Lecture 2;

The Camera Image
Processing Pipeline

Visual Computing Systems
CMU 15-769, Fall 2016

Acknowledgements to Ren Ng, Marc Levoy for various slides used in this lecture.



Next two lectures

The values of pixels in photograph you see on screen
are quite different than the values output by the
photosensor in a modern digital camera.

Computation is now a fundamental aspect of
producing high-quality pictures.

comPUtation A A

Beautiful image that
impresses your friends
on Instagram

LR, Output of sensor
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Where we are headed

B |'m about to describe the pipeline of operations that take raw image
pixels from a sensor (measurements) to high-quality images

= Correct for sensor bias (using measurements of optically black pixels)
- Correct pixel defects

= Vignetting compensation

- Dark frame subtract (optional)

= White balance

= Demosaic

= Denoise/ sharpen, etc.

-~ Color Space Conversion

= Gamma Correction

= Color Space Conversion (Y'ChCr)

m Today’s pipelines are sophisticated, but they only scratch the surface
of what future image processing pipelines might do

- Consider what a future image analysis pipeline might feature: person identification, action recognition,
scene understanding (to automatically compose shot or automatically pick best picture) etc.
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Camera cross section
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Canon 14 MP CMOS Sensor
(14 bits per pixel)

Image credit: Canon (EOS M) CMU 15-769, Fall 2016



The Sensor
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Photoelectric effect

Incident photons / /
w ©

(® Ejected electrons

Albert Einstein

Einstein’s Nobel Prize in 1921 “for his services to Theoretical Physics,
and especially for his discovery of the law of the photoelectric effect”

Slide credit: Ren Ng CMU 15-769, Fall 2016



CMOS sensor

“Optically black” region
(shielded from light)

Exposed region
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CMOS APS (active pixel sensor) pixel
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lllustration credit: Molecular Expressions (http://micro.magnet.fsu.edu/primer/digitalimaging/cmosimagesensors.html) CMU 15-769, Fall 2016



http://micro.magnet.fsu.edu/primer/digitalimaging/cmosimagesensors.html

CMOS response functions are linear

Photoelectric effect in silicon:

- Response function from
photons to electrons is linear

w
-
-

- May have some nonlinearity
close to 0 due to noise and
when close to pixel
saturation

\)
-
-

Response (1073 Electrons)
o
-

O 20 40 60 80 100

[llumination level (arbitrary)

(Epperson, P.M. et al. Electro-optical characterization
of the Tektronix TKS ..., Opt Eng., 25, 1987)

Slide credit: Ren Ng CMU 15-769, Fall 2016



Quantum efficiency

m Not all photons will produce an electron

- Depends on quantum efficiency of the device

OF - # electrons
# photons
- Human vision: ~15%

- Typical digital camera: < 50%

- Best back-thinned CCD: > 90%
(e.q., telescope)

Slide credit: Ren Ng CMU 15-769, Fall 2016



Sensing Color
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Electromagnetic spectrum

Describes distribution of power (energy/time) by wavelength

Below: spectrum of various common light sources:

Daylight Incandescent Fluorescent
0O O
c &)
wavelergih [nm wavelength [(nm|
Cool White LED Warm White LED
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Photosensor response

m Photosensor input: light
- Electromagnetic power distribution over wavelengths: O, ()\)

m Photosensor output: a “response” ... a number
- e.g., encoded in electrical signal

m Spectral response function: /()

- Sensitivity of sensor to light of a given wavelength

- Greater f ()\) corresponds to more a efficient sensor (whenf ()\)is large, a
small amount of light at wavelength A will trigger a large sensor response)

m Total response of photosensor:

R= [ ®(\)F(\)d\

CMU 15-769, Fall 2016



Spectral response of cone cells in human eye

Three types of cells in eye responsible for color perception: S, M, and L cones
(corresponding to peak response at short, medium, and long wavelengths)

Takeaway: the space of human-perceivable colors is three dimensional

S — / (I)()\) S()\) A\ Response functions for S, M, and L cones
A\ S-Cone M-Cone L-Cone
M = / D(N)M(\)dA
)\ 3=0.8
R L COCV N &
A 2 o

Ry
s
-

0. ™=

400 430 460 490 520 550 580 610 640 670 700

Uneven distribution of cone types in eye wavelength (nm)

