Lecture 5:

Image Processing
Algorithm Grab Bag

Visual Computing Systems
CMU 15-769, Fall 2016

Median filter

m Noise reduction filter

— Unlike gaussian blur, one bright pixel
doesn’t drag up the average

B Not linear, not separable

— Filter weights are 1 or 0 depending on
image content

originél image 1px median ﬁlter

B Naive algorithm for width-N square kernel
support region:

— Sort N2 elements in support region, pick 3px median fiter 10px mediian filter
median: O(N2log(N2)) work per pixel

(MU 15-769, Fall 2016

5x5 median filter

m O(N2) work-per-pixel solution for 8-bit pixel data (radix sort 8 bit-integer data)
— Bin all pixels in support region, then scan histogram bins to find median

int WIDTH = 1024;

int HEIGHT = 1024;

uint8 input[(WIDTH+2) * (HEIGHT+2)];
uint8 output[WIDTH * HEIGHT];

int histogram[256];

for (int j=0; j<HEIGHT; j++) {
for (int i=0; i<WIDTH; i++) {

for (int 1i=0@; ii<256; ii++)
histogram[ii] = ©;
for (int jj=0; jj<5; jj++)
for (int ii=0@; ii<5; ii++)
histogram[input[(j+jj)*(WIDTH+2) + (i+ii)]]++;

int count = 0;
for (int ii=0; 1i<256; i++) {

if (count + histogram[ii] »>= 13) See WEiSS [SIGGRAPH 2006] for
output[J*WIDTH + 1] = uint8(i1); 0(Ig N) work-per-pixel median filter
count += histogram[ii]; . .
) (incrementally updates histogram)

} CMU 15-769, Fall 2016

Denoising using non-local means

® Main assumption: images have repeating texture

® Main idea: replace pixel with average value of nearby pixels that
have a similar surrounding region

NL[](p) =) w(p,a)I(q) -

qes
i Ng
1 —lINp—Ng|?
U](p’ q) — C—@ h2 -
p

- N, and N, are vectors of pixel values in square window around pixels p and g
(highlighted regions in figure)

- Difference between N, and P, =“similarity” of surrounding regions (here: L2 distance)

- Cp is a normalization constant to ensure weights sum to one for pixel p.

- Sis the search region (given by dotted red line in figure)
(MU 15-769, Fall 2016

Denoising using non-local means

m Large weight for input pixels that have similar neighborhood as p

- Intuition: “filtered result is the average of pixels like this one”
- In example below-right: g7 and g2 have high weight, ¢3 has low weight

(A) (B)

% %
l‘ b
L i
% A
W N
Y 4
(C) (D)

In each image pair above:
- Image at left shows the pixel to denoise.
- Image at right shows weights of pixels in 21x21-
pixel kernel support window.

Buades et al. CVPR 2005
CMU 15-769, Fall 2016

Recall from last week: bilateral filter

Zf I, — I,1)Go(llp — ql)I(q)

qES

Normalization: Wp — Z f |Ip o L}DGJ(HP _ QH)

Q€S

Recall key property of a separable filter: can we decomposed into
product of two (cheap-to-compute) 1D filters
- 2D gaussian is a separable filter

Bilateral filter is non-separable: execution has high cost (52) when
used with large support region S (large 0)

CMU 15-769, Fall 2016

Implementation via the bilateral grid

Consider image as surface embedded in 3D space
X,Y corresponds to position in image place
L corresponds to image pixel value at (x,y)

Intensity (2)

Bilateral grid stores image values in homogeneous form:

@
(0,0)
o
(1(0),1)

@
(0,0)

@
(0,0)

@
(0,0)

@
(0,0)

@
(0,0)

@
(0,0)

@
(0,0)

(0,0)

(0,0)

(0,0)

@
(0,0)

(1(1),1) (1{2),1)

(13),1)

o
(1(3);1)
o
o
o
o

o
(15),1)

| 4
(1(6),1)

@
(1(7),1)

®
(LR

for all pixels (x,y) inimage I(x,y): BG(x,y, l(x,y)) +=(l(x,y), 1)
S0... BG(x,y, l(x,y)) = (wl(x,y), w)

(MU 15-769, Fall 2016

Implementation via the bilateral grid

Consider effect of applying 3D Gaussian filter to
contents of 3D bilateral grid.
(Note: only 2D grid shown)

(0‘0) (0.0) o
0 00)

® ‘¢ © o o o o o
2,1 a@,1n 0.0

o o @ @ @ o o o o
(0,00 (0,00 (0,0)

Intensity (2)

Bilateral grid stores image values in homogeneous form:
for all pixels (x,y) inimage I(x,y): BG(x,y, l(x,y)) +=(l(x,y), 1)
S0... BG(x,y, l(x,y)) = (wl(x,y), w)

(MU 15-769, Fall 2016

Implementation via the bilateral grid

Consider effect of applying 3D Gaussian filter to
contents of 3D bilateral grid.
(Note: only 2D grid shown)

o o o o o o o o
(1(3);1)

-

Z|l e e e e o e e o o

W

-

(<))

sl ®* ® ® & & Hh H ¢ ¢
p

®© o o o o o o (o o
0.0 aes),n ©0

@ RErT
(0,00 (0,00 (K6),1)
X
Notice how spatially adjacent (in x,y) values on the other side of the

edge do not effect result of filtering via gaussian centered at position 5.

