
Visual Computing Systems
CMU 15-769, Fall 2016

Lecture 2:

The Camera Image
Processing Pipeline

Acknowledgements to Ren Ng, Marc Levoy for various slides used in this lecture.

 CMU 15-769, Fall 2016

Next two lectures
The values of pixels in photograph you see on screen

are quite different than the values output by the
photosensor in a modern digital camera.

Computation is now a fundamental aspect of
producing high-quality pictures.

Computation
Output of sensor

(“RAW”)

Beautiful image that
impresses your friends

on Instagram

 CMU 15-769, Fall 2016

Where we are headed
▪ I’m about to describe the pipeline of operations that take raw image

pixels from a sensor (measurements) to high-quality images
- Correct for sensor bias (using measurements of optically black pixels)
- Correct pixel defects
- Vignetting compensation
- Dark frame subtract (optional)
- White balance
- Demosaic
- Denoise / sharpen, etc.
- Color Space Conversion
- Gamma Correction
- Color Space Conversion (Y’CbCr)
- …

▪ Today’s pipelines are sophisticated, but they only scratch the surface
of what future image processing pipelines might do
- Consider what a future image analysis pipeline might feature: person identification, action recognition,

scene understanding (to automatically compose shot or automatically pick best picture) etc.

 CMU 15-769, Fall 2016

Camera cross section

Image credit: Canon (EOS M)

Sensor

Canon 14 MP CMOS Sensor
(14 bits per pixel)

 CMU 15-769, Fall 2016

The Sensor

 CMU 15-769, Fall 2016

Photoelectric effect

Incident photons

Ejected electrons

Einstein’s Nobel Prize in 1921 “for his services to Theoretical Physics,
and especially for his discovery of the law of the photoelectric effect"

Albert Einstein

Slide credit: Ren Ng

 CMU 15-769, Fall 2016

CMOS sensor

Row select
Register

ADCAmplify
Bits

Row buffer
(shift register)

…

Active pixel sensor
(2D array of photo-diodes)

“Optically black” region
(shielded from light)

Exposed region
Photodiode

(a pixel)

 CMU 15-769, Fall 2016

CMOS APS (active pixel sensor) pixel

Illustration credit: Molecular Expressions (http://micro.magnet.fsu.edu/primer/digitalimaging/cmosimagesensors.html)

http://micro.magnet.fsu.edu/primer/digitalimaging/cmosimagesensors.html

 CMU 15-769, Fall 2016

CMOS response functions are linear
Photoelectric effect in silicon:

- Response function from
photons to electrons is linear

- May have some nonlinearity
close to 0 due to noise and
when close to pixel
saturation

Slide credit: Ren Ng

 CMU 15-769, Fall 2016

Quantum efficiency
▪ Not all photons will produce an electron

- Depends on quantum efficiency of the device

- Human vision: ~15%

- Typical digital camera: < 50%

- Best back-thinned CCD: > 90% 
(e.g., telescope)

QE =
electrons
photons

Slide credit: Ren Ng

 CMU 15-769, Fall 2016

Sensing Color

 CMU 15-769, Fall 2016

Electromagnetic spectrum
Describes distribution of power (energy/time) by wavelength

Figure credit:

Below: spectrum of various common light sources:

 CMU 15-769, Fall 2016

▪ Photosensor input: light
- Electromagnetic power distribution over wavelengths:

▪ Photosensor output: a “response” … a number
- e.g., encoded in electrical signal

▪ Spectral response function:
- Sensitivity of sensor to light of a given wavelength

- Greater corresponds to more a efficient sensor (when is large, a
small amount of light at wavelength will trigger a large sensor response)

▪ Total response of photosensor:

Photosensor response

R =

Z

�
�(�)f(�)d�

R =

Z

�
�(�)f(�)d�

R =

Z

�
�(�)f(�)d�

R =

Z

�
�(�)f(�)d� R =

Z

�
�(�)f(�)d�

R =

Z

�
�(�)f(�)d�

 CMU 15-769, Fall 2016

Spectral response of cone cells in human eye
Three types of cells in eye responsible for color perception: S, M, and L cones
(corresponding to peak response at short, medium, and long wavelengths)

