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Visual computing
2D/3D graphics

Image processing / computational photography 

Computer vision (visual scene understanding)

Table 4. Results on NYUDv2. RGBD is early-fusion of the
RGB and depth channels at the input. HHA is the depth embed-
ding of [15] as horizontal disparity, height above ground, and
the angle of the local surface normal with the inferred gravity
direction. RGB-HHA is the jointly trained late fusion model
that sums RGB and HHA predictions.

pixel
acc.

mean
acc.

mean
IU

f.w.
IU

Gupta et al. [15] 60.3 - 28.6 47.0
FCN-32s RGB 60.0 42.2 29.2 43.9

FCN-32s RGBD 61.5 42.4 30.5 45.5
FCN-32s HHA 57.1 35.2 24.2 40.4

FCN-32s RGB-HHA 64.3 44.9 32.8 48.0
FCN-16s RGB-HHA 65.4 46.1 34.0 49.5

NYUDv2 [33] is an RGB-D dataset collected using the
Microsoft Kinect. It has 1449 RGB-D images, with pixel-
wise labels that have been coalesced into a 40 class seman-
tic segmentation task by Gupta et al. [14]. We report results
on the standard split of 795 training images and 654 testing
images. (Note: all model selection is performed on PAS-
CAL 2011 val.) Table 4 gives the performance of our model
in several variations. First we train our unmodified coarse
model (FCN-32s) on RGB images. To add depth informa-
tion, we train on a model upgraded to take four-channel
RGB-D input (early fusion). This provides little benefit,
perhaps due to the difficultly of propagating meaningful
gradients all the way through the model. Following the suc-
cess of Gupta et al. [15], we try the three-dimensional HHA
encoding of depth, training nets on just this information, as
well as a “late fusion” of RGB and HHA where the predic-
tions from both nets are summed at the final layer, and the
resulting two-stream net is learned end-to-end. Finally we
upgrade this late fusion net to a 16-stride version.

SIFT Flow is a dataset of 2,688 images with pixel labels
for 33 semantic categories (“bridge”, “mountain”, “sun”),
as well as three geometric categories (“horizontal”, “verti-
cal”, and “sky”). An FCN can naturally learn a joint repre-
sentation that simultaneously predicts both types of labels.
We learn a two-headed version of FCN-16s with seman-
tic and geometric prediction layers and losses. The learned
model performs as well on both tasks as two independently
trained models, while learning and inference are essentially
as fast as each independent model by itself. The results in
Table 5, computed on the standard split into 2,488 training
and 200 test images,9 show state-of-the-art performance on
both tasks.

9Three of the SIFT Flow categories are not present in the test set. We
made predictions across all 33 categories, but only included categories ac-
tually present in the test set in our evaluation. (An earlier version of this pa-
per reported a lower mean IU, which included all categories either present
or predicted in the evaluation.)

Table 5. Results on SIFT Flow9 with class segmentation
(center) and geometric segmentation (right). Tighe [36] is
a non-parametric transfer method. Tighe 1 is an exemplar
SVM while 2 is SVM + MRF. Farabet is a multi-scale con-
vnet trained on class-balanced samples (1) or natural frequency
samples (2). Pinheiro is a multi-scale, recurrent convnet, de-
noted RCNN3 (�3). The metric for geometry is pixel accuracy.

pixel
acc.

mean
acc.

mean
IU

f.w.
IU

geom.
acc.

Liu et al. [25] 76.7 - - - -
Tighe et al. [36] - - - - 90.8

Tighe et al. [37] 1 75.6 41.1 - - -
Tighe et al. [37] 2 78.6 39.2 - - -
Farabet et al. [9] 1 72.3 50.8 - - -
Farabet et al. [9] 2 78.5 29.6 - - -
Pinheiro et al. [31] 77.7 29.8 - - -

FCN-16s 85.2 51.7 39.5 76.1 94.3

FCN-8s SDS [17] Ground Truth Image

Figure 6. Fully convolutional segmentation nets produce state-
of-the-art performance on PASCAL. The left column shows the
output of our highest performing net, FCN-8s. The second shows
the segmentations produced by the previous state-of-the-art system
by Hariharan et al. [17]. Notice the fine structures recovered (first
row), ability to separate closely interacting objects (second row),
and robustness to occluders (third row). The fourth row shows a
failure case: the net sees lifejackets in a boat as people.

6. Conclusion

Fully convolutional networks are a rich class of mod-
els, of which modern classification convnets are a spe-
cial case. Recognizing this, extending these classification
nets to segmentation, and improving the architecture with
multi-resolution layer combinations dramatically improves
the state-of-the-art, while simultaneously simplifying and
speeding up learning and inference.
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Visual Computing Systems — Some History



Ivan Sutherland’s Sketchpad on MIT TX-2 (1962)



The frame buffer
Shoup’s SuperPaint (PARC 1972-73)

16 2K shift registers (640 x 486 x 8 bits)



The frame buffer
Shoup’s SuperPaint (PARC 1972-73)

16 2K shift registers (640 x 486 x 8 bits)



Xerox Alto (1973)

TI 74181 ALUBravo (WYSIWYG)



Goal: render everything you’ve ever seen

“Road to Pt. Reyes” 
LucasFilm (1983)



“We take an average of three hours to draw a single frame on the fastest computer money can buy.” 
  - Steve Jobs

Pixar’s Toy Story (1995)



UNC Pixel Planes (1981), computation-enhanced frame buffer



Figure 2: Photograph of the Geometry Engine. 

