Lecture 2:

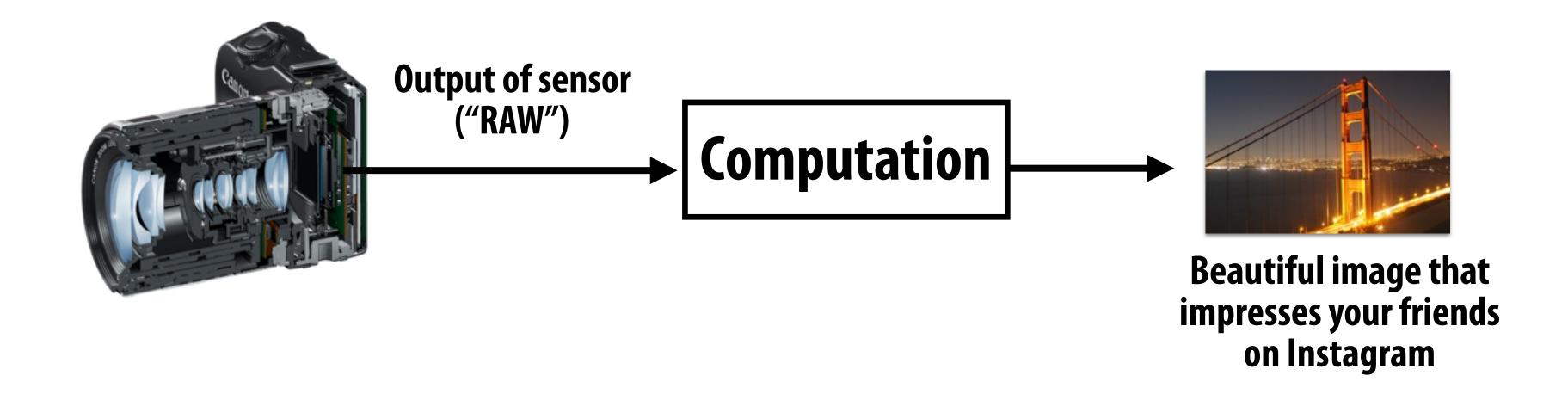
The Camera Image Processing Pipeline

Visual Computing Systems CMU 15-769, Fall 2016

Next two lectures

The values of pixels in photograph you see on screen are quite different than the values output by the photosensor in a modern digital camera.

Computation is now a fundamental aspect of producing high-quality pictures.



Where we are headed

- I'm about to describe the pipeline of operations that take raw image pixels from a sensor (measurements) to high-quality images
 - Correct for sensor bias (using measurements of optically black pixels)
 - Correct pixel defects
 - Vignetting compensation
 - Dark frame subtract (optional)
 - White balance
 - Demosaic
 - Denoise / sharpen, etc.
 - Color Space Conversion
 - Gamma Correction
 - Color Space Conversion (Y'CbCr)
 - -
- Today's pipelines are sophisticated, but they only scratch the surface of what future image processing pipelines might do
 - Consider what a future image analysis pipeline might feature: person identification, action recognition, scene understanding (to automatically compose shot or automatically pick best picture) etc.

Camera cross section

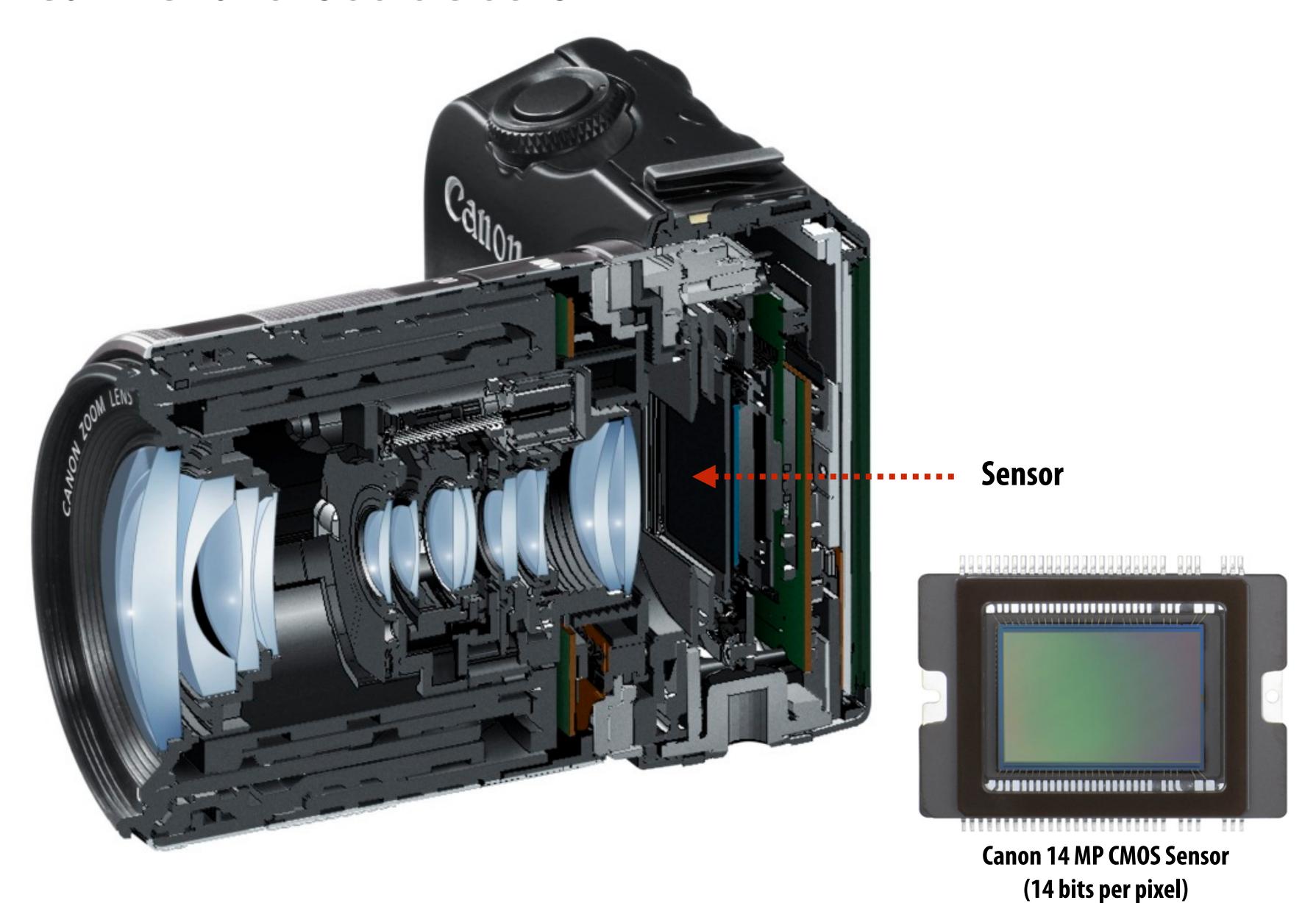
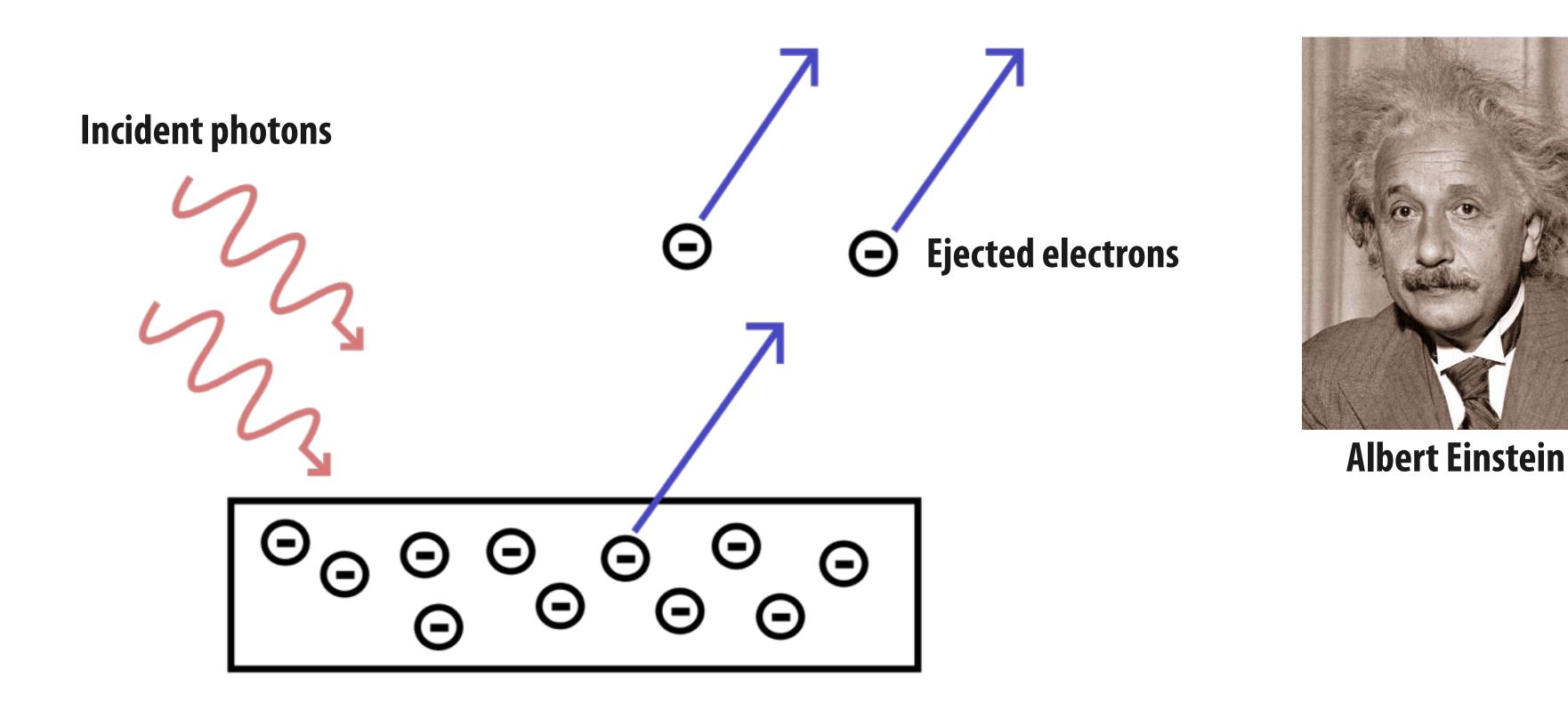


Image credit: Canon (EOS M)

The Sensor

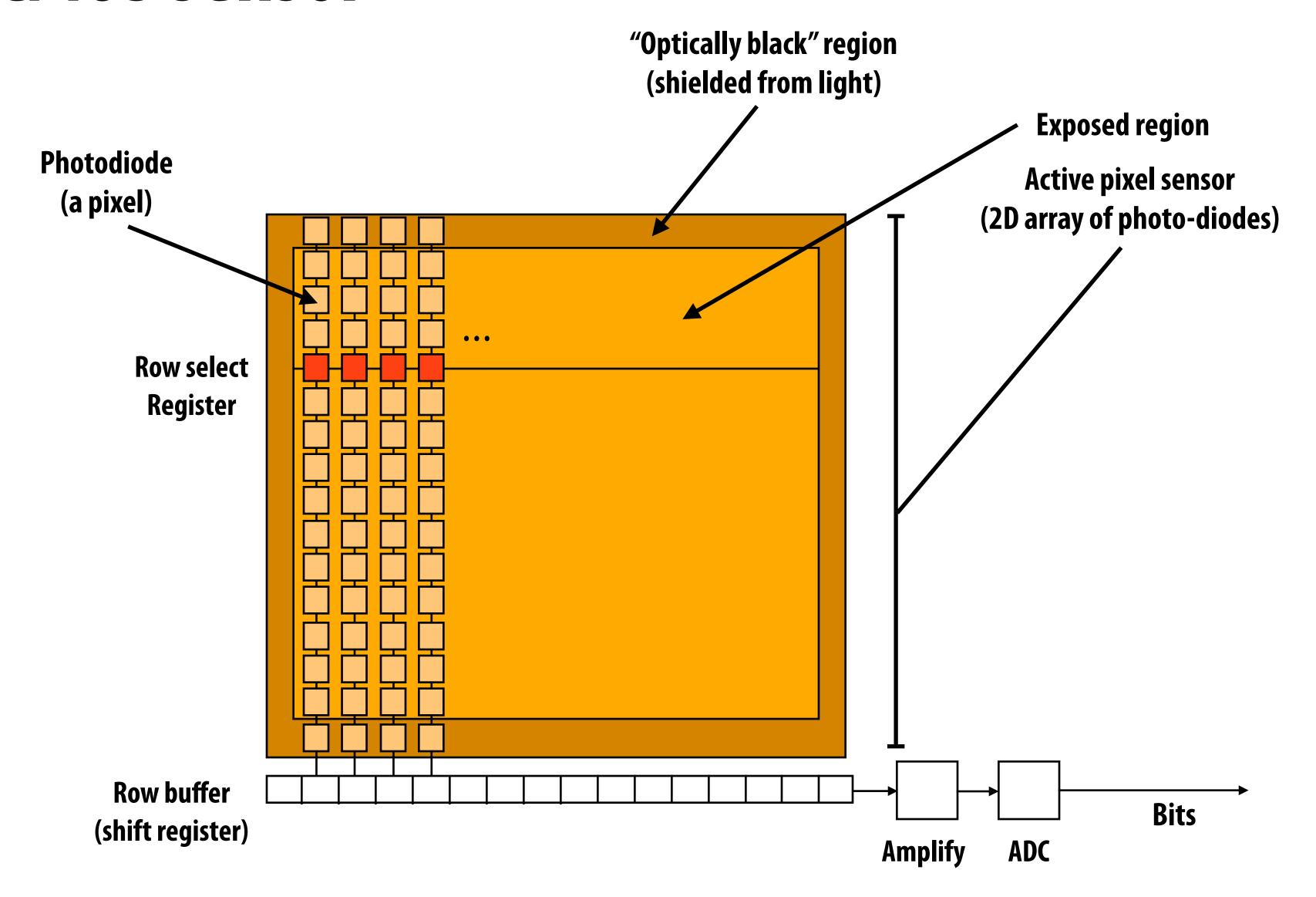
Photoelectric effect



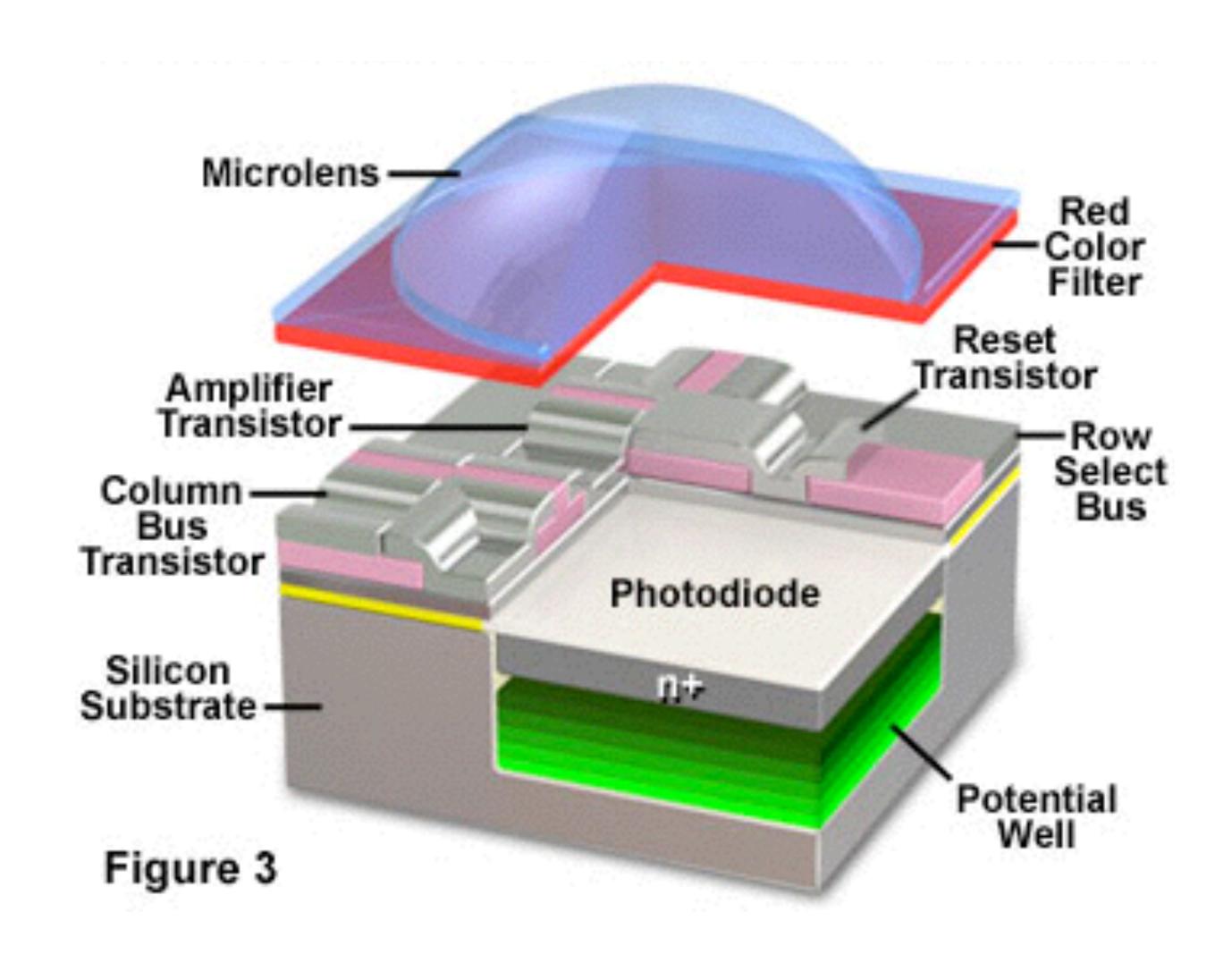
Einstein's Nobel Prize in 1921 "for his services to Theoretical Physics, and especially for his discovery of the law of the photoelectric effect"

Slide credit: Ren Ng

CMOS sensor



CMOS APS (active pixel sensor) pixel



CMOS response functions are linear

Photoelectric effect in silicon:

- Response function from photons to electrons is linear
- May have some nonlinearity close to 0 due to noise and when close to pixel saturation

(Epperson, P.M. et al. Electro-optical characterization of the Tektronix TK5 ..., Opt Eng., 25, 1987)

Quantum efficiency

- Not all photons will produce an electron
 - Depends on quantum efficiency of the device

$$QE = \frac{\#electrons}{\#photons}$$

- Human vision: ~15%

- Typical digital camera: < 50%

Best back-thinned CCD: > 90%(e.g., telescope)

Sensing Color

Electromagnetic spectrum

Describes distribution of power (energy/time) by wavelength

Below: spectrum of various common light sources:

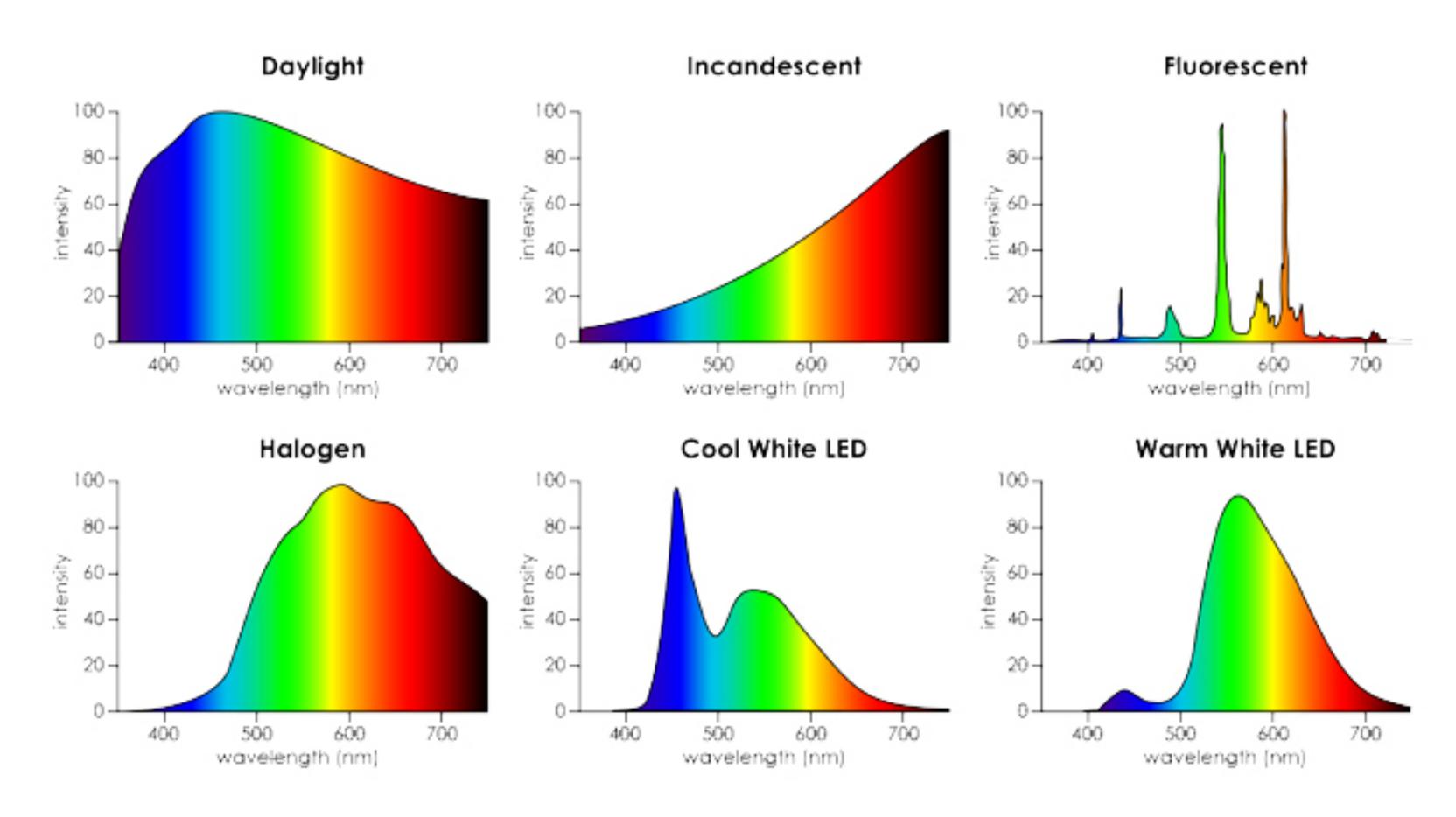


Figure credit:

Photosensor response

- Photosensor input: light
 - Electromagnetic power distribution over wavelengths: $\Phi(\lambda)$
- Photosensor output: a "response" ... a number
 - e.g., encoded in electrical signal
- Spectral response function: $f(\lambda)$
 - Sensitivity of sensor to light of a given wavelength
 - Greater $f(\lambda)$ corresponds to more a efficient sensor (when $f(\lambda)$ is large, a small amount of light at wavelength λ will trigger a large sensor response)
- **■** Total response of photosensor:

$$R = \int_{\lambda} \Phi(\lambda) f(\lambda) d\lambda$$

Spectral response of cone cells in human eye

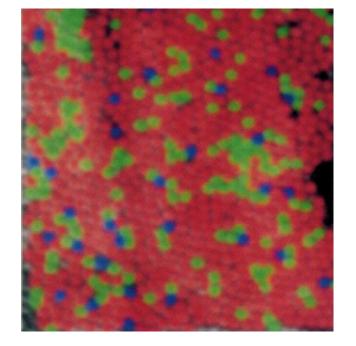
Three types of cells in eye responsible for color perception: S, M, and L cones (corresponding to peak response at short, medium, and long wavelengths)

Takeaway: the space of human-perceivable colors is three dimensional

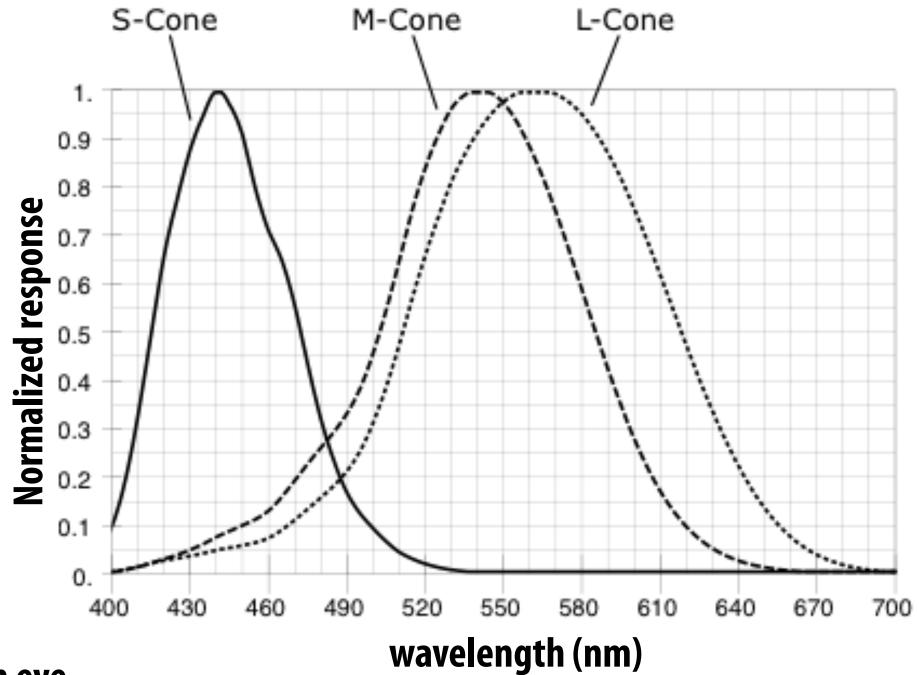
$$S = \int_{\lambda} \Phi(\lambda) S(\lambda) d\lambda$$

$$M = \int_{\lambda} \Phi(\lambda) M(\lambda) d\lambda$$

$$L = \int_{\lambda} \Phi(\lambda) L(\lambda) d\lambda$$



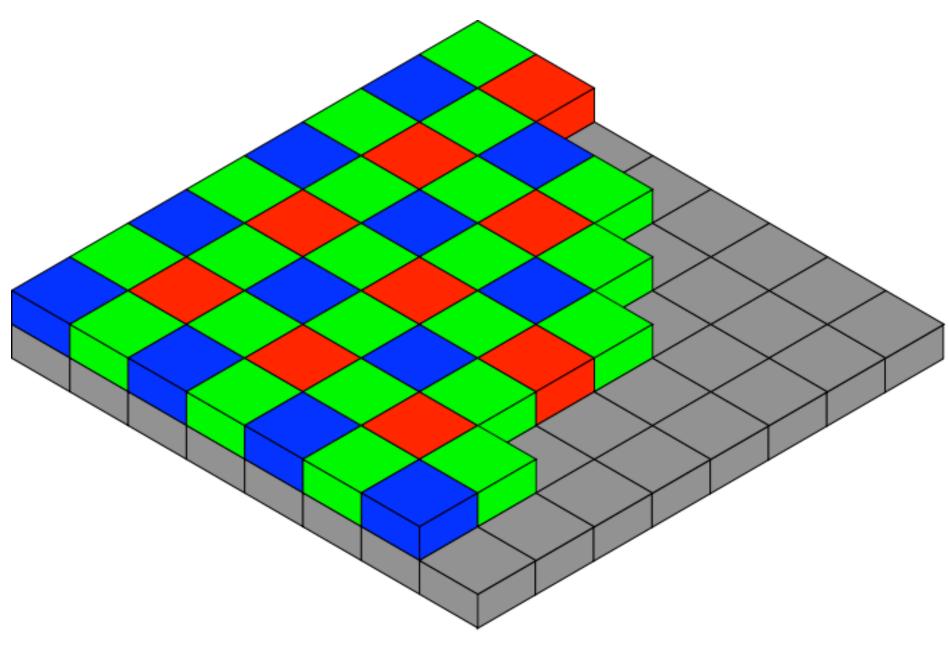
Response functions for S, M, and L cones



