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Median filter
▪ Noise reduction filter 
- Unlike gaussian blur, one bright pixel 

doesn’t drag up the average 

▪ Not linear, not separable 
- Filter weights are 1 or 0 depending on 

image content 

▪ Naive algorithm for width-N square kernel 
support region: 
-  Sort N2 elements in support region, pick 

median: O(N2log(N2)) work per pixel
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5x5 median filter

int	WIDTH	=	1024;	
int	HEIGHT	=	1024;	
uint8	input[(WIDTH+2)	*	(HEIGHT+2)];	
uint8	output[WIDTH	*	HEIGHT];	
int	histogram[256];	

for	(int	j=0;	j<HEIGHT;	j++)	{	
		for	(int	i=0;	i<WIDTH;	i++)	{	
				//	construct	histogram	of	support	region	
				for	(int	ii=0;	ii<256;	ii++)	
						histogram[ii]	=	0;	
				for	(int	jj=0;	jj<5;	jj++)	
						for	(int	ii=0;	ii<5;	ii++)	
									histogram[input[(j+jj)*(WIDTH+2)	+	(i+ii)]]++;	
					
				//	scan	the	256	bins	to	find	median	
				//	median	value	of	5x5=25	elements	is	bin	containing	13th	value		
				int	count	=	0;	
				for	(int	ii=0;	ii<256;	i++)	{	
							if	(count	+	histogram[ii]	>=	13)	
									output[j*WIDTH	+	i]	=	uint8(ii);			
							count	+=	histogram[ii];	
				}	
		}	
}

▪ O(N2) work-per-pixel solution for 8-bit pixel data  (radix sort 8 bit-integer data) 
-  Bin all pixels in support region, then scan histogram bins to find median

See Weiss [SIGGRAPH 2006] for 
O(lg N) work-per-pixel median filter 
(incrementally updates histogram)



 CMU 15-769, Fall 2016

Denoising using non-local means
▪ Main assumption: images have repeating texture 
▪ Main idea: replace pixel with average value of nearby pixels that 

have a similar surrounding region

- Np and Nq are vectors of pixel values in square window around pixels p and q 
(highlighted regions in figure) 

- Difference between Np and Pq  = “similarity” of surrounding regions (here: L2 distance) 
- Cp is a normalization constant to ensure weights sum to one for pixel p. 
- S is the search region (given by dotted red line in figure) 
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Denoising using non-local means
▪ Large weight for input pixels that have similar neighborhood as p 

- Intuition: “filtered result is the average of pixels like this one” 
- In example below-right: q1 and q2 have high weight, q3 has low weight

Buades et al. CVPR 2005

(A) (B)

(C) (D)

In each image pair above: 
- Image at left shows the pixel to denoise. 
- Image at right shows weights of pixels in 21x21-

pixel kernel support window.
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Recall key property of a separable filter: can we decomposed into 
product of two (cheap-to-compute) 1D filters 
- 2D gaussian is a separable filter 

Bilateral filter is non-separable: execution has high cost (S2) when 
used with large support region S (large     )

Recall from last week: bilateral filter
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Implementation via the bilateral grid
Consider image as surface embedded in 3D space 
X,Y corresponds to position in image place 
Z corresponds to image pixel value at (x,y)
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Bilateral grid stores image values in homogeneous form: 
for all pixels (x,y) in image I(x,y):  BG(x,y, I(x,y))  += (I(x,y), 1) 
So… BG(x,y, I(x,y)) = (wI(x,y), w)
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Implementation via the bilateral grid
Consider effect of applying 3D Gaussian filter to 
contents of 3D bilateral grid. 
(Note: only 2D grid shown)
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Bilateral grid stores image values in homogeneous form: 
for all pixels (x,y) in image I(x,y):  BG(x,y, I(x,y))  += (I(x,y), 1) 
So… BG(x,y, I(x,y)) = (wI(x,y), w)
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Implementation via the bilateral grid
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Notice how spatially adjacent (in x,y) values on the other side of the 
edge do not effect result of filtering via gaussian centered at position 5.
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Consider effect of applying 3D Gaussian filter to 
contents of 3D bilateral grid. 
(Note: only 2D grid shown)
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Implementation via the bilateral grid
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“Slicing” step to recover final image (homogeneous divide) 
BF[I](x,y) = BG(x,y,I(x,y).value) / BG(x,y,I(x,y).w)

X

In
te

ns
ity

 (Z
)