Takeaway: the space of human-perceivable colors is three dimensional

S =

Z

�
�(�)S(�)d�

M =

Z

�
�(�)M(�)d�

L =

Z

�
�(�)L(�)d�

Uneven distribution of cone types in eye
~64% of cones are L cones, ~ 32% M cones

wavelength (nm)

No
rm

al
ize

d
re

sp
on

se

Response functions for S, M, and L cones

 CMU 15-769, Fall 2016

Color filter array (Bayer mosaic)
▪ Color filter array placed over sensor

▪ Result: different pixels have different spectral response (each pixel
measures red, green, or blue light)

▪ 50% of pixels are green pixels

Traditional Bayer mosaic
(other filter patterns exist: e.g., Sony’s RGBE)

Pixel response curve: Canon 40D/50D

Image credit:
Wikipedia, Christian Buil (http://www.astrosurf.com/~buil/cameras.htm)

f(�)

 CMU 15-769, Fall 2016

RAW sensor output (simulated data)

RAW output of sensor

Light Hitting Sensor

Bad row

“Hot pixel”

 CMU 15-769, Fall 2016

Y’ = luma: perceived luminance
Cb = blue-yellow deviation from gray
Cr = red-cyan deviation from gray

Y’

Cb

Cr

Image credit: Wikipedia

Conversion from R’G’B’ to Y’CbCr:

Gamma corrected RGB
(primed notation indicates
perceptual (non-linear) space)
We’ll describe what this means
this later in the lecture.

Another basis: Y’CbCr color space
Recall: color is represented as a 3D value

 CMU 15-769, Fall 2016

CMOS Pixel Structure

 CMU 15-769, Fall 2016

Front-side-illuminated (FSI) CMOS
Building up the CMOS imager layers

Courtesy R. Motta, Pixim

 CMU 15-769, Fall 2016

Pixel pitch:
A few microns

Photodiodes
~50% Fill Factor

Courtesy R. Motta, Pixim

 CMU 15-769, Fall 2016

Polysilicon
& Via 1

Courtesy R. Motta, Pixim

 CMU 15-769, Fall 2016

Metal 1

Courtesy R. Motta, Pixim

 CMU 15-769, Fall 2016

Metal 2

Courtesy R. Motta, Pixim

 CMU 15-769, Fall 2016

Metal 3

Courtesy R. Motta, Pixim

 CMU 15-769, Fall 2016

Metal 4

Courtesy R. Motta, Pixim

 CMU 15-769, Fall 2016

Color filter array

Courtesy R. Motta, Pixim

 CMU 15-769, Fall 2016

Pixel fill factor

Photodiode area Non photosensitive (circuitry)

Fraction of pixel area that integrates incoming light

Slide credit: Ren Ng

 CMU 15-769, Fall 2016

CMOS sensor pixel

Illustration credit: Molecular Expressions (http://micro.magnet.fsu.edu/primer/digitalimaging/cmosimagesensors.html)

Microlens (a.k.a. lenslet) steers light
toward photo-sensitive region
(increases light-gathering capability)

Microlens also serves to prefilter signal.
Why?

Color filter attenuates light

http://micro.magnet.fsu.edu/primer/digitalimaging/cmosimagesensors.html

 CMU 15-769, Fall 2016

Using micro lenses to improve fill factor

Leica M9

Shifted microlenses on M9 sensor.