~64% of cones are L cones, ~ 32% M cones
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Color filter array (Bayer mosaic)

m Color filter array placed over sensor

B Result: different pixels have different spectral response (each pixel
measures red, green, or blue light)

m 50% of pixels are green pixels Pixel response curve: Canon 40D/50D

: Canon 50D

— —— :Canon 40D :

0.4

0.35

o
)

0.25

0.2

Pixel Quantum Efficiency

o
—
i

Traditional Bayer mosaic
(other filter patterns exist: e.g., Sony’s RGBE) Waielength (4

f(A)

il . :
4000 6000 6500 7000

Image credit:
Wikipedia, Christian Buil (http://www.astrosurf.com/~buil/cameras.htm) CMU 15-769, Fall 2016



RAW sensor output (simulated data)

Light Hitting Sensor

“Hot pixel”

—q.l..~ g eg Fra r e T e ss
. sl e

Bad row
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Another basis: Y'ChCr color space

Recall: color is represented as a 3D value

Y’ = luma: perceived luminance
Cb = blue-yellow deviation from gray
Cr =red-cyan deviation from gray

0.1 02030405060.7080.9

Gamma corrected RGB
(primed notation indicates
perceptual (non-linear) space)
We'll describe what this means
this later in the lecture.

Conversion from R'G'B’ to Y'Cbh(Cr:
65.738 - R’D 129.057 - G’D 25H.064 - B'D

I
L 056 T 056 256
_37.945- R 74494-G'.  112.439. B
Cp= 128+ 6 w5 T 6
112.439- R..  94.154.C" 18.285 - B!
Cr = 128 D_ D _ D
R g 256 256 256

Image credit: Wikipedia CMU 15-769, Fall 2016



CMOS Pixel Structure



Front-side-illuminated (FSI) CMOS

Building up the C(M0OS imager layers

Courtesy R. Motta, Pixim CMU 15-769, Fall 2016



Pixel pitch:
A few microns
Photodiodes ’
~50% Fill Factor \‘

4 0’

%

Courtesy R. Motta, Pixim (MU 15-769, Fall 2016



Polysilicon
&Via1

Courtesy R. Motta, Pixim (MU 15-769, Fall 2016



Metal 1

Courtesy R. Motta, Pixim (MU 15-769, Fall 2016



Metal 2

Courtesy R. Motta, Pixim (MU 15-769, Fall 2016



Courtesy R. Motta, Pixim (MU 15-769, Fall 2016



Metal 4

Courtesy R. Motta, Pixim (MU 15-769, Fall 2016



Color filter array

Courtesy R. Motta, Pixim (MU 15-769, Fall 2016



Pixel fill factor

Fraction of pixel area that integrates incoming light
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Photodiode area I Non photosensitive (circuitry)

Slide credit: Ren Ng CMU 15-769, Fall 2016



CMOS sensor pixel

Microlens
: Red
Color
Filter
Reset
Amplifier Transistor

Transistor SR?wt

. elec

TR =/ %8

Transistor

Photodiode

Silicon
Substrate

Potential
. Well
Figure 3

lllustration credit: Molecular Expressions (http://micro.magnet.fsu.edu/primer/digitalimaging/cmosimagesensors.html)

Color filter attenuates light

Microlens (a.k.a. lenslet) steers light
toward photo-sensitive region
(increases light-gathering capability)

Microlens also serves to prefilter signal.
Why?

(MU 15-769, Fall 2016
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Using micro lenses to improve fill factor

MICRO-LENS LAYOUT

Leica M9

1 Pwel diagram
2 Centerad micro lens in the middle of the senscr
3 Laterally displaced mioro lens at the adge of the sensce

Shifted microlenses on M9 sensor.

Slide credit: Ren Ng CMU 15-769, Fall 2016



Optical cross-talk

Sensor architecture

of a standard
CMOS sensor

(schematic diagram)

Il\-

1 Microlens design
wmnonnalmdms

2 Relatively large
distance between
color filter and
photodiode

With some CMOS sensors, rays of incoming kght at large angles of incidence can fail to reach the photodiode of the
corresponding pixel and reach only the adjacent pixel. Or they are shadowed of reflected on the way 10 the pxel with the
effect that the overall amount of kgt received by the pixels is less than the amount arriving through the microlenses.