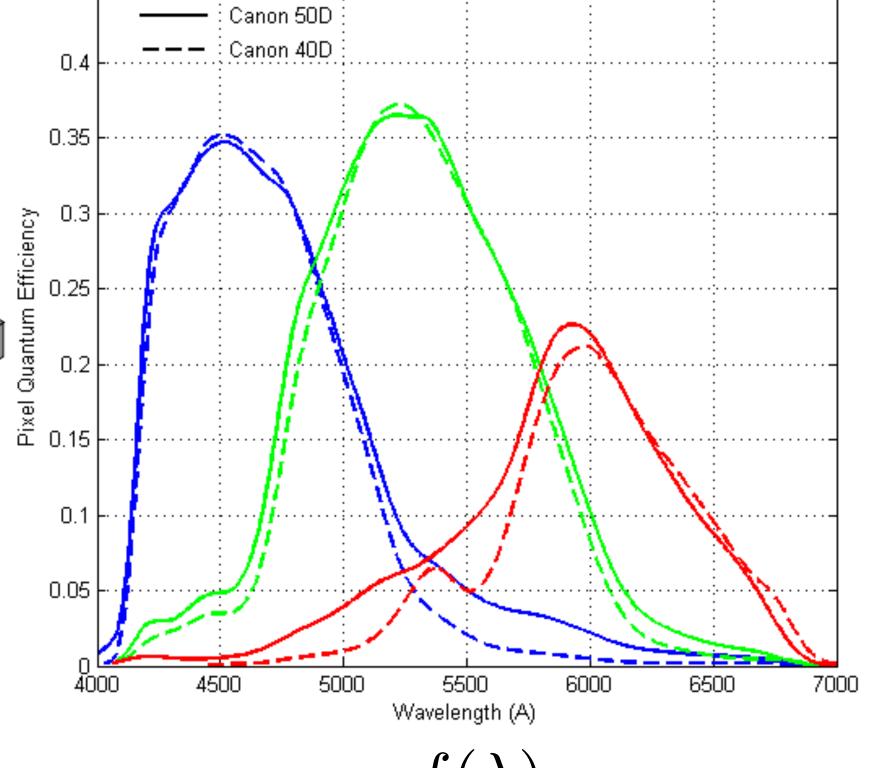
Uneven distribution of cone types in eye ~64% of cones are L cones, ~ 32% M cones

Color filter array (Bayer mosaic)

- Color filter array placed over sensor
- Result: different pixels have different spectral response (each pixel measures red, green, or blue light)
- 50% of pixels are green pixels



Traditional Bayer mosaic (other filter patterns exist: e.g., Sony's RGBE)

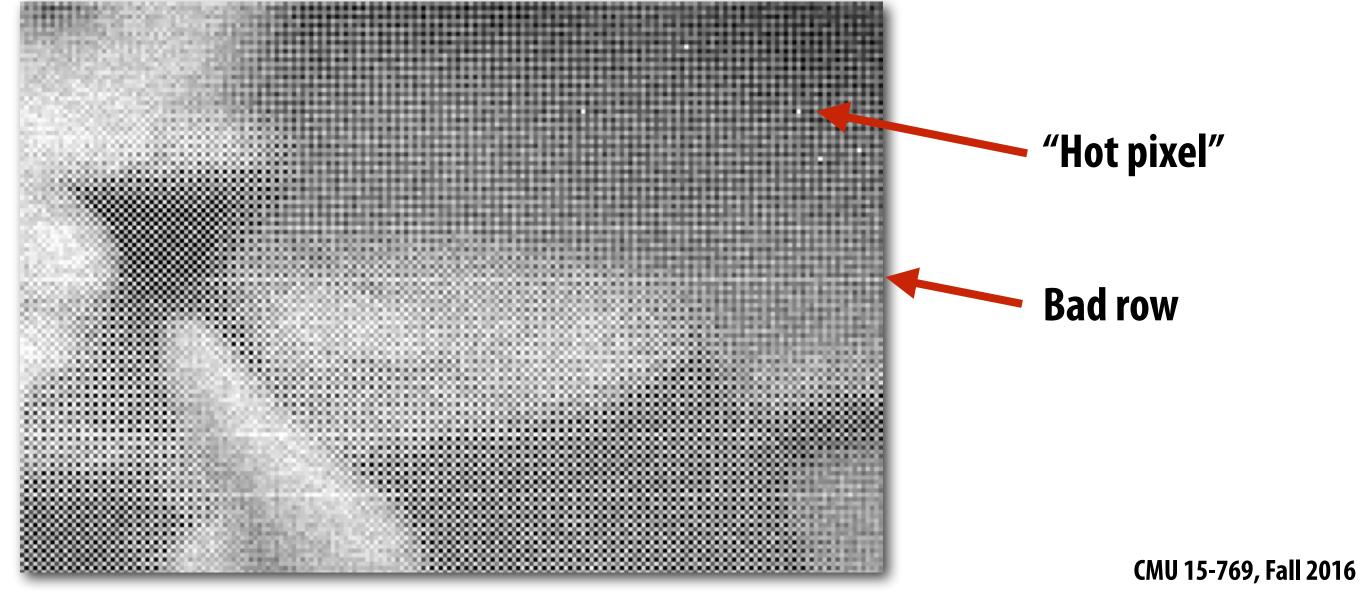


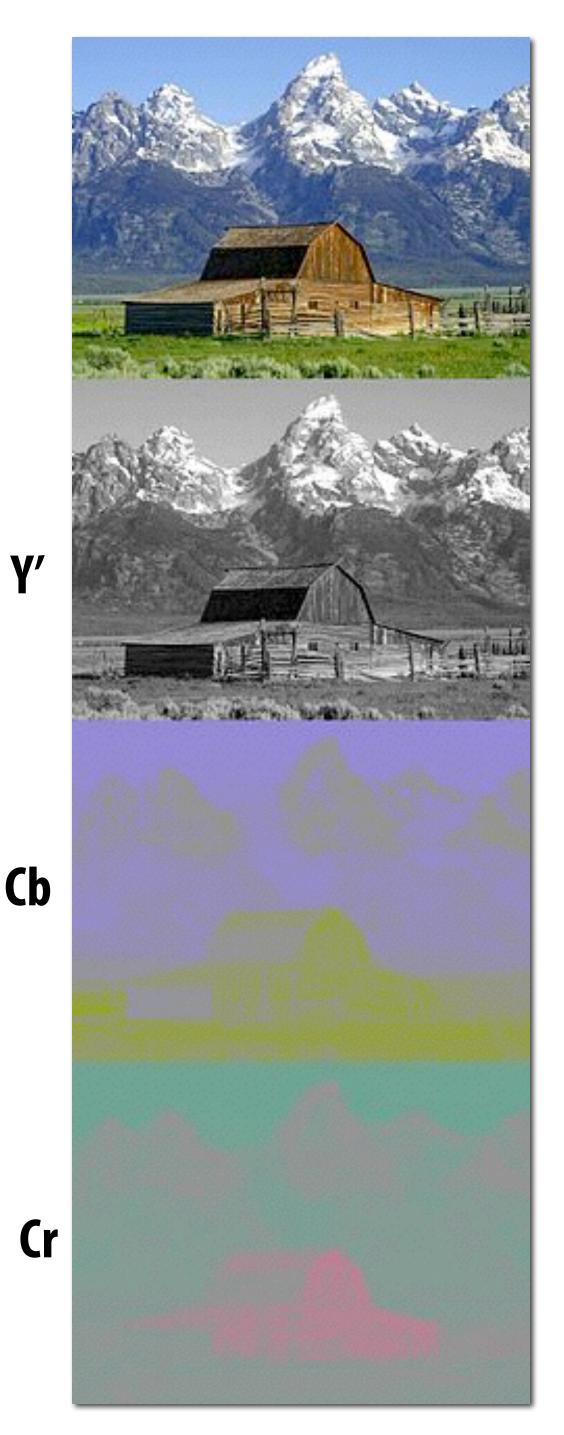
 $f(\lambda)$

RAW sensor output (simulated data)

Light Hitting Sensor

RAW output of sensor





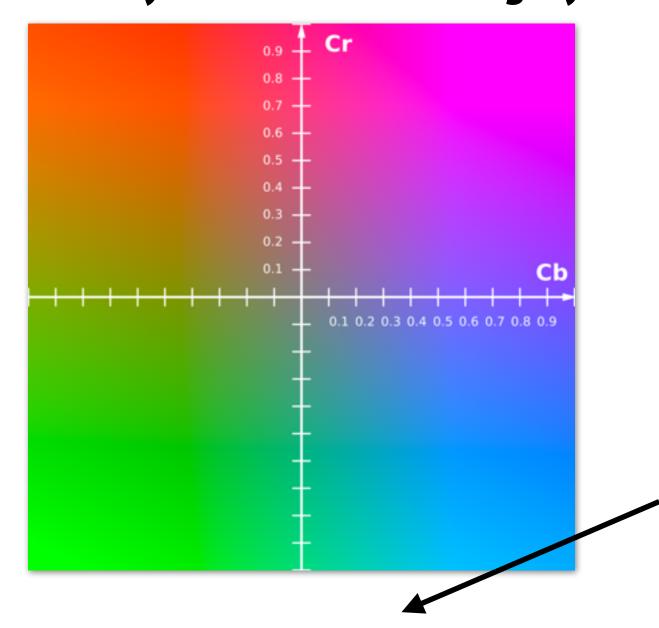
Another basis: Y'CbCr color space

Recall: color is represented as a 3D value

Y' = luma: perceived luminance

Cb = blue-yellow deviation from gray

Cr = red-cyan deviation from gray



Gamma corrected RGB
(primed notation indicates
perceptual (non-linear) space)
We'll describe what this means
this later in the lecture.

Conversion from R'G'B' to Y'CbCr:

$$Y' = 16 + \frac{65.738 \cdot R'_D}{256} + \frac{129.057 \cdot G'_D}{256} + \frac{25.064 \cdot B'_D}{256}$$

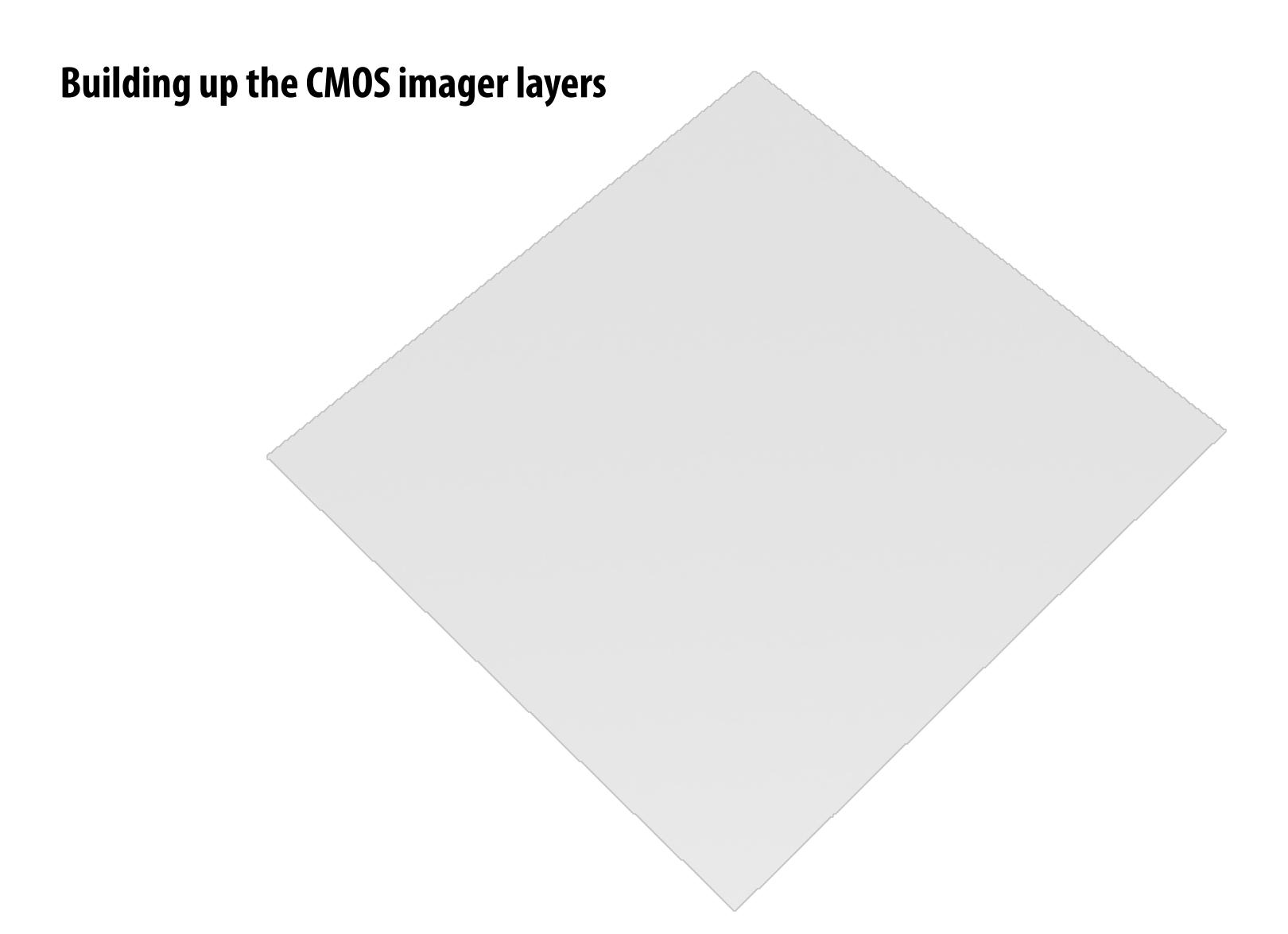
$$C_B = 128 + \frac{-37.945 \cdot R'_D}{256} - \frac{74.494 \cdot G'_D}{256} + \frac{112.439 \cdot B'_D}{256}$$

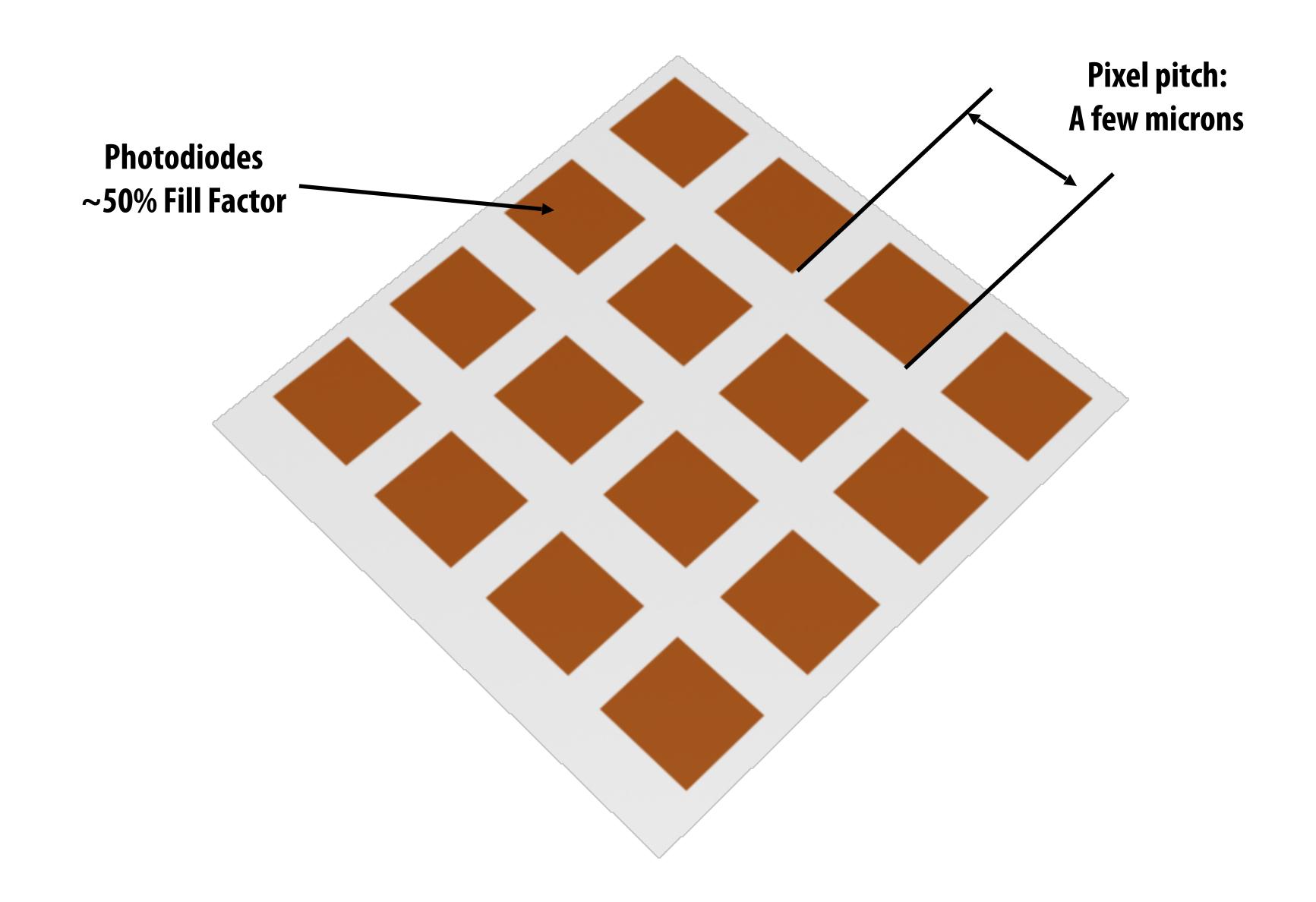
$$C_R = 128 + \frac{112.439 \cdot R'_D}{256} - \frac{94.154 \cdot G'_D}{256} - \frac{18.285 \cdot B'_D}{256}$$

