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Acknowledgements to Ren Ng, Marc Levoy for various slides used in this lecture.
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Next two lectures
The values of pixels in photograph you see on screen 

are quite different than the values output by the 
photosensor in a modern digital camera. 

Computation is now a fundamental aspect of 
producing high-quality pictures.

Computation
Output of sensor 

(“RAW”)

Beautiful image that 
impresses your friends 

on Instagram



 CMU 15-769, Fall 2016

Where we are headed
▪ I’m about to describe the pipeline of operations that take raw image 

pixels from a sensor (measurements) to high-quality images 
- Correct for sensor bias (using measurements of optically black pixels) 
- Correct pixel defects 
- Vignetting compensation 
- Dark frame subtract (optional) 
- White balance 
- Demosaic 
- Denoise / sharpen, etc. 
- Color Space Conversion 
- Gamma Correction 
- Color Space Conversion (Y’CbCr) 
- … 

▪ Today’s pipelines are sophisticated, but they only scratch the surface 
of what future image processing pipelines might do 
- Consider what a future image analysis pipeline might feature: person identification, action recognition, 

scene understanding (to automatically compose shot or automatically pick best picture) etc.
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Camera cross section

Image credit: Canon (EOS M)

Sensor

Canon 14 MP CMOS Sensor 
(14 bits per pixel)
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The Sensor
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Photoelectric effect

Incident photons

Ejected electrons

Einstein’s Nobel Prize in 1921 “for his services to Theoretical Physics, 
and especially for his discovery of the law of the photoelectric effect"

Albert Einstein

Slide credit: Ren Ng
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CMOS sensor

Row select 
Register

ADCAmplify
Bits

Row buffer 
(shift register)

…

Active pixel sensor 
(2D array of photo-diodes)

“Optically black” region 
(shielded from light)

Exposed region
Photodiode 

(a pixel)
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CMOS APS (active pixel sensor) pixel

Illustration credit: Molecular Expressions (http://micro.magnet.fsu.edu/primer/digitalimaging/cmosimagesensors.html) 

http://micro.magnet.fsu.edu/primer/digitalimaging/cmosimagesensors.html
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CMOS response functions are linear
Photoelectric effect in silicon: 

- Response function from 
photons to electrons is linear 

- May have some nonlinearity 
close to 0 due to noise and 
when close to pixel 
saturation

Slide credit: Ren Ng
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Quantum efficiency
▪ Not all photons will produce an electron 

- Depends on quantum efficiency of the device 

- Human vision:                       ~15% 

- Typical digital camera:      < 50% 

- Best back-thinned CCD:     > 90% 
(e.g., telescope)

QE =
# electrons
# photons

Slide credit: Ren Ng
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Sensing Color
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Electromagnetic spectrum
Describes distribution of power (energy/time) by wavelength

Figure credit:

Below: spectrum of various common light sources:
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▪ Photosensor input: light 
- Electromagnetic power distribution over wavelengths: 

▪ Photosensor output: a “response” … a number 
- e.g., encoded in electrical signal 

▪ Spectral response function: 
- Sensitivity of sensor to light of a given wavelength 

- Greater               corresponds to more a efficient sensor (when             is large, a 
small amount of light at wavelength       will trigger a large sensor response) 

▪ Total response of photosensor:   

Photosensor response
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Spectral response of cone cells in human eye
Three types of cells in eye responsible for color perception: S, M, and L cones 
(corresponding to peak response at short, medium, and long wavelengths) 

Takeaway: the space of human-perceivable colors is three dimensional 

S =
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Uneven distribution of cone types in eye 
~64% of cones are L cones, ~ 32% M cones
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Color filter array (Bayer mosaic)
▪ Color filter array placed over sensor 

▪ Result: different pixels have different spectral response (each pixel 
measures red, green, or blue light) 

▪ 50% of pixels are green pixels

Traditional Bayer mosaic
(other filter patterns exist: e.g., Sony’s RGBE)

Pixel response curve: Canon 40D/50D

Image credit: 
Wikipedia, Christian Buil (http://www.astrosurf.com/~buil/cameras.htm)

f(�)
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RAW sensor output (simulated data)

RAW output of sensor

Light Hitting Sensor

Bad row

“Hot pixel”
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Y’ = luma: perceived luminance 
Cb = blue-yellow deviation from gray 
Cr = red-cyan deviation from gray

Y’

Cb

Cr

Image credit: Wikipedia

Conversion from R’G’B’ to Y’CbCr:

Gamma corrected RGB 
(primed notation indicates 
perceptual (non-linear) space) 
We’ll describe what this means 
this later in the lecture.