Ed Clark’s Geometry Engine 
(1982) 

ASIC for geometric transforms 
used in real-time graphics.



SGI RealityEngine GE8 board (1993)

4.4 Triangle Bus
All graphics architectures that implement parallel primitive pro-
cessing and parallel fragment/pixel processingmust also implement
a crossbar somewhere between the geometry processors and the
framebuffer[5]. While many of the issues concerning the placement
of this crossbar are beyond the scope of this paper, we will men-
tion some of the considerations that resulted in our Triangle Bus
architecture. The RealityEngine Triangle Bus is a crossbar between
the Geometry Engines and the Fragment Generators. Described
in RealityEngine terms, architectures such as the Evans & Suther-
land Freedom SeriesTM implement Geometry Engines and Fragment
Generators in pairs, then switch the resulting fragments to the ap-
propriate Image Engines using a fragment crossbar network. Such
architectures have an advantage in fragment generation efficiency,
due both to the improved locality of the fragments and to only one
Fragment Generator being initialized per primitive. They suffer
in comparison, however, for several reasons. First, transformation
and fragment generation rates are linked, eliminating the possibil-
ity of tuning a machine for unbalanced rendering requirements by
adding transformation or rasterization processors. Second, ultimate
fill rate is limited by the fragment bandwidth, rather than the prim-
itive bandwidth. For all but the smallest triangles the quantity of
data generated by rasterization is much greater than that required
for geometric specification, so this is a significant bottleneck. (See
Appendix 2.) Finally, if primitives must be rendered in the order
that they are specified, load balancing is almost impossible, because
the number of fragments generated by a primitive varies by many
orders of magnitude, and cannot be predicted prior to processor
assignment. Both OpenGL and the core X renderer require such
ordered rendering.
The PixelFlow[6] architecture also pairs Geometry Engines and

FragmentGenerators,but the equivalent of ImageEngines andmem-
ory for a pixel tile are also bundled with each Geome-
try/Fragment pair. The crossbar in this architecture is the composit-
ing tree that funnels the contents of rasterized tiles to a final display
buffer. Because the framebuffer associated with each processor is
smaller than the final display buffer, the final image is assembled as
a sequenceof logical tiles. Efficient operation is achieved
only when each logical tile is rasterized once in its entirety, rather
than being revisited when additional primitives are transformed. To
insure that all primitives that correspond to a logical tile are known,
all primitives must be transformed and sorted before rasterization
can begin. This substantially increases the system’s latency, and
requires that the rendering software support the notion of frame de-
marcation. Neither the core X renderer nor OpenGL support this
notion.

4.5 12-bit Color
Color component resolution was increased from the usual 8 bits to
12 bits for two reasons. First, the RealityEngine framebuffer stores
color components in linear, rather than gamma-corrected, format.
When 8-bit linear intensities are gamma corrected,single bit changes
at low intensities are discernible, resulting in visible banding. The
combination of 12-to-10 bit dithering and 10-bit gamma lookup ta-
bles used at display time eliminates visible banding. Second, it is
intended that images be computed, rather than just stored, in the
RealityEngine framebuffer. Volume rendering using 3D textures,
for example, requires back-to-front composition of multiple slices
through the data set. If the framebuffer resolution is just sufficient to
displayan acceptable image, repeatedcompositionswill degrade the

Figure 6. A scene from a driving simulation running full-screen at
30 Hz.

Figure 7. A 12x magnified subregion of the scene in figure 6. The
sky texture is properly sampled and the silhouettes of the ground
and buildings against the sky are antialiased.

resolution visibly. The 12-bit components allow substantial frame-
buffer composition to take place before artifacts become visible.

Conclusion

The RealityEngine system was designed as a high-end workstation
graphics accelerator with special abilities in image generation and
image processing. This paper has described its architecture and
capabilities in the realm of image generation: 20 to 60 Hz anima-
tions of full-screen, fully-textured, antialiased scenes. (Figures 6
and 7.) The image processing capabilities of the architecture have
not been described at all; they include convolution, color space
conversion, table lookup, histogramming, and a variety of warping
and mapping operations using the texture mapping hardware. Fu-
ture developments will investigate additional advanced rendering
features, while continually reducing the cost of high-performance,
high-quality graphics.
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Unreal Engine Kite Demo (Epic Games 2015)

Real-time (30 fps) on a NVIDIA Titan X



NVIDIA Titan X GPU 
(~ 7 TFLOPs fp32)

~ ASCI Red (top US supercomputer circa 2000)



Modern GPU: heterogeneous multi-core
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Multi-threaded, SIMD cores 
Custom circuits for key graphics arithmetic 
Custom circuits for HW-assisted graphics-specific DRAM compression 
HW logic for scheduling work onto these resources



Domain-specific languages for heterogeneous computing

Vertex Processing

Vertex Generation

3D vertex stream

Projected 
vertex stream

Primitive Generation

Primitive stream

Fragment Generation 
(“Rasterization”)

Fragment stream

Fragment Processing

Fragment stream

Pixel Operations
Output 

image buffer 
(pixels)

Input vertex buffer

OpenGL Graphics Pipeline (circa 2007)



Domain-specific languages for heterogeneous computing

Vertex Processing

Vertex Generation

3D vertex stream

Projected 
vertex stream

Primitive Generation

Primitive stream

Fragment Generation 
(“Rasterization”)

