
Visual Computing Systems 
CMU 15-769, Fall 2016

Lecture 4:

Productive, high-performance image 
processing using Halide



 CMU 15-769, Fall 2016

A Discussion of F-Cam 
(last night’s reading)

[Adams 2010]



 CMU 15-769, Fall 2016

Key aspect in the design of any system: 
Choosing the “right” representations for the job



 CMU 15-769, Fall 2016

Frankencamera: some 2010 context
▪ Cameras: becoming increasingly cheap and ubiquitous 

▪ Significant processing capability available on cameras 

▪ Many techniques for combining multiple photos to overcome 
deficiencies of traditional camera systems



 CMU 15-769, Fall 2016

Multi-shot photography example: 
high dynamic range (HDR) images

Source photographs: each photograph has different exposure Tone mapped HDR image

Credit: Debevec and Malik



 CMU 15-769, Fall 2016

More multi-shot photography examples

Flash-no-flash photography [Eisemann and Durand] 
(use flash image for sharp, colored image, infer room lighting from no-flash image)

“Lucky” imaging 

Take several photos in rapid succession: 
likely to find one without camera shake



 CMU 15-769, Fall 2016

Frankencamera: some 2010 context
▪ Cameras are cheap and ubiquitous 

▪ Significant processing capability available on cameras 

▪ Many emerging techniques for combining multiple photos to 
overcome deficiencies in traditional camera systems 

▪ Problem: the ability to implement multi-shot techniques on cameras 
was limited by camera system programming abstractions 
- Programmable interface to camera was very basic 

- Influenced by physical button interface to a point-and-shoot camera: 
- take_photograph(parameters,	output_jpg_buffer)	

- Result: on most implementations, latency between two photos was high, 
mitigating utility of multi-shot techniques (large scene movement, camera shake, 
between shots)



 CMU 15-769, Fall 2016

Frankencamera goals
1. Create open, handheld computational camera platform for researchers 

2. Define system architecture for computational photography applications  
- Motivated by impact of OpenGL on graphics application and graphics hardware 

development (portable apps despite highly optimized GPU implementations) 

- Motivated by proliferation of smart-phone apps

Nokia N900 Smartphone ImplementationF2 Reference Implementation

[Adams et al. 2010]

Note: Apple was not involved in 
Frankencamera’s industrial design. ;-)



 CMU 15-769, Fall 2016

F-cam components

Sensor **

Image Processor

Device 
(Lens)

Device 
(Flash)

Extensibility mechanism

** Sensor is really just a special case of a device



 CMU 15-769, Fall 2016

What are F-Cam’s key abstractions?



 CMU 15-769, Fall 2016

Key concept: a shot
▪ A shot is a command 

- Actually it is a set of commands  

- Encapsulates both “set state” and “perform action(s)” commands 

▪ Defines state (configuration) for:  
- Sensor 

- Image processor 

- Relevant devices 

▪ Defines a timeline of actions 
- Exactly one sensor action: capture 

- Optional actions for devices 

- Note: timeline extends beyond length of exposure (“frame time”)



 CMU 15-769, Fall 2016

Key concept: a shot
▪ Interesting analogy (for graphics people) 

- An F-cam shot is similar to an OpenGL display list 

- A shot is really a series of commands (both action commands and state 
manipulation commands) 

- State manipulation commands specify the entire state of the system 

- But a shot defines precise timing of the commands in a shot (no OpenGL 
analogy for this)



 CMU 15-769, Fall 2016

Key concept: a frame
▪ A frame describes the result of a shot 

▪ A frame contains: 
- Reference to corresponding image buffer 

- Statistics for image (computed by image processor) 

- Shot configuration data (what was specified by application) 

- Actual configuration data (configuration actually used when acquiring image) 

- This may be different than shot configuration data



 CMU 15-769, Fall 2016

Question
▪ F-cam tries to address a problem in conventional camera 

interface designs: was this a problem of throughput or 
latency?



 CMU 15-769, Fall 2016

Aside: latency in modern camera systems
▪ Often in this class our focus will be on achieving high throughput 

- e.g., pixels per clock, images/sec, triangles/sec 
▪ But low latency is critical in many visual computing domains 

- Camera metering, autofocus, etc. 