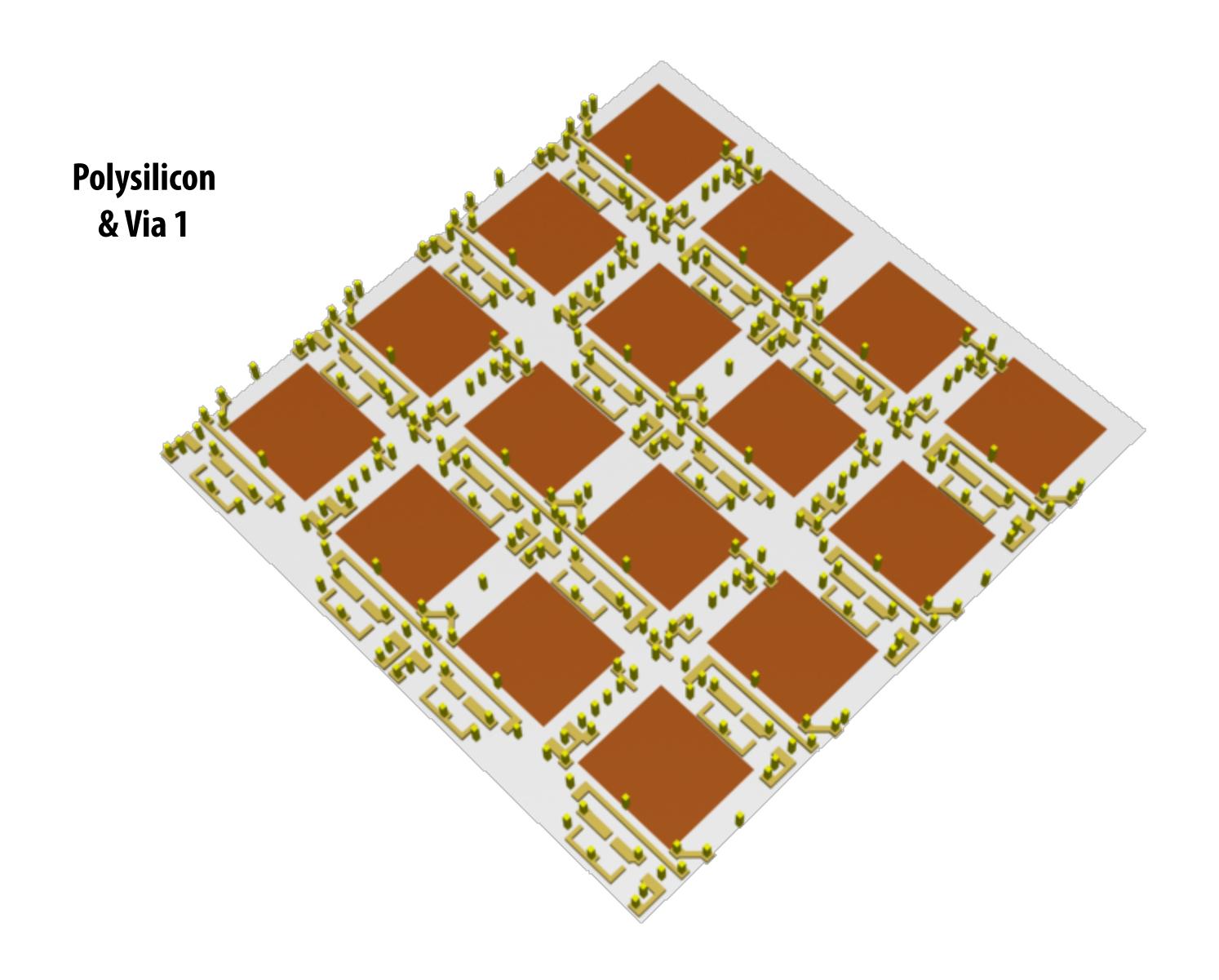
Image credit: Wikipedia

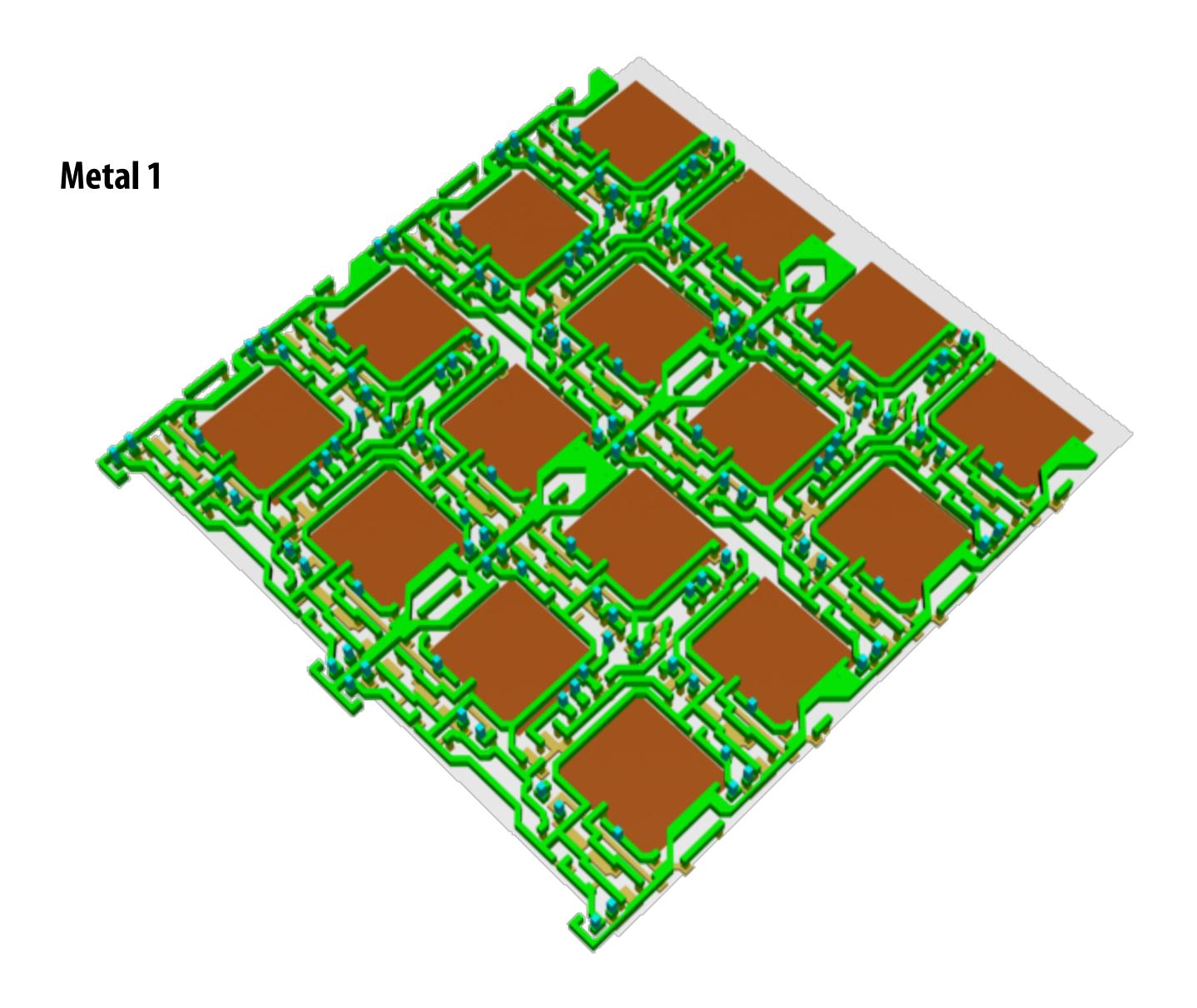
CMOS Pixel Structure

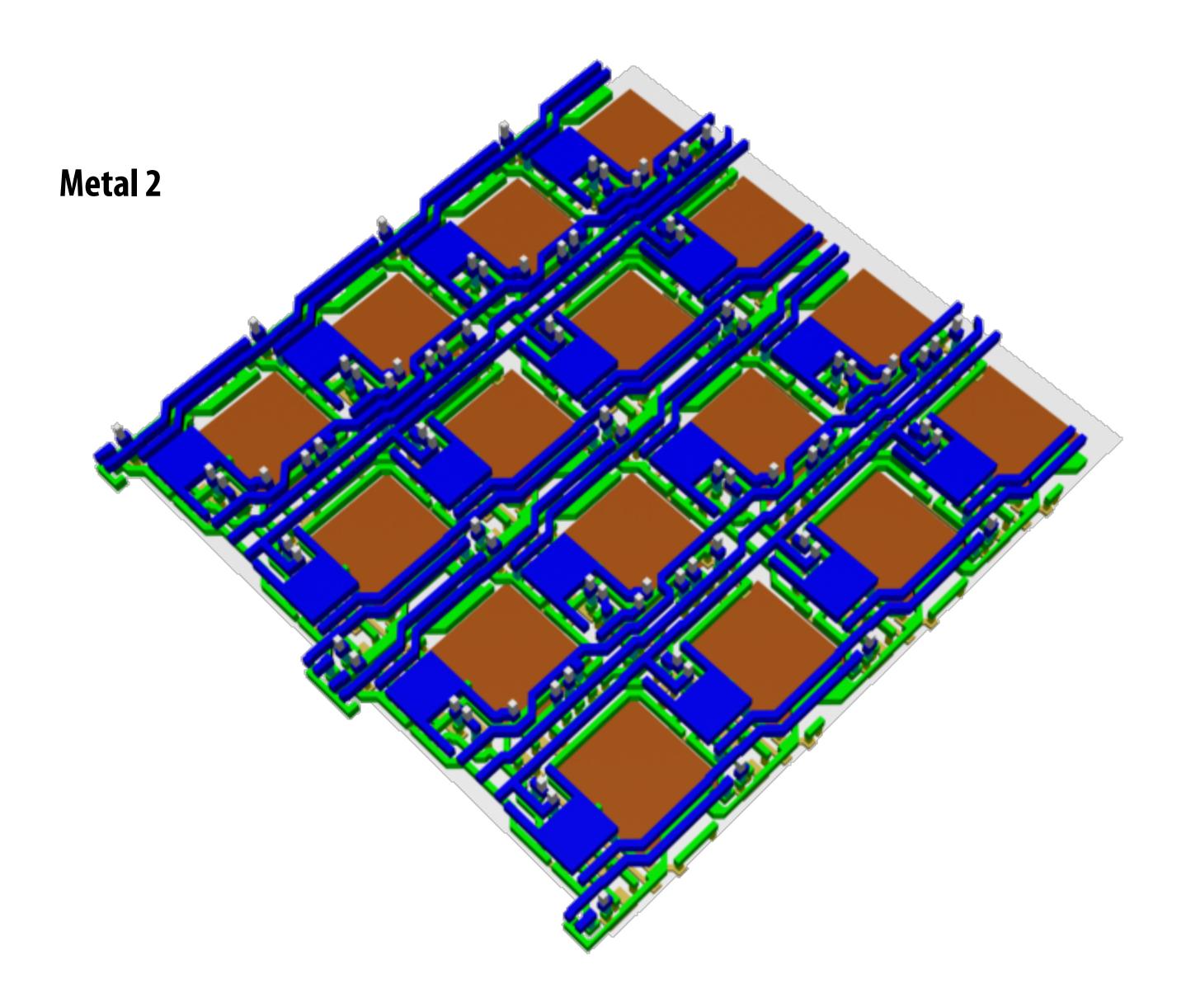
Front-side-illuminated (FSI) CMOS

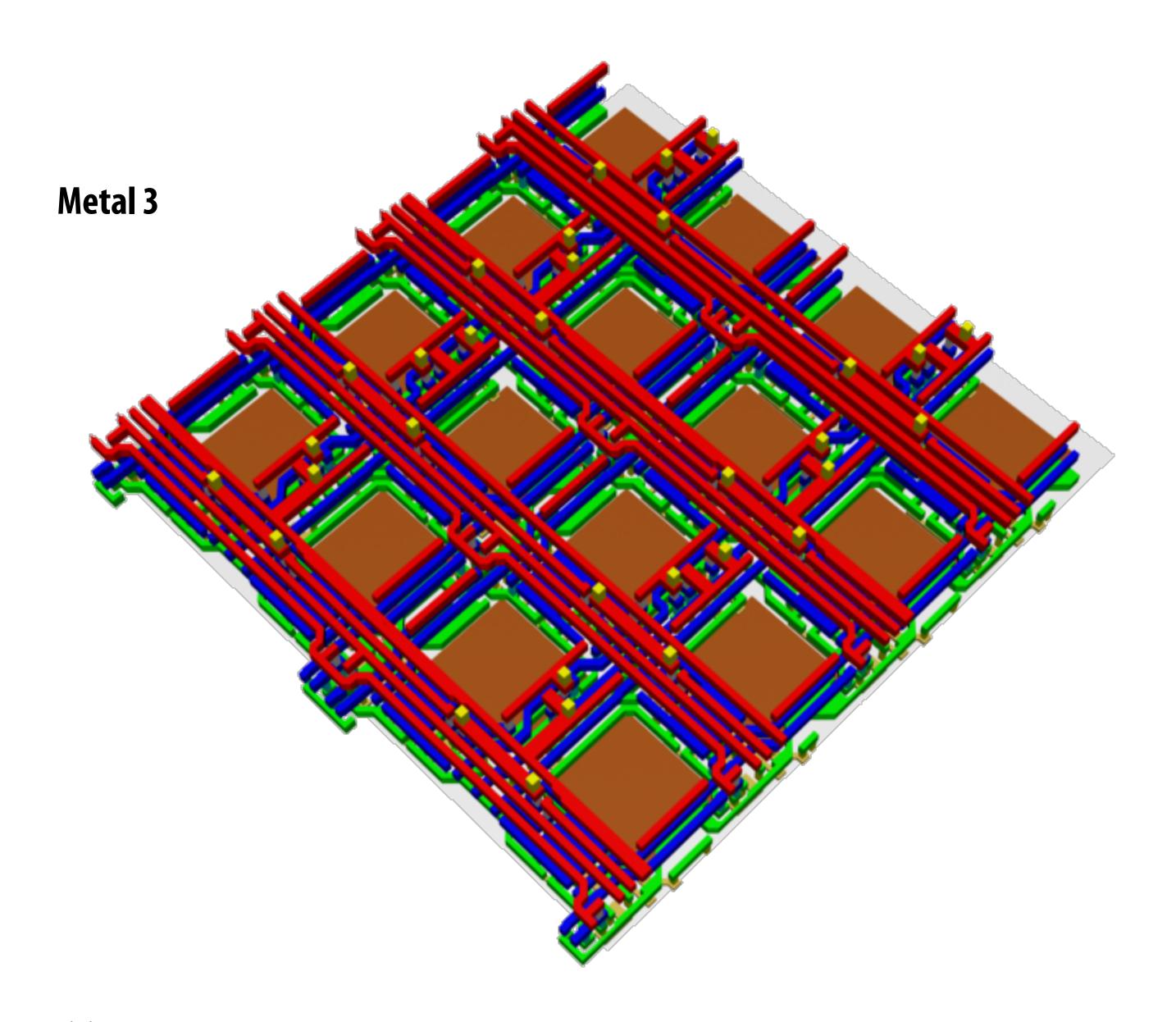


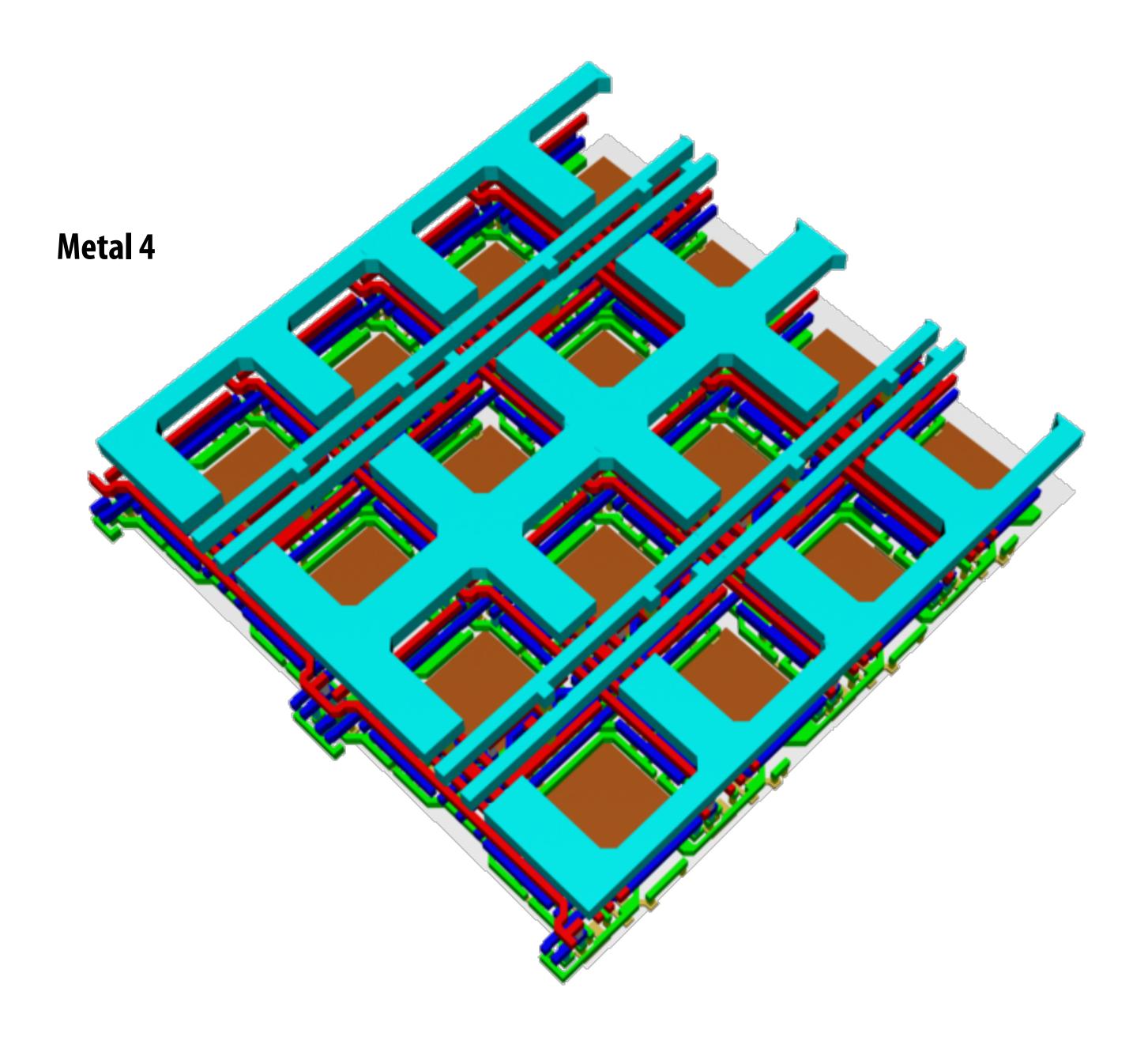


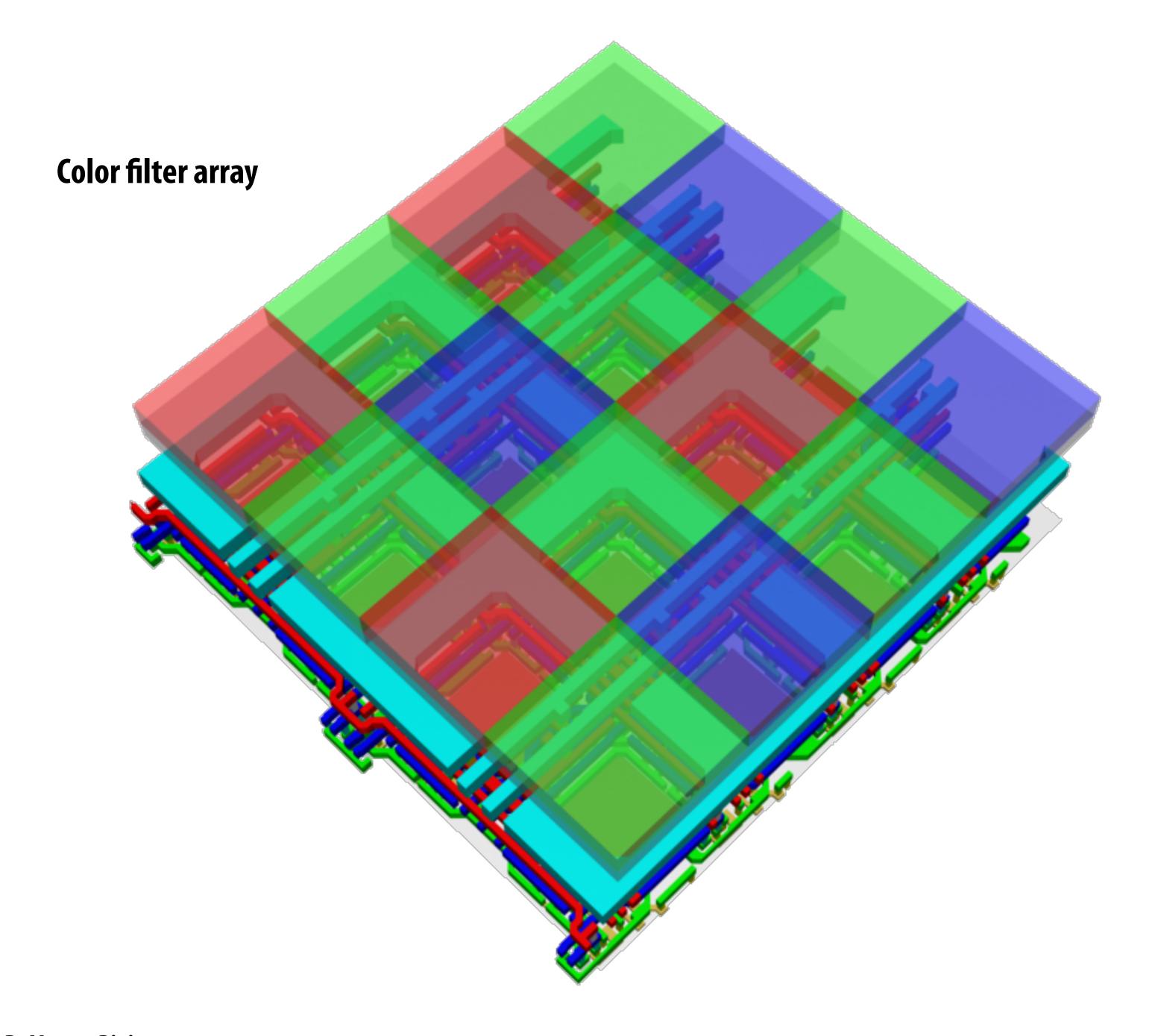






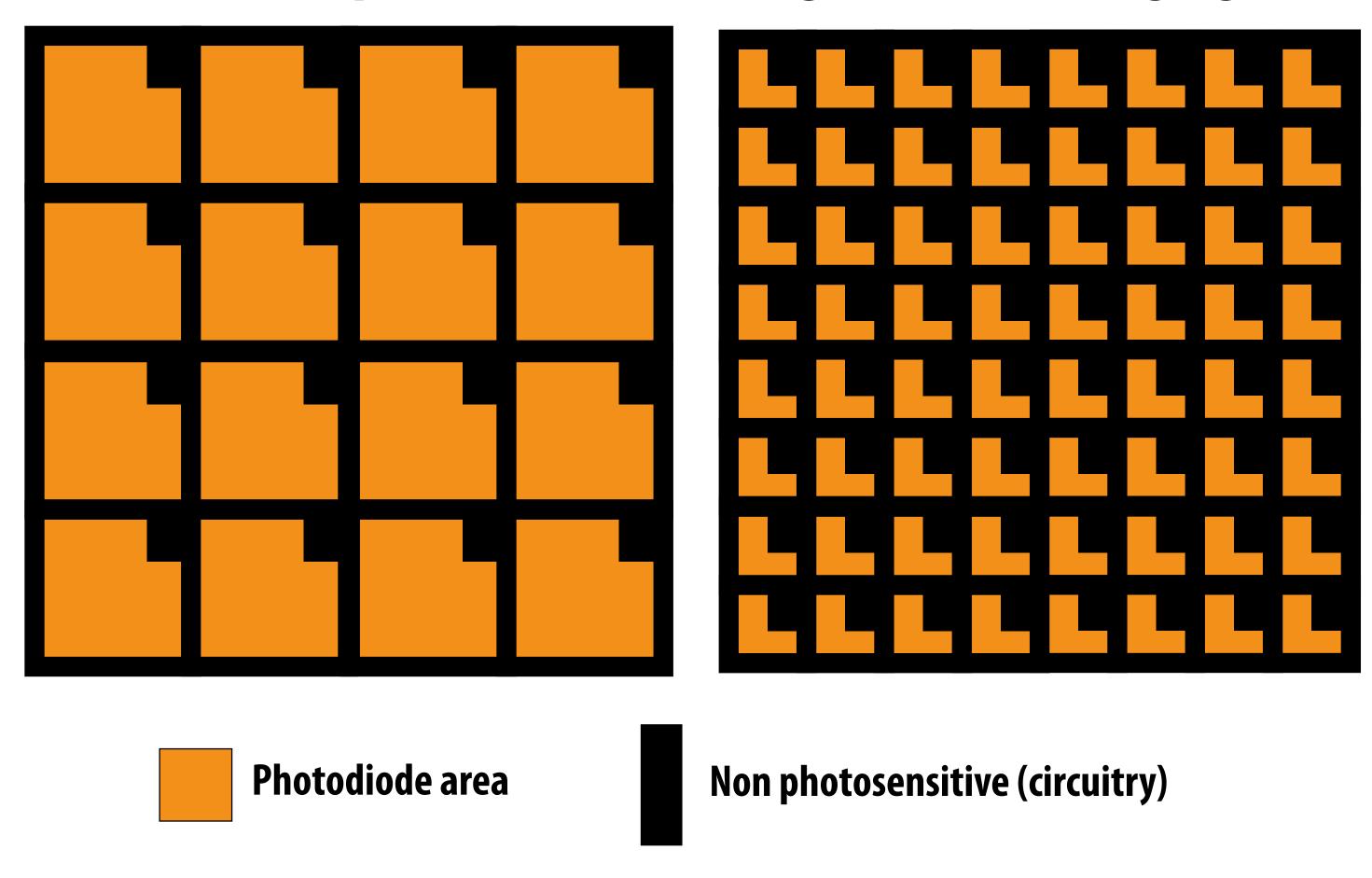






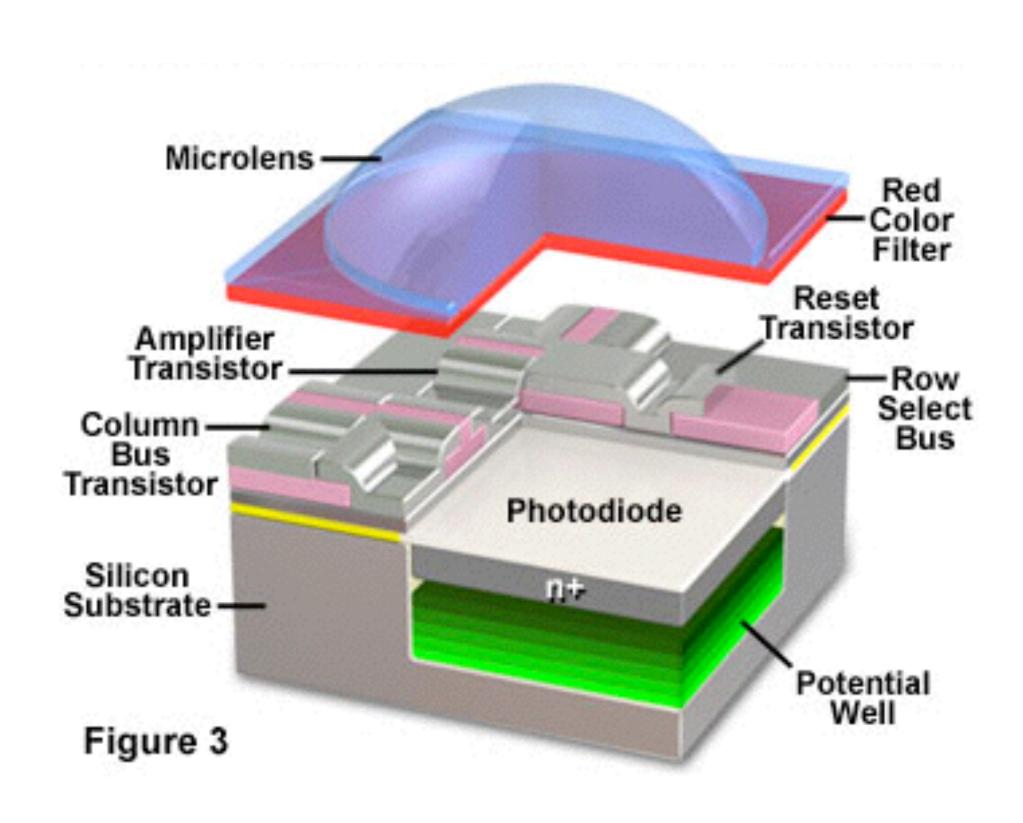
Pixel fill factor

Fraction of pixel area that integrates incoming light



Slide credit: Ren Ng

CMOS sensor pixel

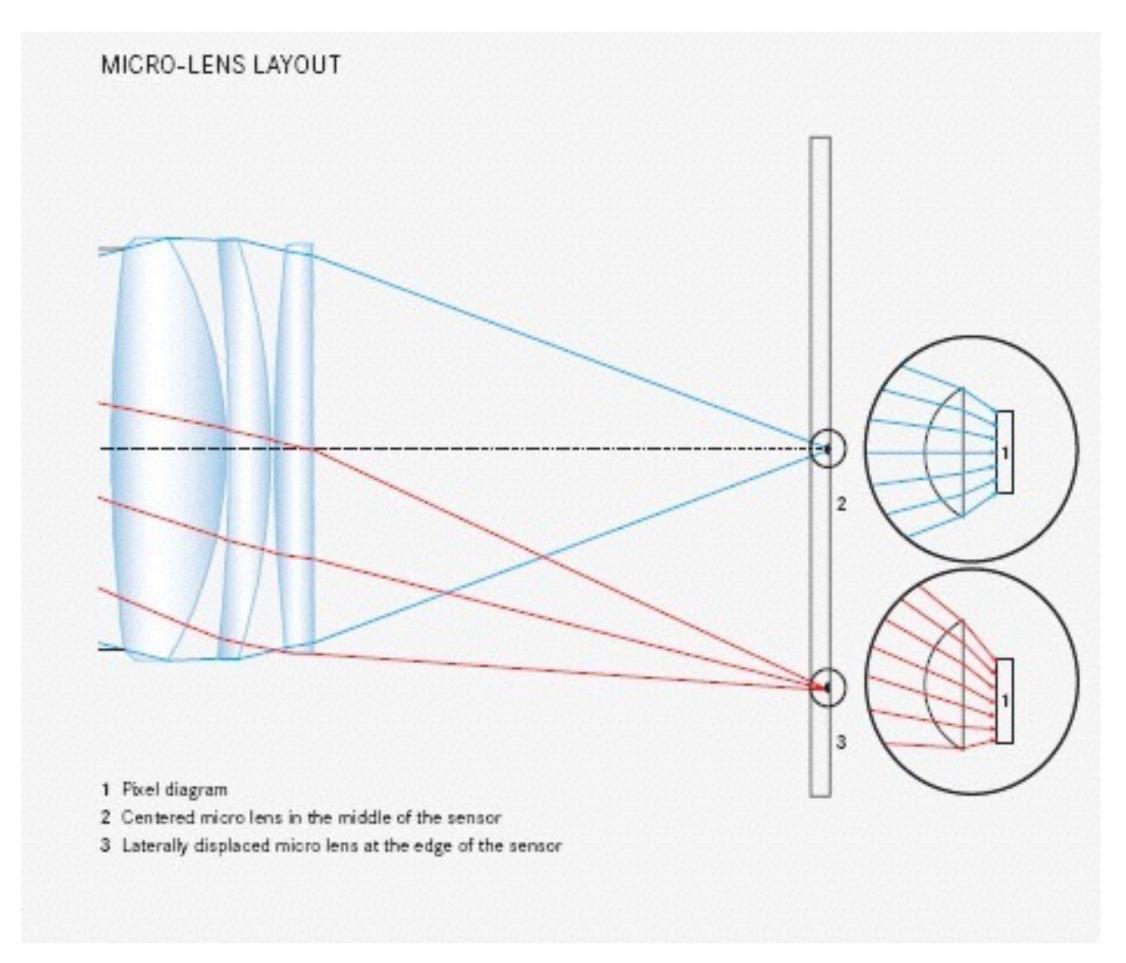


Color filter attenuates light

Microlens (a.k.a. lenslet) steers light toward photo-sensitive region (increases light-gathering capability)

Microlens also serves to prefilter signal. Why?

