Combinatorial logic 
- Registers 

▪ Due to need for greater efficiency, there is significant modern 
interest in making it easier to synthesize circuit-level designs 
- Skip the ISA, directly synthesize circuits needed to compute the tasks defined by a 

program. 
- Raise the level of abstraction of direct hardware programming 

▪ Examples: 
- C to HDL (e.g.,  ROCCC, Vivado) 
- Bluespec 
- CoRAM [Chung 11] 
- Chisel [Bachrach 2012]



 CMU 15-769, Fall 2016

Enter domain specific languages
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Compiling image processing pipelines directly to FPGAs

▪ Darkroom [Hegarty 2014] 

▪ Rigel [Hegarty 2016] 

▪ Motivation: 
- Convenience of high-level description of image processing algorithms (like Halide) 

- Energy-efficiency of FPGA implementations 
(particularly important for high-frame rate, low-latency, always on, embedded/robotics applications)
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Optimizing for minimal buffering
▪ Recall: scheduling Halide programs for CPUs/GPUs 

- Key challenge: organize computation so intermediate buffers fit in caches 

▪ Scheduling for FPGAs: 

- Key challenge: minimize size of intermediate buffers (keep buffered data 
spatially close to combinatorial logic)

out(x)	=		(in(x-1)	+	in(x)	+	in(x+1))	/	3.0

out_pixel	=	(buf0	+	buf1	+	buf2)	/	3	
buf0	=	buf1	
buf1	=	buf2	
buf2	=	in_pixel

Consider 1D convolution:

Efficient hardware implementation: requires storage for 3 pixels in registers

buf1buf0 buf2
arithmetic

input pixel
(from sensor)output

“Shift” new pixel in
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Line buffering

out(x,y)	=	(in(x,y-1)	+	in(x,y)	+	in(x,y+1))	/	3.0

let	buf	be	a	shift	register	containing	2*WIDTH+1	pixels	(“line	buffer”)	

//	assume:	no	output	until	shift	register	fills	
out_pixel	=	(buf[0]	+	buf[WIDTH]	+	buf[2*WIDTH])	/	3.0	
shift(buf);		//	buf[i]	=	buf[i+1]	
buf[2*WIDTH]	=	in_pixel

Consider convolution of 2D image in vertical direction:

Efficient hardware implementation:

arithmetic
input pixel

(from sensor)output

buf[0] buf[2*WIDTH]buf[WIDTH]

buf[2*WIDTH]

buf[WIDTH]
buf[0] buf[1]

input image:
WIDTH pixels

Note: despite notation, line buffer *is not* a random access SRAM, it is a shift register
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Class discussion: Rigel
[Hegarty 2016]