Another basis: Y’CbCr color space
Recall: color is represented as a 3D value
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CMOS Pixel Structure
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Front-side-illuminated (FSI) CMOS
Building up the CMOS imager layers

Courtesy R. Motta, Pixim
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Pixel pitch: 
A few microns

Photodiodes 
~50% Fill Factor

Courtesy R. Motta, Pixim
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Polysilicon 
& Via 1

Courtesy R. Motta, Pixim
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Metal 1

Courtesy R. Motta, Pixim
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Metal 2

Courtesy R. Motta, Pixim
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Metal 3

Courtesy R. Motta, Pixim
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Metal 4

Courtesy R. Motta, Pixim
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Color filter array

Courtesy R. Motta, Pixim
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Pixel fill factor

Photodiode area Non photosensitive (circuitry)

Fraction of pixel area that integrates incoming light

Slide credit: Ren Ng
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CMOS sensor pixel

Illustration credit: Molecular Expressions (http://micro.magnet.fsu.edu/primer/digitalimaging/cmosimagesensors.html) 

Microlens (a.k.a. lenslet) steers light 
toward photo-sensitive region 
(increases light-gathering capability) 

Microlens also serves to prefilter signal. 
Why?

Color filter attenuates light

http://micro.magnet.fsu.edu/primer/digitalimaging/cmosimagesensors.html
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Using micro lenses to improve fill factor

Leica M9

Shifted microlenses on M9 sensor.

Slide credit: Ren Ng
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Optical cross-talk

http://gmpphoto.blogspot.com/2012/09/the-new-leica-max-24mp-cmos-sensor.html
Slide credit: Ren Ng
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Pixel optics for minimizing cross-talk

http://gmpphoto.blogspot.com/2012/09/the-new-leica-max-24mp-cmos-sensor.html
Slide credit: Ren Ng
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Backside illumination sensor
▪ Traditional CMOS: electronics block light 

▪ Idea: move electronics underneath light gathering region 
- Increases fill factor 
- Reduces cross-talk due since photodiode closer to microns 
- Implication 1: better light sensitivity at fixed sensor size 
- Implication 2: equal light sensitivity at smaller sensor size (shrink sensor)

Illustration credit: Sony
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Full-well capacity

Graph credit: clarkvision.com

Pixel saturates when photon capacity is exceeded

Oversaturated pixels
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Bigger sensors = bigger pixels (or more pixels?)
▪ iPhone 6s (1.2 micron pixels, 12 MP) 

▪ My Nikon D7000 (APS-C) 
(4.8 micron pixels, 16 MP) 

▪ Nikon D4 (full frame sensor) 
(7.3 micron pixels, 16 MP) 

▪ Implication: very high pixel count sensors 
can be built with current CMOS technology  
- Full frame sensor with iPhone 6s pixel 

size ~ 600 MP sensor

24x16mm

Nokia Lumia 
(41 MP)

36x24mm

Image credit: Wikipedia
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Steps in capturing an image

1. Clear sensor pixels 
2. Open camera’s mechanical shutter (exposure begins) 
3. Optional: fire flash 
4. Close camera mechanical shutter (exposure ends) 
5. Read measurements off sensor 

- For each row: 
- Select row, read pixel for all columns in parallel 
- Pass data stream through amplifier and ADC
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1. Clear sensor pixels for row i  (exposure begins) 

2. Clear sensor pixels for row i+1 (exposure begins) 

... 

