
Visual Computing Systems
CMU 15-769, Fall 2016

Lecture 6:

Specializing Hardware for
Image Processing

 CMU 15-769, Fall 2016

So far, the discussion in this class has focused
on generating efficient code for multi-core

processors such as CPUs and GPUs.

 CMU 15-769, Fall 2016

Consider the complexity of executing an
instruction on a modern processor…

Read instruction
Decode instruction
Check for dependencies/pipeline hazards
Identify available execution resource
Use decoded operands to control register file SRAM (retrieve data)
Move data from register file to selected execution resource
Perform arithmetic operation
Move data from execution resource to register file
Use decoded operands to control write to register file SRAM

Translate op to uops, access uop cache, etc.

Address translation, communicate with icache, access icache, etc.

Question:
How does SIMD execution reduce overhead when executing certain types of computations?
What properties must these computations have?

 CMU 15-769, Fall 2016

Fraction of energy consumed by different parts of
instruction pipeline (H.264 video encoding)

acc = 0;
acc = AddShft(acc, x0, x1
acc = AddShft(acc, x

, 20);
-1, x2

acc = AddShft(acc, x
, -5);

-2, x3
xn = Sat(acc);

, 1);

Figure 5. FME upsampling after fusion of two multiplications and two
additions. AddShft takes two inputs, multiplies both with the
multiplicand and adds the result. Multiplication is performed using
shifts and adds. Operation fusion results in 3 instructions instead of
the RISC’s 5 add/sub and 4 multiplication instructions.

Table 5. Fused operations added to each unit and the resulting
performance and energy gains. FME required fusion of large
subgraphs to get significant performance improvement.

of

fused
ops

Op
Depth

Energy
Gain

Perf
Gain

IME 4 3-5 1.5 1.6
FME 2 18-34 1.9 2.4
Intra 8 3-7 1.9 2.1

CABAC 5 3-7 1.1 1.1

Table 5 presents the number of fused operations created for each
H.264 algorithm, the average size of the fused instruction
subgraphs, and the total energy and performance gain achieved
through fusion. Interestingly, IME and FME do not share any
instructions, though Intra and FME share instructions for the
Hadamard transform. DCT transform also implements the same

transform instructions. CABAC’s fused operations provide
negligible performance and energy gains of 1.1x. Fused
instructions give the largest advantage for FME, on average
doubling the energy/performance advantage of SIMD/VLIW.
Employing fused operations in combination with SIMD/VLIW
results in an overall performance improvement of 15x for the
H.264 encoder, and an energy efficiency gain of almost 10x, but
still uses greater than 50x more energy than an ASIC.
The basic problem is clear. For H.264, the basic operations are
very simple and low energy. In our base machine we over-
estimate the energy consumed by the functional units, since we
count the entire 32–wide functional unit energy. When we move
to the SIMD machine, we tailor the functional unit to the desired
width, which reduces the required energy. However, executing
10s of narrow width operations per instruction still leaves a
machine that is spending 90% of its energy on overhead functions,
with only 10% going to the functional units.

4.3 Algorithm Specific Instructions
To bridge the remaining gap, we must create instructions that can
execute 100s of operations in a single instruction. To achieve this
parallelism requires creating instructions that are tightly
connected to custom data storage elements with algorithm-
specific communication links to supply the large amounts of data
required, and thus tend to be very closely tied to the specific
algorithmic methods being optimized. These storage elements can
then be directly wired to custom designed multiple input and
possibly multiple output functional units, directly implementing
the required communication for the function in hardware.

Once this hardware is in place, the machine can issue “magic”
instructions that can accomplish large amounts of computation at
very low costs. This type of structure eliminates almost all the

Figure 4. Datapath energy breakdown for H.264. IF is instruction fetch/decode (including the I-cache). D-$ is the D-cache. Pip is the
pipeline registers, busses, and clocking. Ctl is random control. RF is the register file. FU is the functional elements. Only the top bar
(FU), or perhaps the top two (FU + RF) contribute useful work in the processor. For this application it is hard to achieve much more
than 10% of the power in the FU without adding custom hardware units. This data was estimated from processor simulations.