Slide credit: Ren Ng
http://gmpphoto.blogspot.com/2012/09/the-new-leica-max-24mp-cmos-sensor.html CMU 15-769, Fall 2016



Pixel optics for minimizing cross-talk

Sensor architecture

of the Leica

Max 24 MP sensor

(schematic diagram)

1 Microlens design ‘

with varying radius —_“‘——

2 Relatively shot | —— : ‘ — -
e —
color filter and , 2
=

In the case of the Leica Max 24 MP sonsor, and in contrast 1o standard CMOS sensors, even light rays with Lge angles
of ncidence, e.g. fromwide-angle lenses or large apertures, are caplurad precisely by the photodiodes of the sensor. This
5 enabled by the special microlens design and the smalier dstance between the colour filter and photodode, which allows
more light to enter the system, and ensures that it falis more directly on the respective photodiodes.

Slide credit: Ren Ng

http://gmpphoto.blogspot.com/2012/09/the-new-leica-max-24mp-cmos-sensor.html CMU 15-769, Fall 2016



Backside illumination sensor

B Traditional C(MOS: electronics block light

B |dea: move electronics underneath light gathering region
= Increases fill factor
- Reduces cross-talk due since photodiode closer to microns
- Implication 1: better light sensitivity at fixed sensor size
- Implication 2: equal light sensitivity at smaller sensor size (shrink sensor)

Incidental ight Incidental light
g ...
T - ack side
Color fi s gy me e Y o w ocooooonoos e » gooot 2000 SE—
Metal wiring Il DOC b B Substrate
treceving [ BB L L
surface Rt (N Gt s I R ront Sid':’L_ L e
o B b i ' Metal wiring
Substrate [T bl b 101 008 BB O
psnnens (M cotnsneed Bl mesiseen! 3 21 A e »
Front-illuminated structure Back-illuminated structure

lllustration credit: Sony CMU 15-769, Fall 2016



F u I I _We I I c a p a city Oversaturated pixels

o ° ° &l’; .
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Graph credit: clarkvision.com CMU 15-769, Fall 2016



Bigger sensors = bigger pixels (or more pixels?)

Crop
o o o Fact :
B jPhone 6s (1.2 micron pixels, 12 MP) N Medium format (Kodak KAF 39000 sensor)
® My Nikon D7000 (APS-C)
(4.8 micron pixels, 16 MP)
B Nikon D4 (full frame sensor) oo 35 mm "full frame" 36x24mm
(7.3 micron pixels, 16 MP) AP (Canon)
o g8 . . 1.29 | - 24x16mm
B |mplication: very high pixel count sensors " e
. . 1.62 l entax, sony)
can be built with current CMOS technology 3?4 |- APS-C (Canon)
eyl s . -« Foveon (Sigma)
- Full frame sensor with iPhone 6s pixel ... I ' Four Thirds System
size ~ 600 MP sensor 133 N ©f (Niken
<«1—1/2.3") | | |

Nokia Lumia
(41 MP)

Image credit: Wikipedia CMU 15-769, Fall 2016



Steps in capturing an image

. Clear sensor pixels

. Open camera’s mechanical shutter (exposure begins)
. Optional: fire flash

. Close camera mechanical shutter (exposure ends)

Vi & W N =

. Read measurements off sensor
- For each row:
- Select row, read pixel for all columns in parallel
- Pass data stream through amplifier and ADC

CMU 15-769, Fall 2016



Electronicrolling shutter

Many cameras do not have a mechanical shutter
(e.g., smart-phone cameras)

Photo of red square, moving to right

+ 1. Clear sensor pixels for row i (exposure begins)

2. (lear sensor pixels for row i+1 (exposure begins)

Exposure

~ 3. Readrowi (exposure ends)

4. Readrowi+1 (exposure ends)

Each image row exposed for the same amount of time (same exposure)

Each image row exposed over different interval of time
(time offset determined by row read speed)

(MU 15-769, Fall 2016



Rolling shutter effects

-

Image credit: Point Grey Research

Image credit: Wikipedia

(MU 15-769, Fall 2016



Measurement noise

We've all been frustrated by noise in low-
light photographs

(or in shadows in daytime images)

