
Visual Computing Systems
CMU 15-769, Fall 2016

Lecture 5:

Image Processing
Algorithm Grab Bag

 CMU 15-769, Fall 2016

Median filter
▪ Noise reduction filter
- Unlike gaussian blur, one bright pixel

doesn’t drag up the average

▪ Not linear, not separable
- Filter weights are 1 or 0 depending on

image content

▪ Naive algorithm for width-N square kernel
support region:
- Sort N2 elements in support region, pick

median: O(N2log(N2)) work per pixel

 CMU 15-769, Fall 2016

5x5 median filter

int	WIDTH	=	1024;	
int	HEIGHT	=	1024;	
uint8	input[(WIDTH+2)	*	(HEIGHT+2)];	
uint8	output[WIDTH	*	HEIGHT];	
int	histogram[256];	

for	(int	j=0;	j<HEIGHT;	j++)	{	
		for	(int	i=0;	i<WIDTH;	i++)	{	
				//	construct	histogram	of	support	region	
				for	(int	ii=0;	ii<256;	ii++)	
						histogram[ii]	=	0;	
				for	(int	jj=0;	jj<5;	jj++)	
						for	(int	ii=0;	ii<5;	ii++)	
									histogram[input[(j+jj)*(WIDTH+2)	+	(i+ii)]]++;	
					
				//	scan	the	256	bins	to	find	median	
				//	median	value	of	5x5=25	elements	is	bin	containing	13th	value		
				int	count	=	0;	
				for	(int	ii=0;	ii<256;	i++)	{	
							if	(count	+	histogram[ii]	>=	13)	
									output[j*WIDTH	+	i]	=	uint8(ii);			
							count	+=	histogram[ii];	
				}	
		}	
}

▪ O(N2) work-per-pixel solution for 8-bit pixel data (radix sort 8 bit-integer data)
- Bin all pixels in support region, then scan histogram bins to find median

See Weiss [SIGGRAPH 2006] for
O(lg N) work-per-pixel median filter
(incrementally updates histogram)

 CMU 15-769, Fall 2016

Denoising using non-local means
▪ Main assumption: images have repeating texture
▪ Main idea: replace pixel with average value of nearby pixels that

have a similar surrounding region

- Np and Nq are vectors of pixel values in square window around pixels p and q
(highlighted regions in figure)

- Difference between Np and Pq = “similarity” of surrounding regions (here: L2 distance)
- Cp is a normalization constant to ensure weights sum to one for pixel p.
- S is the search region (given by dotted red line in figure)

p

q

Np

Nq

NL[I](p) =
X

q2S

w(p, q)I(q)

w(p, q) =
1

Cp
e

�kNp�Nqk2

h2

 CMU 15-769, Fall 2016

Denoising using non-local means
▪ Large weight for input pixels that have similar neighborhood as p

- Intuition: “filtered result is the average of pixels like this one”
- In example below-right: q1 and q2 have high weight, q3 has low weight

Buades et al. CVPR 2005

(A) (B)

(C) (D)

In each image pair above:
- Image at left shows the pixel to denoise.
- Image at right shows weights of pixels in 21x21-

pixel kernel support window.

 CMU 15-769, Fall 2016

Recall key property of a separable filter: can we decomposed into
product of two (cheap-to-compute) 1D filters
- 2D gaussian is a separable filter

Bilateral filter is non-separable: execution has high cost (S2) when
used with large support region S (large)

Recall from last week: bilateral filter

BF[I](p) =
1

Wp

X

q2S

f(|Ip � Iq|)G�(kp� qk)I(q)

Wp =
X

q2S

f(|Ip � Iq|)G�(kp� qk)Normalization:

�

 CMU 15-769, Fall 2016

Implementation via the bilateral grid
Consider image as surface embedded in 3D space
X,Y corresponds to position in image place
Z corresponds to image pixel value at (x,y)

X

In
te

ns
ity

 (Z
)

(I(0), 1)

(0, 0) (I(1), 1)

(0, 0)

(0, 0)

(0, 0)

(0, 0)

(0, 0)

(0, 0)

(0, 0)

(0, 0)

(0, 0)

(0, 0)

(0, 0)

(I(2), 1) (I(3), 1)

(I(4), 1)

(I(5), 1)

(I(6), 1)

(I(7), 1)

(I(7), 1)

Bilateral grid stores image values in homogeneous form:
for all pixels (x,y) in image I(x,y): BG(x,y, I(x,y)) += (I(x,y), 1)
So… BG(x,y, I(x,y)) = (wI(x,y), w)

 CMU 15-769, Fall 2016

Implementation via the bilateral grid
Consider effect of applying 3D Gaussian filter to
contents of 3D bilateral grid.
(Note: only 2D grid shown)

(0, 0)

(I(3), 1)

(0, 0)

(0, 0)

(0, 0)

(0, 0)

(I(2), 1)

(0, 0)

(I(4), 1)

X

In
te

ns
ity

 (Z
)

Bilateral grid stores image values in homogeneous form:
for all pixels (x,y) in image I(x,y): BG(x,y, I(x,y)) += (I(x,y), 1)
So… BG(x,y, I(x,y)) = (wI(x,y), w)

 CMU 15-769, Fall 2016

Implementation via the bilateral grid

(0, 0)

(0, 0)

(I(4), 1)

(I(5), 1)

(I(6), 1)

(0, 0)(0, 0)

(0, 0)

(0, 0)

(0, 0)

Notice how spatially adjacent (in x,y) values on the other side of the
edge do not effect result of filtering via gaussian centered at position 5.