Using micro lenses to improve fill factor

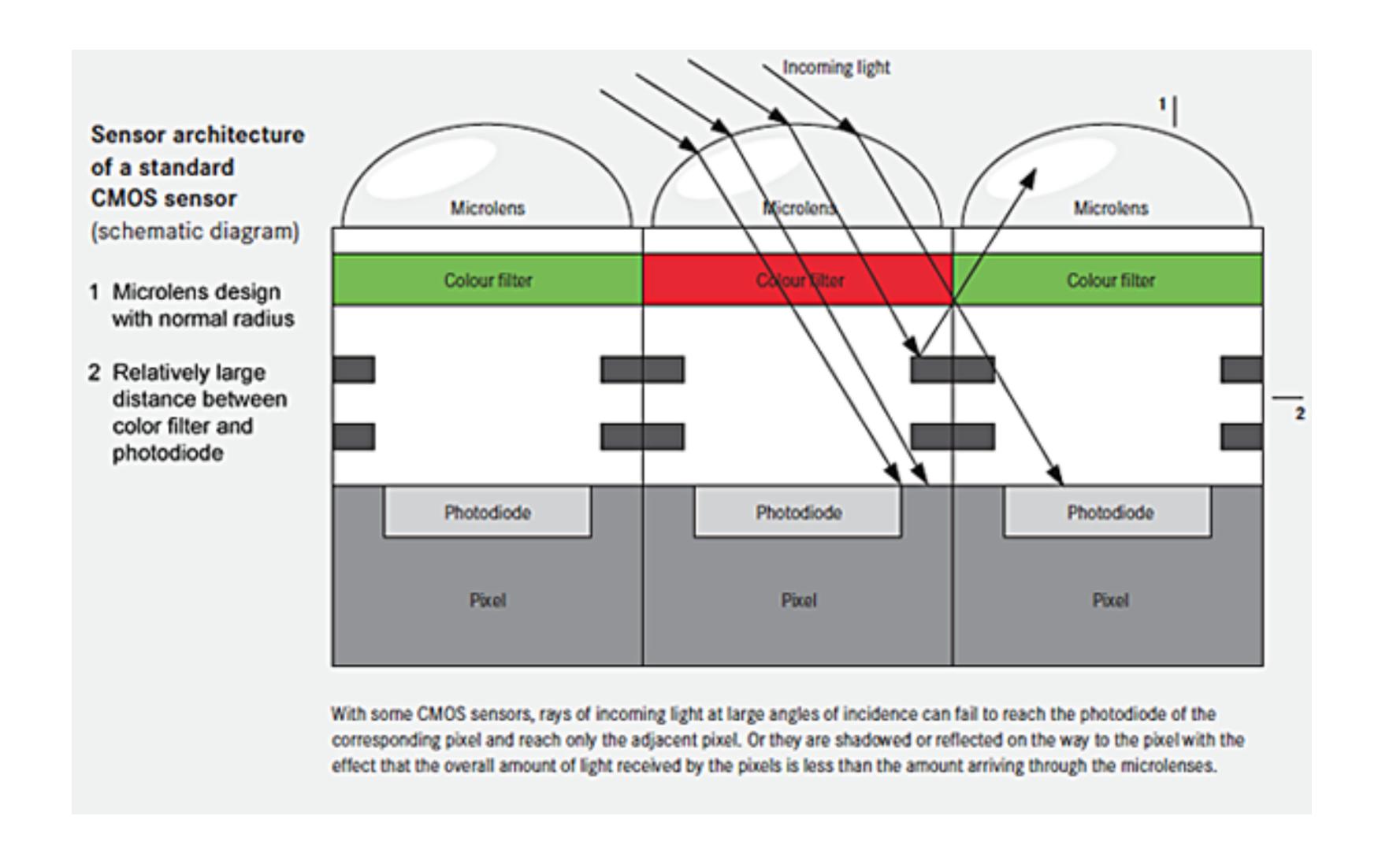


Leica M9

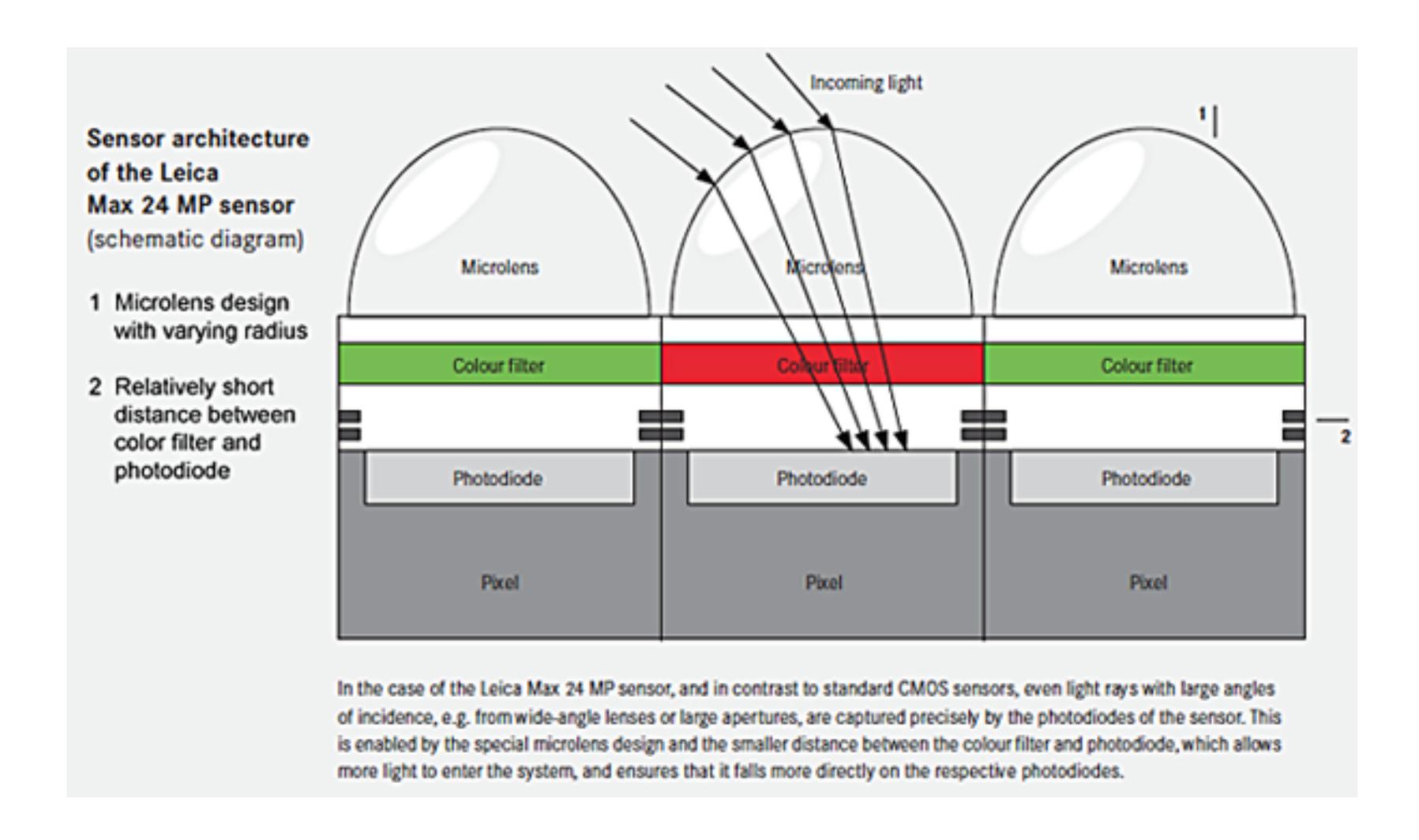
Shifted microlenses on M9 sensor.

Slide credit: Ren Ng

Optical cross-talk



Pixel optics for minimizing cross-talk



Slide credit: Ren Ng

Backside illumination sensor

- Traditional CMOS: electronics block light
- Idea: move electronics underneath light gathering region
 - Increases fill factor
 - Reduces cross-talk due since photodiode closer to microns
 - Implication 1: better light sensitivity at fixed sensor size
 - Implication 2: equal light sensitivity at smaller sensor size (shrink sensor)

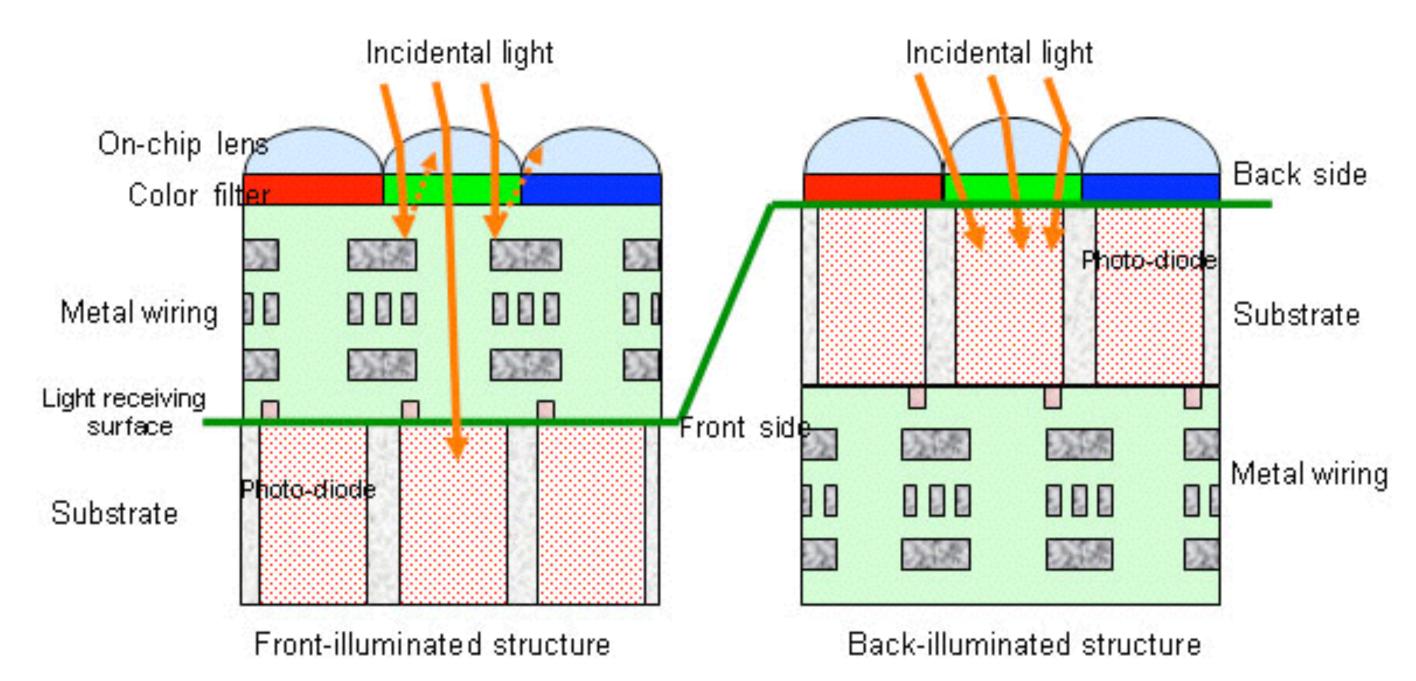
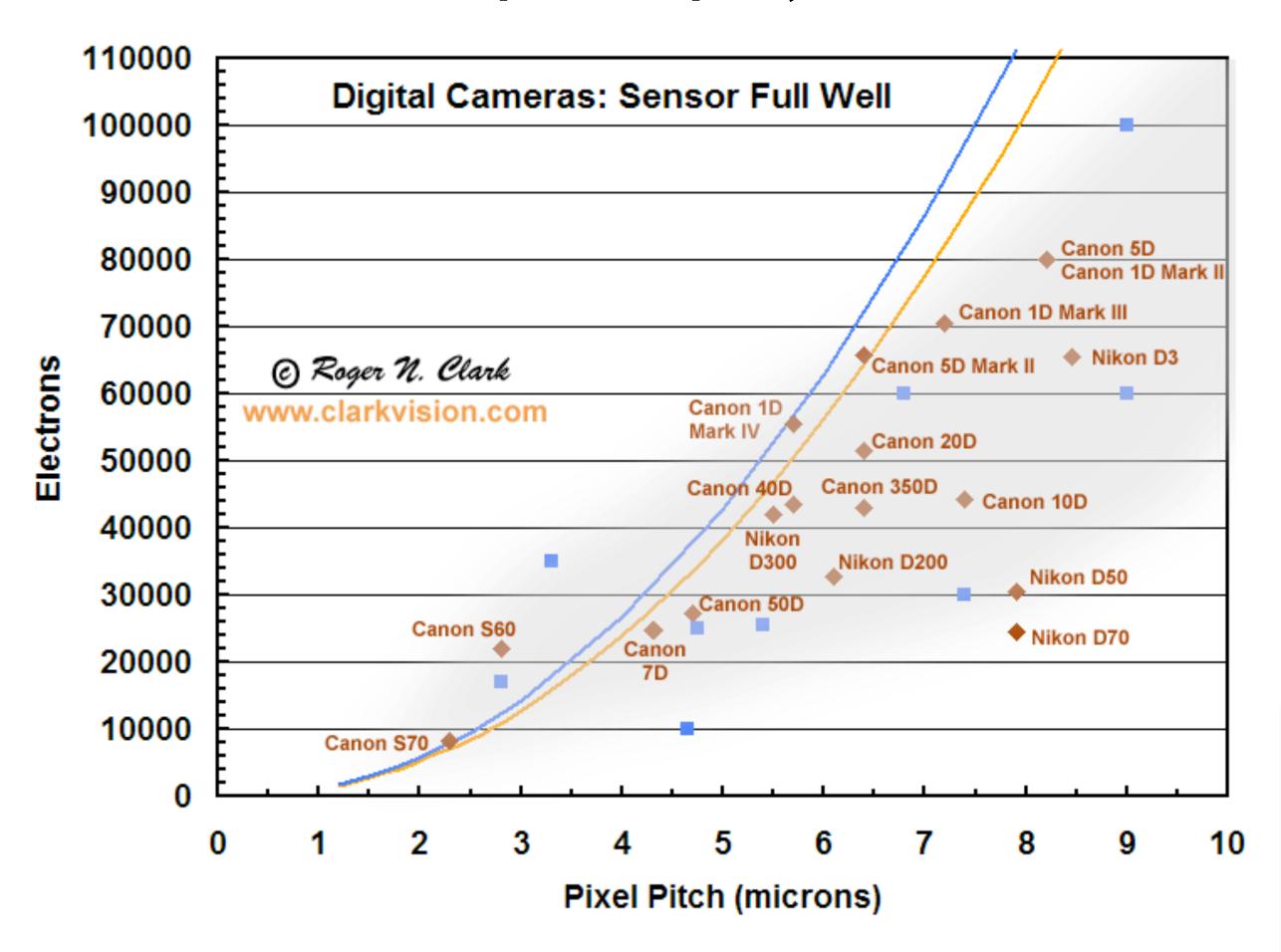


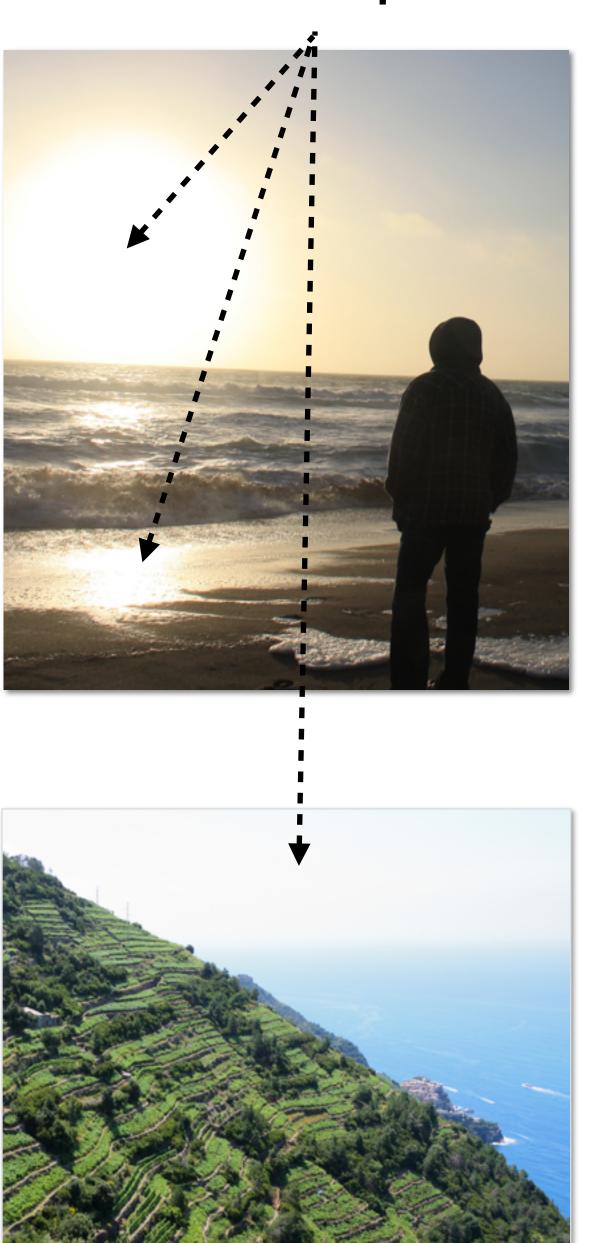
Illustration credit: Sony
CMU 15-769, Fall 2016

Full-well capacity

Pixel saturates when photon capacity is exceeded

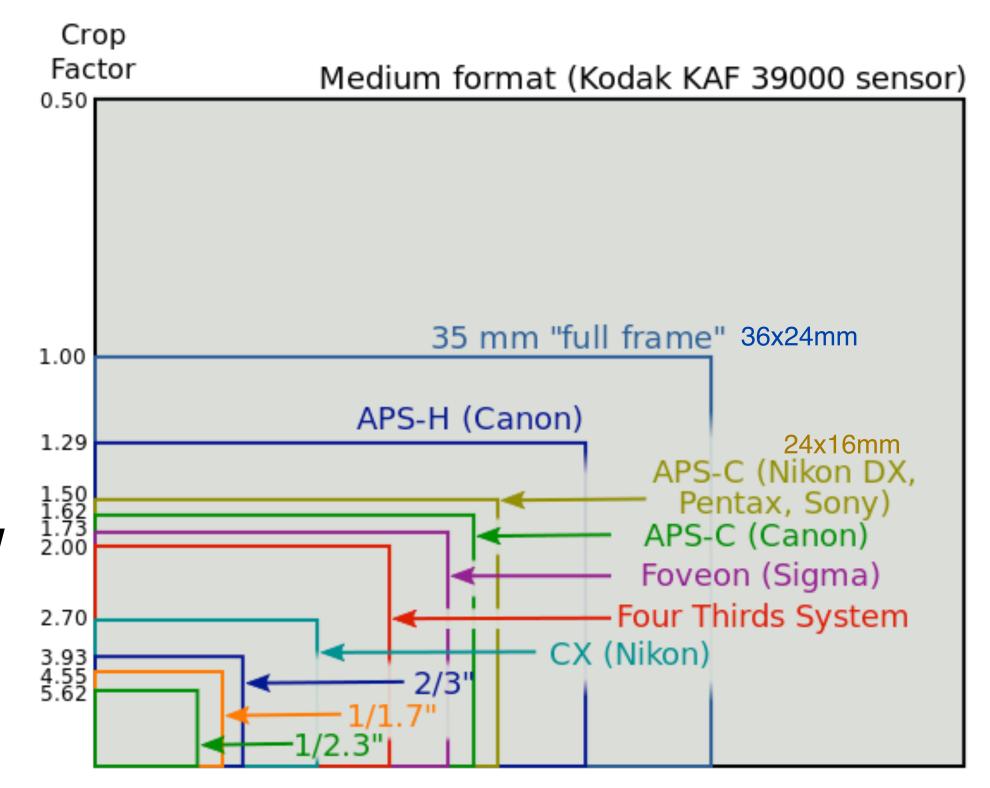


Oversaturated pixels



Bigger sensors = bigger pixels (or more pixels?)

- iPhone 6s (1.2 micron pixels, 12 MP)
- My Nikon D7000 (APS-C)(4.8 micron pixels, 16 MP)
- Nikon D4 (full frame sensor)(7.3 micron pixels, 16 MP)
- Implication: very high pixel count sensors can be built with current CMOS technology
 - Full frame sensor with iPhone 6s pixel
 size ~ 600 MP sensor



Nokia Lumia (41 MP)

Image credit: Wikipedia CMU 15-769, Fall 2016

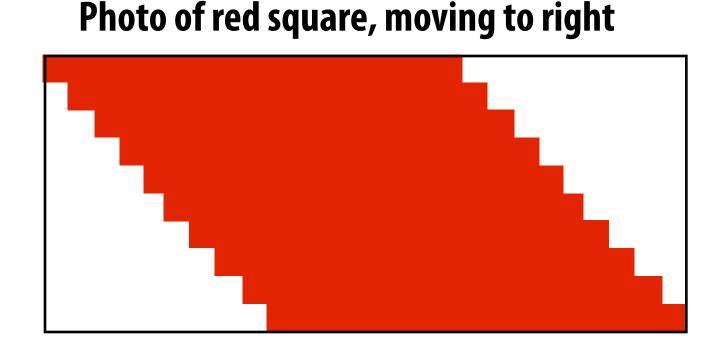
Steps in capturing an image

- 1. Clear sensor pixels
- 2. Open camera's mechanical shutter (exposure begins)
- 3. Optional: fire flash
- 4. Close camera mechanical shutter (exposure ends)
- 5. Read measurements off sensor
 - For each row:
 - Select row, read pixel for all columns in parallel
 - Pass data stream through amplifier and ADC

Electronic rolling shutter

Many cameras do not have a mechanical shutter (e.g., smart-phone cameras)

- 1. Clear sensor pixels for row i (exposure begins)
- 2. Clear sensor pixels for row i+1 (exposure begins)
- 3. Read row i (exposure ends)
- 4. Read row i+1 (exposure ends)



Each image row exposed for the same amount of time (same exposure)

Each image row exposed over different interval of time (time offset determined by row read speed)

Rolling shutter effects

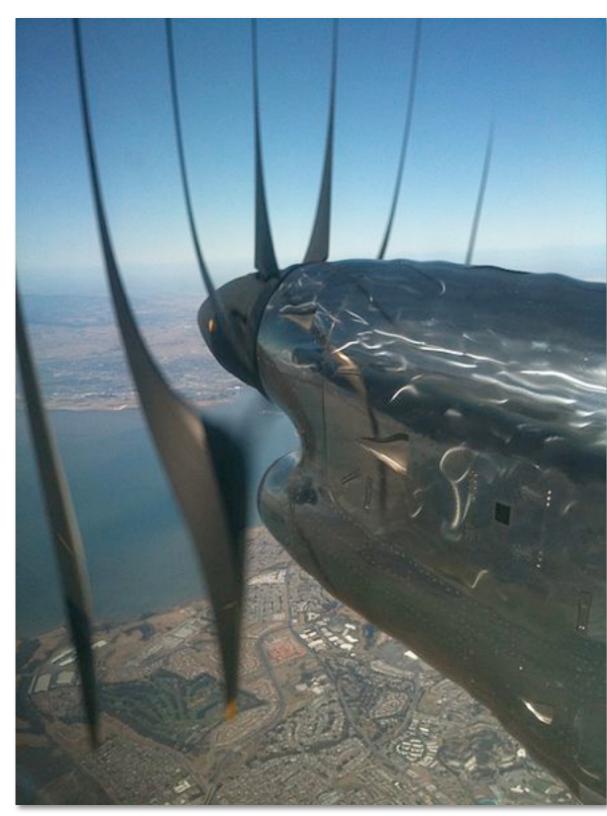


Image credit: Wikipedia

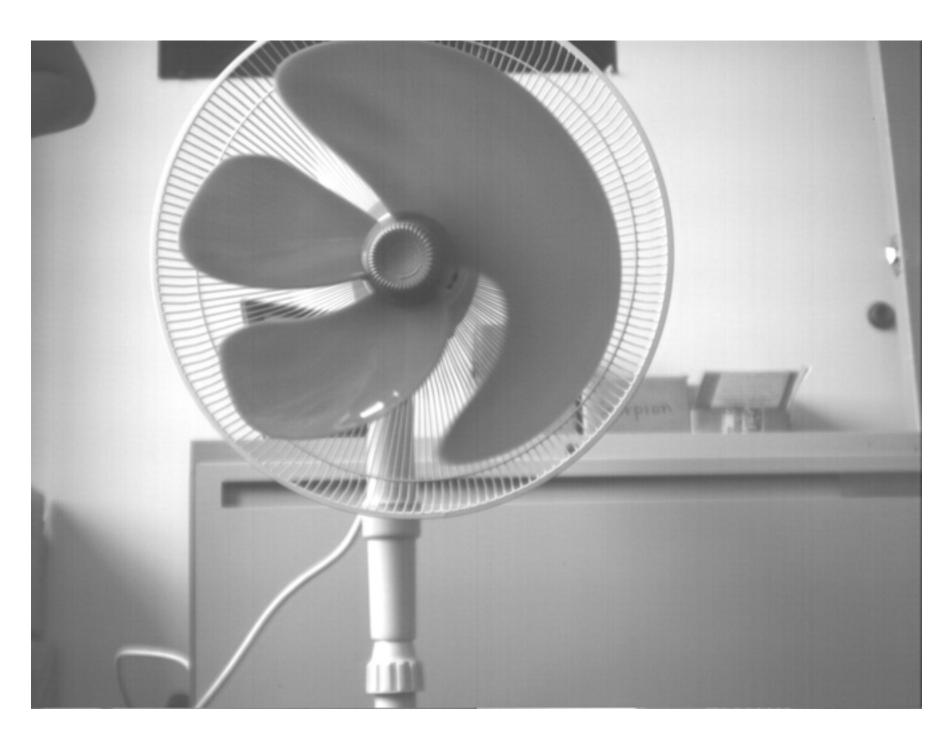


Image credit: Point Grey Research

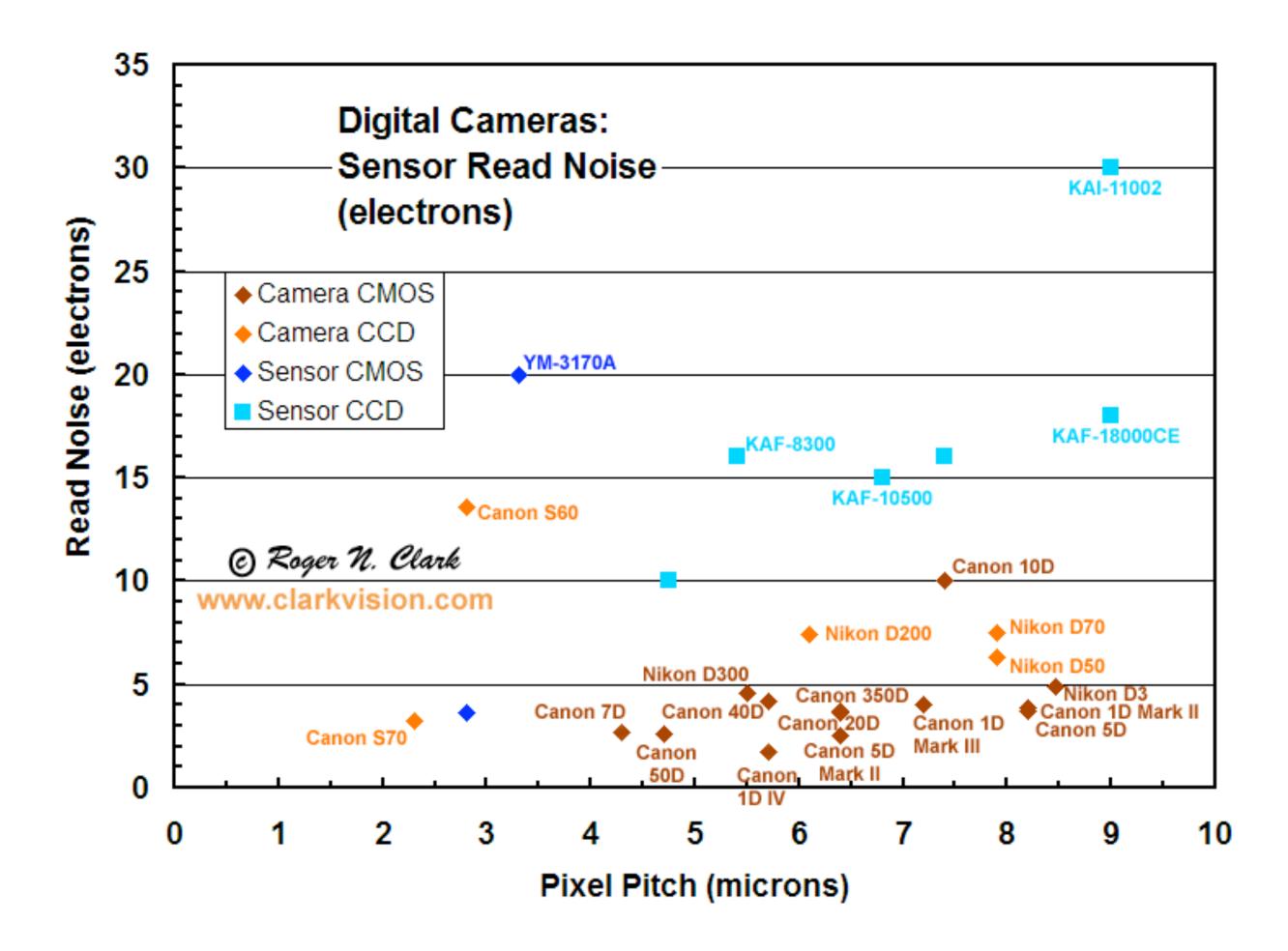
Measurement noise

Measurement noise

- Photon shot noise:
 - Photon arrival rates feature poisson distribution
 - Standard deviation = sqrt(N)
 - Signal-to-noise ratio (SNR): N/sqrt(N)
 - Brighter the signal the higher the SNR
- Dark-shot noise ◆ Addressed by: subtract dark image
 - Due to leakage current
 - Electrons dislodged due to thermal activity (increases exponentially with sensor temperature)
- Non-uniformity of pixel sensitivity (due to manufacturing defects)
- Read noise
 - e.g., due to amplification / ADC