 CMU 15-769, Fall 2016

Bilateral grid notes
▪ High performance comes from using lower resolution grid 

(spatial dimensions) than dimensionality of source image 
- Applicable when filter support region is large (okay to pre filter signal 

prior to convolving with wide Gaussian) 

- For small support region (e.g., for denoising) direct evaluation of 
bilateral filter is likely more efficient  

▪ Bilateral filter using RGB distances represented as a 5D grid 
- Higher memory footprint and higher cost
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Estimating Motion Using Optical flow
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Optical flow
Goal: determine 2D screen-space velocity of visible objects in image

Image source: https://vimeo.com/28395792

https://vimeo.com/28395792
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Optical flow
▪ Given image A (at time t) and image B (at time t + ∆t) compute the per-pixel motion 

needed to correspond the two images  

▪ Major assumption 1: “brightness constancy” 
- The appearance of a scene surface point that is visible in both images A and B is 

the same in both images

I(x, y, t) = I(x + ∆x, y + ∆y, t + ∆t)

Taylor expansion

I(x + ∆x, y + ∆y, t + ∆t)  = I(x, y, t) + Ix(x, y, t)∆x + Iy(x, y, t)∆y + It(x, y, t)∆t + higher order 
terms

The point observed at (x,y) at time t moves to (x+∆, y+∆) 
at t+∆t 
(and has a constant appearance in both situations) 

So...

I(x, y, t) ≈ I(x, y, t) + Ix(x, y, t)∆x + Iy(x, y, t)∆y + It(x, y, t)∆t 

Ix(x, y, t)∆x + Iy(x, y, t)∆y + It(x, y, t)∆t = 0
The observed change in pixel (x,y)

Is due to object motion at point by (∆x, ∆y)
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Ix(x, y, t)
Iy(x, y, t)
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Gradient-constraint equation for a pixel is 
underconstrained
Gradient-constraint equation is insufficient to solve for motion 
One equation, two unknowns: (∆x, ∆y) 

Ix(x, y, t)∆x + Iy(x, y, t)∆y + It(x, y, t)∆t = 0
Known: observed change in pixel (x,y) over 
consecutive frames

Known: spatial image gradients in image A

Major assumption 2: nearby pixels have similar motion (Lucas-Kanade)

Ix(x0, y0, t)∆x + Iy(x0, y0, t)∆y + It(x0, y0, t)∆t = 0

Ix(x1, y1, t)∆x + Iy(x1, y1, t)∆y + It(x1, y1, t)∆t = 0

Ix(x2, y2, t)∆x + Iy(x2, y2, t)∆y + It(x2, y2, t)∆t = 0

. .
 .

Now we have a overconstrained system, compute least squares solution
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Weighted least-squares solution
Gradient-constraint equation is insufficient to solve for motion 

One equation, two unknowns: (∆x, ∆y) 

Ix(x0, y0, t)∆x + Iy(x0, y0, t)∆y + It(x0, y0, t)∆t = 0

Ix(x1, y1, t)∆x + Iy(x1, y1, t)∆y + It(x1, y1, t)∆t = 0

Ix(x2, y2, t)∆x + Iy(x2, y2, t)∆y + It(x2, y2, t)∆t = 0

. .
 .

Compute weighted least squares solution by minimizing: 

(xi, yi) are pixels in region around (x,y). 

Weighting function w() weights error contribution based on distance between (xi, yi) and (x, y) 
e.g., Gaussian fall-off.  
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Solving for motion
E (∆x, ∆y) minimized when derivatives are zero:

Rewrite, now solve the following linear system for ∆x, ∆y: 

Precompute partial derivatives Ix, Iy, It from original images A and B 

For each pixel (x,y): evaluate A0, B0, C0, A1, B1, C1, then solve for (∆x, ∆y) at (x,y)   

A0 B0 C0

A1 B1 C1
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Optical flow, implemented in practice
Gradient-constraint equation makes a linear motion assumption

I(x, y, t) ≈ I(x, y, t) + Ix(x, y, t)∆x + Iy(x, y, t)∆y + It(x, y, t)∆t 

Ix(x, y, t)∆x + Iy(x, y, t)∆y + It(x, y, t)∆t = 0
The observed change in pixel (x,y)

Is due to object motion at point by (∆x, ∆y)

▪ Improvement: iterative techniques use this original flow field to compute higher 
order residuals (to estimate non-linear motion) 

▪ Question: why is it important for optical flow implementation to be very efficient? 
- Hint: consider linear-motion assumption