- Multi-shot photography  

- Optical flow, object tracking

Extreme example: 
CMU smart headlight project 

[Tamburo et al. 2014]



 CMU 15-769, Fall 2016

F-cam “streaming” mode
▪ System repeats shot (or series of shots) in infinite loop 

▪ F-cam only stops acquiring frames when told to stop streaming 
by the application 

▪ Example use case: “live view” (digital viewfinder) or continuous 
metering



 CMU 15-769, Fall 2016

F-cam as an architecture

Sensor

Image Processor

Device 
(Lens)

Device 
(Flash)

Completed Frames

Event Queue

Cmd Processor

RAW Data

Image Buffers

...

Application Commands (“Shots”)

Stream Cmd Buffer

Memory

Frames

Image Data



 CMU 15-769, Fall 2016

F-cam scope
▪ F-cam provides a set of abstractions that allow for 

manipulating configurable camera components 
- Timeline-based specification of actions 

- Feed-forward system: no feedback loops 

▪ F-cam architecture performs image processing, but... 
- This functionality as presented by the architecture is not programmable 

- Hence, F-cam does not provide an image processing language (it’s like fixed-
function OpenGL) 

- Other than work performed by the image processing stage, F-cam 
applications perform their own image processing (e.g., on smartphone/
camera’s CPU or GPU resources) 



 CMU 15-769, Fall 2016

Android Camera2 API
▪ Take a look at the documentation of the Android Camera2 

API, and you’ll see influence of F-Cam.



 CMU 15-769, Fall 2016

Class design challenge 1

▪ Question: How is auto-focus expressed in F-cam? 
- Is autofocus part of F-cam? 
- Can you implement autofocus using F-cam? 

▪ How might we extend the F-cam architecture to model a 
separate autofocus/metering sensor if the hardware platform 
contained them?



 CMU 15-769, Fall 2016

Class design challenge 2

▪ Should we add a face-detection unit to the architecture? 

▪ How might we abstract a face-detection unit? 

▪ Or a SIFT feature extractor?



 CMU 15-769, Fall 2016

Hypothetical F-cam extension: programmable image processing

Sensor

Programmable 
Image Processor

Device 
(Lens)

Device 
(Flash)

Completed Frames

Event Queue

Cmd Processor

Frames

RAW Data

Image Buffers

...

Application Commands (“Shots”)

Stream Cmd Buffer

Memory

Image Data



 CMU 15-769, Fall 2016

Class design challenge 3
▪ If there was a programmable image processor, application 

would probably seek to use it for more than just on data 
coming off sensor 

▪ E.g., HDR imaging app



 CMU 15-769, Fall 2016

Key aspect in the design of any system: 
Choosing the “right” representations for the job



 CMU 15-769, Fall 2016

Choosing the “right” representation for the job

▪ Good representations are productive to use: 
- Embody the natural way of thinking about a problem 

▪ Good representations enable the system to provide the 
application useful services: 
- Validating/providing certain guarantees (correctness, resource bounds, 

conversation of quantities, type checking) 

- Performance (parallelization, vectorization, use of specialized hardware) 

- Implementations of common, difficult-to-implement functionality  
(texture mapping and rasterization in 3D graphics, auto-differentiation 
in ML frameworks) 



 CMU 15-769, Fall 2016

Example task: sharpen an image
2

4
0 �1 0
�1 5 �1
0 �1 0

3

5F=

Input Output



 CMU 15-769, Fall 2016

Four different representations of sharpen
float	input[(WIDTH+2)	*	(HEIGHT+2)];	

float	output[WIDTH	*	HEIGHT];	

float	weights[]	=	{0.,	-1.,	0.,	

																			-1.,	5,	-1.,	

																			0.,	-1.,	0.};	

for	(int	j=0;	j<HEIGHT;	j++)	{	

		for	(int	i=0;	i<WIDTH;	i++)	{	

				float	tmp	=	0.f;	

				for	(int	jj=0;	jj<3;	jj++)	

						for	(int	ii=0;	ii<3;	ii++)	

								tmp	+=	input[(j+jj)*(WIDTH+2)	+	(i+ii)]	

															*	weights[jj*3	+	ii];	

				output[j*WIDTH	+	i]	=	tmp;	

		}	

}

2

4
0 �1 0
�1 5 �1
0 �1 0

3

5F=

Image	input;	
Image	output	=	convolve(input,	F);

Image	input;	
Image	output;	
output[i][j]	=	F[0][0]	*	input[i-1][j-1]	+	
															F[0][1]	*	input[i-1][j]			+	
															F[0][2]	*	input[i-1][j+1]	+	
															F[1][0]	*	input[i][j-1]			+	
															F[1][1]	*	input[i][j]					+	
															...	