Addressed by: subtract flat field image (e.g., image of gray wall)

Read noise

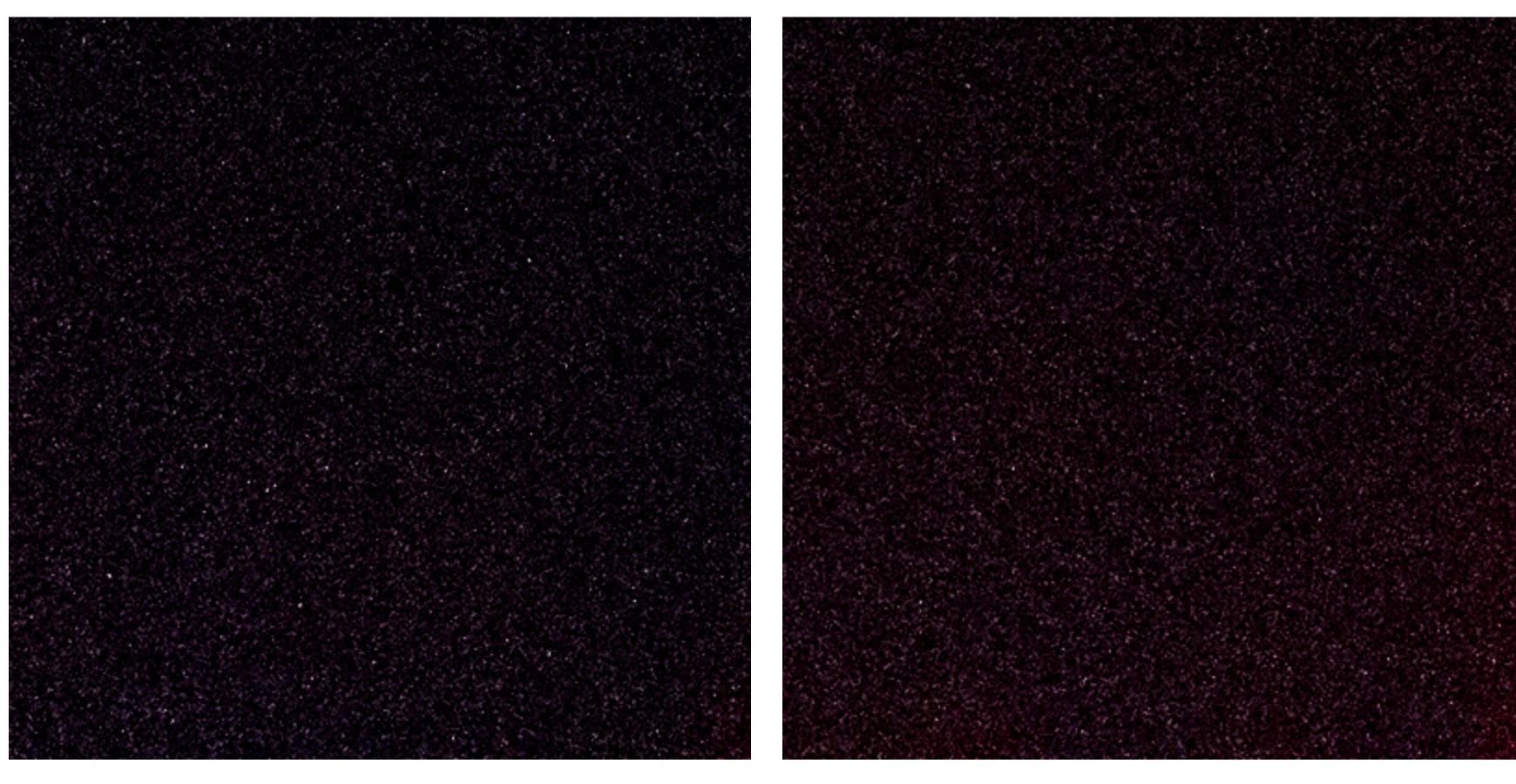


Read noise is largely independent of pixel size Large pixels + bright scene: noise determined largely by photon shot noise

Image credit: clarkvision.com CMU 15-769, Fall 2016

Dark shot noise / read noise

Black image examples: Nikon D7000, High ISO



1/60 sec exposure 1 sec exposure

Maximize light gathering capability

Goal: increase signal-to-noise ratio

 Dynamic range of a pixel (ratio of brightest light and dimmest light measurable) is determined by the noise floor (minimum signal) and the pixel's full-well capacity (maximum signal)

Big pixels

- Nikon D4: 7.3 um

- iPhone 5s: 1.5 um

Sensitive pixels

- Good materials
- High fill factor

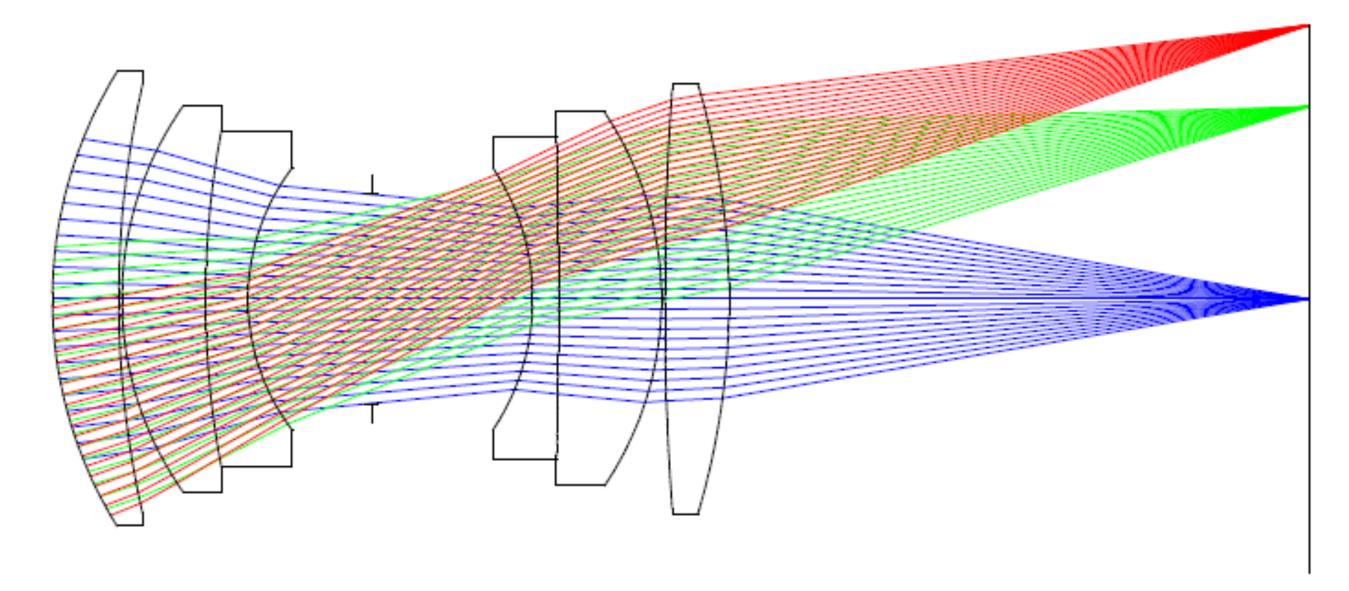
Vignetting

Image of white wall (Note: I contrast-enhanced the image to show effect)



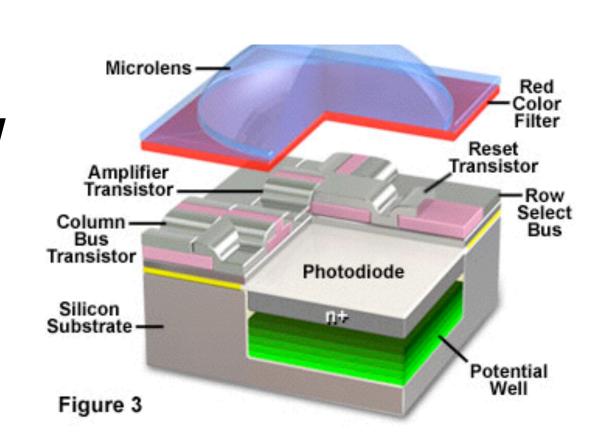
Types of vignetting

Optical vignetting: less light reaches edges of sensor due to physical obstruction in lens



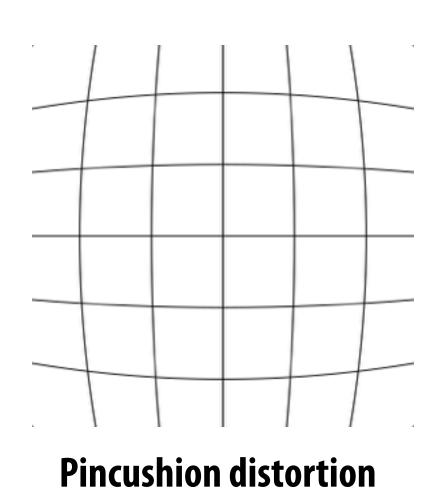
Pixel vignetting: light reaching pixel at an oblique angle is less likely to hit photosensitive region than light incident from straight above (e.g., obscured by electronics)

Microlens reduces pixel vignetting



More challenges

- Chromatic shifts over sensor
 - Pixel light sensitivity changes over sensor due to interaction with microlens (Recall index of refraction depends on wavelength, so some wavelengths are more likely to suffer from cross-talk or reflection. Ugg!)
- Dead pixels (stuck at white or black)
- Lens distortion



Captured Image

Corrected Image

Image credit: PCWorld

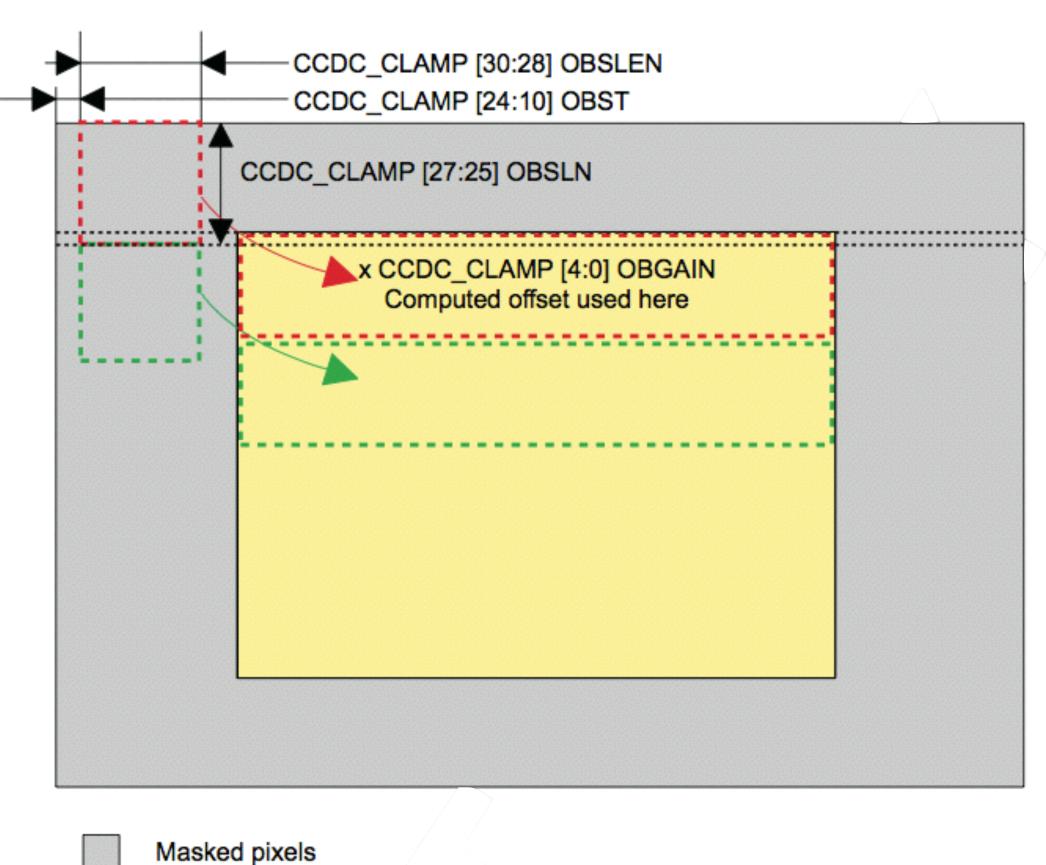
A simple RAW image processing pipeline

Adopting terminology from Texas Instruments OMAP Image Signal Processor pipeline (since public documentation exists)

Assume: receiving 12 bits/pixel Bayer mosaiced data from sensor

Optical clamp: remove sensor offset bias

output_pixel = input_pixel - [average of pixels from optically black region]



Active pixels

Remove bias due to sensor black level (from nearby sensor pixels at time of shot)

Step 2: correct for defective pixels

- Store LUT with known defective pixels
 - e.g., determined on manufacturing line, during sensor calibration and test

Example correction methods

- Replace defective pixel with neighbor
- Replace defective pixel with average of neighbors
- Correct defect by subtracting known bias for the defect

Lens shading compensation

Correct for vignetting

- Recall good implementations will consider wavelength-dependent vignetting (that creates chromatic shift over the image)

Possible implementations:

- Use 2D buffer of flat-field photo stored in memory
 - e.g., lower resolution buffer, upsampled on-the-fly
 - Use analytic function to model correction

```
offset = upsample_compensation_offset_buffer(current_pixel_xy);
gain = upsample_compensation_gain_buffer(current_pixel_xy);
output_pixel = offset + gain * input_pixel;
```

Optional dark-frame subtraction

Similar computation to lens shading compensation

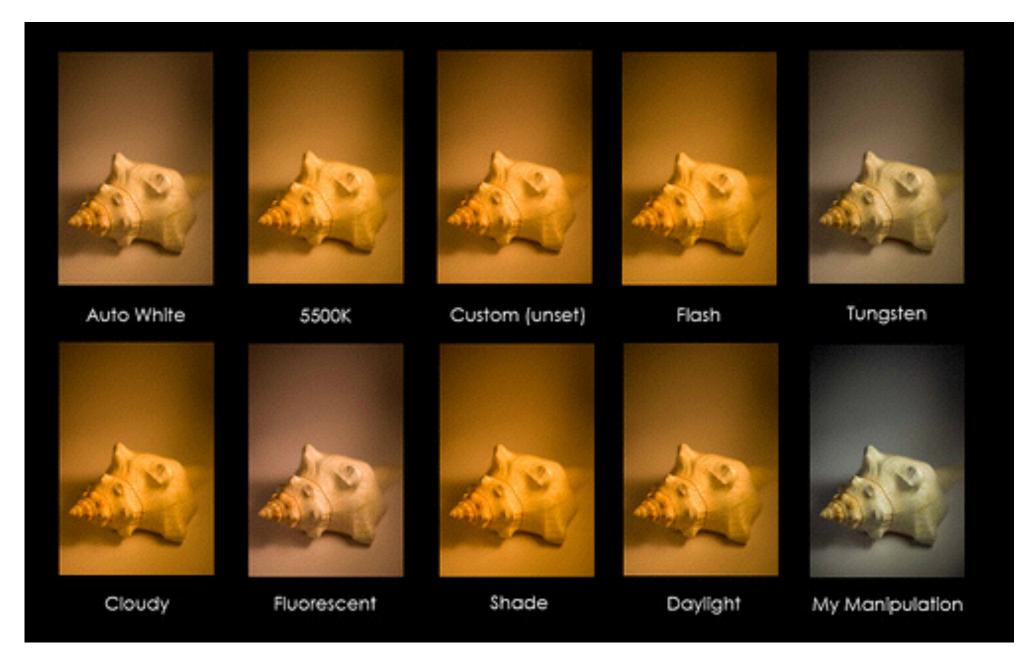
```
output_pixel = input_pixel - dark_frame[current_pixel_xy];
```

White balance

Adjust relative intensity of rgb values (so neutral tones appear neutral)

```
output_pixel = white_balance_coeff * input_pixel
// note: in this example, white_balance_coeff is vec3
// (adjusts ratio of red-blue-green channels)
```

- Determine white balance coefficients based on analysis of image contents:
 - Simple auto-white balance algorithms
 - Gray world assumption: make average of all pixels in image gray
 - Find brightest region of image, make it white ([1,1,1])
- Modern cameras have sophisticated (heuristic-based) white-balance algorithms



Common data-driven solution:

- 1. Compute features from input image (e.g., histogram)
- 2. Find similar images in database of images for which good white balance settings are known
- 3. Use white balance settings from database image

Image credit: basedigitalphotography.com
CMU 15-769, Fall 2016

Demosiac

- Produce RGB image from mosaiced input image
- Basic algorithm: bilinear interpolation of mosaiced values (need 4 neighbors)
- More advanced algorithms:
 - Bicubic interpolation (wider filter support region... may overblur)
 - Good implementations attempt to find and preserve edges

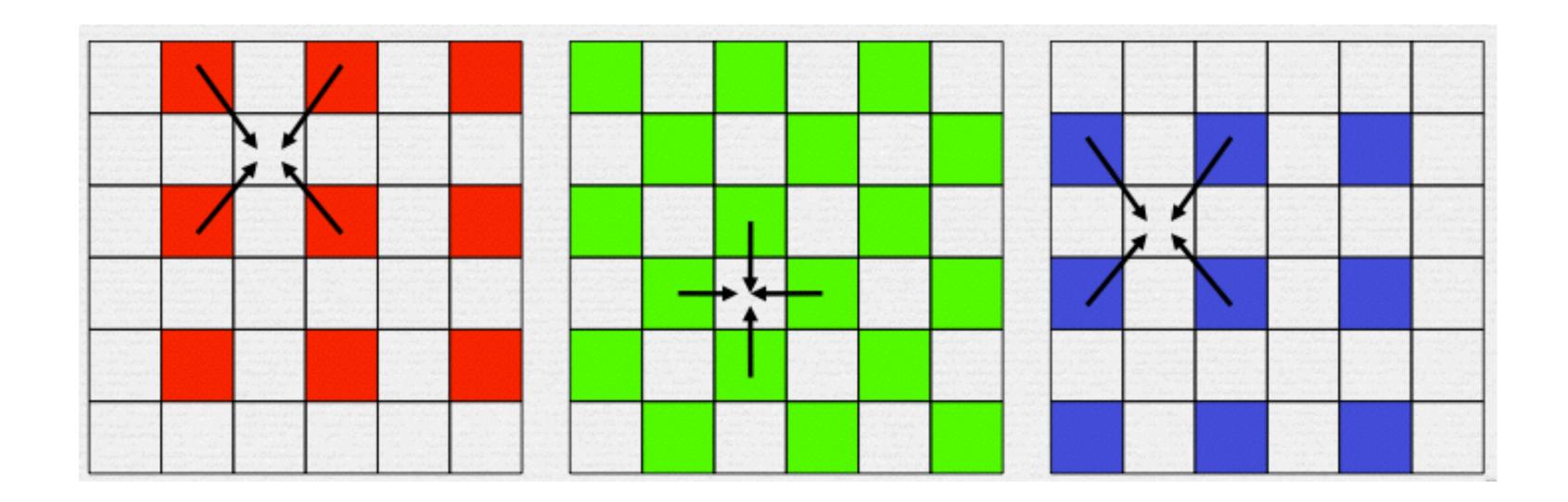


Image credit: Mark Levoy
CMU 15-769, Fall 2016

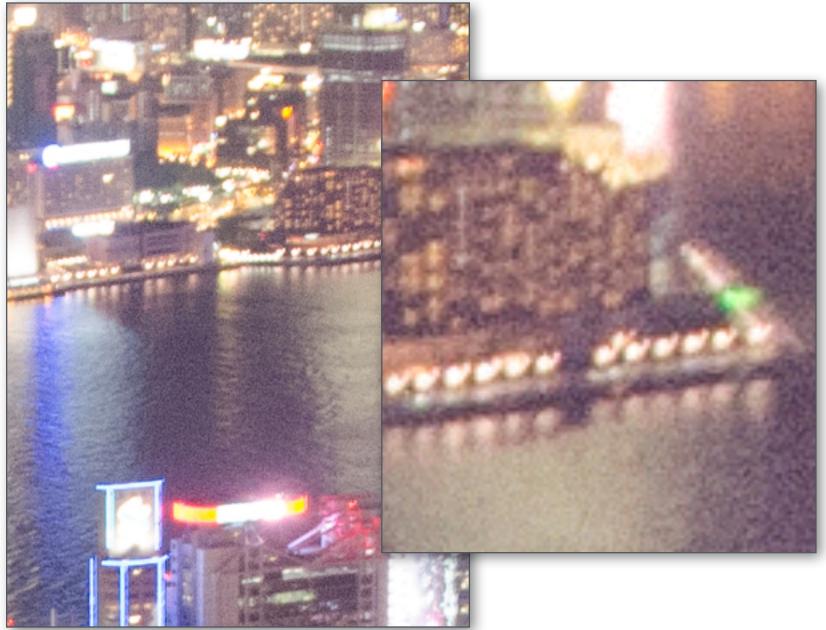
Demosaicing errors

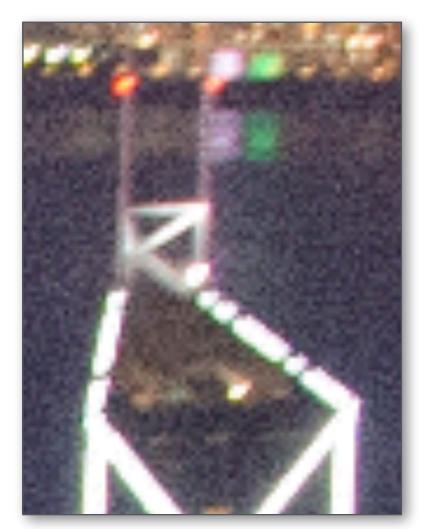
- Moire pattern color artifacts
 - Common trigger: fine diagonal black and white stripes
 - Common solution:
 - Convert demosaiced value to YCbCr
 - Low-pass filter CbCr channels
 - Combine prefiltered CbCr with full resolution Y from sensor to get RGB

