Lecture 3:
The Camera Image Processing Pipeline (part 2)
Visual Computing Systems
CMU 15-769, Fall 2016
Simplified image processing pipeline

- Correct for sensor bias (using measurements of optically black pixels)
- Correct pixel defects
- Vignetting compensation
- Dark-frame subtract (optional)
- White balance

- Demosaic
- Denoise / sharpen, etc.
- Color Space Conversion

- Gamma Correction (Non-linear mapping)
- Color Space Conversion (Y’CbCr)

- Chroma Subsampling
- JPEG compression

Pixel values and bit depths:

- **12-bits per pixel**
 - 1 intensity per pixel
 - Pixel values linear in energy

- **3x12-bits per pixel**
 - RGB intensity per pixel
 - Pixel values linear in energy

- **3x8-bits per pixel**
 - Pixel values **perceptually** linear
JPG Compression
JPEG compression: the big ideas

- Low-frequency content is predominant in images of the real world

- The human visual system is:
 - less sensitive to high frequency sources of error
 - less sensitive to detail in chromaticity than in luminance

Therefore, it’s often acceptable for a compression scheme to introduce errors in high-frequency components of the image.

[Credit: Pat Hanrahan]
Y’CbCr color space

Y’ = luma: perceived luminance (non-linear)
Cb = blue-yellow deviation from gray
Cr = red-cyan deviation from gray

Conversion from R’G’B’ to Y’CbCr:

\[
Y' = 16 + \frac{65.738 \cdot R'_D}{256} + \frac{129.057 \cdot G'_D}{256} + \frac{25.064 \cdot B'_D}{256}
\]

\[
C_B = 128 + \frac{-37.945 \cdot R'_D}{256} - \frac{74.494 \cdot G'_D}{256} + \frac{112.439 \cdot B'_D}{256}
\]

\[
C_R = 128 + \frac{112.439 \cdot R'_D}{256} - \frac{94.154 \cdot G'_D}{256} + \frac{18.285 \cdot B'_D}{256}
\]
Example: compression in Y’CbCr

Original picture of Kayvon
Example: compression in Y’CbCr

Contents of CbCr color channels downsampled by a factor of 20 in each dimension
(400x reduction in number of samples)
Example: compression in Y’CbCr

Full resolution sampling of luma (Y’)

CMU 15-769, Fall 2016
Example: compression in Y’CbCr

Reconstructed result
(looks pretty good)
Chroma subsampling

Y’CbCr is an efficient representation for storage (and transmission) because Y’ can be stored at higher resolution than CbCr without significant loss in perceived visual quality.

<table>
<thead>
<tr>
<th>Y'00</th>
<th>Y'10</th>
<th>Y'20</th>
<th>Y'30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cb00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Y'01</th>
<th>Y'11</th>
<th>Y'21</th>
<th>Y'31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cb01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr01</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4:2:2 representation:
- Store Y’ at full resolution
- Store Cb, Cr at full vertical resolution, but only half horizontal resolution

4:2:0 representation:
- Store Y’ at full resolution
- Store Cb, Cr at half resolution in both dimensions

X:Y:Z notation:
- X = width of block
- Y = number of chroma samples in first row
- Z = number of chroma samples in second row
Apply discrete cosine transform (DCT) to each 8x8 block of image values

\[
basis[i, j] = \cos\left(\frac{\pi i}{N}(x + \frac{1}{2})\right) \times \cos\left(\frac{\pi j}{N}(y + \frac{1}{2})\right)
\]

DCT computes projection of image onto 64 basis functions: basis[i, j]

DCT applied to 8x8 pixel blocks of Y' channel, 16x16 pixel blocks of Cb, Cr (assuming 4:2:0)
Quantization

Quantization produces small values for coefficients (only few bits needed per coefficient)
Notice: quantization zeros out many coefficients