3. Read row i   (exposure ends) 

4. Read row i+1 (exposure ends) 

Each image row exposed for the same amount of time (same exposure) 

Each image row exposed over different interval of time 
(time offset determined by row read speed)

Electronic rolling shutter
Many cameras do not have a mechanical shutter 
(e.g., smart-phone cameras)

Photo of red square, moving to right

Ex
po

su
re
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Rolling shutter effects

Image credit: Wikipedia

Image credit: Point Grey Research
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Measurement noise

We’ve all been frustrated by noise in low-
light photographs 

(or in shadows in daytime images)
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Measurement noise
▪ Photon shot noise: 

- Photon arrival rates feature poisson distribution 
- Standard deviation = sqrt(N) 
- Signal-to-noise ratio (SNR): N/sqrt(N) 

- Brighter the signal the higher the SNR 

▪ Dark-shot noise 
- Due to leakage current 
- Electrons dislodged due to thermal activity (increases exponentially with 

sensor temperature) 

▪ Non-uniformity of pixel sensitivity (due to manufacturing defects) 

▪ Read noise 
- e.g., due to amplification / ADC

Addressed by: subtract dark image

Addressed by: subtract flat field image 
(e.g., image of gray wall)
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Read noise

Image credit: clarkvision.com

Read noise is largely independent of pixel size 
Large pixels + bright scene: noise determined largely by photon shot noise
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Dark shot noise / read noise
Black image examples: Nikon D7000, High ISO

1/60 sec exposure 1 sec exposure 



 CMU 15-769, Fall 2016

Maximize light gathering capability
▪ Goal: increase signal-to-noise ratio 

- Dynamic range of a pixel (ratio of brightest light and dimmest light 
measurable) is determined by the noise floor (minimum signal) and the pixel’s 
full-well capacity (maximum signal) 

▪ Big pixels 
- Nikon D4: 7.3 um 

- iPhone 5s: 1.5 um  

▪ Sensitive pixels 
- Good materials 

- High fill factor
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Vignetting
Image of white wall (Note: I contrast-enhanced the image to show effect) 
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Types of vignetting

Image credit: Mark Butterworth

Optical vignetting: less light reaches edges of sensor due to physical obstruction in lens 

Pixel vignetting: light reaching pixel at an oblique 
angle is less likely to hit photosensitive region than 
light incident from straight above (e.g., obscured by 
electronics) 

- Microlens reduces pixel vignetting
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More challenges
▪ Chromatic shifts over sensor 

- Pixel light sensitivity changes over sensor due to interaction with microlens 
(Recall index of refraction depends on wavelength, so some wavelengths are 
more likely to suffer from cross-talk or reflection. Ugg!) 

▪ Dead pixels (stuck at white or black) 

▪ Lens distortion

Pincushion distortion

Captured Image Corrected Image
Image credit: PCWorld
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A simple RAW image processing pipeline

Adopting terminology from Texas Instruments OMAP Image Signal Processor pipeline 
(since public documentation exists) 

Assume: receiving 12 bits/pixel Bayer mosaiced data from sensor 
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Optical clamp: remove sensor offset bias
output_pixel	=	input_pixel	-	[average	of	pixels	from	optically	black	region]

Remove bias due to sensor black level 
(from nearby sensor pixels at time of shot)
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Step 2: correct for defective pixels 
▪ Store LUT with known defective pixels 

- e.g., determined on manufacturing line, during sensor calibration and test 

▪ Example correction methods 
- Replace defective pixel with neighbor 

- Replace defective pixel with average of neighbors 

- Correct defect by subtracting known bias for the defect  

output_pixel	=	(isdefectpixel(current_pixel_xy))	?		

																	average(previous_input_pixel,	next_input_pixel)	:	

																	input_pixel;
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Lens shading compensation
▪ Correct for vignetting 

- Recall good implementations will consider wavelength-dependent vignetting 
(that creates chromatic shift over the image)  

▪ Possible implementations: 
- Use 2D buffer of flat-field photo stored in memory 

- e.g., lower resolution buffer, upsampled on-the-fly 

- Use analytic function to model correction   

offset	=	upsample_compensation_offset_buffer(current_pixel_xy);	

gain	=	upsample_compensation_gain_buffer(current_pixel_xy);	

output_pixel	=	offset	+	gain	*	input_pixel;	
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Optional dark-frame subtraction
▪ Similar computation to lens shading compensation  

output_pixel	=	input_pixel	-	dark_frame[current_pixel_xy];	
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White balance
▪ Adjust relative intensity of rgb values (so neutral tones appear neutral) 