Fragment stream

Fragment Processing

Fragment stream

Pixel Operations
Output 

image buffer 
(pixels)

Input vertex buffer

OpenGL Graphics Pipeline (circa 2007)

uniform	sampler2D	myTexture; 

uniform	float3	lightDir;	

varying	vec3	norm;	

varying	vec2	uv; 

void	myFragmentShader() 

{ 

		vec3	kd	=	texture2D(myTexture,	uv); 

		kd	*=	clamp(dot(lightDir,	norm),	0.0,	1.0); 

		return	vec4(kd,	1.0);			 

}	

read-only 
global variables

“per-element” inputs

per-element output: 
RGBA surface color at pixel

“fragment shader” 
(a.k.a kernel function mapped onto 
input fragment stream)



Generalization beyond graphics: 
commodity parallel computing

NVIDIA CUDA (2007)
Brook for GPUs (Buck 2004)



Goals of visual computing (until recently)

Modeling the real-world in increasingly rich detail: so we 
can simulate it (“render everything you’ve ever seen”) 

Depict and organize information to augment human 
thought: enable humans to effectively use computing to 
create/analyze/interpret/communicate



Key characteristics of visual computing

Requires exceptional levels of efficiency 
- Applications turn more ops/watt into new value 
- Pack chips full of ALUs (parallel, heterogeneity/specialization are fundamental) 
- Applications utilize hardware pipelines very well 

Embrace domain-specific programming frameworks 
- Achieve high efficiency/productivity 
- Today: OpenGL, Halide, game engine frameworks, deep learning frameworks 

Aspects of computation are fundamentally approximate 
- Manifests as willingness to change algorithms (not approximate HW)



Visual computing — what’s next?



Goals of visual computing (present — future)

To capture everything that can be seen  

To enable humans to communicate more effectively 

To record and analyze the world’s visual information so 
that computers can understand and reason about it



The immediate future: capturing rich visual 
information to enhance communication



Ingesting/serving 
the world’s photos

Ingesting/streaming 
world’s video

2B photo uploads and shares 
per day across Facebook sites 
(incl. Instagram+WhatsApp)  

[FB2015] 

Youtube 2015: 300 hours 
uploaded per minute [Youtube] 

Cisco VNI projection: 
80-90% of 2019 internet 

traffic will be video. 
(64% in 2014) 

Capturing pixels to communicate



Richer content: beyond a single image
■ Example: Apple’s “Live Photos” 
■ Each photo is not only a single frame, but a few seconds of video before and after the 

shutter is clicked 



Facebook Live



Acquiring richer content: light fields

Stanford camera array 
Wilburn [2005]



Richer content: light fields

Light L16

Lytro Illum



What Does a 2D Photograph Record?

x

ux

u

Light field camera: capturing a light field

Sensor

Imagine Recording the Entire 4D Light Field

x

u
x

u

Camera 
Aperture

Object being 
photographed

2D traditional camera: 
measures how much light hits a 

point on sensor 

“4D” light field camera: 
measures how much light hits point 
on sensor from a particular direction

[Slide courtesy Ren Ng]

Object being 
photographed



[Slide courtesy Ren Ng]



[Slide courtesy Ren Ng]



[Slide courtesy Ren Ng]



[Slide courtesy Ren Ng]



[Slide courtesy Ren Ng]



[Slide courtesy Ren Ng]



Sensor industry has large untapped resolution

Full-Frame Sensor 
36 x 24 mm 
Up to 36 MP 

4.9 micron pixel

1/3” Sensor 
4.8 x 3.6 mm 
Up to 13 MP 

1.12 micron pixel
[Slide courtesy Ren Ng]



Full-Frame Sensor 
36 x 24 mm 
Up to 36 MP 

4.9 micron pixel

Full-Frame Sensor 
36 x 24 mm 

688 MP 
1.12 micron pixel

Sensor industry has large untapped resolution

[Slide courtesy Ren Ng]



Lytro Cinema 755 Mpixel camera



VR output



Example: Google’s JumpVR video 
Input stream: 16 4K GoPro cameras

Register + 3D align video stream (on edge device) 
Broadcast encoded video stream across 
the country to millions of viewers



VR creates high resolution requirements

iPhone 6: 4.7 in “retina” display: 
1.3 MPixel 

326 ppi → 57 ppd

~5o

180o

Future “retina” VR display: 
57 ppd covering 180o 

 = 10K x 10K display per eye 
=  200 MPixel

RAW data rate @ 120Hz ≈ 72 GB/sec



VR: Light field display

Near-Eye Light Field Displays
Douglas Lanman David Luebke

NVIDIA Research
Near-Eye Light Field DisplayBare Microdisplay
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Head-Mounted Near-Eye Light Field Display Prototype

Figure 1: Enabling thin, lightweight near-eye displays using light field displays. (Left) Our binocular near-eye display prototype is shown,
comprising a pair of OLED panels covered with microlens arrays. This design enables a thin head-mounted display, since the black box
containing driver electronics could be waist-mounted with longer OLED ribbon cables. (Right) Due to the limited range of human accom-
modation, a severely defocused image is perceived when a bare microdisplay is held close to the eye. Conventional near-eye displays require
bulky magnifying optics to facilitate accommodation. We propose near-eye light field displays as thin, lightweight alternatives, achieving
comfortable viewing by synthesizing a light field for a virtual scene located within the accommodation range (here implemented by viewing a
microdisplay, depicting interlaced perspectives, through a microlens array). Lorikeet source image courtesy of Robyn Jay.