42

FU = functional units
RF = register fetch
Ctrl = misc pipeline control

Pip = pipeline registers (interstage)

IF = instruction fetch + instruction cache
D-$ = data cache

integer motion estimation fractional (subpixel)
motion estimation

intraframe prediction,
DTC, quantization

arithmetic encoding

no SIMD/VLIW vs. SIMD/VLIW
[Hameed et al. ISCA 2010]

 CMU 15-769, Fall 2016

DSPs
▪ Typically simpler instruction stream control paths
▪ Complex instructions (e.g., SIMD/VLIW): perform many operations per instruction

8
Qualcomm Technologies, Inc. All Rights Reserved

Maximizing the signal processing code work/packet
Example from inner loop of FFT: Executing 29 “simple RISC ops” in 1 cycle

Rs

Add

I R

Rt

*
32

<<0-1

*
32

<<0-1

Rd

I R

Add

I R

*
32

<<0-1

*
32

<<0-1

I R

Rs

Rt

-
0x80000x8000

Sat_32 Sat_32

High 16bitsHigh 16bits

I R

+ + + +

{ R17:16 = MEMD(R0++M1)
 MEMD(R6++M1) = R25:24
 R20 = CMPY(R20, R8):<<1:rnd:sat
 R11:10 = VADDH(R11:10, R13:12)
 }:endloop0

Complex multiply with
round and saturation

Vector 4x16-bit Add

64-bit Load and

Zero-overhead loops
• Dec count
• Compare
• Jump top

64-bit Store with
post-update
addressing

Example: Qualcomm Hexagon
Used for modem, audio, and (increasingly) image
processing on Qualcomm Snapdragon SoC processors

Below: innermost loop of FFT
29 “RISC” ops per cycle

7
Qualcomm Technologies, Inc. All Rights Reserved

Instruction Unit

VLIW: Area & power efficient multi-issue

Data Unit
(Load/
Store/
ALU)

Data Unit
(Load/
Store/
ALU)

Execution
Unit

(64-bit
Vector)

Execution
Unit

(64-bit
Vector)

Data Cache

L2
Cache
/ TCM

Instruction
Cache

• Dual 64-bit
load/store
units

• Also 32-bit
ALU

Variable sized
instruction packets
(1 to 4 instructions
per Packet)

• Dual 64-bit execution units
• Standard 8/16/32/64bit data

types
• SIMD vectorized MPY / ALU

/ SHIFT, Permute, BitOps
• Up to 8 16b MAC/cycle
• 2 SP FMA/cycle

Register File
Register File

Register File/Thread

• Unified 32x32bit
General Register
File is best for
compiler.

• No separate Address
or Accum Regs

• Per-Thread

Device
DDR

Memory

 CMU 15-769, Fall 2016

Contrast to custom circuit to perform the operation

0

1

2
3

4

5

6
7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Example: 8-bit logical OR

 CMU 15-769, Fall 2016

Recall use of custom circuits in modern SoC

Audio encode/decode
Video encode/decode
High-frame rate camera RAW processing (ISP)
Data compression

Example: NVIDIA Tegra X1

 CMU 15-769, Fall 2016

Aside: Anton supercomputer
▪ Supercomputer containing custom circuits for molecular dynamics

- Simulates time evolution of proteins

▪ ASIC for computing particle-particle interaction in a single cycle
- Anton 1: 512 particle-particle interaction units

[Developed by DE Shaw Research]

 CMU 15-769, Fall 2016

FPGAs (field programmable gate arrays)
▪ FPGA chip provides array of logic blocks, connected by interconnect

▪ Programmer defines behavior of logic blocks via hardware description language
(HDL) like Verilog or VHDL

Programmable lookup table (LUT)
Flip flop (a register)

 CMU 15-769, Fall 2016

Specifying combinatorial logic via LUT
▪ Example: 6-input, 1 output LUT in Xilinx Virtex-7 FPGAs

- Think of a LUT6 as a 64 element table

LUT6

B. Wide input multiplexers

Modern Xilinx FPGAs also contain MUXFX multiplexers dedicated for the design of wide input
multiplexers. In addition to the basic LUTs, SLICEL and SLICEM contain three multiplexers
(F7AMUX, F7BMUX, and F8MUX). These multiplexers are used to combine up to four function
generators to provide any function of seven or eight inputs in a slice. F7AMUX and F7BMUX are
used to generate seven input functions from a slice while F8MUX is used to combine all slices to
generate eight input functions. With more than eight inputs can be implemented using multiple slices.
As a LUT4 can support a maximum of 2:1 MUX as shown in figure 5 .With LUT6 we can implement
4:1 MUX shown in figure 6.