▪ Determine white balance coefficients based on analysis of image contents: 
- Simple auto-white balance algorithms 

- Gray world assumption: make average of all pixels in image gray 
- Find brightest region of image, make it white ([1,1,1]) 

▪ Modern cameras have sophisticated (heuristic-based) white-balance algorithms

output_pixel	=	white_balance_coeff	*	input_pixel	
//	note:	in	this	example,	white_balance_coeff	is	vec3	
//	(adjusts	ratio	of	red-blue-green	channels)

Image credit: basedigitalphotography.com

Common data-driven solution: 
1. Compute features from input image 

(e.g., histogram) 
2. Find similar images in database of 

images for which good white balance 
settings are known 

3. Use white balance settings from 
database image



 CMU 15-769, Fall 2016

Demosiac
▪ Produce RGB image from mosaiced input image 

▪ Basic algorithm: bilinear interpolation of mosaiced values (need 4 neighbors) 

▪ More advanced algorithms: 

- Bicubic interpolation (wider filter support region… may overblur) 

- Good implementations attempt to find and preserve edges 

Image credit: Mark Levoy
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Demosaicing errors
▪ Moire pattern color artifacts  

- Common trigger: fine diagonal black and white stripes 

- Common solution: 

- Convert demosaiced value to YCbCr 

- Low-pass filter CbCr channels 

- Combine prefiltered CbCr with full resolution Y from sensor to get RGB

Image credit: http://almanazir.typepad.com/almanazir/2006/11/how_a_camera_ph_1.html

RAW data from sensor

Demosaiced

http://almanazir.typepad.com/almanazir/2006/11/how_a_camera_ph_1.html
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Denoising: effect of downsizing on image noise

point 
sampled

averaged down 
(bilinear resampling)

Credit: Levoy
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Denoising

Denoised

Original
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Aside: image processing basics
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Example image processing operations

Blur
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Example image processing operations

Sharpen
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Edge detection
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A “smarter” blur (doesn’t blur over edges)
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Review: convolution

output signal input signalfilter

It may be helpful to consider the effect of convolution with the simple unit-area “box” function: 

VEC: Small: Collaborative Research: The Visual Computing Database: A

Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(y � x)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(y � x)dy

VEC: Small: Collaborative Research: The Visual Computing Database: A

Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

VEC: Small: Collaborative Research: The Visual Computing Database: A

Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

f * g is a “smoothed” version of g

-0.5 0.5

1
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Discrete 2D convolution

(f ⇤ g)(x, y) =
1X

i,j=�1
f(i, j)I(x� i, y � j)

output image input imagefilter

Consider                         that is nonzero only when:  (f ⇤ g)(x, y) =
1X

i,j=�1
f(i, j)I(x� i, y � j) �1  i, j  1

Then:
(f ⇤ g)(x, y) =

1X

i,j=�1

f(i, j)I(x� i, y � j)

And we can represent f(i,j) as a 3x3 matrix of values where:

f(i, j) = Fi,j (often called:  “filter weights”, “kernel”)
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Simple 3x3 box blur
float	input[(WIDTH+2)	*	(HEIGHT+2)];	

float	output[WIDTH	*	HEIGHT];	

float	weights[]	=	{1./9,	1./9,	1./9,	

																			1./9,	1./9,	1./9,	

																			1./9,	1./9,	1./9};	

for	(int	j=0;	j<HEIGHT;	j++)	{	

			for	(int	i=0;	i<WIDTH;	i++)	{	

						float	tmp	=	0.f;	

						for	(int	jj=0;	jj<3;	jj++)	

									for	(int	ii=0;	ii<3;	ii++)	

												tmp	+=	input[(j+jj)*(WIDTH+2)	+	(i+ii)]	*	weights[jj*3	+	ii];	

						output[j*WIDTH	+	i]	=	tmp;	

		}	

}

For now: ignore boundary pixels and 
assume output image is smaller than 
input (makes convolution loop bounds 
much simpler to write) 
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7x7 box blur
Original

Blurred
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Gaussian blur
▪ Obtain filter coefficients from sampling 2D Gaussian

f(i, j) =
1

2⇡�2
e�

i2+j2

2�2

2

4
.075 .124 .075
.124 .204 .124
.075 .124 .075

3

5

▪ Produces weighted sum of neighboring pixels (contribution 
falls off with distance) 

-In practice: truncate filter beyond certain distance



 CMU 15-769, Fall 2016

7x7 gaussian blur
Original

Blurred
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What does convolution with this filter do?