(MU 15-769, Fall 2016



Measurement noise

Photon shot noise:

- Photon arrival rates feature poisson distribution

- Standard deviation = sqrt(N)

- Signal-to-noise ratio (SNR): N/sqrt(N)
- Brighter the signal the higher the SNR

Dark-shot noise <=—-—m-—mm-u-n-n-m-mewee-oooo

= Due to leakage current

Addressed by: subtract dark image

- Electrons dislodged due to thermal activity (increases exponentially with

sensor temperature)

Non-uniformity of pixel sensitivity (due to manufacturing defects)

\ Addressed by: subtract flat field image

Read noise
- e.(., due to amplification / ADC

(e.g., image of gray wall)

CMU 15-769, Fall 2016



Read noise

35 i
Digital Cameras:
30 Sensor Read Noise
- (electrons)
c
© 25
..3 ¢ Camera CMOS
L= Camera CCD
% 20 ¢ Sensor CMOS g =—tice
v Sensor CCD
>
= 15
©
o
10 @ 209% 7Z e{dﬂé ’Canon 10D
5 i Nikon D300 __ —
L 2 Canon TD‘ fanon 40‘D‘C§1ao:§:;0::)500 (?anon 1D ‘gg?ooz?jgt)gwrk |
Canon & Canon 5D Marklll
0 i 2 1 2 1 2 1 2 1 , 50D , Ganon, Markll 1 1
1D IV
0 1 2 3 4 5 6 7 8 9

Pixel Pitch (microns)

Read noise is largely independent of pixel size

Large pixels + bright scene: noise determined largely by photon shot noise

Image credit: clarkvision.com

(MU 15-769, Fall 2016



Dark shot noise / read noise
Black image examples: Nikon D7000, High IS0

1/60 sec exposure 1 sec exposure

CMU 15-769, Fall 2016



Maximize light gathering capability

B Goal: increase signal-to-noise ratio

- Dynamicrange of a pixel (ratio of brightest light and dimmest light
measurable) is determined by the noise floor (minimum signal) and the pixel’s
full-well capacity (maximum signal)

m Big pixels
- Nikon D4: 7.3 um

- iPhone 5s: 1.5 um

m Sensitive pixels

- Good materials
- High fill factor

CMU 15-769, Fall 2016



Vignetting

Image of white wall (Note: | contrast-enhanced the image to show effect)

(MU 15-769, Fall 2016



Types of vignetting

Optical vignetting: less light reaches edges of sensor due to physical obstruction in lens

Pixel vignetting: light reaching pixel at an oblique
angle is less likely to hit photosensitive region than werons—" 8

Red
Color

light incident from straight above (e.g., obscured by . Firer

- Amplifier s o . Transistor
electronics) RS _—— e
Tm%ggtr;r—.\?\? . /A ous

Photodiode

— Microlens reduces pixel vignetting

Silicon
Substrate

Potential
Well

Figure 3

Image credit: Mark Butterworth CMU 15-769, Fall 2016



More challenges
m Chromatic shifts over sensor

- Pixel light sensitivity changes over sensor due to interaction with microlens

(Recall index of refraction depends on wavelength, so some wavelengths are
more likely to suffer from cross-talk or reflection. Ugg!)

m Dead pixels (stuck at white or black)

B Lens distortion

ARRRRE

Pincushion distortion

Corrected Image
Image credit: PCWorld

| aptured Image

(MU 15-769, Fall 2016



A simple RAW image processing pipeline

Adopting terminology from Texas Instruments OMAP Image Signal Processor pipeline
(since public documentation exists)

Assume: receiving 12 bits/pixel Bayer mosaiced data from sensor

CMU 15-769, Fall 2016



Optical clamp: remove sensor offset bias

output_pixel = input_pixel - [average of pixels from optically black region]

CCDC_CLAMP [30:28] OBSLEN

CCDC_CLAMP [24:10] OBST .
I Remove bias due to sensor black level

. | CCDC_CLAMP [27:25] OBSLN . .
(from nearby sensor pixels at time of shot)