RAW data from sensor

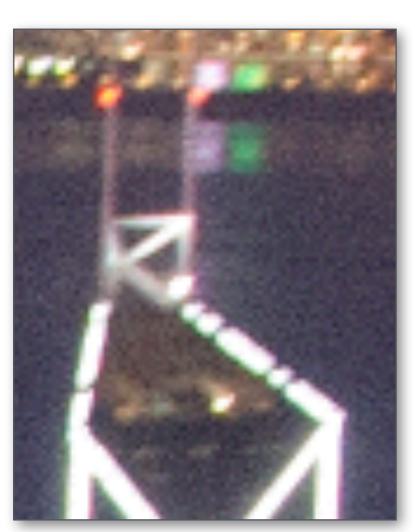
Demosaiced

Denoising: effect of downsizing on image noise





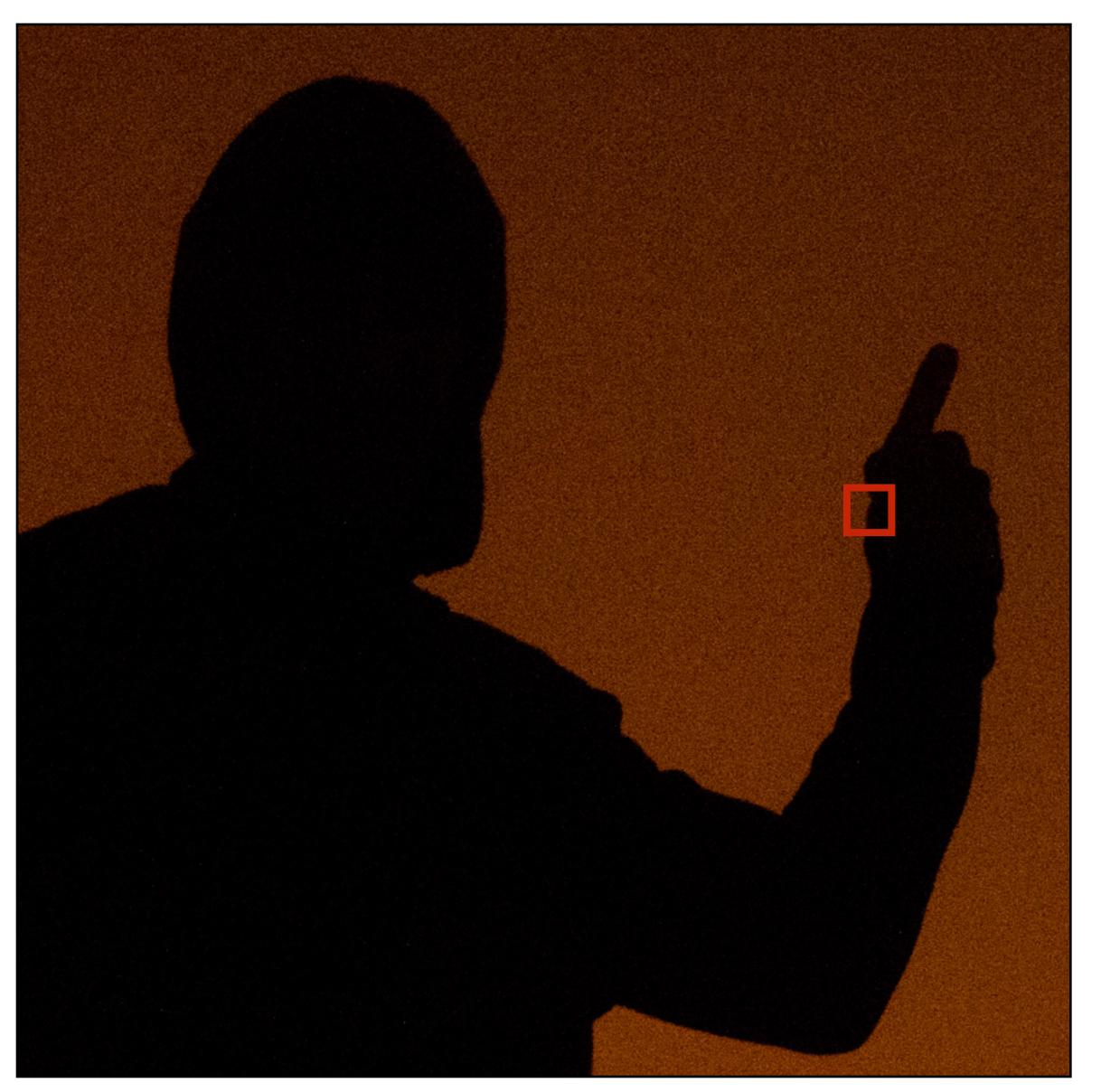
point sampled

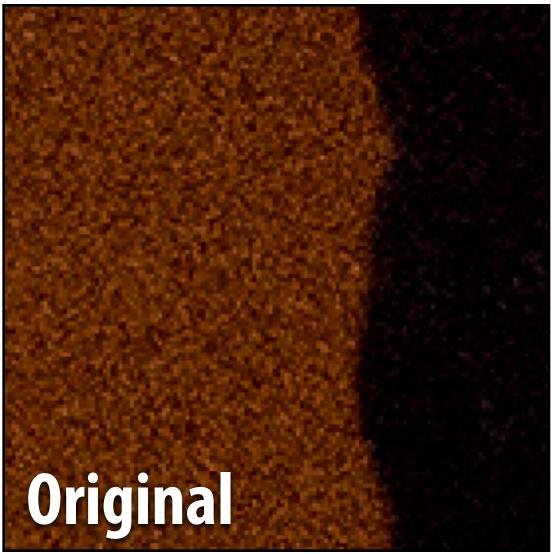


averaged down (bilinear resampling)

Credit: Levoy CMU 15-769, Fall 2016

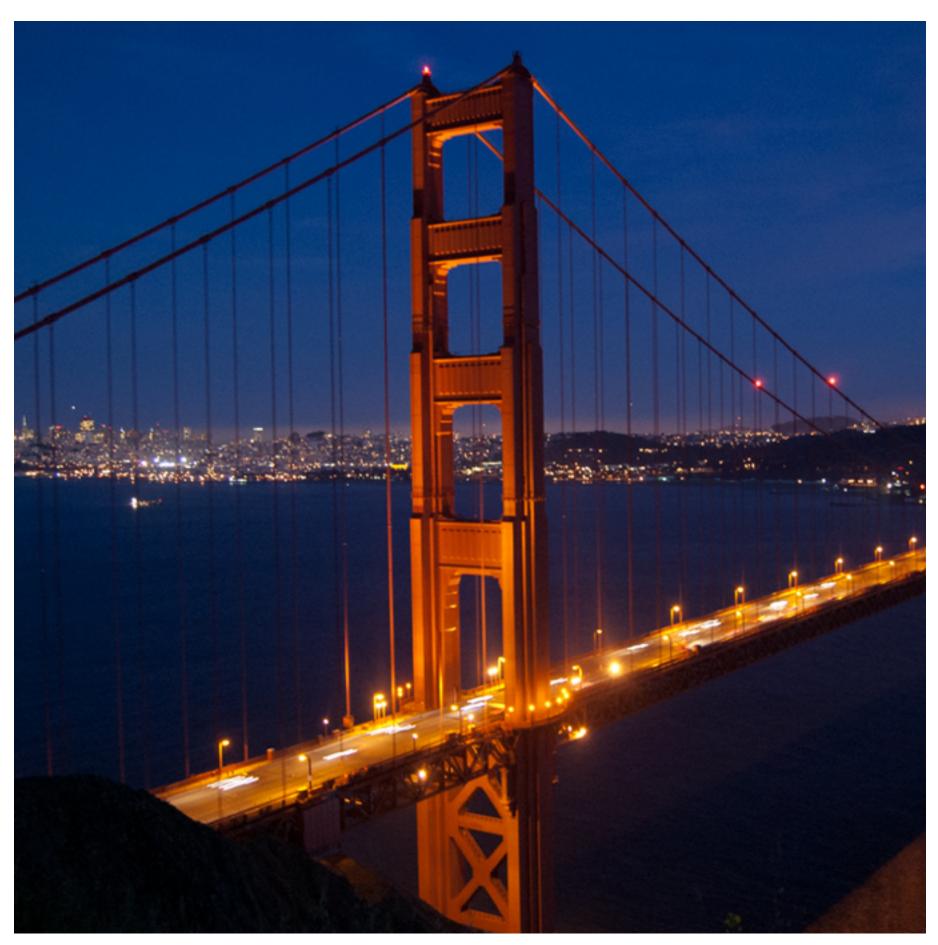
Denoising

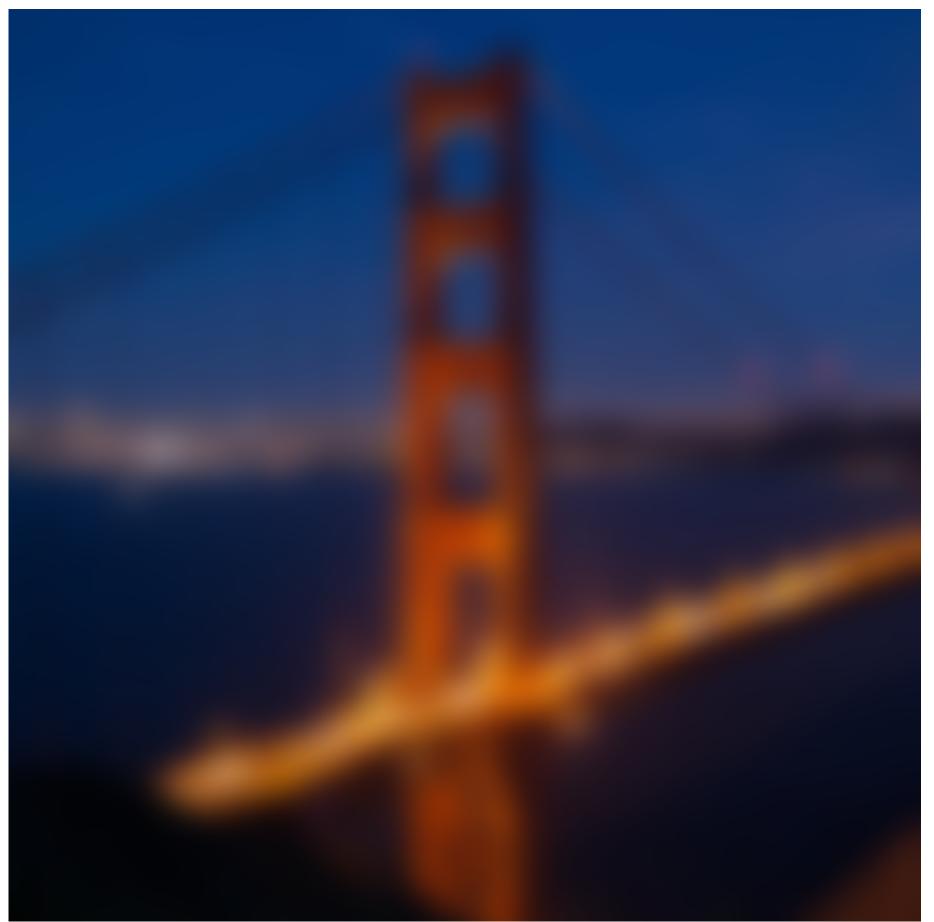




Aside: image processing basics

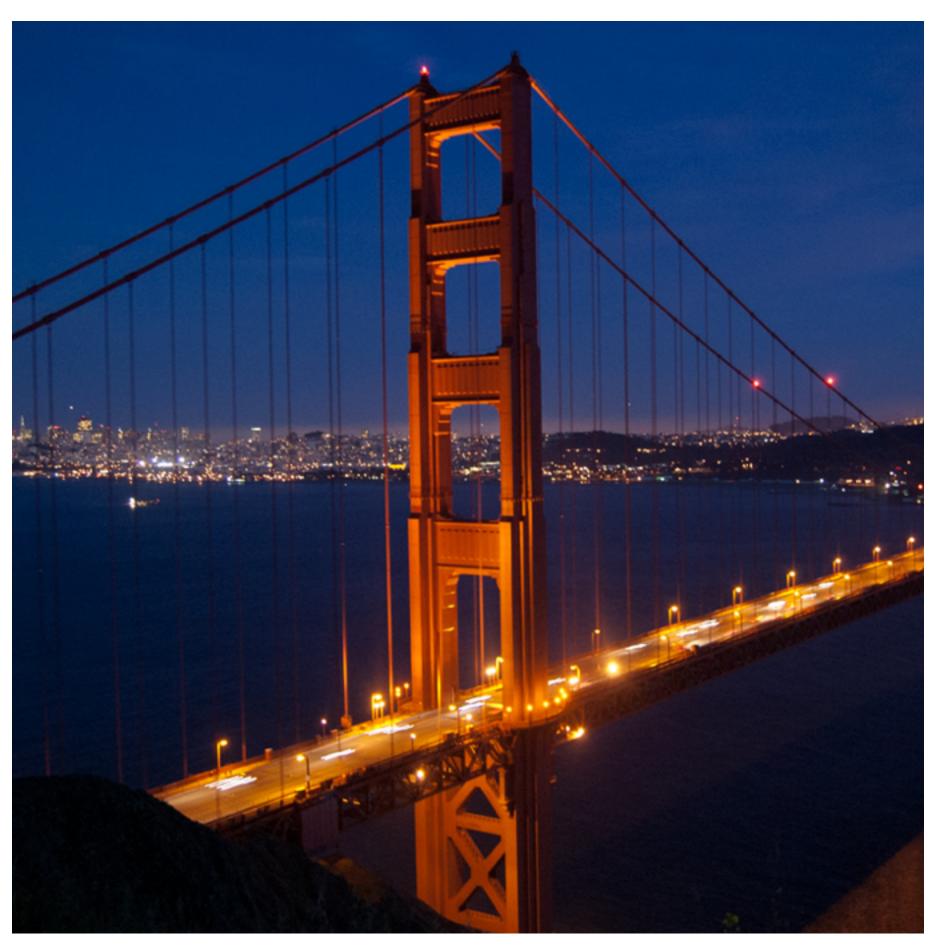
Example image processing operations





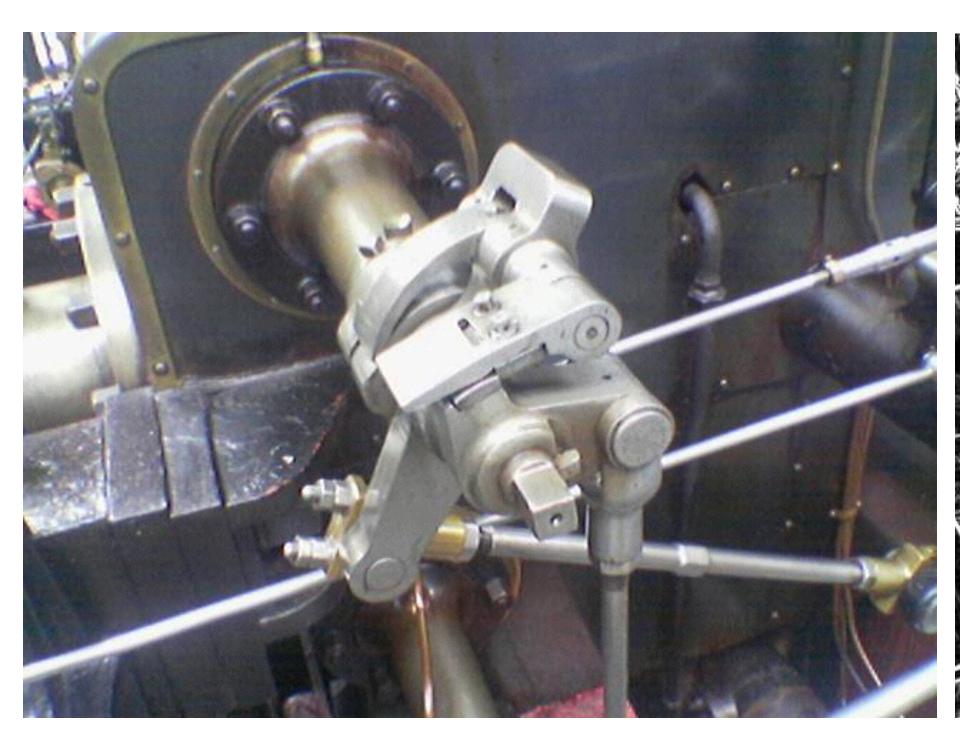
Blur

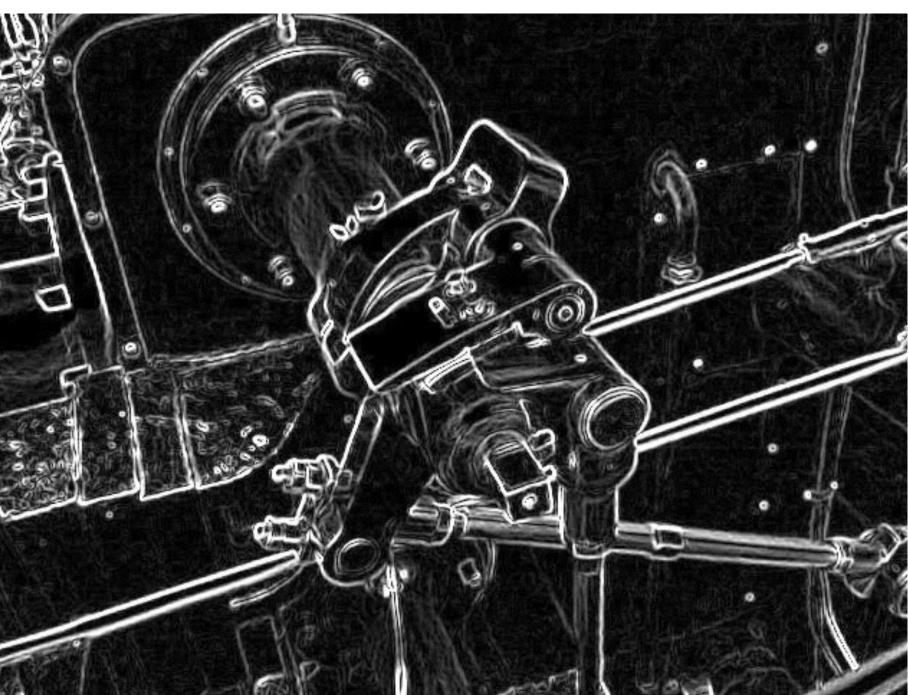
Example image processing operations



Sharpen

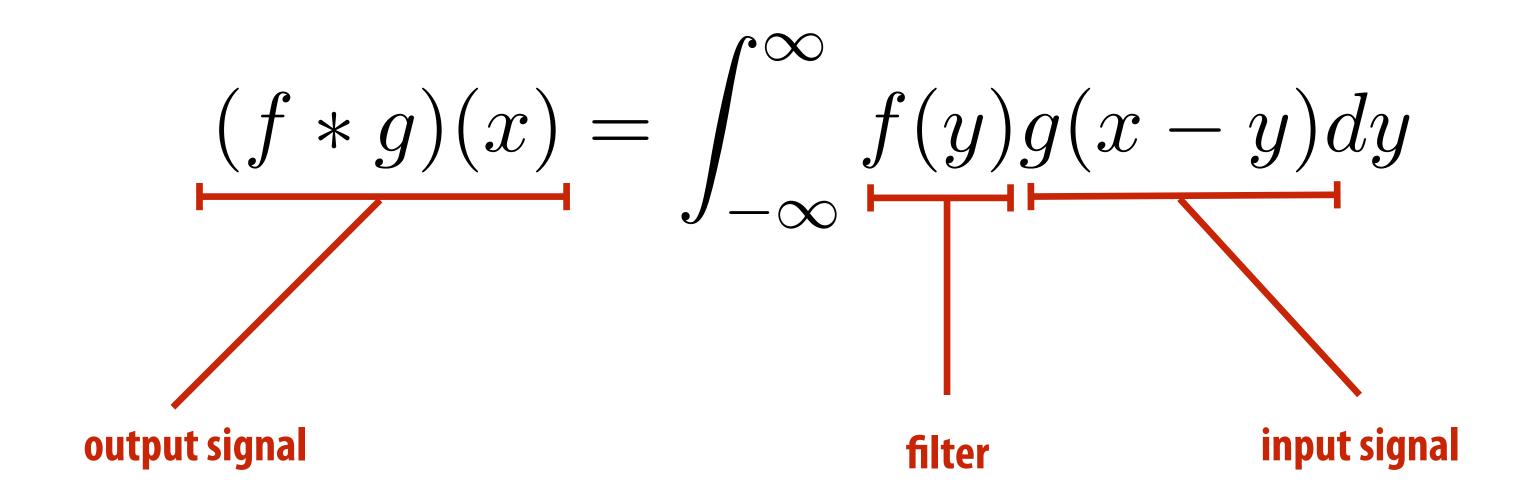
Edge detection





A "smarter" blur (doesn't blur over edges)

Review: convolution



It may be helpful to consider the effect of convolution with the simple unit-area "box" function:

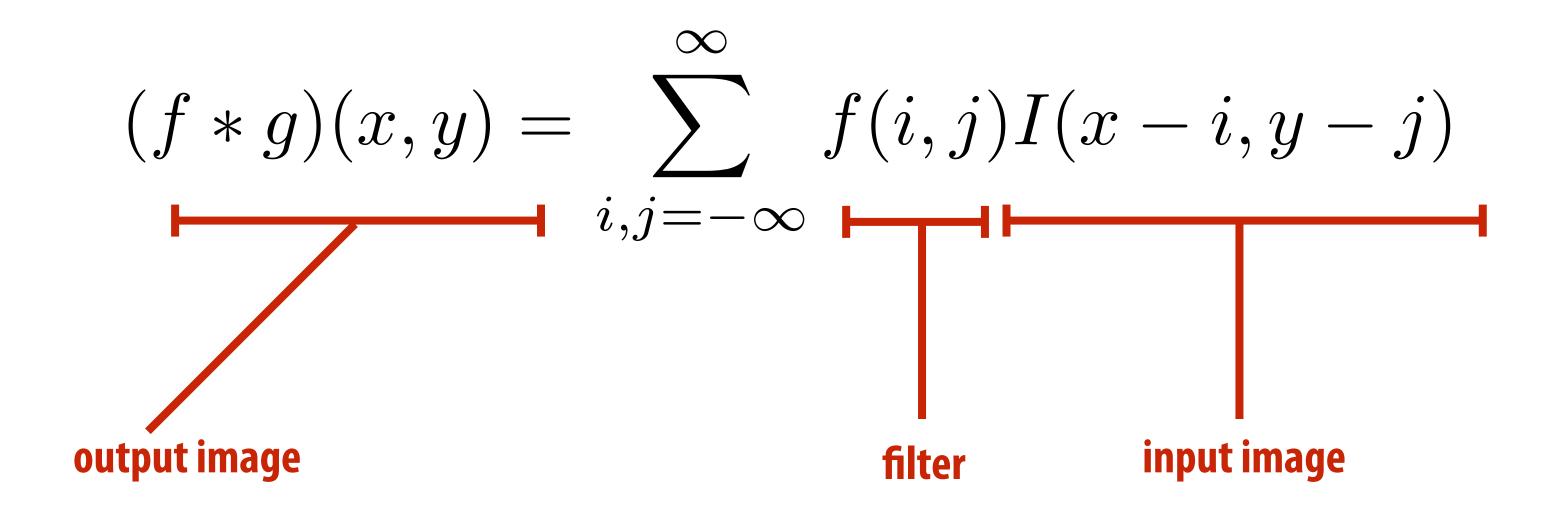
$$f(x) = \begin{cases} 1 & |x| \le 0.5 \\ 0 & otherwise \end{cases}$$

$$(f * g)(x) = \int_{-0.5}^{0.5} g(x - y) dy$$

-0.5 0.5

f * g is a "smoothed" version of g

Discrete 2D convolution



Consider f(i,j) that is nonzero only when: $-1 \le i,j \le 1$

Then:
$$(f*g)(x,y) = \sum_{i=1}^{n} f(i,j)I(x-i,y-j)$$

i, j = -1

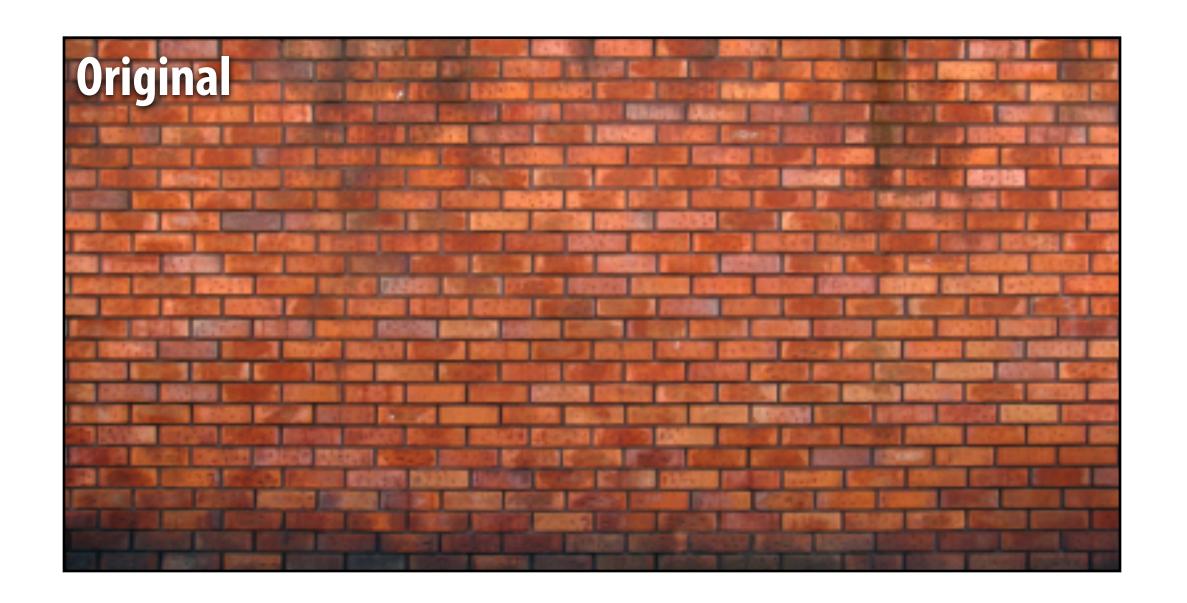
And we can represent f(i,j) as a 3x3 matrix of values where:

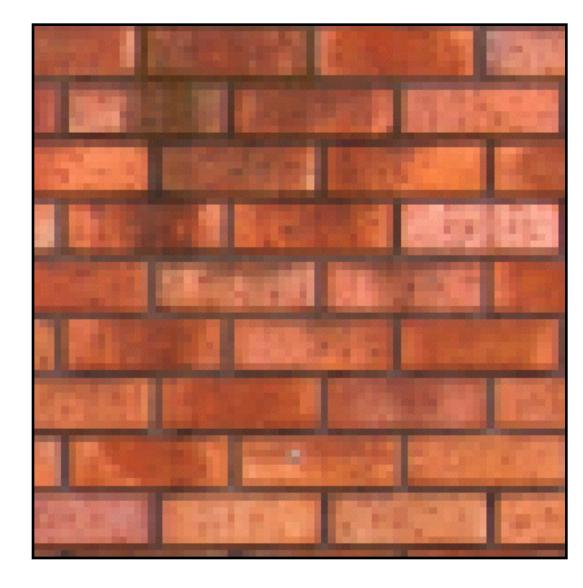
$$f(i,j) = \mathbf{F}_{i,j}$$
 (often called: "filter weights", "kernel")

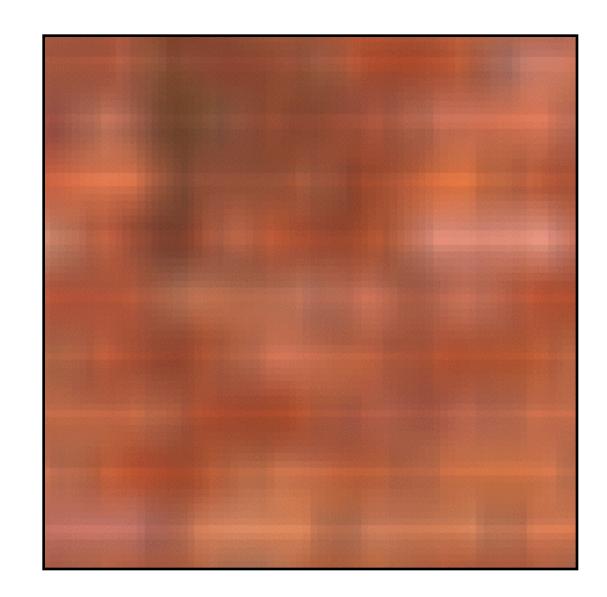
Simple 3x3 box blur

```
float input[(WIDTH+2) * (HEIGHT+2)];
float output[WIDTH * HEIGHT];
                                                               For now: ignore boundary pixels and
                                                               assume output image is smaller than
                                                              input (makes convolution loop bounds
float weights[] = \{1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9\}
                                                              much simpler to write)
                     1./9, 1./9, 1./9,
                     1./9, 1./9, 1./9};
for (int j=0; j<HEIGHT; j++) {</pre>
   for (int i=0; i<WIDTH; i++) {</pre>
      float tmp = 0.f;
      for (int jj=0; jj<3; jj++)
          for (int ii=0; ii<3; ii++)
             tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
      output[j*WIDTH + i] = tmp;
```