Slide credit: Ren Ng

 CMU 15-769, Fall 2016

Optical cross-talk

http://gmpphoto.blogspot.com/2012/09/the-new-leica-max-24mp-cmos-sensor.html
Slide credit: Ren Ng

 CMU 15-769, Fall 2016

Pixel optics for minimizing cross-talk

http://gmpphoto.blogspot.com/2012/09/the-new-leica-max-24mp-cmos-sensor.html
Slide credit: Ren Ng

 CMU 15-769, Fall 2016

Backside illumination sensor
▪ Traditional CMOS: electronics block light

▪ Idea: move electronics underneath light gathering region
- Increases fill factor
- Reduces cross-talk due since photodiode closer to microns
- Implication 1: better light sensitivity at fixed sensor size
- Implication 2: equal light sensitivity at smaller sensor size (shrink sensor)

Illustration credit: Sony

 CMU 15-769, Fall 2016

Full-well capacity

Graph credit: clarkvision.com

Pixel saturates when photon capacity is exceeded

Oversaturated pixels

 CMU 15-769, Fall 2016

Bigger sensors = bigger pixels (or more pixels?)
▪ iPhone 6s (1.2 micron pixels, 12 MP)

▪ My Nikon D7000 (APS-C)
(4.8 micron pixels, 16 MP)

▪ Nikon D4 (full frame sensor)
(7.3 micron pixels, 16 MP)

▪ Implication: very high pixel count sensors
can be built with current CMOS technology
- Full frame sensor with iPhone 6s pixel

size ~ 600 MP sensor

24x16mm

Nokia Lumia
(41 MP)

36x24mm

Image credit: Wikipedia

 CMU 15-769, Fall 2016

Steps in capturing an image

1. Clear sensor pixels
2. Open camera’s mechanical shutter (exposure begins)
3. Optional: fire flash
4. Close camera mechanical shutter (exposure ends)
5. Read measurements off sensor

- For each row:
- Select row, read pixel for all columns in parallel
- Pass data stream through amplifier and ADC

 CMU 15-769, Fall 2016

1. Clear sensor pixels for row i (exposure begins)

2. Clear sensor pixels for row i+1 (exposure begins)

...

3. Read row i (exposure ends)

4. Read row i+1 (exposure ends)

Each image row exposed for the same amount of time (same exposure)

Each image row exposed over different interval of time
(time offset determined by row read speed)

Electronic rolling shutter
Many cameras do not have a mechanical shutter
(e.g., smart-phone cameras)

Photo of red square, moving to right

Ex
po

su
re

 CMU 15-769, Fall 2016

Rolling shutter effects

Image credit: Wikipedia

Image credit: Point Grey Research

 CMU 15-769, Fall 2016

Measurement noise

We’ve all been frustrated by noise in low-
light photographs

(or in shadows in daytime images)

 CMU 15-769, Fall 2016

Measurement noise
▪ Photon shot noise:

- Photon arrival rates feature poisson distribution
- Standard deviation = sqrt(N)
- Signal-to-noise ratio (SNR): N/sqrt(N)

- Brighter the signal the higher the SNR

▪ Dark-shot noise
- Due to leakage current
- Electrons dislodged due to thermal activity (increases exponentially with

sensor temperature)

▪ Non-uniformity of pixel sensitivity (due to manufacturing defects)

▪ Read noise
- e.g., due to amplification / ADC

Addressed by: subtract dark image

Addressed by: subtract flat field image
(e.g., image of gray wall)

 CMU 15-769, Fall 2016

Read noise

Image credit: clarkvision.com

Read noise is largely independent of pixel size
Large pixels + bright scene: noise determined largely by photon shot noise

 CMU 15-769, Fall 2016

Dark shot noise / read noise
Black image examples: Nikon D7000, High ISO

1/60 sec exposure 1 sec exposure

 CMU 15-769, Fall 2016

Maximize light gathering capability
▪ Goal: increase signal-to-noise ratio

- Dynamic range of a pixel (ratio of brightest light and dimmest light
measurable) is determined by the noise floor (minimum signal) and the pixel’s
full-well capacity (maximum signal)

▪ Big pixels
- Nikon D4: 7.3 um

- iPhone 5s: 1.5 um

▪ Sensitive pixels
- Good materials

- High fill factor

 CMU 15-769, Fall 2016

Vignetting
Image of white wall (Note: I contrast-enhanced the image to show effect)

 CMU 15-769, Fall 2016

Types of vignetting

Image credit: Mark Butterworth

Optical vignetting: less light reaches edges of sensor due to physical obstruction in lens

Pixel vignetting: light reaching pixel at an oblique
angle is less likely to hit photosensitive region than
light incident from straight above (e.g., obscured by
electronics)

- Microlens reduces pixel vignetting

 CMU 15-769, Fall 2016

More challenges
▪ Chromatic shifts over sensor

- Pixel light sensitivity changes over sensor due to interaction with microlens
(Recall index of refraction depends on wavelength, so some wavelengths are
more likely to suffer from cross-talk or reflection. Ugg!)