Image	input;	
Image	output	=	sharpen(input);

1

2

3

4



 CMU 15-769, Fall 2016

More image processing tasks from last lecture

G
x

=

2

4
�1 0 1
�2 0 2
�1 0 1

3

5 ⇤ I

Gy =

2

4
�1 �2 �1
0 0 0
1 2 1

3

5 ⇤ I

G =
q

G
x

2 +G
y

2

float	f(image	input)	{	
			float	min_value	=	min(	min(input[x-1][y],	input[x+1][y]),	
																					min(input[x][y-1],	input[x][y+1])	);	
			float	max_value	=	max(	max(input[x-1][y],	input[x+1][y]),	
																					max(input[x][y-1],	input[x][y+1])	);	
output[x][y]	=	clamp(min_value,	max_value,	input[x][y]);	
output[x][y]	=	f(input);

Sobel Edge Detection

Local Pixel Clamp

2

4
.075 .124 .075
.124 .204 .124
.075 .124 .075

3

5F=

3x3 Gaussian blur

Gamma Correction
output[x][y]	=	pow(input[x][y],	0.5f);

Histogram
bin[input[x][y]]++;

2x2 downsample (via averaging)
output[x][y]	=	(input[2x][2y]			+	input[2x+1][2y]	+	

																input[2x][2y+1]	+	input[2x+1][2y+1])	/	4.f;

output[x][y]	=	lookup_table[input[x][y]];
LUT-based correction 



 CMU 15-769, Fall 2016

Image processing workload characteristics
▪ Sequences of operations on images 

▪ Natural to think about algorithms in terms of their local behavior: 
“pointwise code” (output at pixel xy is function of input pixels in 
neighborhood around xy)  

▪ Common case: access to local window around a point 

▪ But some algorithms require data-dependent data access (e.g., 
data-dependent access to lookup-tables) 

▪ Multiple rates of computation (upsampling/downsampling) 

▪ Simple inter-pixel communication/reductions (e.g., building a 
histogram, computing maximum brightness pixel)



 CMU 15-769, Fall 2016

Halide language
Simple language embedded in C++ for describing sequences of image 
processing operations (image processing pipelines)

Var	x,	y;	
Func	blurx,	blury,	out;	
Image<uint8_t>	in	=	load_image(“myimage.jpg”);	

//	perform	3x3	box	blur	in	two-passes	(box	blur	is	separable)	
blurx(x,y)	=	1/3.f	*	(in(x-1,y)				+	in(x,y)						+	in(x,y));	
blury(x,y)	=	1/3.f	*	(blurx(x,y-1)	+	blurx(x,y+1)	+	blurx(x,y+1));	

//	brighten	blurred	result	by	25%,	then	clamp	
out(x,y)	=	min(blury(x,y)	*	1.25f,	255);			

//	execute	pipeline	on	domain	of	size	800x600	
Image<uint8_t>	result	=	out.realize(800,	600);

- Function: an infinite (but discrete) set of values 
- Expression: a side-effect free expression describes how to compute a function’s value 

at a point in it’s domain in terms of the values of other functions. 

[Ragan-Kelley 2012]



 CMU 15-769, Fall 2016

Halide language
Update definition modify function values 
Reduction domains provide the ability to iterate 
Var	x;	
Func	histogram,	modified;	
Image<uint8_t>	in	=	load_image(“myimage.jpg”);	

modified(x,y)	=	in(x,y)	+	10;	
modified(x,3)	*=	2;		//	update	definition,	modifies	3rd	row	
modified(3,y)	*=	2;		//	update	definition,	modifies	3rd	column	

//	clear	all	bins	of	the	histogram	to	0	
histogram(x)	=	0;	

//	declare	“reduction	domain”	to	be	size	of	input	image	
RDom	r(0,	in.width(),	0,	in.height());	

//	update	definition	on	histogram	
//	for	all	points	in	domain,	increment	appropriate	bin	
histogram(in(r.x,	r.y))	+=	1;	

Image<int>	result	=	histogram.realize(256);		



 CMU 15-769, Fall 2016

Key observations about Halide’s design
▪ Adopts local “pointwise” view of expressing algorithms 
▪ Language is highly constrained so that iteration over domain points is 

implicit (no explicit loops in Halide) 
- Halide language is declarative. It does not define order of iteration, or 

what values in domain or stored! (It only defines what operations are 
needed to compute these values.) 