. x CCDC_CLAMP [4:0] OBGAIN
Computed offset used here

Masked pixels

Active pixels

CMU 15-769, Fall 2016



Step 2: correct for defective pixels

m Store LUT with known defective pixels
- e.g., determined on manufacturing line, during sensor calibration and test

m Example correction methods

- Replace defective pixel with neighbor
- Replace defective pixel with average of neighbors

- Correct defect by subtracting known bias for the defect

output _pixel = (isdefectpixel(current pixel xy)) ?
average(previous input pixel, next _input pixel) :

input pixel;

CMU 15-769, Fall 2016



Lens shading compensation

m (orrect for vignetting

- Recall good implementations will consider wavelength-dependent vignetting
(that creates chromatic shift over the image)

m Possible implementations:
- Use 2D buffer of flat-field photo stored in memory

- e.g., lower resolution buffer, upsampled on-the-fly

- Use analytic function to model correction

offset = upsample_compensation_offset_buffer(current_pixel xy);

gain = upsample compensation_gain buffer(current_pixel xy);

output _pixel = offset + gain * input pixel;

CMU 15-769, Fall 2016



Optional dark-frame subtraction

m Similar computation to lens shading compensation

output_pixel = input_pixel - dark_frame[current_pixel_ xy];

CMU 15-769, Fall 2016



White balance

B Adjust relative intensity of rgh values (so neutral tones appear neutral)

output pixel = white_balance coeff * input pixel
// note: in this example, white balance coeff is vec3
// (adjusts ratio of red-blue-green channels)

B Determine white balance coefficients based on analysis of image contents:

- Simple auto-white balance algorithms
- Gray world assumption: make average of all pixels in image gray
- Find brightest region of image, make it white ([1,1,1])

B Modern cameras have sophisticated (heuristic-based) white-balance algorithms

Common data-driven solution:
1. Compute features from input image

y & pr ’ *ib (e.g., histogram)
M o - 2. Find similar images in database of
Custom funse noste images for which good white balance
settings are known

‘ 3. Use white balance settings from
{p {b B L I 1’.” database image

4 . t

Cloud vorescent Shade ayligt My Manipuiation

i

Image credit: basedigitalphotography.com
(MU 15-769, Fall 2016




Demosiac

B Produce RGB image from mosaiced input image
m Basic algorithm: bilinear interpolation of mosaiced values (need 4 neighbors)
B More advanced algorithms:

- Bicubicinterpolation (wider filter support region... may overblur)

- Good implementations attempt to find and preserve edges

—_—

Image credit: Mark Levoy CMU 15-769, Fall 2016



Demosaicing errors

m Moire pattern color artifacts
- Common trigger: fine diagonal black and white stripes

- Common solution:
- Convert demosaiced value to YChCr
- Low-pass filter ChCr channels

- Combine prefiltered ChCr with full resolution Y from sensor to get RGB

Image credit: http://almanazir.typepad.com/almanazir/2006/11/how_a_camera_ph_1.html CMU 15-769, Fall 2016



http://almanazir.typepad.com/almanazir/2006/11/how_a_camera_ph_1.html

Denoising: effect of downsmng on |mage hoise

RETE

"' | .2" ._"'5, ;;

SR TR

averaged down

{ point
(bilinear resampling)

sampled

(MU 15-769, Fall 2016

Credit: Levoy



Denoising

Denoised

(MU 15-769, Fall 2016



Aside: image processing basics

CMU 15-769, Fall 2016



Example image processing operations

(MU 15-769, Fall 2016



Example image processing operations
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Edge detection

(MU 15-769, Fall 2016



A “smarter” blur (doesn’t blur over edges)

(MU 15-769, Fall 2016



Review: convolution

O

yZanlat N

output signal filter input signal

It may be helpful to consider the effect of convolution with the simple unit-area “box” function:

f(z) = {1 7| < O,'5 - 11

0 otherwise

0.5 4_“‘“4 . >
(f *g)(r) = / g(x —y)dy 0.5 0.5

/ —0.5

[ * gisa“smoothed” version of g

(MU 15-769, Fall 2016



Discrete 2D convolution

T Tj—

output image filter input image

Consider f (7, 7) thatisnonzeroonlywhen: —1 < 7,7 <1
Then:

(f *9)(z,y) Z f(i, ) (z — i,y — )