(MU 15-769, Fall 2016

Implementation via the bilateral grid

o o o o o o o o
(1(3);1)

Intensity (2)

o0 @0

® o o o o o o (@ o
0.0 aes),n ©0

@ @ | 4
(0,00 (0,00 (6),1)

X

“Slicing” step to recover final image (homogeneous divide)
BF[I](x,y) = BG(x,y,l(x,y).value) / BG(x,y,I(x,y).w)

(MU 15-769, Fall 2016

Bilateral grid notes

m High performance comes from using lower resolution grid
(spatial dimensions) than dimensionality of source image

- Applicable when filter support region is large (okay to pre filter signal
prior to convolving with wide Gaussian)

- For small support region (e.g., for denoising) direct evaluation of
bilateral filter is likely more efficient

m Bilateral filter using RGB distances represented as a 5D grid
- Higher memory footprint and higher cost

CMU 15-769, Fall 2016

Estimating Motion Using Optical flow

Optical flow

. . Y - u....‘ - - Rad Y 4 ’ A r
_ T - <~,“. o - \\\'Q\\ e lnlale. ol
gt - SNy p— : } s
AR LSS

inimage

\ PPt g e A

PR
-

- A —— e
; \\\sl\{\d\\m\\\il/

ects

J

2D screen-space velocity of visible ob

ine

: determ

Goal

S R P e
R

(MU 15-769, Fall 2016

Image source: https://vimeo.com/28395792

https://vimeo.com/28395792

Optical flow

B Givenimage A (at time t) and image B (at time t + At) compute the per-pixel motion
needed to correspond the two images

B Major assumption 1: “brightness constancy”

- The appearance of a scene surface point that is visible in both images Aand B is
the same in both images

I(x,y,t)=1(x+ Ax, y + Ay, t + At) «— The point observed at (x,y) at time t moves to (x+4, y+4)
at t+At

(and has a constant appearance in both situations)
Taylor expansion

Ix+Ax,y+ Ay, t+ Art) =1(x, y, 1)+ Ldx, y,)Ax + L(x, y, Ay + I{x, y, H)At + higher order

terms

So0...

I(x, y,) = I(x, y,) + I(x, y, OAx + L)(x, y, DAy + Idx, y, DAt

L(x, y, DAX + L(x, y, A +=0
%, %, 1) A%, v, DAY, Y, 0 <+— The observed change in pixel (x,y)

S — Is due to object motion at point by (Ax, Ay)

(MU 15-769, Fall 2016

AP Photo/Daniel Ochoa De Olza

(MU 15-769, Fall 2016

Gradient-constraint equation for a pixel is
underconstrained

Gradient-constraint equation is insufficient to solve for motion
One equation, two unknowns: (Ax, Ay)

y +|dx, v, 1) <«— Known: observed change in pixel (x,y) over

consecutive frames

Known: spatial image gradients inimage A

Major assumption 2: nearby pixels have similar motion (Lucas-Kanade)

]x(XO,)0, t)A)C T [y(XO,)0, t)Ay T It(X(),)0, t)At =0
]x(x], Vi, t)A)C _l_IY(x]a Vi, t)Ay T It(XI, Vi, t)At =0
]x(X2, Y2, f)AX T IY(X29 Y2, I)Ay T]t(X2, Y2, I)At =0

Now we have a overconstrained system, compute least squares solution

CMU 15-769, Fall 2016

Weighted least-squares solution

Gradient-constraint equation is insufficient to solve for motion

One equation, two unknowns: (Ax, Ay)

[x(XO, J/O» t)AX T [y(XO, J/O» t)Ay T]t(XO,)’09 t)At — 0
[x(x], Vi, t)AX _I_[)’(xla Vi, t)Ay T]t(xla Vi, t)At =0
]x(X2, Y2, t)AX T [y(XZ, Y2, t)Ay T It(XZ, Y2, t)At =0

Compute weighted least squares solution by minimizing:

E(Ax,Ay) = 2 W,y x| L (x5, OA0 + 1 (x5,)Ay +1,(x,,y, ,z‘)At]2

Xi i

(xi, yi) are pixels in region around (x,y).

Weighting function w() weights error contribution based on distance between (x;, yi) and (x, y)
e.g., Gaussian fall-off.

CMU 15-769, Fall 2016

Solving for motion

E (Ax, Ay) minimized when derivatives are zero:

dE(Ax,Ay))
= Y w(x,y, , X, | Ax+1 1 Ay+1 1
e }; (%, 3:%.3)| Ay+ 11

dE(Ax,Ay) X
= Y w(x,,y,, x, V)|IAy+1 I Ax+1 1
d(Ay) 2(” LA+ LLA L

Rewrite, now solve the following linear system for Ax, Ay:
AO BO co

0

0

Precompute partial derivatives /., /,, I from original images A and B
For each pixel (x,y): evaluate A0, BO, C0, A1, B1, (1, then solve for (Ax, Ay) at (x,y)

(MU 15-769, Fall 2016

Optical flow, implemented in practice

Gradient-constraint equation makes a linear motion assumption

I(x, y,) = I(x, y,) + I«(x, y, OAx + L(x, y, DAy + Idx, y, DAt

X —I_ -
L(x, v,)Ax + L(x, y, H)A Iix, y, DA 40— The observed change in pixel (x,y)

. Is due to object motion at point by (Ax, Ay)

B Improvement: iterative techniques use this original flow field to compute higher
order residuals (to estimate non-linear motion)

B Question: why is it important for optical flow implementation to be very efficient?
— Hint: consider linear-motion assumption

CMU 15-769, Fall 2016