Var	x,	y;	
Func	blurx,	out;	
Image<uint8_t>	in	=	load_image(“myimage.jpg”);	

//	perform	3x3	box	blur	in	two-passes	(box	blur	is	separable)	
blurx(x,y)	=	1/3.f	*	(in(x-1,y)				+	in(x,y)						+	in(x,y));	
out(x,y)	=	1/3.f	*	(blurx(x,y-1)	+	blurx(x,y+1)	+	blurx(x,y+1));	

//	execute	pipeline	on	domain	of	size	800x600	
Image<uint8_t>	result	=	our.realize(800,	600);



 CMU 15-769, Fall 2016

Efficiently executing Halide programs



 CMU 15-769, Fall 2016

Example
Consider writing code for the two-pass 3x3 image blur

Var	x,	y;	
Func	blurx,	out;	
Image<uint8_t>	in	=	load_image(“myimage.jpg”);	

//	perform	3x3	box	blur	in	two-passes	(box	blur	is	separable)	
blurx(x,y)	=	1/3.f	*	(in(x-1,y)				+	in(x,y)						+	in(x,y));	
out(x,y)	=	1/3.f	*	(blurx(x,y-1)	+	blurx(x,y+1)	+	blurx(x,y+1));	

//	execute	pipeline	on	domain	of	size	1024x1024	
Image<uint8_t>	result	=	out.realize(1024,	1024);



 CMU 15-769, Fall 2016

Two-pass 3x3 blur
int	WIDTH	=	1024;	
int	HEIGHT	=	1024;	
float	input[(WIDTH+2)	*	(HEIGHT+2)];	
float	tmp_buf[WIDTH	*	(HEIGHT+2)];	
float	output[WIDTH	*	HEIGHT];	

float	weights[]	=	{1.0/3,	1.0/3,	1.0/3};	

for	(int	j=0;	j<(HEIGHT+2);	j++)	
		for	(int	i=0;	i<WIDTH;	i++)	{	
				float	tmp	=	0.f;	
				for	(int	ii=0;	ii<3;	ii++)	
						tmp	+=	input[j*(WIDTH+2)	+	i+ii]	*	weights[ii];	
				tmp_buf[j*WIDTH	+	i]	=	tmp;	
		}	

for	(int	j=0;	j<HEIGHT;	j++)	{	
		for	(int	i=0;	i<WIDTH;	i++)	{	
				float	tmp	=	0.f;	
				for	(int	jj=0;	jj<3;	jj++)	
						tmp	+=	tmp_buf[(j+jj)*WIDTH	+	i]	*	weights[jj];	
				output[j*WIDTH	+	i]	=	tmp;	
		}	
}

Total work per image = 6 x WIDTH x HEIGHT

For NxN filter:  2N x WIDTH x HEIGHT

1D horizontal blur

1D vertical blur

WIDTH x HEIGHT extra storage

input	
(W+2)x(H+2)

tmp_buf	
W	x	(H+2)

output	
W	x	H



 CMU 15-769, Fall 2016

Two-pass image blur: locality
int	WIDTH	=	1024;	
int	HEIGHT	=	1024;	
float	input[(WIDTH+2)	*	(HEIGHT+2)];	
float	tmp_buf[WIDTH	*	(HEIGHT+2)];	
float	output[WIDTH	*	HEIGHT];	

float	weights[]	=	{1.0/3,	1.0/3,	1.0/3};	

for	(int	j=0;	j<(HEIGHT+2);	j++)	
		for	(int	i=0;	i<WIDTH;	i++)	{	
				float	tmp	=	0.f;	
				for	(int	ii=0;	ii<3;	ii++)	
						tmp	+=	input[j*(WIDTH+2)	+	i+ii]	*	weights[ii];	
				tmp_buf[j*WIDTH	+	i]	=	tmp;	
		}	

for	(int	j=0;	j<HEIGHT;	j++)	{	
		for	(int	i=0;	i<WIDTH;	i++)	{	
				float	tmp	=	0.f;	
				for	(int	jj=0;	jj<3;	jj++)	
						tmp	+=	tmp_buf[(j+jj)*WIDTH	+	i]	*	weights[jj];	
				output[j*WIDTH	+	i]	=	tmp;	
		}	
}