And we can represent f(i,j) as a 3x3 matrix of values where:

fli,7) =F,; ; (often called: “filter weights”, “kernel”)

CMU 15-769, Fall 2016



Simple 3x3 box blur

float input[(WIDTH+2) * (HEIGHT+2)];

float output[WIDTH * HEIGHT]; <+— For now: ignore boundary pixels and
assume output image is smaller than
float weights[] = {1./9, 1./9, 1./9, input (makes convolution loop bounds
1./9, 1./9, 1./9, much simpler to write)

1./9, 1./9, 1./9};

for (int j=0; jJF<HEIGHT; j++) {
for (int 1=0; i<WIDTH; i++) {
float tmp = 0.f;
for (int jj=0; jj<3; jj++)
for (int 1i=0; ii<3; ii++)
tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
output[j*WIDTH + i] = tmp;

(MU 15-769, Fall 2016



7x7 box blur

Original

Blurred

(MU 15-769, Fall 2016



Gaussian blur

m (Obtain filter coefficients from sampling 2D Gaussian

1 i2 4 52

f(Z7j) — 27_‘_0_26 20

m Produces weighted sum of neighboring pixels (contribution
falls off with distance)

— In practice: truncate filter beyond certain distance

075 124 .075
124 .204 124

075 124 075

CMU 15-769, Fall 2016



7x7 gaussian blur

Original

Blurred

(MU 15-769, Fall 2016



What does convolution with this filter do?

0 -1 0

Sharpens image!
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What does convolution with these filters do?

—1 0 1 -1 -2 -1
—2 0 2 0 0 U
—1 0 1 1 2 1
Extracts horizontal Extracts vertical

gradients gradients



Grad

ient detection filters

Horizontal gradients

e —?%——.-———Q- — - — | — —

e e et T e A e oo e Vertical gradients

=
- e I — - — - > T A—— . S — . S — - — T S - | AN - e

— — e ——— —— —— — L e . R, D - - D . I A - e

— e ——— - Note: you can think of a filteras a
“detector” of a pattern, and the
et b T 4= = o magnitude of a pixel in the output

. —— et e | —

T . T S e e awm D - — . T M D S—— e < —

— image as the “response” of the filter

<Ae = e = IR T e to the region surrounding each pixel

— — -— L e R - - — — B e e———_ - —————

—

— -  — - | ——— D e c——————

¢ e e e in the input image (this is a common
interpretation in computer vision)
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Sobel edge detection

m Compute gradient response images

—1 0 1
Gy, =[—-2 0 2| %1

-1 0 1

-1 -2 -1
Gy =10 0 0 | 1

12 1

® Find pixels with large gradients

G=1/G+G,

YT Pixel-wise operation on images

(MU 15-769, Fall 2016



Cost of convolution with N x N filter?

float input[ (WIDTH+2) * (HEIGHT+2)]; In this 3x3 box blur example:
float output[WIDTH * HEIGHT]; Total work perimage =9 x WIDTH x HEIGHT
float weights[] = {1./9, 1./9, 1./9, For N x N filter: N2 x WIDTH x HEIGHT

1./9, 1./9, 1./9,
1./9, 1./9, 1./9};

for (int j=0; jJF<HEIGHT; j++) {
for (int 1=0; i<WIDTH; i++) {
float tmp = 0.f;
for (int jj=0; jj<3; jj++)
for (int 1i=0; ii<3; ii++)
tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
output[j*WIDTH + i] = tmp;

(MU 15-769, Fall 2016



Separable filter

m Afilteris separable if is the product of two other filters

- Example: a 2D box blur
1 1 1 1
1 1 1
§111:§1*§[111}
11 1 1

- Exercise: write 2D gaussian and vertical/horizontal

gradient detection filters as product of 1D filters (they are
separable!)