Abstract

We propose near-eye light field displays that enable thin,
lightweight head-mounted displays (HMDs) capable of presenting
nearly correct convergence, accommodation, binocular disparity,
and retinal defocus depth cues. Sharp images are depicted by out-
of-focus elements by synthesizing light fields corresponding to vir-
tual objects within a viewer’s natural accommodation range. We
formally assess the capabilities of microlens arrays to achieve prac-
tical near-eye light field displays. Building on concepts shared with
existing integral imaging displays and light field cameras, we opti-
mize performance in the context of near-eye viewing. We establish
fundamental trade-offs between the quantitative parameters of res-
olution, field of view, and depth of field, as well as the ergonomic
parameters of form factor and ranges of allowed eye movement. As
with light field cameras, our design supports continuous accommo-
dation of the eye throughout a finite depth of field; as a result, binoc-
ular configurations provide a means to address the accommodation-
convergence conflict occurring with existing stereoscopic displays.
We construct a complete prototype display system, comprising:
a custom-fabricated HMD using modified off-the-shelf parts and
real-time, GPU-accelerated light field renderers (including a gen-
eral ray tracing method and a “backward compatible” rasterization
method supporting existing stereoscopic content). Through simula-
tions and experiments, we motivate near-eye light field displays as
thin, lightweight alternatives to conventional near-eye displays.

Links: DL PDF WEB VIDEO

CR Categories: B.4.2 [Input/Output and Data Communications]:
Input/Output Devices—Image Display I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Virtual Reality

Keywords: light field displays, head-mounted displays, microlens
arrays, accommodation-convergence conflict, virtual reality

1 Introduction

Near-eye displays project images directly into a viewer’s eye, en-
compassing both head-mounted displays (HMDs) and electronic
viewfinders. Such displays confront a fundamental problem: the
unaided human eye cannot accommodate (focus) on objects placed
in close proximity (see Figure 1). As reviewed by Rolland and
Hua [2005], a multitude of optical solutions have been proposed
since Sutherland [1968] introduced the first graphics-driven HMD.
The majority of such designs emulate the behavior of a simple mag-
nifier: synthesizing an enlarged image of a miniaturized display,
appearing to be located within the viewer’s natural accommodation
range. To be of practical utility, a near-eye display should provide
high-resolution, wide-field-of-view imagery with compact, com-
fortable magnifying optics. However, current magnifier designs
typically require multiple optical elements to minimize aberrations,
leading to bulky eyewear with limited fields of view that have, to
date, prohibited widespread consumer adoption.

Conventional displays are intended to emit light isotropically.
In contrast, a light field display supports the control of tightly-
clustered bundles of light rays, modulating radiance as a function
of position and direction across its surface. We consider a simple
near-eye architecture: placing a light field display directly in front
of a user’s eye (or a pair of such displays for binocular viewing).
As shown in Figure 1, sharp imagery is depicted by synthesizing
a light field for a virtual display (or a general 3D scene) within
the viewer’s unaided accommodation range. As characterized in
this paper, near-eye light field displays provide a means to achieve
thin, lightweight HMDs with wide fields of view and to address
accommodation-convergence conflict in binocular configurations;
however, these benefits come at a cost: spatial resolution is signif-
icantly reduced with microlens-based designs, although with com-

Simple idea: 
Recreate the same light field that was 
present in the scene when it was captured

146 x 78 spatial resolution 
Using 1MP microdisplay

Near-Eye Light Field Displays
Douglas Lanman David Luebke

NVIDIA Research
Near-Eye Light Field DisplayBare Microdisplay
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Figure 1: Enabling thin, lightweight near-eye displays using light field displays. (Left) Our binocular near-eye display prototype is shown,
comprising a pair of OLED panels covered with microlens arrays. This design enables a thin head-mounted display, since the black box
containing driver electronics could be waist-mounted with longer OLED ribbon cables. (Right) Due to the limited range of human accom-
modation, a severely defocused image is perceived when a bare microdisplay is held close to the eye. Conventional near-eye displays require
bulky magnifying optics to facilitate accommodation. We propose near-eye light field displays as thin, lightweight alternatives, achieving
comfortable viewing by synthesizing a light field for a virtual scene located within the accommodation range (here implemented by viewing a
microdisplay, depicting interlaced perspectives, through a microlens array). Lorikeet source image courtesy of Robyn Jay.
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The majority of such designs emulate the behavior of a simple mag-
nifier: synthesizing an enlarged image of a miniaturized display,
appearing to be located within the viewer’s natural accommodation
range. To be of practical utility, a near-eye display should provide
high-resolution, wide-field-of-view imagery with compact, com-
fortable magnifying optics. However, current magnifier designs
typically require multiple optical elements to minimize aberrations,
leading to bulky eyewear with limited fields of view that have, to
date, prohibited widespread consumer adoption.