Data from input reused three times.  (immediately reused in next 
two i-loop iterations after first load, never loaded again.) 
- Perfect cache behavior: never load required data more than once 
- Perfect use of cache lines (don’t load unnecessary data into cache)

Data from tmp_buf reused three times (but three 
rows of image data are accessed in between) 
- Never load required data more than once… if 

cache has capacity for three rows of image 
- Perfect use of cache lines (don’t load unnecessary 

data into cache)

Two pass: loads/stores to tmp_buf are overhead (this memory traffic 
is an artifact of the two-pass implementation: it is not intrinsic to 
computation being performed)

Intrinsic bandwidth requirements of algorithm: 
Application must read each element of input image and 
must write each element of output image.



 CMU 15-769, Fall 2016

Two-pass image blur, “chunked” (version 1)
int	WIDTH	=	1024;	
int	HEIGHT	=	1024;	
float	input[(WIDTH+2)	*	(HEIGHT+2)];	
float	tmp_buf[WIDTH	*	3];	
float	output[WIDTH	*	HEIGHT];	

float	weights[]	=	{1.0/3,	1.0/3,	1.0/3};	

for	(int	j=0;	j<HEIGHT;	j++)	{	

		for	(int	j2=0;	j2<3;	j2++)	
				for	(int	i=0;	i<WIDTH;	i++)	{	
						float	tmp	=	0.f;	
						for	(int	ii=0;	ii<3;	ii++)	
								tmp	+=	input[(j+j2)*(WIDTH+2)	+	i+ii]	*	weights[ii];	
						tmp_buf[j2*WIDTH	+	i]	=	tmp;	
			
		for	(int	i=0;	i<WIDTH;	i++)	{	
				float	tmp	=	0.f;	
				for	(int	jj=0;	jj<3;	jj++)	
						tmp	+=	tmp_buf[jj*WIDTH	+	i]	*	weights[jj];	
				output[j*WIDTH	+	i]	=	tmp;	
		}	
}

input	
(W+2)x(H+2)

tmp_buf

output	
W	x	H

(Wx3)

Produce 3 rows of tmp_buf 
(only what’s needed for one 
row of output)

Total work per row of output: 
- step 1: 3 x 3 x WIDTH work 
- step 2: 3 x WIDTH work 

Total work per image = 12 x WIDTH x HEIGHT    ???? 

Loads from tmp_buffer are cached (assuming 
tmp_buffer fits in cache)

Combine them together to get one row of output

Only 3 rows of intermediate 
buffer need to be allocated



 CMU 15-769, Fall 2016

Two-pass image blur, “chunked” (version 2)
int	WIDTH	=	1024;	
int	HEIGHT	=	1024;	
float	input[(WIDTH+2)	*	(HEIGHT+2)];	
float	tmp_buf[WIDTH	*	(CHUNK_SIZE+2)];	
float	output[WIDTH	*	HEIGHT];	

float	weights[]	=	{1.0/3,	1.0/3,	1.0/3};	

for	(int	j=0;	j<HEIGHT;	j+CHUNK_SIZE)	{	

		for	(int	j2=0;	j2<CHUNK_SIZE+2;	j2++)	
				for	(int	i=0;	i<WIDTH;	i++)	{	
						float	tmp	=	0.f;	
						for	(int	ii=0;	ii<3;	ii++)	
								tmp	+=	input[(j+j2)*(WIDTH+2)	+	i+ii]	*	weights[ii];	
						tmp_buf[j2*WIDTH	+	i]	=	tmp;	
			
		for	(int	j2=0;	j2<CHUNK_SIZE;	j2++)	
				for	(int	i=0;	i<WIDTH;	i++)	{	
						float	tmp	=	0.f;	
						for	(int	jj=0;	jj<3;	jj++)	
								tmp	+=	tmp_buf[(j2+jj)*WIDTH	+	i]	*	weights[jj];	
						output[(j+j2)*WIDTH	+	i]	=	tmp;	
				}	
}

input	
(W+2)x(H+2)

tmp_buf

output	
W	x	H

W	x	(CHUNK_SIZE+2)Produce  enough rows of 
tmp_buf to produce a 
CHUNK_SIZE number of 
rows of output

Total work per chuck of output: 
(assume CHUNK_SIZE = 16) 

- Step 1: 18 x 3 x WIDTH work 
- Step 2: 16 x 3 x WIDTH work 

Total work per image: (34/16) x 3 x WIDTH x HEIGHT  
                                                 = 6.4 x WIDTH x HEIGHT

Produce CHUNK_SIZE rows of output

Sized so entire buffer 
fits in cache 
(capture all producer-
consumer locality)

Trends to idea 6 x WIDTH x HEIGHT as CHUNK_SIZE is increased! 