Result of DCT
(representation of image in cosine basis)

\[
\begin{bmatrix}
-415 & -30 & -61 & 27 & 56 & -20 & -2 & 0 \\
4 & -22 & -61 & 10 & 13 & -7 & -9 & 5 \\
-47 & 7 & 77 & -25 & -29 & 10 & 5 & -6 \\
-49 & 12 & 34 & -15 & -10 & 6 & 2 & 2 \\
12 & -7 & -13 & -4 & -2 & 2 & -3 & 3 \\
-8 & 3 & 2 & -6 & -2 & 1 & 4 & 2 \\
-1 & 0 & 0 & -2 & -1 & -3 & 4 & -1 \\
0 & 0 & -1 & -4 & -1 & 0 & 1 & 2
\end{bmatrix}
\]

Quantization Matrix

\[
\begin{bmatrix}
16 & 11 & 10 & 16 & 24 & 40 & 51 & 61 \\
12 & 12 & 14 & 19 & 26 & 58 & 60 & 55 \\
14 & 13 & 16 & 24 & 40 & 57 & 69 & 56 \\
14 & 17 & 22 & 29 & 51 & 87 & 80 & 62 \\
18 & 22 & 37 & 56 & 68 & 109 & 103 & 77 \\
24 & 35 & 55 & 64 & 81 & 104 & 113 & 92 \\
49 & 64 & 78 & 87 & 103 & 121 & 120 & 101 \\
72 & 92 & 95 & 98 & 112 & 100 & 103 & 99
\end{bmatrix}
\]

Result of DCT

\[
\begin{bmatrix}
-26 & -3 & -6 & 2 & 2 & -1 & 0 & 0 \\
0 & -2 & -4 & 1 & 1 & 0 & 0 & 0 \\
-3 & 1 & 5 & -1 & -1 & 0 & 0 & 0 \\
-4 & 1 & 2 & -1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

Changing JPEG quality setting in your favorite photo app modifies this matrix (“lower quality” = higher values for elements in quantization matrix)

Quantization produces small values for coefficients (only few bits needed per coefficient)
Notice: quantization zeros out many coefficients

Slide credit: Wikipedia, Pat Hanrahan
CMU 15-769, Fall 2016
JPEG compression artifacts

- Noticeable 8x8 pixel block boundaries
- Noticeable error near large color gradients
- Low-frequency regions of image represented accurately even under high compression
JPEG compression artifacts

Why might JPEG compression not be a good compression scheme for illustrations and rasterized text?
Lossless compression of quantized DCT values

Quantized DCT Values

\[\begin{pmatrix}
-26 & -3 & -6 & 2 & 2 & -1 & 0 & 0 \\
0 & -2 & -4 & 1 & 1 & 0 & 0 & 0 \\
-3 & 1 & 5 & -1 & -1 & 0 & 0 & 0 \\
-4 & 1 & 2 & -1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}\]

Entropy encoding: (lossless)

Reorder values

Run-length encode (RLE) 0’s

Huffman encode non-zero values

JPEG compression summary

Convert image to Y’CbCr

Downsample CbCr (to 4:2:2 or 4:2:0) (information loss occurs here)

For each color channel (Y’, Cb, Cr):

 For each 8x8 block of values
 Compute DCT
 Quantize results (information loss occurs here)
 Reorder values
 Run-length encode 0-spans
 Huffman encode non-zero values
Key theme: exploit characteristics of human perception to build efficient image storage and image processing systems

- Separation of luminance from chrominance in color representation ($Y'CrCb$) allows reduced resolution in chrominance channels (4:2:0)

- Encode pixel values linearly in lightness (perceived brightness), not in luminance (distribute representable values uniformly in perceptual space)

- JPEG compression significantly reduces file size at cost of quantization error in high spatial frequencies
 - Human brain is more tolerant of errors in high frequency image components than in low frequency ones
 - Images of the real-world are dominated by low-frequency components
Auto Focus / Auto Exposure
Autofocus demos

- Phase-detection auto focus
 - Common in SLRs

- Contrast-detection auto focus
 - Point-and-shoots, smart-phone cameras
SLR Camera

- Pentaprism
- Autoexposure (AE)
- Viewfinder
- Focusing screen
- Autofocus (AF)

Image credits: Nikon, Marc Levoy
Nikon D7000

- Auto-focus sensor: 39 regions
- Metering sensor: 2K pixels
 - Auto-exposure
 - Auto-white-balance
 - Subject tracking to aid focus (predicts movement)
- Shutter lag ~ 50ms
Auto exposure

Low resolution metering sensor capture

Metering sensor pixels are large
(higher dynamic range than main sensor)

How do we set exposure?