Conventional displays are intended to emit light isotropically.
In contrast, a light field display supports the control of tightly-
clustered bundles of light rays, modulating radiance as a function
of position and direction across its surface. We consider a simple
near-eye architecture: placing a light field display directly in front
of a user’s eye (or a pair of such displays for binocular viewing).
As shown in Figure 1, sharp imagery is depicted by synthesizing
a light field for a virtual display (or a general 3D scene) within
the viewer’s unaided accommodation range. As characterized in
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accommodation-convergence conflict in binocular configurations;
however, these benefits come at a cost: spatial resolution is signif-
icantly reduced with microlens-based designs, although with com-

Near-Eye Light Field Displays
Douglas Lanman David Luebke

NVIDIA Research
Near-Eye Light Field DisplayBare Microdisplay

D
is

p
la

y
e

d
 I
m

a
g

e

“
P

e
r
c

e
iv

e
d

”
 I
m

a
g

e

(C
lo

s
e

-U
p

 P
h

o
to

)

Head-Mounted Near-Eye Light Field Display Prototype
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comprising a pair of OLED panels covered with microlens arrays. This design enables a thin head-mounted display, since the black box
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bulky magnifying optics to facilitate accommodation. We propose near-eye light field displays as thin, lightweight alternatives, achieving
comfortable viewing by synthesizing a light field for a virtual scene located within the accommodation range (here implemented by viewing a
microdisplay, depicting interlaced perspectives, through a microlens array). Lorikeet source image courtesy of Robyn Jay.
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with light field cameras, our design supports continuous accommo-
dation of the eye throughout a finite depth of field; as a result, binoc-
ular configurations provide a means to address the accommodation-
convergence conflict occurring with existing stereoscopic displays.
We construct a complete prototype display system, comprising:
a custom-fabricated HMD using modified off-the-shelf parts and
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1 Introduction

Near-eye displays project images directly into a viewer’s eye, en-
compassing both head-mounted displays (HMDs) and electronic
viewfinders. Such displays confront a fundamental problem: the
unaided human eye cannot accommodate (focus) on objects placed
in close proximity (see Figure 1). As reviewed by Rolland and
Hua [2005], a multitude of optical solutions have been proposed
since Sutherland [1968] introduced the first graphics-driven HMD.
The majority of such designs emulate the behavior of a simple mag-
nifier: synthesizing an enlarged image of a miniaturized display,
appearing to be located within the viewer’s natural accommodation
range. To be of practical utility, a near-eye display should provide
high-resolution, wide-field-of-view imagery with compact, com-
fortable magnifying optics. However, current magnifier designs
typically require multiple optical elements to minimize aberrations,
leading to bulky eyewear with limited fields of view that have, to
date, prohibited widespread consumer adoption.

Conventional displays are intended to emit light isotropically.
In contrast, a light field display supports the control of tightly-
clustered bundles of light rays, modulating radiance as a function
of position and direction across its surface. We consider a simple
near-eye architecture: placing a light field display directly in front
of a user’s eye (or a pair of such displays for binocular viewing).
As shown in Figure 1, sharp imagery is depicted by synthesizing
a light field for a virtual display (or a general 3D scene) within
the viewer’s unaided accommodation range. As characterized in
this paper, near-eye light field displays provide a means to achieve
thin, lightweight HMDs with wide fields of view and to address
accommodation-convergence conflict in binocular configurations;
however, these benefits come at a cost: spatial resolution is signif-
icantly reduced with microlens-based designs, although with com-

Output of display (prior to optics)

[Lanman 2013]



Enhancing communication: understanding 
images to improve acquired content

AutoEnhance: Photo “fix up” [Hayes 2007]

My bad vacation photo Part to fix

Similar photos others 
have taken

Fixed!



Summary

We are observing rapid growth in the richness of visual 
communication 

Sensing the world with higher fidelity to deliver improved 
content to humans



Future challenge: recording and analyzing the 
world’s visual information, so computers can 

understand and reason about it



Capturing everything about the visual world

To understand people 
To understand the world around vehicles/drones 
To understand cities

Mobile 
Continuous (always on) 
Exceptionally high resolution 
Capture for computers to analyze, not humans to watch



Sensing human social interactions

CMU Panoptic Studio 
480 video cameras (640 x 480 @ 25fps)
116 GPixel video sensor 
(2.9 TPixel /sec)

[Joo 2015]



Capturing social interactions

[Courtesy Yaser Sheikh, Tomas Simon, Hanbyul Joo]



Capturing social interactions

[Courtesy Yaser Sheikh, Tomas Simon, Hanbyul Joo]



Robot navigation depends on low-latency 
localization and surrounding object recognition



NVIDIA Drive PX

Tegra X1 (1 TFlop fp16 at 1GHz) 



AR requires low-latency localization and 
scene object recognition



Making “maps”: pervasive 3D construction

Outline
1. Large scale MVS for organized photos  

(Aerial photos) 
 
 
 

2. Large scale MVS for unorganized photos  
(Internet community photos)  
 
 
 

3. Large scale indoor modeling  





Smart headlight system

~1000 Hz (1 - 1.5 ms latency)

[Tamburo 2016]



Seeing clearly through precipitation
[Tamburo 2016]



Urban video command center
(Centro de Operações Preifetura do Rio de Janeiro)



Overview summary
§ Visual computing has always involved a healthy interaction 

between architecture, programming systems, and algorithms 
– Domain focus has been exceptionally useful for vertical thought 
– Willing to throw out old and re-engineer software (new hardware enables 

programs that haven’t been written yet!) 
– Architects should know the algorithms well, and influence them! 