B Key property: 2D convolution with separable filter can be
written as two 1D convolutions!
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Implementation of 2D box blur via two 1D convolutions

int WIDTH = 1024
int HEIGHT = 1024;

float input] (WIDTH+2) * (HEIGHT+2)]; Total work per image for NxN filter:
float tmp buf[WIDTH * (HEIGHT+2)];
float output[WIDTH * HEIGHT]; 2N X WIDTH x HEIGHT

float weights[] = {1./3, 1./3, 1./3};

for (int j=0; Jj<(HEIGHT+2); j++)
for (int i=0; i<WIDTH; i++) {
float tmp = 0.f;
for (int ii=@; ii<3; ii++)
tmp += input[j*(WIDTH+2) + i+ii] * weights[ii];
tmp_buf[j*WIDTH + i] = tmp;
}

for (int j=0; J<HEIGHT; j++) {
for (int i=0; i<WIDTH; i++) {
float tmp = O0.f;
for (int jj=0; jj<3; jj++)
tmp += tmp_buf[(j+jj)*WIDTH + i] * weights[jj];
output[j*WIDTH + i] = tmp;
}
}
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Data-dependent filter (not a convolution)

float input[ (WIDTH+2) * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

for (int j=0; J<HEIGHT; j++) {
for (int i=0; i<WIDTH; i++) {
float min_value = min( min(input[(j-1)*WIDTH + i], input[(j+1)*WIDTH + i]),
min(input[j*WIDTH + i-1], input[j*WIDTH + i+1]) );
max( max(input[(j-1)*WIDTH + i], input[(j+1)*WIDTH + i]),
max(input[j*WIDTH + i-1], input[j*WIDTH + i+1]) );

float max_value

output[j*WIDTH + i] = clamp(min_value, max_value, input[j*WIDTH + i]);

}

This filter clamps pixels to the min/max of its cardinal neighbors
(e.q., hot-pixel suppression)
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Median filter

m  Replace pixel with median of its neighbors §

—  Useful noise reduction filter: unlike gaussian
blur, one bright pixel doesn’t drag up the
average for entire region

B Notlinear, not separable

—  Filter weightsare 10r0
(depending on image content)

1px médian fivlnter

uint8 input[ (WIDTH+2) * (HEIGHT+2)];
uint8 output[WIDTH * HEIGHT];
for (int j=0; J<HEIGHT; j++) {
for (int i=0; i<WIDTH; i++) {
output[j*WIDTH + i] =
// compute median of pixels

// in surrounding 5x5 pixel window = * -
1 3px median filter 10px median filter

}

m  Basicalgorithm for NxN support region:

— Sort N2 elements in support region, pick median O(N2log(N2)) work per pixel
— (anyou think of an 0(N2) algorithm? What about O(N)?
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Bilateral filter

o
»

* 5

o S Y y

G LN R .r_ o ' .
% - . N £ 2

Example use of bilateral filter: removing noise while preserving image edges
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Gaussian blur kernel Input image

Bilateral filter
N,

BE(I](z,y) =) f(ll(z =i,y —j)— I(x,y)|)G(, ) (x — i,y — j)
A TN
For all pixels in support region Re-weight based on difference
of Gaussian kernel in input image pixel values

B The bilateral filter is an “edge preserving” filter: down-weight contribution of pixels
on the other side of strong edges. f(x) defines what “strong edge means”

B Spatial distance weight term 7(x) could itself be a gaussian

= Orverysimple:f(x) = 0 if x > threshold, 1 otherwise

Value of output pixel (x,y) is the weighted sum of all pixels in the support region of a
truncated gaussian kernel

But weight is combination of spatial distance and input image pixel intensity difference.
(non-linear filter: like the median filter, the filter’s weights depend on input image content)
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Bilateral filter

Pixels with significantly different intensity
as p contribute little to filtered result (they
are “on the “other side of the edge”

Input pixel p

Input image G(): gaussian about input pixelp  f(): Influence of support region

G x f: filter weights for pixel p Filtered output image

Figure credit: Durand and Dorsey, “Fast Bilateral Filtering for the Display of High-Dynamic-Range Images”, SIGGRAPH 2002 CMU 15-769, Fall 2016



Bilateral filter: kernel depends on image content

See Paris et al. [ECCV 2006] for a fast approximation to the bilateral filter

Question: describe a type of edge the bilateral filter will not respect
(it will blur across these edges)

Figure credit: SIGGRAPH 2008 Course: “A Gentle Introduction to Bilateral Filtering and its Applications” Paris et al. CMU 15-769, Fall 2016



End of aside on image processing basics
(back to our simple camera pipeline)