 CMU 15-769, Fall 2016

Still not done
▪ We have not parallelized loops for multi-core execution 

▪ We have not used SIMD instructions to execute loops bodies 

▪ Other basic optimizations: loop unrolling, etc…



 CMU 15-769, Fall 2016

Optimized x86 implementation
Good: ~10x faster on a quad-core CPU than my original two-pass code  
Bad: specific to SSE (not AVX2), CPU-code only, hard to tell what is going on at all!

use of SIMD vector 
intrinsics

Modified iteration order: 
256x32 tiled iteration (to 
maximize cache hit rate)

Multi-core execution 
(partition image vertically)

two passes fused into one: 
tmp data read from cache



 CMU 15-769, Fall 2016

Image processing pipelines feature 
complex sequences of functions

Two-pass blur 
Unsharp mask 
Harris Corner detection 
Camera RAW processing 
Non-local means denoising 
Max-brightness filter 
Multi-scale interpolation 
Local-laplacian filter 
Synthetic depth-of-field 
Bilateral filter 
Histogram equalization 
VGG-16 deep network eval

2 
9 
13 
30 
13 
9 
52 
103 
74 
8 
7 
64

Benchmark Number of Functions

Real-world production applications may features hundreds to thousands of functions! 
Google HDR+ pipeline: over 2000 Halide functions.



 CMU 15-769, Fall 2016

Key aspect in the design of any system: 
Choosing the “right” representations for the job

Now the job is not expressing an image processing 
computation, but generating an efficient 

implementation of a specific Halide program.



 CMU 15-769, Fall 2016

A second set of representations for “scheduling”
Func	blurx,	out;	
Var		x,	y,	xi,	yi;	
Image<uint8_t>	in	=	load_image(“myimage.jpg”);	

//	the	“algorithm	description”		(delcaration	of	what	to	do)	
blurx(x,y)	=	(in(x-1,	y)	+	in(x,y)	+	in(x+1,y))	/	3.0f;	
out(x,y)			=	(blurx(x,y-1)	+	blurx(x,y)	+	blurx(x,y+1))	/	3.0f;	

//	“the	schedule”	(how	to	do	it)	
out.tile(x,	y,	xi,	yi,	256,	32).vectorize(xi,8).parallel(y);	

blurx.compute_at(x).vectorize(x,	8);	

//	execute	pipeline	on	domain	of	size	1024x1024	
Image<uint8_t>	result	=	out.realize(1024,	1024);	

When evaluating out, use 2D tiling order 
(loops named by x, y, xi, yi). 
Use tile size 256 x 32.

Vectorize the xi loop (8-wide) 

Use threads to parallelize the y loop

Produce elements  blurx on demand for 
each tile of output. 
Vectorize the x (innermost) loop

Scheduling primitives allow the programmer to specify a global “sketch” of how to 
schedule the algorithm onto a parallel machine, but leave the details of emitting the 
low-level platform-specific code to the Halide compiler



 CMU 15-769, Fall 2016

Primitives for iterating over domains
Specify both order and how to parallelize 
(multi-thread, vectorize via SIMD instr)

2D blocked iteration order



 CMU 15-769, Fall 2016

Primitives for how to “fuse” adjacent stages 

blurx(x,y)	=	(in(x-1,	y)	+	in(x,y)	+	in(x+1,y))	/	3.0f;	
out(x,y)			=	(blurx(x,y-1)	+	blurx(x,y)	+	blurx(x,y+1))	/	3.0f;	

out.tile(x,	y,	xi,	yi,	256,	32);

blurx.compute_root();

Describe where to compute producer function within the loop nest of the consumer.