▪ Dead pixels (stuck at white or black)

▪ Lens distortion

Pincushion distortion

Captured Image Corrected Image
Image credit: PCWorld

 CMU 15-769, Fall 2016

A simple RAW image processing pipeline

Adopting terminology from Texas Instruments OMAP Image Signal Processor pipeline
(since public documentation exists)

Assume: receiving 12 bits/pixel Bayer mosaiced data from sensor

 CMU 15-769, Fall 2016

Optical clamp: remove sensor offset bias
output_pixel	=	input_pixel	-	[average	of	pixels	from	optically	black	region]

Remove bias due to sensor black level
(from nearby sensor pixels at time of shot)

 CMU 15-769, Fall 2016

Step 2: correct for defective pixels
▪ Store LUT with known defective pixels

- e.g., determined on manufacturing line, during sensor calibration and test

▪ Example correction methods
- Replace defective pixel with neighbor

- Replace defective pixel with average of neighbors

- Correct defect by subtracting known bias for the defect

output_pixel	=	(isdefectpixel(current_pixel_xy))	?		

																	average(previous_input_pixel,	next_input_pixel)	:	

																	input_pixel;

 CMU 15-769, Fall 2016

Lens shading compensation
▪ Correct for vignetting

- Recall good implementations will consider wavelength-dependent vignetting
(that creates chromatic shift over the image)

▪ Possible implementations:
- Use 2D buffer of flat-field photo stored in memory

- e.g., lower resolution buffer, upsampled on-the-fly

- Use analytic function to model correction

offset	=	upsample_compensation_offset_buffer(current_pixel_xy);	

gain	=	upsample_compensation_gain_buffer(current_pixel_xy);	

output_pixel	=	offset	+	gain	*	input_pixel;	

 CMU 15-769, Fall 2016

Optional dark-frame subtraction
▪ Similar computation to lens shading compensation

output_pixel	=	input_pixel	-	dark_frame[current_pixel_xy];	

 CMU 15-769, Fall 2016

White balance
▪ Adjust relative intensity of rgb values (so neutral tones appear neutral)

▪ Determine white balance coefficients based on analysis of image contents:
- Simple auto-white balance algorithms

- Gray world assumption: make average of all pixels in image gray
- Find brightest region of image, make it white ([1,1,1])

▪ Modern cameras have sophisticated (heuristic-based) white-balance algorithms

output_pixel	=	white_balance_coeff	*	input_pixel	
//	note:	in	this	example,	white_balance_coeff	is	vec3	
//	(adjusts	ratio	of	red-blue-green	channels)

Image credit: basedigitalphotography.com

Common data-driven solution:
1. Compute features from input image

(e.g., histogram)
2. Find similar images in database of

images for which good white balance
settings are known

3. Use white balance settings from
database image

 CMU 15-769, Fall 2016

Demosiac
▪ Produce RGB image from mosaiced input image

▪ Basic algorithm: bilinear interpolation of mosaiced values (need 4 neighbors)

▪ More advanced algorithms:

- Bicubic interpolation (wider filter support region… may overblur)

- Good implementations attempt to find and preserve edges

Image credit: Mark Levoy

 CMU 15-769, Fall 2016

Demosaicing errors
▪ Moire pattern color artifacts

- Common trigger: fine diagonal black and white stripes

- Common solution:

- Convert demosaiced value to YCbCr

- Low-pass filter CbCr channels

- Combine prefiltered CbCr with full resolution Y from sensor to get RGB

Image credit: http://almanazir.typepad.com/almanazir/2006/11/how_a_camera_ph_1.html