7x7 box blur







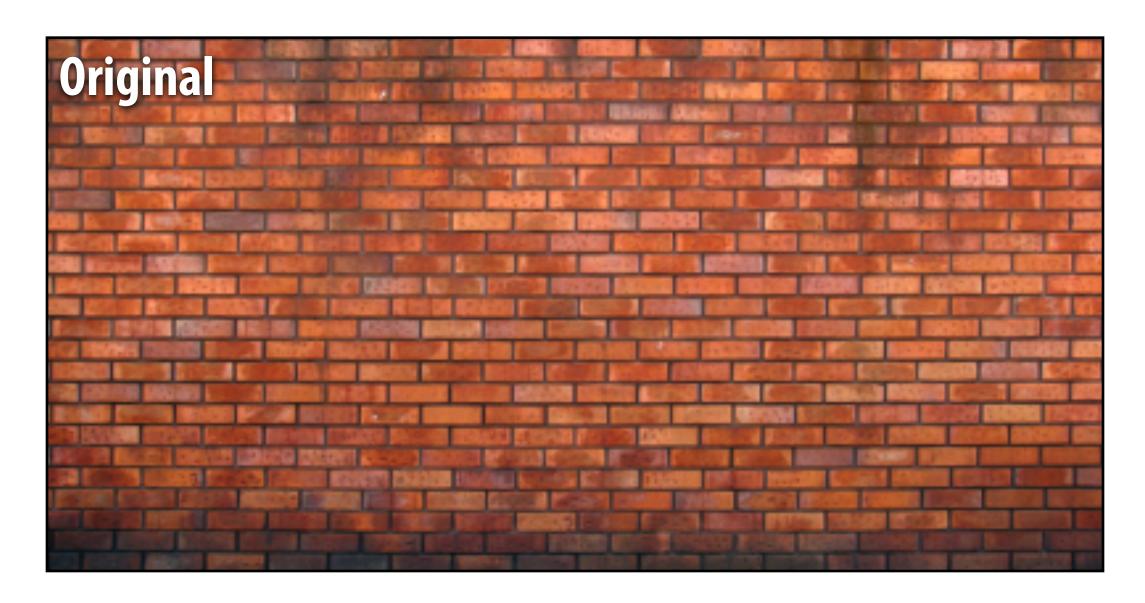
Gaussian blur

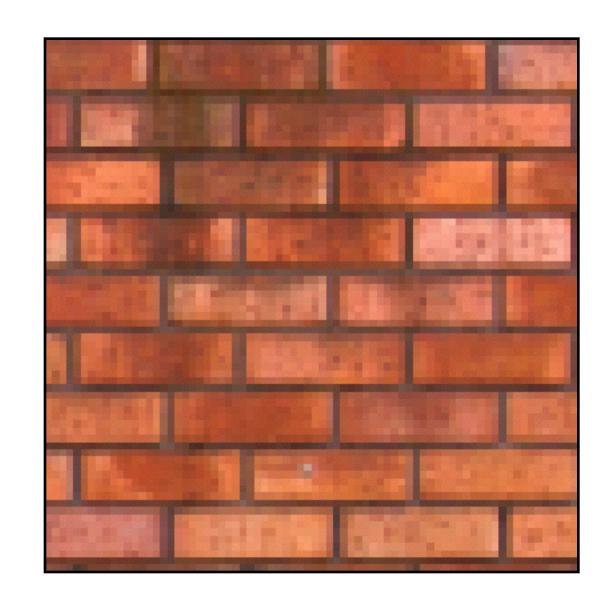
Obtain filter coefficients from sampling 2D Gaussian

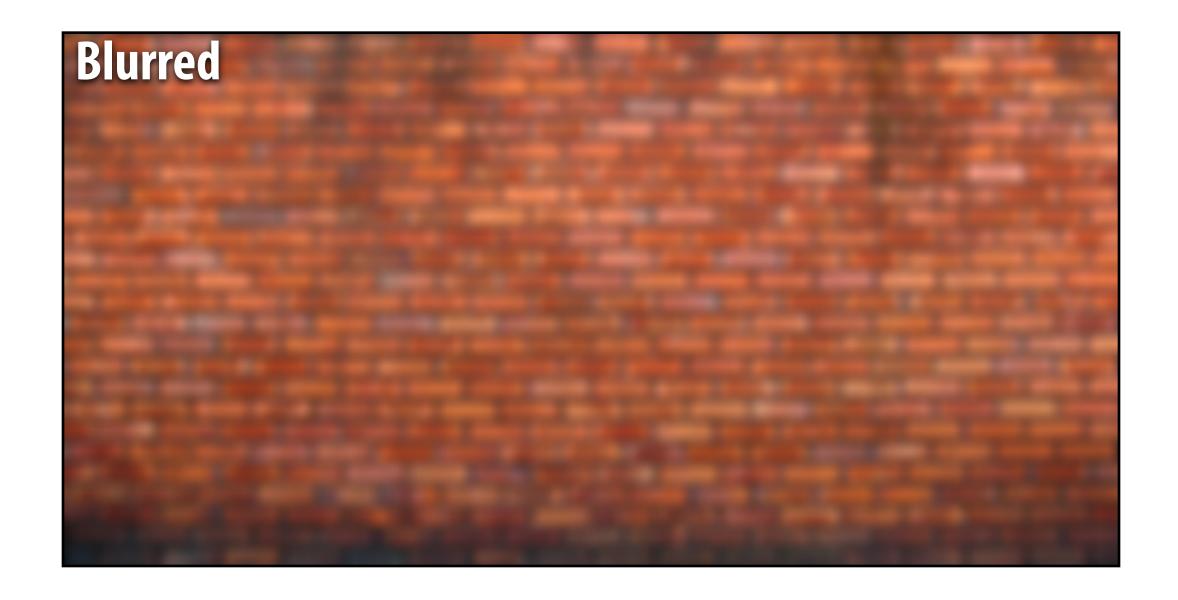
$$f(i,j) = \frac{1}{2\pi\sigma^2}e^{-\frac{i^2+j^2}{2\sigma^2}}$$

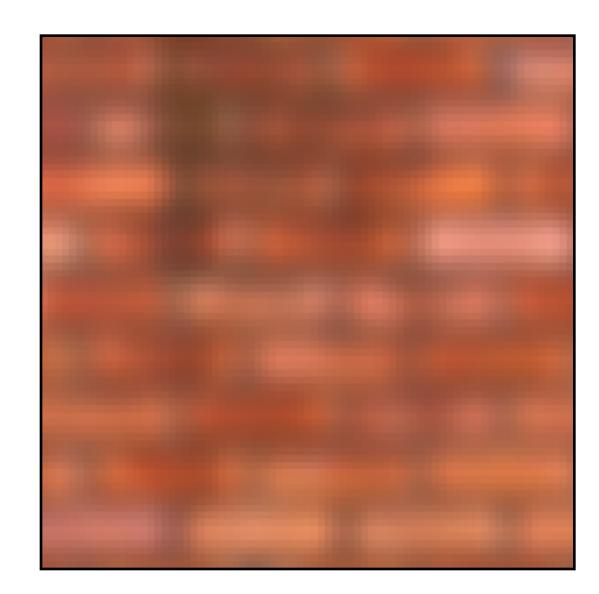
- Produces weighted sum of neighboring pixels (contribution falls off with distance)
 - In practice: truncate filter beyond certain distance

7x7 gaussian blur







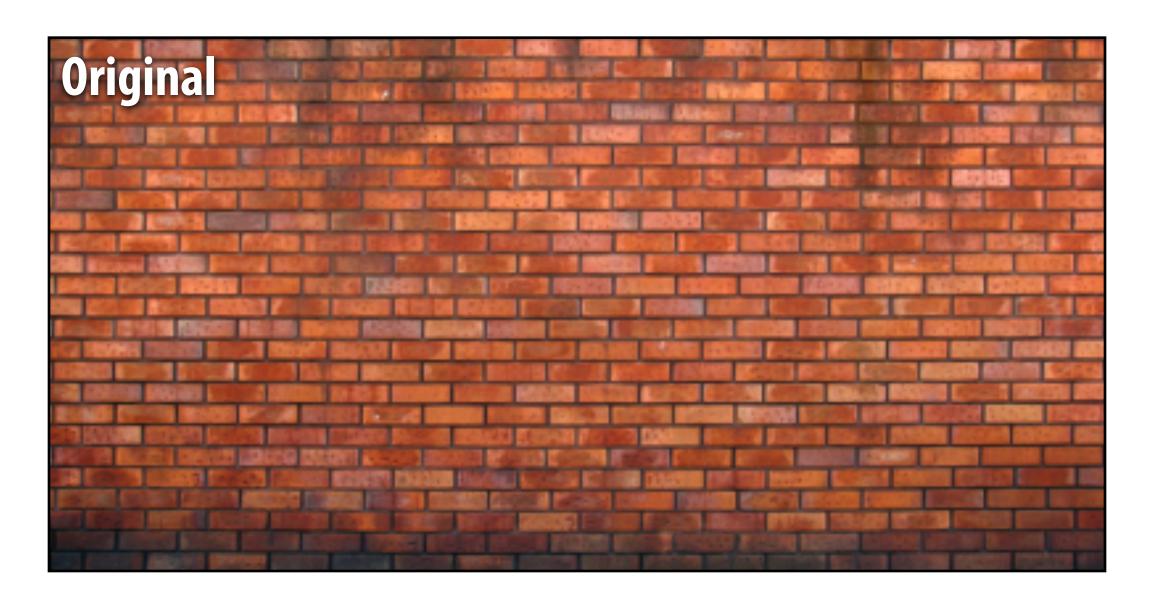


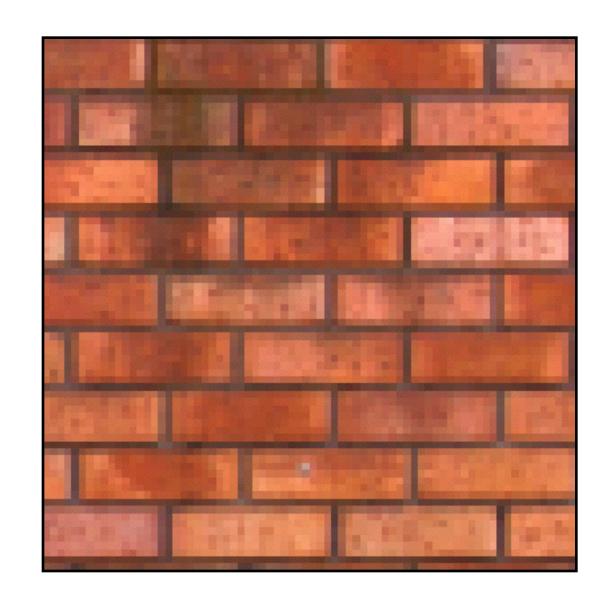
What does convolution with this filter do?

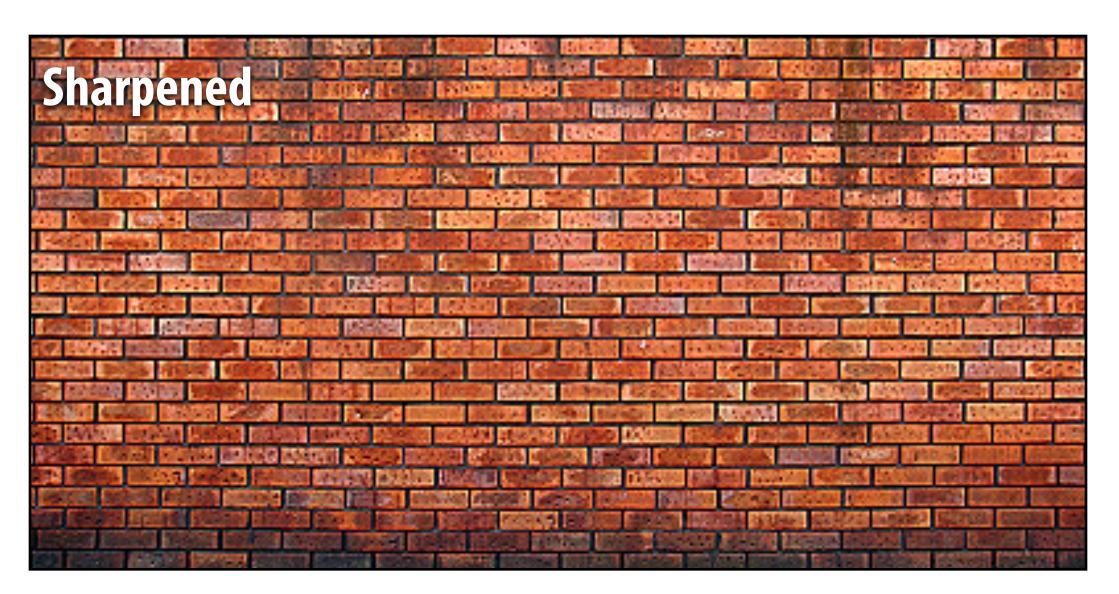
$$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

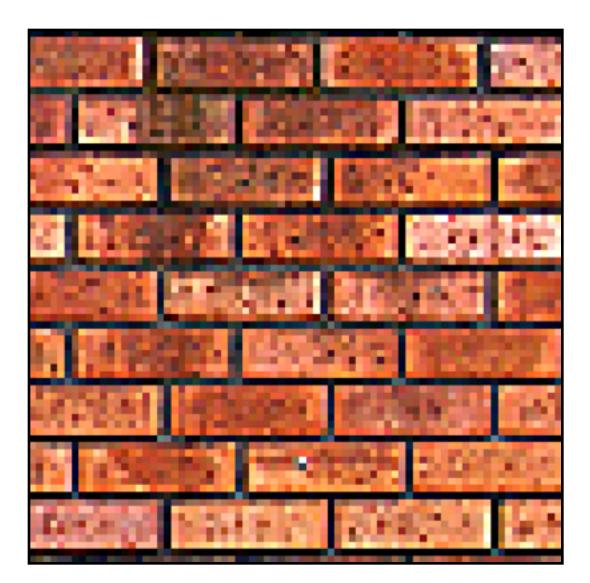
Sharpens image!

3x3 sharpen filter









What does convolution with these filters do?

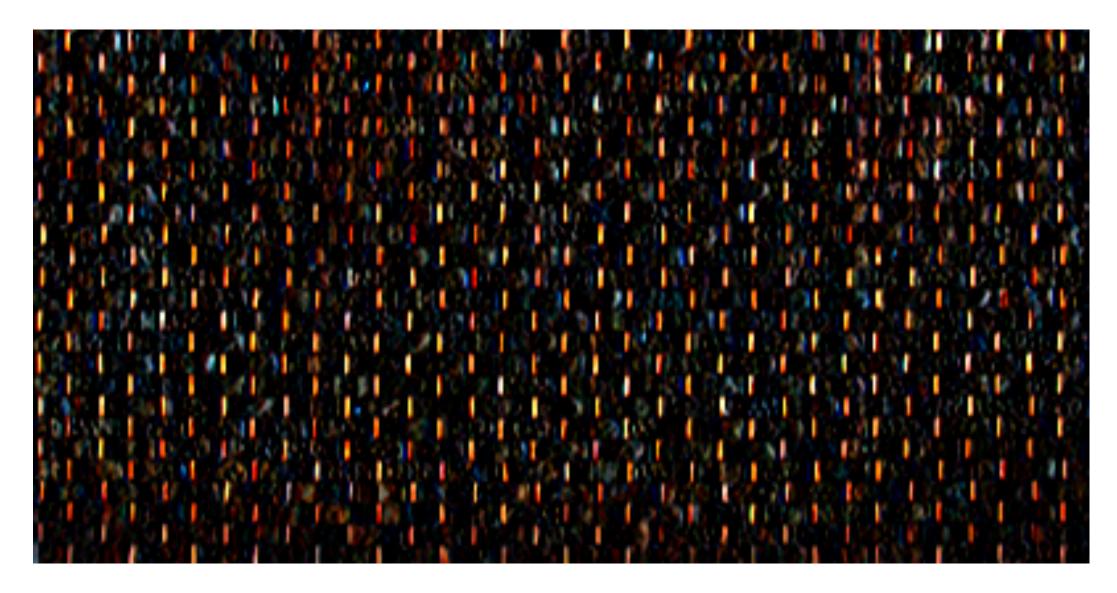
$$egin{bmatrix} -1 & 0 & 1 \ -2 & 0 & 2 \ -1 & 0 & 1 \ \end{bmatrix}$$

$$\begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

Extracts horizontal gradients

Extracts vertical gradients

Gradient detection filters



Horizontal gradients

Vertical gradients

Note: you can think of a filter as a "detector" of a pattern, and the magnitude of a pixel in the output image as the "response" of the filter to the region surrounding each pixel in the input image (this is a common interpretation in computer vision)

Sobel edge detection

Compute gradient response images

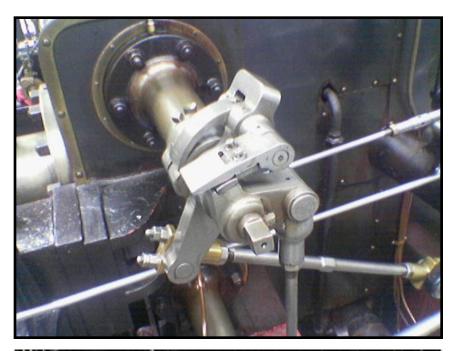
$$G_{x} = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} * I$$

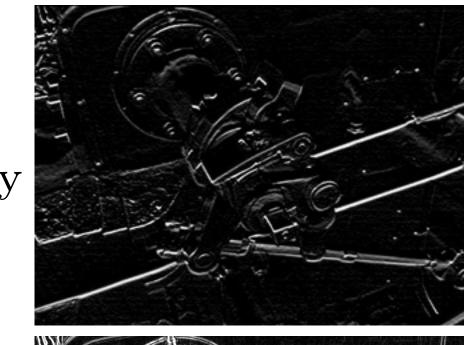
$$G_{y} = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix} * I$$

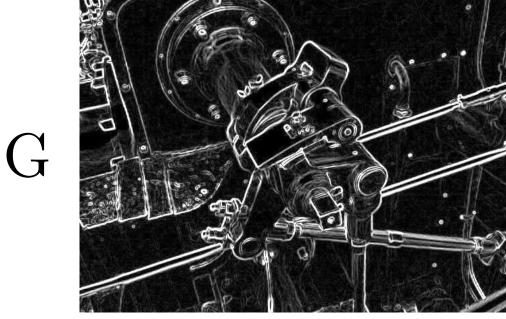
Find pixels with large gradients

$$G = \sqrt{G_x^2 + G_y^2}$$

Pixel-wise operation on images







Cost of convolution with N x N filter?

```
float input[(WIDTH+2) * (HEIGHT+2)];
                                                 In this 3x3 box blur example:
float output[WIDTH * HEIGHT];
                                                 Total work per image = 9 x WIDTH x HEIGHT
float weights[] = \{1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9\}
                                                 For N x N filter: N<sup>2</sup> x WIDTH x HEIGHT
                     1./9, 1./9, 1./9,
                     1./9, 1./9, 1./9};
for (int j=0; j<HEIGHT; j++) {</pre>
   for (int i=0; i<WIDTH; i++) {</pre>
      float tmp = 0.f;
      for (int jj=0; jj<3; jj++)
          for (int ii=0; ii<3; ii++)
             tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
      output[j*WIDTH + i] = tmp;
```

Separable filter

- A filter is separable if is the product of two other filters
 - Example: a 2D box blur

$$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} * \frac{1}{3} [1 \quad 1 \quad 1]$$

 Exercise: write 2D gaussian and vertical/horizontal gradient detection filters as product of 1D filters (they are separable!)

Key property: 2D convolution with separable filter can be written as two 1D convolutions!

Implementation of 2D box blur via two 1D convolutions

```
int WIDTH = 1024
int HEIGHT = 1024;
float input[(WIDTH+2) * (HEIGHT+2)];
                                                Total work per image for NxN filter:
float tmp_buf[WIDTH * (HEIGHT+2)];
                                                2N x WIDTH x HEIGHT
float output[WIDTH * HEIGHT];
float weights[] = \{1./3, 1./3, 1./3\};
for (int j=0; j<(HEIGHT+2); j++)
  for (int i=0; i<WIDTH; i++) {</pre>
    float tmp = 0.f;
    for (int ii=0; ii<3; ii++)
      tmp += input[j*(WIDTH+2) + i+ii] * weights[ii];
    tmp_buf[j*WIDTH + i] = tmp;
for (int j=0; j<HEIGHT; j++) {</pre>
  for (int i=0; i<WIDTH; i++) {
    float tmp = 0.f;
    for (int jj=0; jj<3; jj++)
      tmp += tmp_buf[(j+jj)*WIDTH + i] * weights[jj];
    output[j*WIDTH + i] = tmp;
```

Data-dependent filter (not a convolution)

```
float input[(WIDTH+2) * (HEIGHT+2)];
float output[WIDTH * HEIGHT];
for (int j=0; j<HEIGHT; j++) {</pre>
   for (int i=0; i<WIDTH; i++) {</pre>
      float min_value = min( min(input[(j-1)*WIDTH + i], input[(j+1)*WIDTH + i]),
                              min(input[j*WIDTH + i-1], input[j*WIDTH + i+1]) );
      float max_value = max( max(input[(j-1)*WIDTH + i], input[(j+1)*WIDTH + i]),
                              max(input[j*WIDTH + i-1], input[j*WIDTH + i+1]) );
      output[j*WIDTH + i] = clamp(min_value, max_value, input[j*WIDTH + i]);
```

This filter clamps pixels to the min/max of its cardinal neighbors (e.g., hot-pixel suppression)

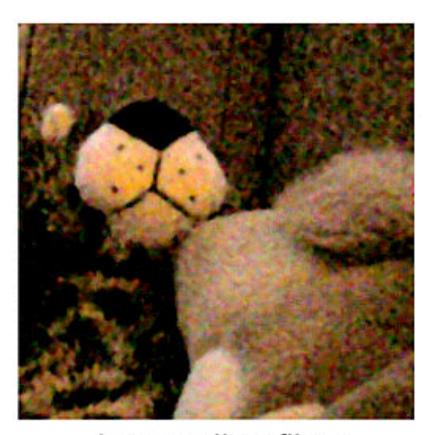
Median filter

- Replace pixel with median of its neighbors
 - Useful noise reduction filter: unlike gaussian blur, one bright pixel doesn't drag up the average for entire region
- Not linear, not separable
 - Filter weights are 1 or 0

 (depending on image content)

original image

3px median filter

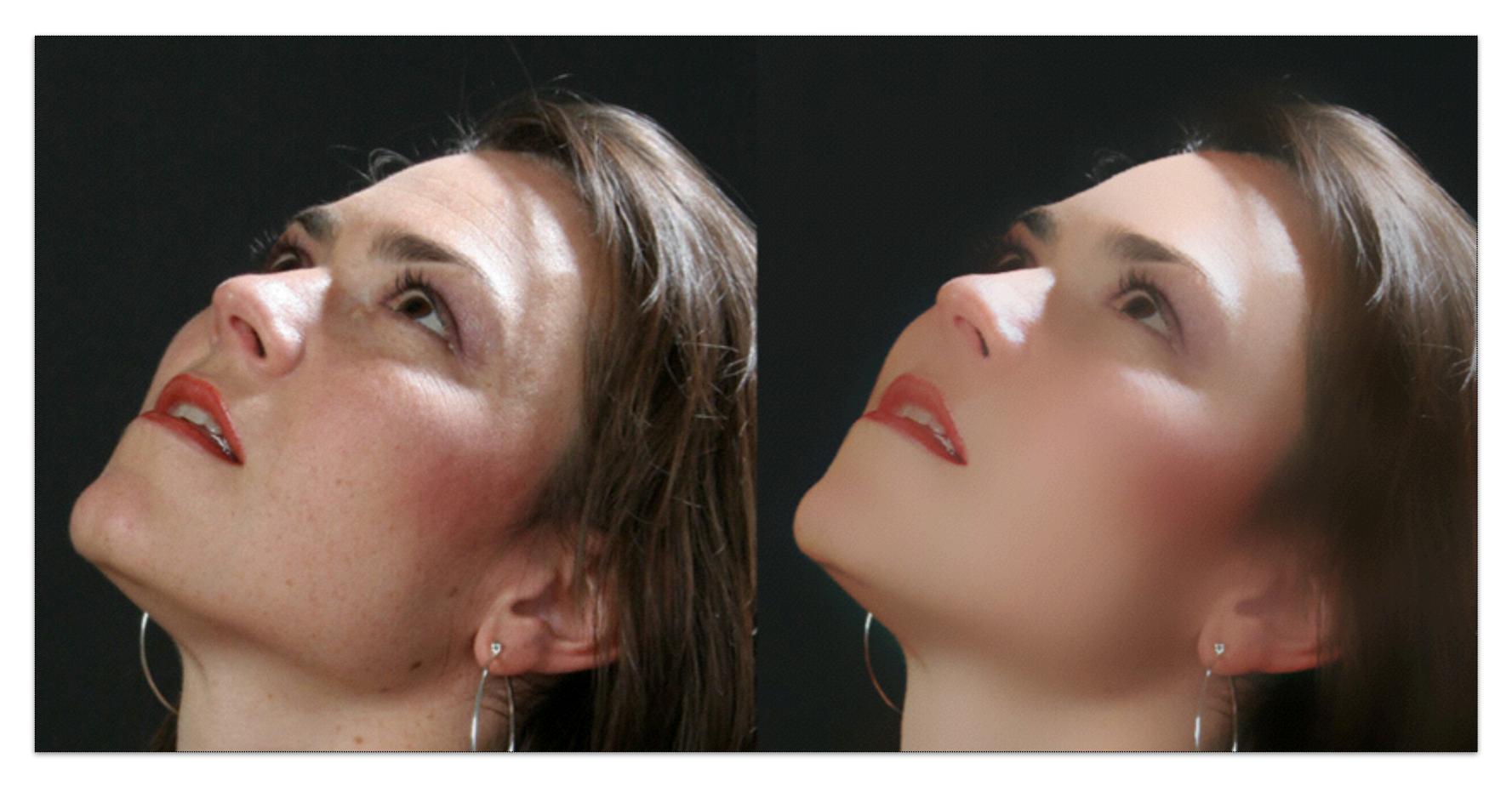


1px median filter

10px median filter

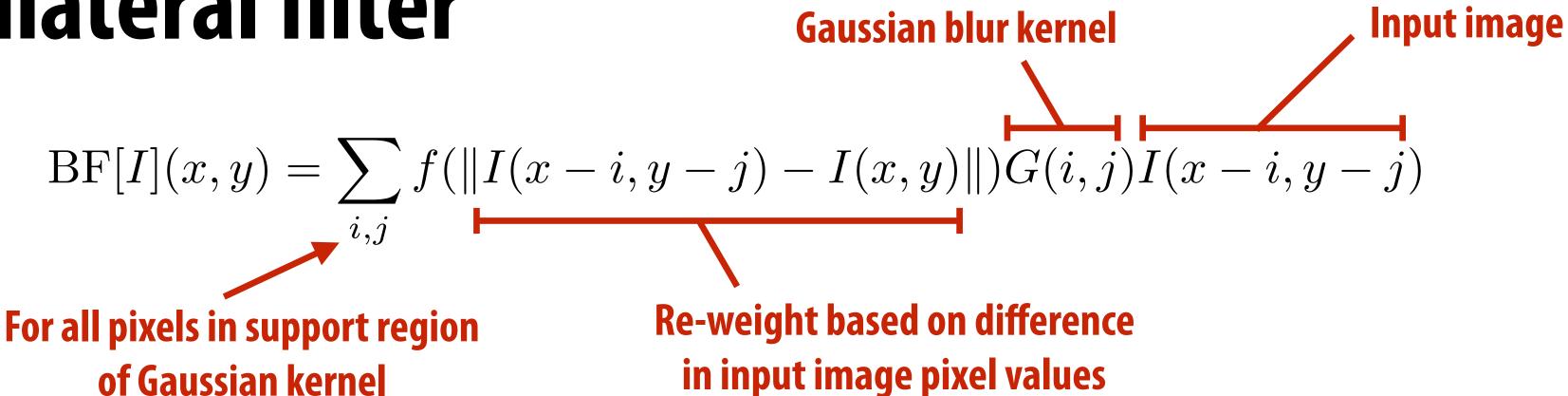
- Basic algorithm for NxN support region:
 - Sort N² elements in support region, pick median O(N²log(N²)) work per pixel
 - Can you think of an O(N²) algorithm? What about O(N)?