allocate	buffer	for	all	of	blur(x,y)	
for	y=0	to	HEIGHT:	
		for	x=0	to	WIDTH:	
					blurx(x,y)	=	…	

for	y=0	to	num_tiles_y:	
			for	x=0	to	num_tiles_x:	
						for	yi=0	to	32:	
									for	xi=0	to	256:	
												idx_x	=	x*256+xi;	
												idx_y	=	y*32+yi	
												out(idx_y,	idx_y)	=	…

Do not compute blurx within out’s loop nest. 
Compute all of blurx, then all of out



 CMU 15-769, Fall 2016

Primitives for how to “fuse” adjacent stages 

blurx(x,y)	=	(in(x-1,	y)	+	in(x,y)	+	in(x+1,y))	/	3.0f;	
out(x,y)			=	(blurx(x,y-1)	+	blurx(x,y)	+	blurx(x,y+1))	/	3.0f;	

out.tile(x,	y,	xi,	yi,	256,	32);

blurx.compute_at(x_i);

Describe where to compute producer function within the loop nest of the consumer.

for	y=0	to	num_tiles_y:	
			for	x=0	to	num_tiles_x:	
						for	yi=0	to	32:	
									for	xi=0	to	256:	
												idx_x	=	x*256+xi;	
												idx_y	=	y*32+yi	
												//	compute	3	elements	of	blurx	needed	for	out(idx_x,	idx_y)	here		
												out(idx_y,	idx_y)	=	…

Compute necessary elements of blurx within 
out’s xi loop nest



 CMU 15-769, Fall 2016

Primitives for how to “fuse” adjacent stages 

blurx(x,y)	=	(in(x-1,	y)	+	in(x,y)	+	in(x+1,y))	/	3.0f;	
out(x,y)			=	(blurx(x,y-1)	+	blurx(x,y)	+	blurx(x,y+1))	/	3.0f;	

out.tile(x,	y,	xi,	yi,	256,	32);

blurx.compute_at(x);

Describe where to compute producer function within the loop nest of the consumer.

for	y=0	to	num_tiles_y:	
			for	x=0	to	num_tiles_x:	
							
						allocate	258x34	buffer	for	tile	blurx	
						for	yi=0	to	32+2:	
									for	xi=0	to	256+2:	
												blur(xi,yi)	=	//	compute	blurx	from	in	

						for	yi=0	to	32:	
									for	xi=0	to	256:	
												idx_x	=	x*256+xi;	
												idx_y	=	y*32+yi	
												out(idx_y,	idx_y)	=	…

Compute necessary elements of blurx within out’s x 
loop nest (all necessary elements for one tile of out)



 CMU 15-769, Fall 2016

Early Halide results
▪ Camera RAW processing pipeline 

(Convert RAW sensor data to RGB image) 

- Original: 463 lines of hand-tuned 
ARM NEON assembly 

- Halide: 2.75x less code, 5% faster

▪ Bilateral filter 
(Common image filtering operation used in many applications) 

- Original 122 lines of C++ 
- Halide: 34 lines algorithm + 6 lines schedule 

- CPU implementation: 5.9x faster 
- GPU implementation: 2x faster than hand-written CUDA

[Ragan-Kelley 2012]



 CMU 15-769, Fall 2016

What is Halide?
▪ Halide is a simple (highly constrained) declarative language 

for describing sequences of image processing operations 

▪ Coupled with an additional declarative language for 
describing how to map the operations in these pipelines to a 
parallel machine (the “schedule”) 
- Primitives for describing producer-consumer locality optimizations 
- Domain traversal order 
- And basic multi-core and SIMD parallelization 
- Powerful primitives: composition of these primitives enables expression 

of a diverse set of schedules 

▪ Two languages designed so that space of allowed schedules is 
enumerable and manifest in the program’s definition



 CMU 15-769, Fall 2016

Automatically generating schedules
▪ Halide’s design seeks to provide representations for 

developers with strong code optimization experience to do 
their job faster 
- Programmer still needs to have code optimization skill to specify a good 

schedule 

▪ Recent work has demonstrated the ability to analyze the 
Halide program to automatically generate efficient schedules 
for the user 
- See tonight’s reading [Mullapudi 2016] 



 CMU 15-769, Fall 2016

Tonight’s Halide readings
▪ What is the key intellectual idea of the Halide system? 

- Hint: it’s not the declarative language syntax 

▪ What services does Halide provide its users? 

▪ What aspects of the design of Halide allow it to provide those 
services? 

▪ Keep in mind: the key aspect in the design of any system 
usually is choosing the “right” representations for the job