X

In
te

ns
ity

 (Z
)

Consider effect of applying 3D Gaussian filter to
contents of 3D bilateral grid.
(Note: only 2D grid shown)

 CMU 15-769, Fall 2016

Implementation via the bilateral grid

(0, 0)

(0, 0)

(I(4), 1)

(I(5), 1)

(I(6), 1)

(0, 0)(0, 0)

(0, 0)

(0, 0)

(0, 0)

“Slicing” step to recover final image (homogeneous divide)
BF[I](x,y) = BG(x,y,I(x,y).value) / BG(x,y,I(x,y).w)

X

In
te

ns
ity

 (Z
)

 CMU 15-769, Fall 2016

Bilateral grid notes
▪ High performance comes from using lower resolution grid

(spatial dimensions) than dimensionality of source image
- Applicable when filter support region is large (okay to pre filter signal

prior to convolving with wide Gaussian)

- For small support region (e.g., for denoising) direct evaluation of
bilateral filter is likely more efficient

▪ Bilateral filter using RGB distances represented as a 5D grid
- Higher memory footprint and higher cost

 CMU 15-769, Fall 2016

Estimating Motion Using Optical flow

 CMU 15-769, Fall 2016

Optical flow
Goal: determine 2D screen-space velocity of visible objects in image

Image source: https://vimeo.com/28395792

https://vimeo.com/28395792

 CMU 15-769, Fall 2016

Optical flow
▪ Given image A (at time t) and image B (at time t + ∆t) compute the per-pixel motion

needed to correspond the two images

▪ Major assumption 1: “brightness constancy”
- The appearance of a scene surface point that is visible in both images A and B is

the same in both images

I(x, y, t) = I(x + ∆x, y + ∆y, t + ∆t)

Taylor expansion

I(x + ∆x, y + ∆y, t + ∆t) = I(x, y, t) + Ix(x, y, t)∆x + Iy(x, y, t)∆y + It(x, y, t)∆t + higher order
terms

The point observed at (x,y) at time t moves to (x+∆, y+∆)
at t+∆t
(and has a constant appearance in both situations)

So...

I(x, y, t) ≈ I(x, y, t) + Ix(x, y, t)∆x + Iy(x, y, t)∆y + It(x, y, t)∆t

Ix(x, y, t)∆x + Iy(x, y, t)∆y + It(x, y, t)∆t = 0
The observed change in pixel (x,y)

Is due to object motion at point by (∆x, ∆y)

 CMU 15-769, Fall 2016

Ix(x, y, t)
Iy(x, y, t)

 CMU 15-769, Fall 2016

Gradient-constraint equation for a pixel is
underconstrained
Gradient-constraint equation is insufficient to solve for motion
One equation, two unknowns: (∆x, ∆y)

Ix(x, y, t)∆x + Iy(x, y, t)∆y + It(x, y, t)∆t = 0
Known: observed change in pixel (x,y) over
consecutive frames

Known: spatial image gradients in image A

Major assumption 2: nearby pixels have similar motion (Lucas-Kanade)

Ix(x0, y0, t)∆x + Iy(x0, y0, t)∆y + It(x0, y0, t)∆t = 0

Ix(x1, y1, t)∆x + Iy(x1, y1, t)∆y + It(x1, y1, t)∆t = 0

Ix(x2, y2, t)∆x + Iy(x2, y2, t)∆y + It(x2, y2, t)∆t = 0

. .
 .

Now we have a overconstrained system, compute least squares solution

 CMU 15-769, Fall 2016

Weighted least-squares solution
Gradient-constraint equation is insufficient to solve for motion

One equation, two unknowns: (∆x, ∆y)

Ix(x0, y0, t)∆x + Iy(x0, y0, t)∆y + It(x0, y0, t)∆t = 0

Ix(x1, y1, t)∆x + Iy(x1, y1, t)∆y + It(x1, y1, t)∆t = 0

Ix(x2, y2, t)∆x + Iy(x2, y2, t)∆y + It(x2, y2, t)∆t = 0

. .
 .

Compute weighted least squares solution by minimizing:

(xi, yi) are pixels in region around (x,y).

Weighting function w() weights error contribution based on distance between (xi, yi) and (x, y)
e.g., Gaussian fall-off.

 CMU 15-769, Fall 2016

Solving for motion
E (∆x, ∆y) minimized when derivatives are zero:

Rewrite, now solve the following linear system for ∆x, ∆y:

Precompute partial derivatives Ix, Iy, It from original images A and B

For each pixel (x,y): evaluate A0, B0, C0, A1, B1, C1, then solve for (∆x, ∆y) at (x,y)

A0 B0 C0

A1 B1 C1

 CMU 15-769, Fall 2016

Optical flow, implemented in practice
Gradient-constraint equation makes a linear motion assumption

I(x, y, t) ≈ I(x, y, t) + Ix(x, y, t)∆x + Iy(x, y, t)∆y + It(x, y, t)∆t

Ix(x, y, t)∆x + Iy(x, y, t)∆y + It(x, y, t)∆t = 0
The observed change in pixel (x,y)

Is due to object motion at point by (∆x, ∆y)

▪ Improvement: iterative techniques use this original flow field to compute higher
order residuals (to estimate non-linear motion)

▪ Question: why is it important for optical flow implementation to be very efficient?
- Hint: consider linear-motion assumption