2

4
0 �1 0
�1 5 �1
0 �1 0

3

5

Sharpens image!
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3x3 sharpen filter
Original

Sharpened
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What does convolution with these filters do?

Extracts horizontal 
gradients

2

4
�1 0 1
�2 0 2
�1 0 1

3

5

2

4
�1 �2 �1
0 0 0
1 2 1

3

5

Extracts vertical 
gradients
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Gradient detection filters
Horizontal gradients

Vertical gradients

Note: you can think of a filter as a 
“detector” of a pattern, and the 
magnitude of a pixel in the output 
image as the “response” of the filter 
to the region surrounding each pixel 
in the input image (this is a common 
interpretation in computer vision)
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Sobel edge detection
▪ Compute gradient response images

G
x

=

2

4
�1 0 1
�2 0 2
�1 0 1

3

5 ⇤ I

Gy =

2

4
�1 �2 �1
0 0 0
1 2 1

3

5 ⇤ I

▪ Find pixels with large gradients

G =
q

G
x

2 +G
y

2

Pixel-wise operation on images

G
x

=

2

4
�1 0 1
�2 0 2
�1 0 1

3

5 ⇤ I

Gy =

2

4
�1 �2 �1
0 0 0
1 2 1

3

5 ⇤ I

G =
q

G
x

2 +G
y

2
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Cost of convolution with N x N filter?
float	input[(WIDTH+2)	*	(HEIGHT+2)];	

float	output[WIDTH	*	HEIGHT];	

float	weights[]	=	{1./9,	1./9,	1./9,	

																			1./9,	1./9,	1./9,	

																			1./9,	1./9,	1./9};	

for	(int	j=0;	j<HEIGHT;	j++)	{	

			for	(int	i=0;	i<WIDTH;	i++)	{	

						float	tmp	=	0.f;	

						for	(int	jj=0;	jj<3;	jj++)	

									for	(int	ii=0;	ii<3;	ii++)	

												tmp	+=	input[(j+jj)*(WIDTH+2)	+	(i+ii)]	*	weights[jj*3	+	ii];	

						output[j*WIDTH	+	i]	=	tmp;	

		}	

}

In this 3x3 box blur example: 
Total work per image = 9 x WIDTH x HEIGHT

For N x N filter:  N2 x WIDTH x HEIGHT
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Separable filter
▪ A filter is separable if is the product of two other filters 

- Example: a 2D box blur 

- Exercise: write 2D gaussian and vertical/horizontal 
gradient detection filters as product of 1D filters (they are 
separable!) 

▪ Key property: 2D convolution with separable filter can be 
written as two 1D convolutions!

1

9

2

4
1 1 1
1 1 1
1 1 1

3

5 =
1

3

2

4
1
1
1

3

5 ⇤ 1

3

⇥
1 1 1

⇤
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Implementation of 2D box blur via two 1D convolutions 
int	WIDTH	=	1024	
int	HEIGHT	=	1024;	
float	input[(WIDTH+2)	*	(HEIGHT+2)];	
float	tmp_buf[WIDTH	*	(HEIGHT+2)];	
float	output[WIDTH	*	HEIGHT];	

float	weights[]	=	{1./3,	1./3,	1./3};	

for	(int	j=0;	j<(HEIGHT+2);	j++)	
		for	(int	i=0;	i<WIDTH;	i++)	{	
				float	tmp	=	0.f;	
				for	(int	ii=0;	ii<3;	ii++)	
						tmp	+=	input[j*(WIDTH+2)	+	i+ii]	*	weights[ii];	
				tmp_buf[j*WIDTH	+	i]	=	tmp;	
		}	

for	(int	j=0;	j<HEIGHT;	j++)	{	
		for	(int	i=0;	i<WIDTH;	i++)	{	
				float	tmp	=	0.f;	
				for	(int	jj=0;	jj<3;	jj++)	
						tmp	+=	tmp_buf[(j+jj)*WIDTH	+	i]	*	weights[jj];	
				output[j*WIDTH	+	i]	=	tmp;	
		}	
}