§ Visual computing has always challenged computer systems by 
its desire to simulate/synthesize complex visual information 

§ Next 1-2 decades: interpreting the worldwide visual signal 
– Acquiring and modeling everything humans would see, to enable computers to 

interpret and analyze 
– We will continue to take every op (op/Watt) you can give us



 CMU 15-769, Fall 2016

Course Logistics
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What this course is about

VISUAL COMPUTING 
WORKLOADS 

Algorithms for 3D graphics, image 
processing, compression, etc.

MACHINE 
ORGANIZATION

High-throughput hardware designs: 
Parallel and heterogeneous

mapping/scheduling

Parallelism 
Exploiting locality 

Minimizing communication

DESIGN OF GOOD ABSTRACTIONS 
FOR VISUAL COMPUTING 

choice of programming primitives 
level of abstraction

1. The characteristics/requirements of important visual computing workloads 
2. Techniques used to achieve efficient system implementations
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In other words

It is about understanding the fundamental structure of problems 
in the visual computing domain, and then leveraging that 
understanding to… 

To design better algorithms 

To build the most efficient hardware to run these applications 

To design the right programming systems to make developing new 
applications simpler and also highly performant.
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What this course is NOT about

▪ This is not an [OpenGL, CUDA, OpenCL] programming course 
- But we will be analyzing and critiquing the design of these systems in detail 

- I expect students to pick up familiarity with relevant systems as we go

Many excellent references...



 CMU 15-769, Fall 2016

Major course themes/topics

Expressing and accelerating deep 
learning for computer vision

High-performance image processing 
Algorithms for processing images/video in a modern 
digital camera 
Image processing hardware components  
Image/video compression

Large-scale 3D reconstruction
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Major course themes/topics

The GPU-accelerated 3D graphics 
pipelines 
(high-performance rendering for real 
time applications)
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Logistics
▪ Course web site: 

- http://graphics.cs.cmu.edu/courses/15769/fall2016/ 

▪ All announcements will go out via Piazza 
- http://www.piazza.com/cmu/fall2016/15769 

▪ Kayvon’s office hours: drop in or by appointment (EDSH 225)
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Expectations of you
▪ 30% participation 

- There will be ~1-2 assigned paper readings per class 
- Everyone is expected to come to class and participate in discussions based on readings 
- You are encouraged discuss papers and or my lectures on the course discussion board. 
- If you form a weekly course reading/study group, I will buy Pizza for said group. 

▪ 15% mini-assignments (2-3 short programming assignments) 
- Assignment 1: implement and optimize a basic RAW image processing pipeline 

▪ 20% 2 take-home “exams” 
- Exam 1: covers course parts 1 and 2  
- Exam 2: covers course parts 3 and 4 

▪ 35% self-selected final project 
- I suggest you start talking to me now (can be teams of up to two)
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Review: throughput computing hardware
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Review concepts
▪ What are these design concepts, and what problem/goals do they 

address? 
- Muti-core processing 
- SIMD processing 
- Hardware multi-threading 

▪ What is the motivation for specialization via  
- Multiple types of processors (e.g., CPUs, GPUs) 
- Custom hardware units (ASIC) 

▪ What is memory bandwidth a major constraint when mapping 
applications to modern systems? 
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Let’s crack open a modern smartphone

Multi-core GPU 
(3D graphics, 

OpenCL data-parallel compute)

Display engine 
(compresses pixels for 
transfer to 4K screen)

Image Signal Processor 
(ISP): ASIC for processing pixels 

off camera (25MP at 30Hz)

Multi-core ARM CPU

Video encode/decode 
ASIC (H.265 @ 4K)

“Hexagon” 
Programmable DSP 
data-parallel multi-media 

processing

Samsung Galaxy S7 phone with 
Qualcomm Snapdragon 820 processor
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Multi-core processing
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Executing an instruction stream

x[i]

Fetch/ 
Decode

Execution 
Context

ALU 
(Execute)

ld			r0,	addr[r1] 

mul		r1,	r0,	r0 

mul		r1,	r1,	r0 

... 

... 

... 

... 

...	

... 

st			addr[r2],	r0

result[i]
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x[i]

Fetch/ 
Decode

Execution 
Context

ALU 
(Execute)

PC

My very simple processor: executes one instruction per clock

ld			r0,	addr[r1] 

mul		r1,	r0,	r0 

mul		r1,	r1,	r0 

... 

... 

... 

... 

...	

... 

st			addr[r2],	r0

result[i]

Executing an instruction stream
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x[i]

Fetch/ 
Decode

Execution 
Context

ALU 
(Execute)

PC

My very simple processor: executes one instruction per clock

ld			r0,	addr[r1] 

mul		r1,	r0,	r0 

mul		r1,	r1,	r0 

... 

... 

... 

... 

...	

... 

st			addr[r2],	r0

result[i]

Executing an instruction stream
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x[i]

Fetch/ 
Decode

Execution 
Context

ALU 
(Execute)

PC

My very simple processor: executes one instruction per clock

ld			r0,	addr[r1] 

mul		r1,	r0,	r0 

mul		r1,	r1,	r0 

... 

... 

... 

... 

...	