RAW data from sensor

Demosaiced

http://almanazir.typepad.com/almanazir/2006/11/how_a_camera_ph_1.html

 CMU 15-769, Fall 2016

Denoising: effect of downsizing on image noise

point
sampled

averaged down
(bilinear resampling)

Credit: Levoy

 CMU 15-769, Fall 2016

Denoising

Denoised

Original

 CMU 15-769, Fall 2016

Aside: image processing basics

 CMU 15-769, Fall 2016

Example image processing operations

Blur

 CMU 15-769, Fall 2016

Example image processing operations

Sharpen

 CMU 15-769, Fall 2016

Edge detection

 CMU 15-769, Fall 2016

A “smarter” blur (doesn’t blur over edges)

 CMU 15-769, Fall 2016

Review: convolution

output signal input signalfilter

It may be helpful to consider the effect of convolution with the simple unit-area “box” function:

VEC: Small: Collaborative Research: The Visual Computing Database: A

Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(y � x)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(y � x)dy

VEC: Small: Collaborative Research: The Visual Computing Database: A

Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

VEC: Small: Collaborative Research: The Visual Computing Database: A

Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

f * g is a “smoothed” version of g

-0.5 0.5

1

 CMU 15-769, Fall 2016

Discrete 2D convolution

(f ⇤ g)(x, y) =
1X

i,j=�1
f(i, j)I(x� i, y � j)

output image input imagefilter

Consider that is nonzero only when: (f ⇤ g)(x, y) =
1X

i,j=�1
f(i, j)I(x� i, y � j) �1  i, j  1

Then:
(f ⇤ g)(x, y) =

1X

i,j=�1

f(i, j)I(x� i, y � j)

And we can represent f(i,j) as a 3x3 matrix of values where:

f(i, j) = Fi,j (often called: “filter weights”, “kernel”)

 CMU 15-769, Fall 2016

Simple 3x3 box blur
float	input[(WIDTH+2)	*	(HEIGHT+2)];	

float	output[WIDTH	*	HEIGHT];	

float	weights[]	=	{1./9,	1./9,	1./9,	

																			1./9,	1./9,	1./9,	

																			1./9,	1./9,	1./9};	

for	(int	j=0;	j<HEIGHT;	j++)	{	

			for	(int	i=0;	i<WIDTH;	i++)	{	

						float	tmp	=	0.f;	

						for	(int	jj=0;	jj<3;	jj++)	

									for	(int	ii=0;	ii<3;	ii++)	

												tmp	+=	input[(j+jj)*(WIDTH+2)	+	(i+ii)]	*	weights[jj*3	+	ii];	

						output[j*WIDTH	+	i]	=	tmp;	

		}	

}

For now: ignore boundary pixels and
assume output image is smaller than
input (makes convolution loop bounds
much simpler to write)

 CMU 15-769, Fall 2016

7x7 box blur
Original

Blurred

 CMU 15-769, Fall 2016

Gaussian blur
▪ Obtain filter coefficients from sampling 2D Gaussian

f(i, j) =
1

2⇡�2
e�

i2+j2

2�2

2

4
.075 .124 .075
.124 .204 .124
.075 .124 .075

3

5

▪ Produces weighted sum of neighboring pixels (contribution
falls off with distance)

-In practice: truncate filter beyond certain distance

 CMU 15-769, Fall 2016

7x7 gaussian blur
Original

Blurred

 CMU 15-769, Fall 2016

What does convolution with this filter do?

2

4
0 �1 0
�1 5 �1
0 �1 0

3

5

Sharpens image!

 CMU 15-769, Fall 2016

3x3 sharpen filter
Original

Sharpened

 CMU 15-769, Fall 2016

What does convolution with these filters do?