Total work per image for NxN filter:  
2N x WIDTH x HEIGHT
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Data-dependent filter (not a convolution)
float	input[(WIDTH+2)	*	(HEIGHT+2)];	

float	output[WIDTH	*	HEIGHT];	

for	(int	j=0;	j<HEIGHT;	j++)	{	

			for	(int	i=0;	i<WIDTH;	i++)	{	

						float	min_value	=	min(	min(input[(j-1)*WIDTH	+	i],	input[(j+1)*WIDTH	+	i]),	

																													min(input[j*WIDTH	+	i-1],	input[j*WIDTH	+	i+1])	);	

						float	max_value	=	max(	max(input[(j-1)*WIDTH	+	i],	input[(j+1)*WIDTH	+	i]),	

																													max(input[j*WIDTH	+	i-1],	input[j*WIDTH	+	i+1])	);	

						output[j*WIDTH	+	i]	=	clamp(min_value,	max_value,	input[j*WIDTH	+	i]);	

				}	

}

This filter clamps pixels to the min/max of its cardinal neighbors 
(e.g., hot-pixel suppression) 
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Median filter

uint8	input[(WIDTH+2)	*	(HEIGHT+2)];	
uint8	output[WIDTH	*	HEIGHT];	
for	(int	j=0;	j<HEIGHT;	j++)	{	
			for	(int	i=0;	i<WIDTH;	i++)	{	
						output[j*WIDTH	+	i]	=	
											//	compute	median	of	pixels	
											//	in	surrounding	5x5	pixel	window		
			}	
}

▪ Replace pixel with median of its neighbors 
- Useful noise reduction filter: unlike gaussian 

blur, one bright pixel doesn’t drag up the 
average for entire region 

▪ Not linear, not separable 
- Filter weights are 1 or 0 

(depending on image content)

▪ Basic algorithm for NxN support region: 
- Sort N2 elements in support region, pick median O(N2log(N2)) work per pixel 
- Can you think of an O(N2) algorithm? What about O(N)?
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Bilateral filter

Example use of bilateral filter: removing noise while preserving image edges



 CMU 15-769, Fall 2016

Bilateral filter

▪ The bilateral filter is an “edge preserving” filter: down-weight contribution of pixels 
on the other side of strong edges.  f (x) defines what “strong edge means” 

▪ Spatial distance weight term f (x) could itself be a gaussian 
- Or very simple: f (x) = 0 if x > threshold, 1 otherwise

Value of output pixel (x,y) is the weighted sum of all pixels in the support region of a 
truncated gaussian kernel 

But weight is combination of spatial distance and input image pixel intensity difference. 
(non-linear filter: like the median filter, the filter’s weights depend on input image content)

Gaussian blur kernel Input image

Re-weight based on difference 
in input image pixel values

For all pixels in support region 
of Gaussian kernel

BF[I](x, y) =
X

i,j

f(kI(x� i, y � j)� I(x, y)k)G(i, j)I(x� i, y � j)
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Bilateral filter

Figure credit: Durand and Dorsey, “Fast Bilateral Filtering for the Display of High-Dynamic-Range Images”, SIGGRAPH 2002

Pixels with significantly different intensity 
as p contribute little to filtered result (they 
are “on the “other side of the edge”

Input image G(): gaussian about input pixel p

Input pixel p

f(): Influence of support region

G x f: filter weights for pixel p Filtered output image
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Bilateral filter: kernel depends on image content 

Figure credit: SIGGRAPH 2008 Course: “A Gentle Introduction to Bilateral Filtering and its Applications” Paris et al.