We can implement 8 to 1 multiplexer using two 6-input LUTs and F7 Mux as shown in figure 7 while
a slice can implement 16:1 Mux as shown in figure 8. In modern FPGAs (Spartan 6, Virtex 5, Virtex
6) each column of CLBs contain two slice columns. One column is a SLICEX column, the other
column alternates between SLICEL and SLICEMs.

Applied Mechanics and Materials Vols. 241-244 2551

Image credit: [Zia 2013]

in0

out0

in1

in2

in3

in4

in5

0
1
2
3

63

…

0
0
0
0

1

…

In OutExample:
6-input AND

40-input AND constructed by chaining
outputs of eight LUT6’s (delay = 3)

 CMU 15-769, Fall 2016

Question
▪ What is the role of an ISA? (e.g., x86)

Answer: interface between program definition (software) and
hardware implementation

Compilers produce sequence of instructions

Hardware executes sequences of instructions as efficiently as possible
(As shown earlier in lecture, many circuits used to implement/preserve
this abstraction, not execute the computation needed by the program)

 CMU 15-769, Fall 2016

New ways of defining hardware
▪ Verilog/VHDL present very low level programming abstractions for

modeling circuits (RTL abstraction: register transfer level)
- Combinatorial logic
- Registers

▪ Due to need for greater efficiency, there is significant modern
interest in making it easier to synthesize circuit-level designs
- Skip the ISA, directly synthesize circuits needed to compute the tasks defined by a

program.
- Raise the level of abstraction of direct hardware programming

▪ Examples:
- C to HDL (e.g., ROCCC, Vivado)
- Bluespec
- CoRAM [Chung 11]
- Chisel [Bachrach 2012]

 CMU 15-769, Fall 2016

Enter domain specific languages

 CMU 15-769, Fall 2016

Compiling image processing pipelines directly to FPGAs

▪ Darkroom [Hegarty 2014]

▪ Rigel [Hegarty 2016]

▪ Motivation:
- Convenience of high-level description of image processing algorithms (like Halide)

- Energy-efficiency of FPGA implementations
(particularly important for high-frame rate, low-latency, always on, embedded/robotics applications)

 CMU 15-769, Fall 2016

Optimizing for minimal buffering
▪ Recall: scheduling Halide programs for CPUs/GPUs

- Key challenge: organize computation so intermediate buffers fit in caches

▪ Scheduling for FPGAs:

- Key challenge: minimize size of intermediate buffers (keep buffered data
spatially close to combinatorial logic)

out(x)	=		(in(x-1)	+	in(x)	+	in(x+1))	/	3.0

out_pixel	=	(buf0	+	buf1	+	buf2)	/	3	
buf0	=	buf1	
buf1	=	buf2	
buf2	=	in_pixel

Consider 1D convolution:

Efficient hardware implementation: requires storage for 3 pixels in registers

buf1buf0 buf2
arithmetic

input pixel
(from sensor)output

“Shift” new pixel in

 CMU 15-769, Fall 2016

Line buffering

out(x,y)	=	(in(x,y-1)	+	in(x,y)	+	in(x,y+1))	/	3.0

let	buf	be	a	shift	register	containing	2*WIDTH+1	pixels	(“line	buffer”)	

//	assume:	no	output	until	shift	register	fills	
out_pixel	=	(buf[0]	+	buf[WIDTH]	+	buf[2*WIDTH])	/	3.0	
shift(buf);		//	buf[i]	=	buf[i+1]	
buf[2*WIDTH]	=	in_pixel

Consider convolution of 2D image in vertical direction:

Efficient hardware implementation:

arithmetic
input pixel

(from sensor)output

buf[0] buf[2*WIDTH]buf[WIDTH]

buf[2*WIDTH]

buf[WIDTH]
buf[0] buf[1]

input image:
WIDTH pixels

Note: despite notation, line buffer *is not* a random access SRAM, it is a shift register

 CMU 15-769, Fall 2016

Class discussion: Rigel
[Hegarty 2016]