Extracts horizontal
gradients

2

4
�1 0 1
�2 0 2
�1 0 1

3

5

2

4
�1 �2 �1
0 0 0
1 2 1

3

5

Extracts vertical
gradients

 CMU 15-769, Fall 2016

Gradient detection filters
Horizontal gradients

Vertical gradients

Note: you can think of a filter as a
“detector” of a pattern, and the
magnitude of a pixel in the output
image as the “response” of the filter
to the region surrounding each pixel
in the input image (this is a common
interpretation in computer vision)

 CMU 15-769, Fall 2016

Sobel edge detection
▪ Compute gradient response images

G
x

=

2

4
�1 0 1
�2 0 2
�1 0 1

3

5 ⇤ I

Gy =

2

4
�1 �2 �1
0 0 0
1 2 1

3

5 ⇤ I

▪ Find pixels with large gradients

G =
q

G
x

2 +G
y

2

Pixel-wise operation on images

G
x

=

2

4
�1 0 1
�2 0 2
�1 0 1

3

5 ⇤ I

Gy =

2

4
�1 �2 �1
0 0 0
1 2 1

3

5 ⇤ I

G =
q

G
x

2 +G
y

2

 CMU 15-769, Fall 2016

Cost of convolution with N x N filter?
float	input[(WIDTH+2)	*	(HEIGHT+2)];	

float	output[WIDTH	*	HEIGHT];	

float	weights[]	=	{1./9,	1./9,	1./9,	

																			1./9,	1./9,	1./9,	

																			1./9,	1./9,	1./9};	

for	(int	j=0;	j<HEIGHT;	j++)	{	

			for	(int	i=0;	i<WIDTH;	i++)	{	

						float	tmp	=	0.f;	

						for	(int	jj=0;	jj<3;	jj++)	

									for	(int	ii=0;	ii<3;	ii++)	

												tmp	+=	input[(j+jj)*(WIDTH+2)	+	(i+ii)]	*	weights[jj*3	+	ii];	

						output[j*WIDTH	+	i]	=	tmp;	

		}	

}

In this 3x3 box blur example:
Total work per image = 9 x WIDTH x HEIGHT

For N x N filter: N2 x WIDTH x HEIGHT

 CMU 15-769, Fall 2016

Separable filter
▪ A filter is separable if is the product of two other filters

- Example: a 2D box blur

- Exercise: write 2D gaussian and vertical/horizontal
gradient detection filters as product of 1D filters (they are
separable!)

▪ Key property: 2D convolution with separable filter can be
written as two 1D convolutions!

1

9

2

4
1 1 1
1 1 1
1 1 1

3

5 =
1

3

2

4
1
1
1

3

5 ⇤ 1

3

⇥
1 1 1

⇤

 CMU 15-769, Fall 2016

Implementation of 2D box blur via two 1D convolutions
int	WIDTH	=	1024	
int	HEIGHT	=	1024;	
float	input[(WIDTH+2)	*	(HEIGHT+2)];	
float	tmp_buf[WIDTH	*	(HEIGHT+2)];	
float	output[WIDTH	*	HEIGHT];	

float	weights[]	=	{1./3,	1./3,	1./3};	

for	(int	j=0;	j<(HEIGHT+2);	j++)	
		for	(int	i=0;	i<WIDTH;	i++)	{	
				float	tmp	=	0.f;	
				for	(int	ii=0;	ii<3;	ii++)	
						tmp	+=	input[j*(WIDTH+2)	+	i+ii]	*	weights[ii];	
				tmp_buf[j*WIDTH	+	i]	=	tmp;	
		}	

for	(int	j=0;	j<HEIGHT;	j++)	{	
		for	(int	i=0;	i<WIDTH;	i++)	{	
				float	tmp	=	0.f;	
				for	(int	jj=0;	jj<3;	jj++)	
						tmp	+=	tmp_buf[(j+jj)*WIDTH	+	i]	*	weights[jj];	
				output[j*WIDTH	+	i]	=	tmp;	
		}	
}