... 

st			addr[r2],	r0

result[i]

Executing an instruction stream
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Multi-core: process multiple instruction streams in parallel 

Sixteen cores, sixteen simultaneous instruction streams
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Core 1

Multi-core examples

Intel “Skylake” Core i7 quad-core CPU 
(2015)

NVIDIA GTX 980 GPU 
16 replicated processing cores (“SM”) 

(2014)

Core 4

Shared L3 cache

Core 2

Core 3
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More multi-core examples

Intel Xeon Phi “Knights Landing “ 76-core CPU 
(2015)

Apple A9 dual-core CPU 
(2015)

A9 image credit: Chipworks  (obtained via Anandtech) 
http://www.anandtech.com/show/9686/the-apple-iphone-6s-and-iphone-6s-plus-review/3

Core 1

Core 2
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Superscalar execution
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Superscalar execution

result	sinx(int	N,	int	terms,	float	x)	

{	

				float	value	=	x;	

				float	numer	=	x	*	x	*	x;	

				int	denom	=	6;		//	3!	

				int	sign	=	-1;	

				for	(int	j=1;	j<=terms;	j++)	

				{		

							value	+=	sign	*	numer	/	denom;	

							numer	*=	x	*	x;	

							denom	*=	(2*j+2)	*	(2*j+3);	

							sign	*=	-1;	

						}	

						return	value;	

}

Program: computes sin of input x via Taylor expansion

Execution 
Context

My single core, superscalar processor: 
executes up to two instructions per clock 

from a single instruction stream.

Fetch/ 
Decode

Exec 
1

Fetch/ 
Decode

Exec 
2

Independent operations in 
instruction stream 

(They are detected by the processor 
at run-time and may be executed in 
parallel on execution units 1 and 2)
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SIMD processing
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Add ALUs to increase compute capability

Idea #2: 
Amortize cost/complexity of managing an 
instruction stream across many ALUs

SIMD processing 
Single instruction, multiple data 

Same instruction broadcast to all ALUs 
Executed in parallel on all ALUs

Fetch/ 
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

Execution Context
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Scalar program

ld			r0,	addr[r1] 

mul		r1,	r0,	r0 

mul		r1,	r1,	r0 

... 

... 

... 

... 

...	

... 

st			addr[r2],	r0

void	sinx(int	N,	int	terms,	float*	x,	float*	result)	

{	

			for	(int	i=0;	i<N;	i++)	

			{	

				float	value	=	x[i];	

				float	numer	=	x[i]	*	x[i]	*	x[i];	

				int	denom	=	6;		//	3!	

				int	sign	=	-1;	

				for	(int	j=1;	j<=terms;	j++)	

				{		

							value	+=	sign	*	numer	/	denom;	

							numer	*=	x[i]	*	x[i];	

							denom	*=	(2*j+2)	*	(2*j+3);	

							sign	*=	-1;	

						}	

						result[i]	=	value;	

			}	

}

Original compiled program: 

Processes one array element using scalar 
instructions on scalar registers (e.g., 32-bit floats)
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Vector program (using AVX intrinsics)
#include	<immintrin.h>	

void	sinx(int	N,	int	terms,	float*	x,	float*	sinx)	

{	

			float	three_fact	=	6;		//	3!		

			for	(int	i=0;	i<N;	i+=8)	

			{	

							__m256	origx	=	_mm256_load_ps(&x[i]);	

				__m256	value	=	origx;	

				__m256	numer	=	_mm256_mul_ps(origx,	_mm256_mul_ps(origx,	origx));	

				__m256	denom	=	_mm256_broadcast_ss(&three_fact);	

				int	sign	=	-1;	

				for	(int	j=1;	j<=terms;	j++)	

				{		

							//	value	+=	sign	*	numer	/	denom	

							__m256	tmp	=	_mm256_div_ps(_mm256_mul_ps(_mm256_broadcast_ss(sign),numer),denom);	

							value	=	_mm256_add_ps(value,	tmp);	

							numer	=	_mm256_mul_ps(numer,	_mm256_mul_ps(origx,	origx));	

							denom	=	_mm256_mul_ps(denom,	_mm256_broadcast_ss((2*j+2)	*	(2*j+3)));	

							sign	*=	-1;	

						}	

						_mm256_store_ps(&sinx[i],	value);	

			}	

}

vloadps		xmm0,	addr[r1] 

vmulps			xmm1,	xmm0,	xmm0 

vmulps			xmm1,	xmm1,	xmm0 
... 
... 
... 
... 
...	

... 
vstoreps		addr[xmm2],	xmm0

Compiled program: 

Processes eight array elements 
simultaneously using vector 
instructions on 256-bit vector registers 
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16 SIMD cores: 128 elements in parallel

16 cores, 128 ALUs, 16 simultaneous instruction streams

 CMU 15-418/618, Spring 2016  CMU 15-418/618, Spring 2016

 CMU 15-418/618, Spring 2016  CMU 15-418/618, Spring 2016
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Data-parallel expression
void	sinx(int	N,	int	terms,	float*	x,	float*	result)	

{	

			//	declare	independent	loop	iterations	

			forall	(int	i	from	0	to	N-1)	

			{	

				float	value	=	x[i];	

				float	numer	=	x[i]	*	x[i]	*	x[i];	

				int	denom	=	6;		//	3!	

				int	sign	=	-1;	

				for	(int	j=1;	j<=terms;	j++)	

				{		

							value	+=	sign	*	numer	/	denom	

							numer	*=	x[i]	*	x[i];	

							denom	*=	(2*j+2)	*	(2*j+3);	

							sign	*=	-1;	

						}	

						result[i]	=	value;	

			}	

}

Compiler understands loop iterations 
are independent, and that same loop 
body will be executed on a large 
number of data elements. 