What if a camera doesn’t have a separate metering sensor?

Image credits: Marc Levoy, Andrew Adams
AF/AE summary

- DSLRs have additional sensing/processing hardware to assist with the "3A's" (auto-focus, auto-exposure, auto-white-balance)
 - Phase-detection AF: optical system directs light to AF sensor
 - Example: Nikon metering sensor: large pixels to avoid over-saturation

- Point-and-shoots/smartphone cameras make these measurements by performing image processing operations on data from the main sensor
 - Contrast-detection AF: search for lens position that produces large image gradients
 - Exposure metering: if pixels are saturating, meter again with lower exposure

- In general, implementing AF/AE/AWB is an image understanding problem ("computer vision")
 - Understand the scene well enough to set the camera’s image capture and image processing parameters to best approximate the image a human would perceive
 - As processing/sensing capability increases, algorithms are becoming more sophisticated
High-dynamic range images

- Problem: ratio of brightest object to darkest object in real-world scenes can be quite large
 - Human eye can discern ratio of 100,000:1 (even more if accounting for adaptation)

- High-dynamic range (HDR) image: encodes large range of luminance (or lightness) values
 - Common format: 16-bits per channel EXR (see environment maps in Asst. 3)

- Modern camera senses can only sense much narrower range of luminances (e.g., 12-bit pixels)

- But most modern displays can only display a much narrower range of luminances
 - Luminance of white pixel / luminance of black pixel for a high-end LCD TV ~ 3000:1 *

* Ignore most marketing specs, which are now claiming over 2,000,000:1

Overexposed (loss of detail in brightest areas since they are clamped to 1)

Underexposed (detail remains in brightest areas, but large regions of image clamped to 0)
Tone mapping

- Tone mapping: non-linear mapping of wide range of luminances into a narrower range (for storage in low-bit depth image, or for presentation on a low-dynamic range display)
 - For examples see Debevec 1997, Reinhard 2002, Fattal 2002

- How to acquire HDR images with conventional camera?
 - Take multiple photos (often at multiple exposures), combine into a single HDR image

![Low-dynamic range images taken at multiple exposures](image1)

![Low-dynamic range image that is result of tone mapping HDR image](image2)
HDR “mode” in modern cameras

Kayvon’s iPhone
Smarter cameras

Goal: help photographer capture the shot they want

Face detection: camera finds faces: tunes AWB, AE, AF for these regions

Another example: iPhone burst mode “best” shot selection

Sony’s ill-fated “smile shutter”
Camera detects smile and automatically takes picture.
Smarter cameras

- Future behaviors
 - Automatic photo framing/cropping?
 - Replace undesirable data with more desirable data acquired previously

"Face-swapping"
[Bitouk et al. 2008]

Result: Composite image with everyone’s eyes open

Four source photos:
in each shot, at least one child’s eyes are closed
Takeways

- The values of pixels in photograph you see on screen are quite different than the values output by the photosensor in a modern digital camera.

- The sequence of operations we discussed today is carried out at high frame rates by the image signal processing ASIC in most cameras today.

- In the coming lectures we’ll discuss more advanced image processing operations that are emerging in modern camera pipelines.
 - Local contrast enhancement, advanced denoising, high-dynamic range imaging, etc.
 - Growing sophistication and diversity of techniques suggests that current ISPs will likely become more programmable in the near future.

Qualcomm Snapdragon 820
Image Signal Processor (ISP): ASIC for processing pixels off camera (25MP at 30Hz)