See Paris et al. [ECCV 2006] for a fast approximation to the bilateral filter

Question: describe a type of edge the bilateral filter will not respect 
(it will blur across these edges)
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End of aside on image processing basics 
(back to our simple camera pipeline)
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Color-space conversion
▪ Measurements of sensor depend on sensor’s spectral response 

- Response depends on bandwidths filtered by color filter array   

▪ Convert representation to sensor-independent basis: e.g., sRGB 
- 3 x 3 matrix multiplication

output_rgb_pixel	=	COLOR_CONVERSION_MATRIX	*	input_rgb_pixel

Represented in 
sensor-specific basis

Represented in standard 
color space (e.g., RGB)

Note: modern pipelines will perform more sophisticated, and non-linear, color transformations at this point. e.g., 
use a big lookup table to adjust certain tones (e.g., make sky-like tones bluer)  
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Lightness (perceived brightness) aka luma

Radiance 
(energy spectrum 

from scene)

*∫=Luminance (Y)Lightness (L*)
?

Spectral sensitivity of eye 
(eye’s response curve)

Dark adapted eye:     L* ∝ Y 0.4 
Bright adapted eye:   L* ∝ Y 0.5 

In a dark room, you turn on a light with luminance: Y1

You turn on a second light that is identical to the first. Total output is now:    Y2 = 2Y1

Total output appears                                    times brighter to dark-adapted human20.4 = 1.319

Note: Lightness (L*) is often referred to as luma (Y’)

(Response of eye)(Perceived)
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Consider an image with pixel values encode 
luminance

Luminance (Y)

Pe
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Consider 12-bit sensor pixel: 
Can represent 4096 unique luminance values 
in output image 

Values are ~ linear in luminance since they 
represent the sensor’s response

L* = Y.45
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Problem: quantization error

Luminance (Y)
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Many common image formats store 8 bits per channel (256 unique values) 
Insufficient precision to represent brightness in darker regions of image

Dark regions of image: perceived difference between 
pixels that differ by one step in luminance is large! 
(quantization error: gradients in luminance will not 
appear smooth.)

Bright regions of image: perceived difference between 
pixels that differ by one step in luminance is small! 
(human may not even be able to perceive difference 
between pixels that differ by one step in luminance!)

L* = Y.45

Rule of thumb: human eye cannot differentiate <1% differences in luminance
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Store lightness, not luminance

Luminance (Y)
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Solution: pixel stores Y0.45 

Must compute (pixel_value)2.2 prior to display on LCD

Idea: distribute representable pixel values evenly with respect to perceived brightness, 
not evenly in luminance (make more efficient use of available bits)

Warning: must take caution with subsequent 
pixel processing operations once pixels are 
encoded in a space that is not linear in 
luminance. 
  
e.g., When adding images should you add pixel 
values that are encoded as lightness or as 
luminance?
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Summary: simplified image processing pipeline
▪ Correct for sensor bias (using measurements of optically black pixels) 

▪ Correct pixel defects 

▪ Vignetting compensation 

▪ Dark-frame subtract (optional) 

▪ White balance 

▪ Demosaic 

▪ Denoise / sharpen, etc. 

▪ Color Space Conversion 

▪ Gamma Correction (Non-linear mapping) 

▪ Color Space Conversion (Y’CbCr) 

▪ Chroma Subsampling 

▪ JPEG compression

12-bits per pixel 
1 intensity per pixel 
Pixel values linear in energy

3x12-bits per pixel 
RGB intensity per pixel 
Pixel values linear in energy

3x8-bits per pixel 
Pixel values perceptually linear



 CMU 15-769, Fall 2016

Takeways
▪ The values of pixels in photograph you see on screen are quite different 

than the values output by the photosensor in a modern digital camera. 

▪ The sequence of operations we discussed today is carried out at high frame 
rates by the image signal processing ASIC in most cameras today

Qualcomm Snapdragon 820 
Image Signal Processor (ISP): 
ASIC for processing pixels off camera 
(25MP at 30Hz)

▪ In the coming lectures we’ll discuss more 
advanced image processing operations that 
are emerging in modern camera pipelines 
- Local contrast enhancement, advanced denoising, 

high-dynamic range imaging, etc. 

- Growing sophistication and diversity of techniques 
suggests that current ISPs will likely become more 
programmable in the near future