Color-space conversion

B Measurements of sensor depend on sensor’s spectral response

= Response depends on bandwidths filtered by color filter array

m (Convert representation to sensor-independent basis: e.g., SRGB
- 3 x 3 matrix multiplication

output _rgb pixel = COLOR_CONVERSION MATRIX * input_rgb pixel

| |

Represented in standard Represented in
color space (e.g., RGB) sensor-specific basis

Note: modern pipelines will perform more sophisticated, and non-linear, color transformations at this point. e.g.,
use a big lookup table to adjust certain tones (e.g., make sky-like tones bluer)
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Lightness (perceived brightness) aka luma

? ,
Lightness (L*) <«—— Luminance(Y) = ‘ * /\j\

(Perceived) (Response of eye)
Spectral sensitivity of eye Radiance
A (eye’s response curve) (energy spectrum
from scene)

Dark adapted eye: L* 0 ¢ Y0-4

Bright adapted eye: L* C Y0-5

In a dark room, you turn on a light with luminance: Y;
You turn on a second light that is identical to the first. Total output is now: Y, = 2Y;

20.4

Total output appears — 1.319 times brighter to dark-adapted human

Note: Lightness (L*) is often referred to as luma (Y’)
(MU 15-769, Fall 2016



Consider an image with pixel values encode
luminance

A
4 - I.* — Y'45
/ [J [J [ J
— Consider 12-bit sensor pixel:
Can represent 4096 unique luminance values
*, 079 in output image
g —
- o . o o
2 1 7 Values are ~ linear in luminance since they
=2 | / //
s o ~ represent the sensor’s response
s [ 7
.qé /
9
0.25}
l'
+ ’ e — e — >
0| 0.25 0.5 0.75 1
Luminance (Y)
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Problem: quantization error

Many common image formats store 8 bits per channel (256 unique values)
Insufficient precision to represent brightness in darker regions of image

A

/

0.751

Perceived brightness: L*

0.28f /

- . .
-

| * = Y45

Bright regions of image: perceived difference between
pixels that differ by one step in luminance is small!
(human may not even be able to perceive difference
between pixels that differ by one step in luminance!)

Dark regions of image: perceived difference between
pixels that differ by one step in luminance is large!
(quantization error: gradients in luminance will not
appear smooth.)

- o
T - -

.....
.......

Luminance (Y)

o
11 -

Rule of thumb: human eye cannot differentiate <1% differences in luminance
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Store lightness, not luminance

|dea: distribute representable pixel values evenly with respect to perceived brightness,
not evenly in luminance (make more efficient use of available bits)

1 I

0.751

Perceived brightness: L*

0.25f /

Solution: pixel stores Y0-45
Must compute (pixel_value)22 prior to display on LCD

Warning: must take caution with subsequent
pixel processing operations once pixels are
encoded in a space that is not linear in
luminance.

e.g., When adding images should you add pixel
values that are encoded as lightness or as
luminance?

Luminance (Y)
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Summary: simplified image processing pipeline

m (orrect for sensor bias (using measurements of optically black pixels)
m (Correct pixel defects

m Vignetting compensation 19 bits ber bixel
-bits per pixe

m Dark-frame subtract (optional) 1intensity per pixel
. Pixel values linear in ener
B White balance &

- :
Demosaic 3x12-bits per pixel

B Denoise / sharpen, etc. RGB intensity per pixel

. Pixel values linear in energy
m (Color Space Conversion
B Gamma Correction (Non-linear mapping) 3x8-bits per pixel
m Color Spa ce Conversion (Y'ChCr) Pixel values perceptually linear
B Chroma Subsampling

® JPEG compression
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Takeways

B The values of pixels in photograph you see on screen are quite different
than the values output by the photosensor in a modern digital camera.

B The sequence of operations we discussed today is carried out at high frame
rates by the image signal processing ASIC in most cameras today

B |nthe coming lectures we’ll discuss more
advanced image processing operations that
are emerging in modern camera pipelines

— Local contrast enhancement, advanced denoising,
high-dynamic range imaging, etc.

— Growing sophistication and diversity of techniques
suggests that current ISPs will likely become more
programmable in the near future

Qualcomm Snapdragon 820

Image Signal Processor (ISP):
ASIC for processing pixels off camera
(25MP at 30Hz) CMU 15-769, Fall 2016