Bilateral filter



Example use of bilateral filter: removing noise while preserving image edges

Bilateral filter

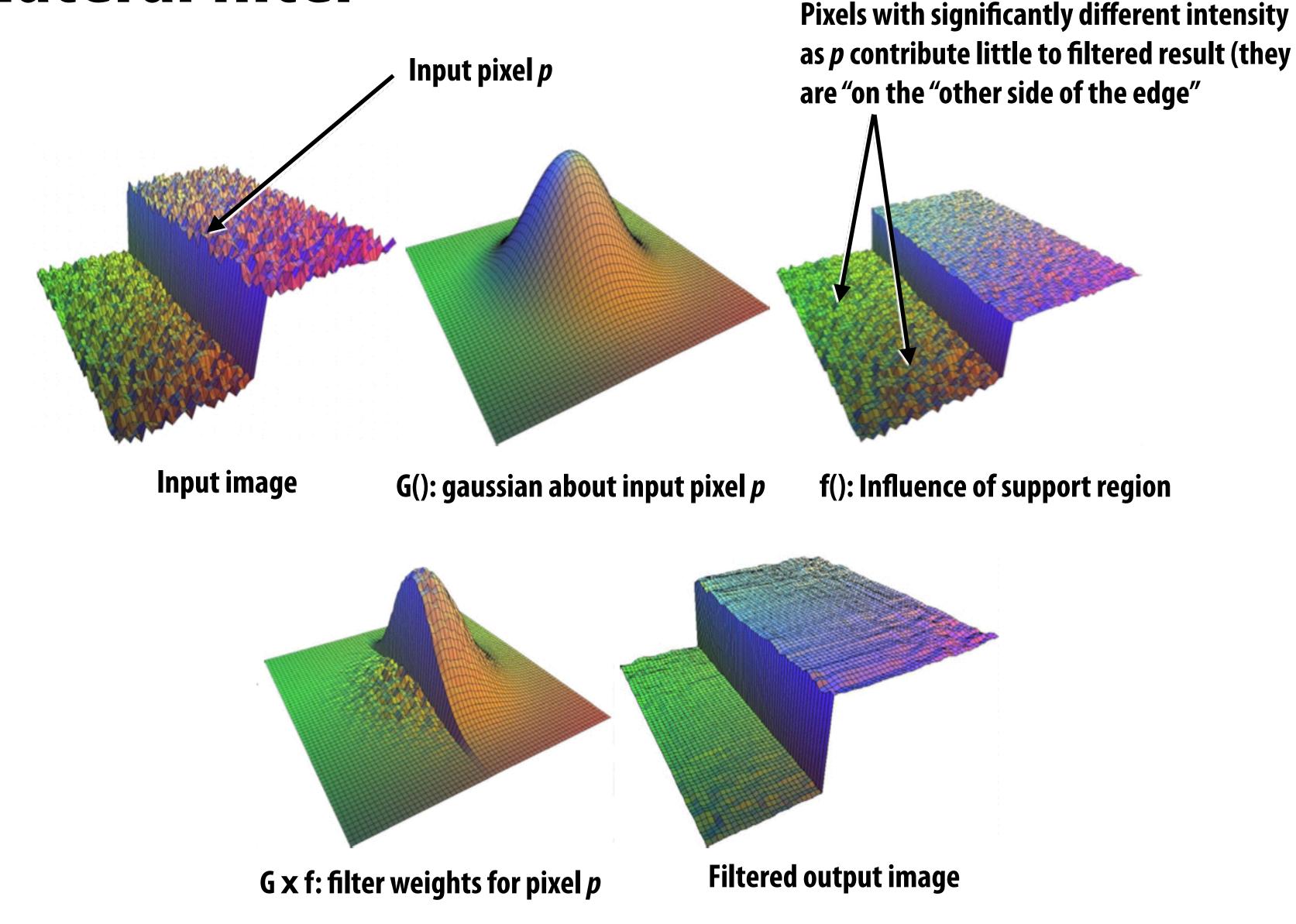


- The bilateral filter is an "edge preserving" filter: down-weight contribution of pixels on the other side of strong edges. f(x) defines what "strong edge means"
- Spatial distance weight term f(x) could itself be a gaussian
 - Or very simple: f(x) = 0 if x > threshold, 1 otherwise

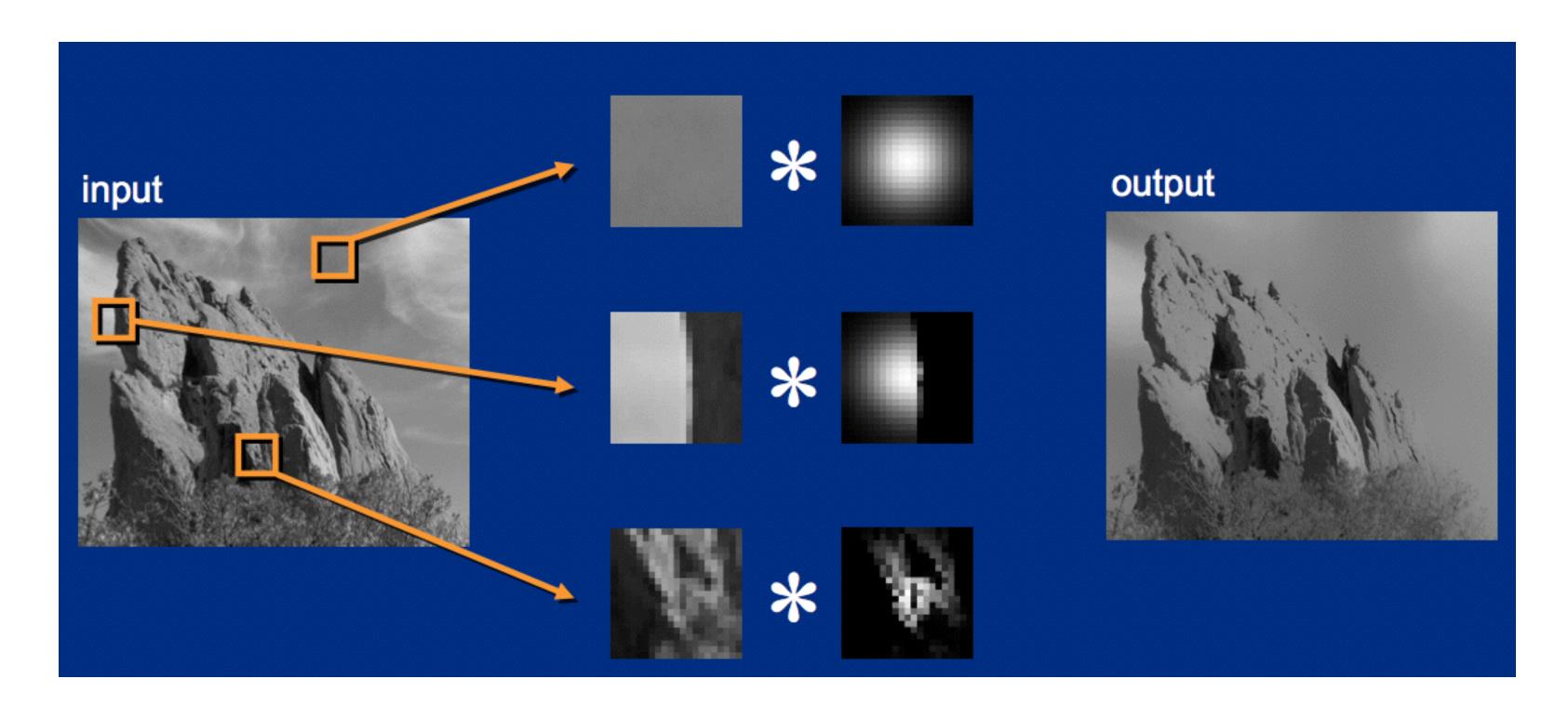
Value of output pixel (x,y) is the weighted sum of all pixels in the support region of a truncated gaussian kernel

But weight is combination of <u>spatial distance</u> and <u>input image pixel intensity</u> difference. (non-linear filter: like the median filter, the filter's weights depend on input image content)

Bilateral filter



Bilateral filter: kernel depends on image content



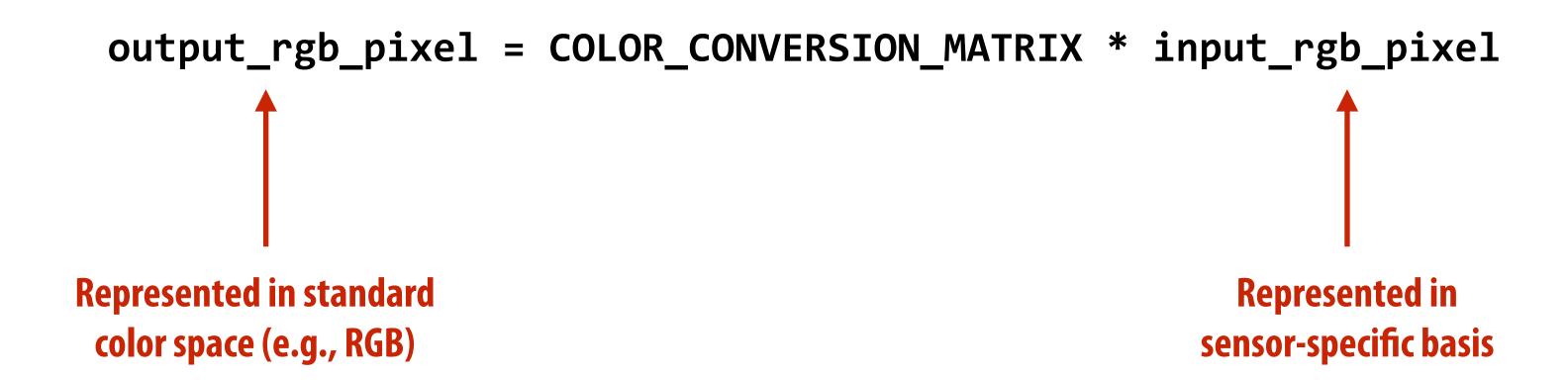
See Paris et al. [ECCV 2006] for a fast approximation to the bilateral filter

Question: describe a type of edge the bilateral filter will not respect (it will blur across these edges)

End of aside on image processing basics (back to our simple camera pipeline)

Color-space conversion

- Measurements of sensor depend on sensor's spectral response
 - Response depends on bandwidths filtered by color filter array
- Convert representation to sensor-independent basis: e.g., sRGB
 - 3 x 3 matrix multiplication



Note: modern pipelines will perform more sophisticated, and non-linear, color transformations at this point. e.g., use a big lookup table to adjust certain tones (e.g., make sky-like tones bluer)

Lightness (perceived brightness) aka luma

Dark adapted eye:
$$L^{*}\propto Y^{0.4}$$

Bright adapted eye:
$$L^{st} \propto Y^{0.5}$$

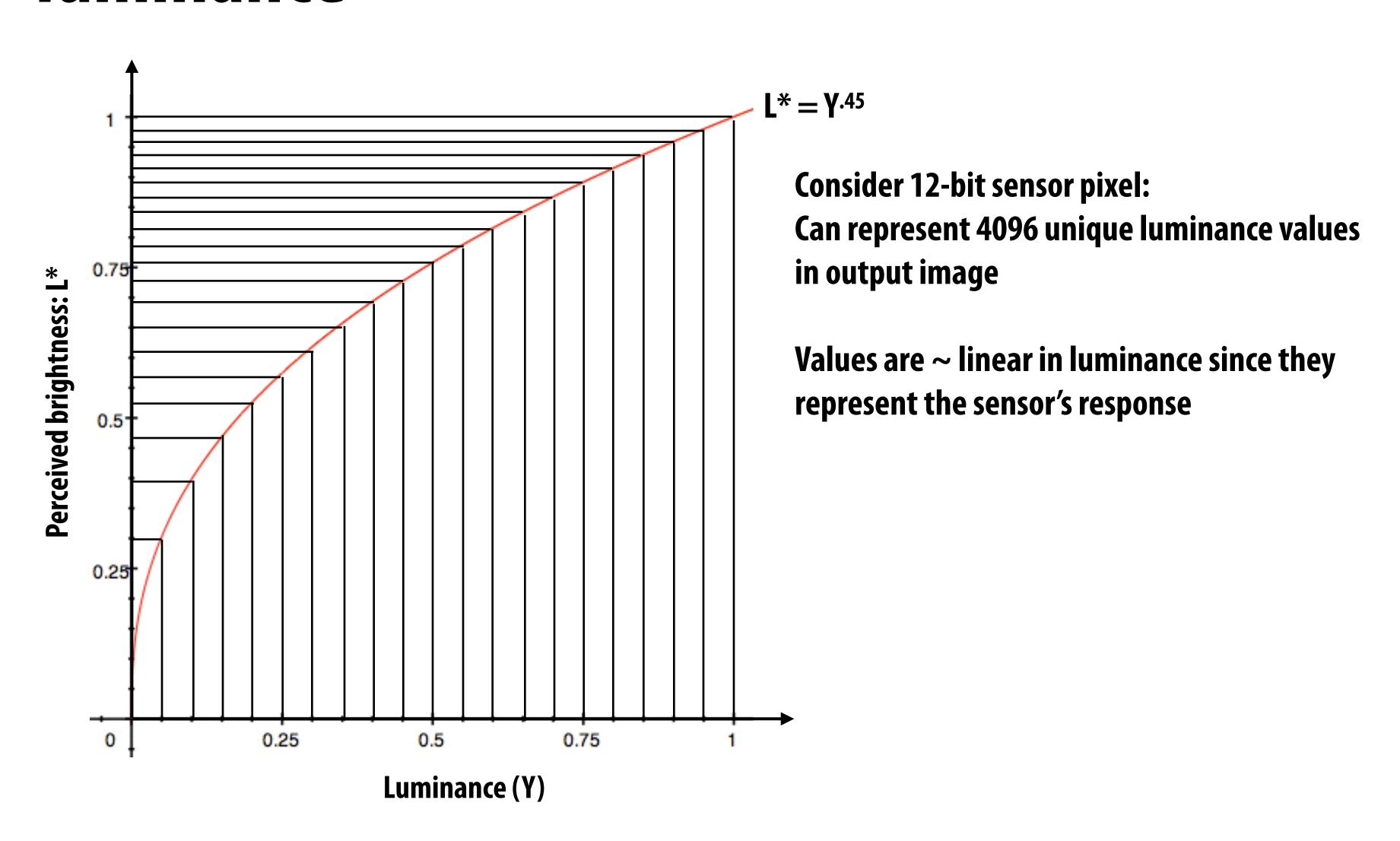
In a dark room, you turn on a light with luminance: Y_1

You turn on a second light that is identical to the first. Total output is now: $Y_2=2Y_1$

Total output appears $2^{0.4}=1.319\,$ times brighter to dark-adapted human

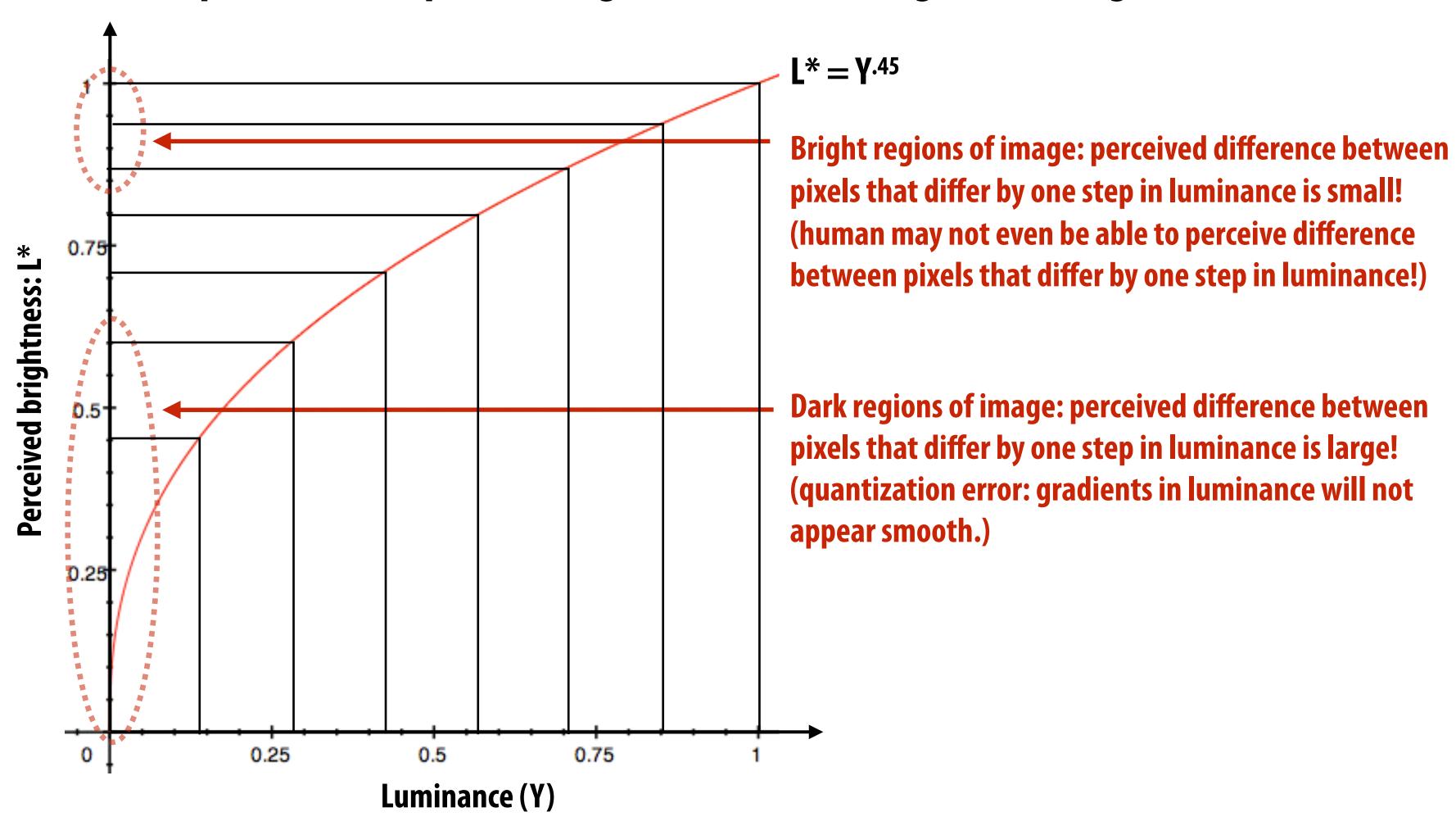
Note: Lightness (L*) is often referred to as luma (Y')

Consider an image with pixel values encode luminance



Problem: quantization error

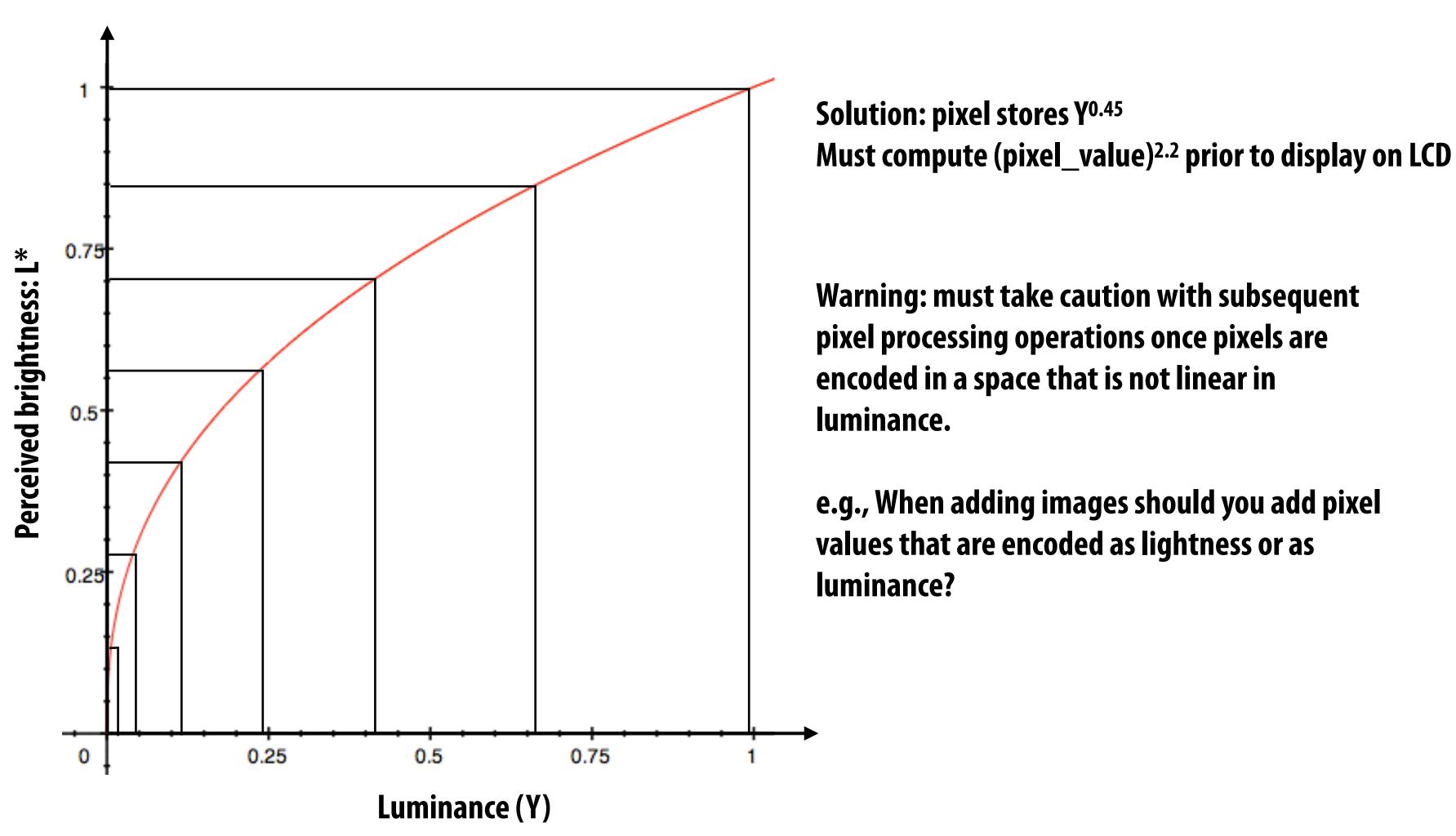
Many common image formats store 8 bits per channel (256 unique values) Insufficient precision to represent brightness in darker regions of image



Rule of thumb: human eye cannot differentiate < 1% differences in luminance

Store lightness, not luminance

Idea: distribute representable pixel values evenly with respect to <u>perceived brightness</u>, not evenly in luminance (make more efficient use of available bits)



Summary: simplified image processing pipeline

- Correct for sensor bias (using measurements of optically black pixels)
- Correct pixel defects
- Vignetting compensation
- Dark-frame subtract (optional)
- White balance
- Demosaic
- Denoise / sharpen, etc.
- Color Space Conversion
- Gamma Correction (Non-linear mapping)
- Color Space Conversion (Y'CbCr)
- Chroma Subsampling
- JPEG compression

12-bits per pixel1 intensity per pixelPixel values linear in energy

3x12-bits per pixel RGB intensity per pixel

Pixel values linear in energy

3x8-bits per pixel

Pixel values perceptually linear

Takeways

- The values of pixels in photograph you see on screen are quite different than the values output by the photosensor in a modern digital camera.
- The sequence of operations we discussed today is carried out at high frame rates by the image signal processing ASIC in most cameras today
- In the coming lectures we'll discuss more advanced image processing operations that are emerging in modern camera pipelines
 - Local contrast enhancement, advanced denoising, high-dynamic range imaging, etc.
 - Growing sophistication and diversity of techniques suggests that current ISPs will likely become more programmable in the near future

Qualcomm Snapdragon 820
Image Signal Processor (ISP):
ASIC for processing pixels off camera
(25MP at 30Hz)