Total work per image for NxN filter:
2N x WIDTH x HEIGHT

 CMU 15-769, Fall 2016

Data-dependent filter (not a convolution)
float	input[(WIDTH+2)	*	(HEIGHT+2)];	

float	output[WIDTH	*	HEIGHT];	

for	(int	j=0;	j<HEIGHT;	j++)	{	

			for	(int	i=0;	i<WIDTH;	i++)	{	

						float	min_value	=	min(min(input[(j-1)*WIDTH	+	i],	input[(j+1)*WIDTH	+	i]),	

																													min(input[j*WIDTH	+	i-1],	input[j*WIDTH	+	i+1]));	

						float	max_value	=	max(max(input[(j-1)*WIDTH	+	i],	input[(j+1)*WIDTH	+	i]),	

																													max(input[j*WIDTH	+	i-1],	input[j*WIDTH	+	i+1]));	

						output[j*WIDTH	+	i]	=	clamp(min_value,	max_value,	input[j*WIDTH	+	i]);	

				}	

}

This filter clamps pixels to the min/max of its cardinal neighbors
(e.g., hot-pixel suppression)

 CMU 15-769, Fall 2016

Median filter

uint8	input[(WIDTH+2)	*	(HEIGHT+2)];	
uint8	output[WIDTH	*	HEIGHT];	
for	(int	j=0;	j<HEIGHT;	j++)	{	
			for	(int	i=0;	i<WIDTH;	i++)	{	
						output[j*WIDTH	+	i]	=	
											//	compute	median	of	pixels	
											//	in	surrounding	5x5	pixel	window		
			}	
}

▪ Replace pixel with median of its neighbors
- Useful noise reduction filter: unlike gaussian

blur, one bright pixel doesn’t drag up the
average for entire region

▪ Not linear, not separable
- Filter weights are 1 or 0

(depending on image content)

▪ Basic algorithm for NxN support region:
- Sort N2 elements in support region, pick median O(N2log(N2)) work per pixel
- Can you think of an O(N2) algorithm? What about O(N)?

 CMU 15-769, Fall 2016

Bilateral filter

Example use of bilateral filter: removing noise while preserving image edges

 CMU 15-769, Fall 2016

Bilateral filter

▪ The bilateral filter is an “edge preserving” filter: down-weight contribution of pixels
on the other side of strong edges. f (x) defines what “strong edge means”

▪ Spatial distance weight term f (x) could itself be a gaussian
- Or very simple: f (x) = 0 if x > threshold, 1 otherwise

Value of output pixel (x,y) is the weighted sum of all pixels in the support region of a
truncated gaussian kernel

But weight is combination of spatial distance and input image pixel intensity difference.
(non-linear filter: like the median filter, the filter’s weights depend on input image content)

Gaussian blur kernel Input image

Re-weight based on difference
in input image pixel values

For all pixels in support region
of Gaussian kernel

BF[I](x, y) =
X

i,j

f(kI(x� i, y � j)� I(x, y)k)G(i, j)I(x� i, y � j)

 CMU 15-769, Fall 2016

Bilateral filter

Figure credit: Durand and Dorsey, “Fast Bilateral Filtering for the Display of High-Dynamic-Range Images”, SIGGRAPH 2002

Pixels with significantly different intensity
as p contribute little to filtered result (they
are “on the “other side of the edge”

Input image G(): gaussian about input pixel p

Input pixel p

f(): Influence of support region

G x f: filter weights for pixel p Filtered output image

 CMU 15-769, Fall 2016

Bilateral filter: kernel depends on image content

Figure credit: SIGGRAPH 2008 Course: “A Gentle Introduction to Bilateral Filtering and its Applications” Paris et al.

See Paris et al. [ECCV 2006] for a fast approximation to the bilateral filter

Question: describe a type of edge the bilateral filter will not respect
(it will blur across these edges)

 CMU 15-769, Fall 2016

End of aside on image processing basics
(back to our simple camera pipeline)

 CMU 15-769, Fall 2016

Color-space conversion
▪ Measurements of sensor depend on sensor’s spectral response

- Response depends on bandwidths filtered by color filter array

▪ Convert representation to sensor-independent basis: e.g., sRGB
- 3 x 3 matrix multiplication

output_rgb_pixel	=	COLOR_CONVERSION_MATRIX	*	input_rgb_pixel

Represented in
sensor-specific basis

Represented in standard
color space (e.g., RGB)

Note: modern pipelines will perform more sophisticated, and non-linear, color transformations at this point. e.g.,
use a big lookup table to adjust certain tones (e.g., make sky-like tones bluer)

 CMU 15-769, Fall 2016

Lightness (perceived brightness) aka luma

Radiance
(energy spectrum

from scene)

∫=Luminance (Y)Lightness (L)
?

Spectral sensitivity of eye
(eye’s response curve)

Dark adapted eye: L* ∝ Y 0.4
Bright adapted eye: L* ∝ Y 0.5

In a dark room, you turn on a light with luminance: Y1

You turn on a second light that is identical to the first. Total output is now: Y2 = 2Y1

Total output appears times brighter to dark-adapted human20.4 = 1.319

Note: Lightness (L*) is often referred to as luma (Y’)

(Response of eye)(Perceived)

 CMU 15-769, Fall 2016

Consider an image with pixel values encode
luminance

Luminance (Y)

Pe
rc

ei
ve

d
br

ig
ht

ne
ss

: L
*

Consider 12-bit sensor pixel:
Can represent 4096 unique luminance values
in output image

Values are ~ linear in luminance since they
represent the sensor’s response

L* = Y.45

 CMU 15-769, Fall 2016

Problem: quantization error

Luminance (Y)

Pe
rc

ei
ve

d
br

ig
ht

ne
ss

: L
*

Many common image formats store 8 bits per channel (256 unique values)
Insufficient precision to represent brightness in darker regions of image

Dark regions of image: perceived difference between
pixels that differ by one step in luminance is large!
(quantization error: gradients in luminance will not
appear smooth.)

Bright regions of image: perceived difference between
pixels that differ by one step in luminance is small!
(human may not even be able to perceive difference
between pixels that differ by one step in luminance!)

L* = Y.45

Rule of thumb: human eye cannot differentiate <1% differences in luminance

 CMU 15-769, Fall 2016

Store lightness, not luminance

Luminance (Y)

Pe
rc

ei
ve

d
br

ig
ht

ne
ss

: L
*

Solution: pixel stores Y0.45

Must compute (pixel_value)2.2 prior to display on LCD

Idea: distribute representable pixel values evenly with respect to perceived brightness,
not evenly in luminance (make more efficient use of available bits)

Warning: must take caution with subsequent
pixel processing operations once pixels are
encoded in a space that is not linear in
luminance.

e.g., When adding images should you add pixel
values that are encoded as lightness or as
luminance?

 CMU 15-769, Fall 2016

Summary: simplified image processing pipeline
▪ Correct for sensor bias (using measurements of optically black pixels)

▪ Correct pixel defects

▪ Vignetting compensation

▪ Dark-frame subtract (optional)

▪ White balance

▪ Demosaic

▪ Denoise / sharpen, etc.

▪ Color Space Conversion

▪ Gamma Correction (Non-linear mapping)

▪ Color Space Conversion (Y’CbCr)

▪ Chroma Subsampling

▪ JPEG compression

12-bits per pixel
1 intensity per pixel
Pixel values linear in energy

3x12-bits per pixel
RGB intensity per pixel
Pixel values linear in energy

3x8-bits per pixel
Pixel values perceptually linear

 CMU 15-769, Fall 2016

Takeways
▪ The values of pixels in photograph you see on screen are quite different

than the values output by the photosensor in a modern digital camera.

▪ The sequence of operations we discussed today is carried out at high frame
rates by the image signal processing ASIC in most cameras today

Qualcomm Snapdragon 820
Image Signal Processor (ISP):
ASIC for processing pixels off camera
(25MP at 30Hz)

▪ In the coming lectures we’ll discuss more
advanced image processing operations that
are emerging in modern camera pipelines
- Local contrast enhancement, advanced denoising,

high-dynamic range imaging, etc.

- Growing sophistication and diversity of techniques
suggests that current ISPs will likely become more
programmable in the near future