Abstraction facilitates automatic 
generation of both multi-core parallel 
code, and vector instructions to make 
use of SIMD processing capabilities 
within a core.

(in Kayvon’s fictitious data-parallel language)
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What about conditional execution?

ALU 1 ALU 2 . . . ALU 8. . . 
Time (clocks) 2 . . . 1 . . . 8

if	(x	>	0)	{

}	else	{

}

<unconditional	code>

<resume	unconditional	code>

float	tmp	=	exp(x,5.f);	

tmp	*=	kMyConst1;	

x	=	tmp	+	kMyConst2;		

float	tmp	=	kMyConst1;		

x	=	2.f	*	tmp;

float	x	=	A[i];

result[i]	=	x;

(assume logic below is to be executed for each 
element in input array ‘A’, producing output into 
the array ‘result’)
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What about conditional execution?

ALU 1 ALU 2 . . . ALU 8. . . 
Time (clocks) 2 . . . 1 . . . 8

if	(x	>	0)	{

}	else	{

}

<unconditional	code>

<resume	unconditional	code>

float	tmp	=	exp(x,5.f);	

tmp	*=	kMyConst1;	

x	=	tmp	+	kMyConst2;		

float	tmp	=	kMyConst1;		

x	=	2.f	*	tmp;

T T T F FF F F
float	x	=	A[i];

result[i]	=	x;

(assume logic below is to be executed for each 
element in input array ‘A’, producing output into 
the array ‘result’)
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Mask (discard) output of ALU 

ALU 1 ALU 2 . . . ALU 8. . . 
Time (clocks) 2 . . . 1 . . . 8

if	(x	>	0)	{

}	else	{

}

<unconditional	code>

<resume	unconditional	code>

T T T F FF F F

Not all ALUs do useful work!

Worst case: 1/8 peak performance

float	tmp	=	exp(x,5.f);	

tmp	*=	kMyConst1;	

x	=	tmp	+	kMyConst2;		

float	tmp	=	kMyConst1;		

x	=	2.f	*	tmp;

float	x	=	A[i];

result[i]	=	x;

(assume logic below is to be executed for each 
element in input array ‘A’, producing output into 
the array ‘result’)



 CMU 15-769, Fall 2016

After branch: continue at full performance 

ALU 1 ALU 2 . . . ALU 8. . . 
Time (clocks) 2 . . . 1 . . . 8

if	(x	>	0)	{

}	else	{

}

<unconditional	code>

<resume	unconditional	code>

T T T F FF F F
float	tmp	=	exp(x,5.f);	

tmp	*=	kMyConst1;	

x	=	tmp	+	kMyConst2;		

float	tmp	=	kMyConst1;		

x	=	2.f	*	tmp;

float	x	=	A[i];

result[i]	=	x;

(assume logic below is to be executed for each 
element in input array ‘A’, producing output into 
the array ‘result’)
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Example: Intel Core i7
4 cores 
8 SIMD ALUs per core 
(AVX instructions)

 CMU 15-418/618, Spring 2016

Fetch/ 
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

Execution Context

 CMU 15-418/618, Spring 2016

Fetch/ 
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

Execution Context

 CMU 15-418/618, Spring 2016

Fetch/ 
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

Execution Context

 CMU 15-418/618, Spring 2016

Fetch/ 
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

Execution Context
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Hardware multi-threading
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Terminology
▪ Memory latency 

- The amount of time for a memory request (e.g., load, store) from a 
processor to be serviced by the memory system 

- Example: 100 cycles, 100 nsec 

▪ Memory bandwidth 
- The rate at which the memory system can provide data to a processor 
- Example: 20 GB/s
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Stalls
▪ A processor “stalls”  when it cannot run the next instruction in 

an instruction stream because of a dependency on a previous 
instruction. 

▪ Accessing memory is a major source of stalls 
ld	r0	mem[r2]	

ld	r1	mem[r3]	

add	r0,	r0,	r1	

▪ Memory access times ~ 100’s of cycles 
- Memory “access time” is a measure of latency

Dependency: cannot execute ‘add’ instruction until data at mem[r2] and 
mem[r3] have been loaded from memory 
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25 GB/sec

L3 cache 
(8 MB)

L1 cache 
(32 KB)

L2 cache 
(256 KB)

L1 cache 
(32 KB)

L2 cache 
(256 KB)

. . .

Memory 
DDR3 DRAM 

(Gigabytes)

Core 1

Core N

Review: why do modern processors have caches?
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Caches reduce length of stalls (reduce latency)
Processors run efficiently when data is resident in caches 

Caches reduce memory access latency *

25 GB/sec

L3 cache 
(8 MB)

L1 cache 
(32 KB)

L2 cache 
(256 KB)

L1 cache 
(32 KB)

L2 cache 
(256 KB)

. . .

Memory 
DDR3 DRAM 

(Gigabytes)

Core 1

Core N

* Caches also provide high bandwidth data transfer to CPU
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Prefetching reduces stalls (hides latency)
▪ All modern CPUs have logic for prefetching data into caches 

- Dynamically analyze program’s access patterns, predict what it will access soon 

▪ Reduces stalls since data is resident in cache when accessed 

predict	value	of	r2,	initiate	load	

predict	value	of	r3,	initiate	load	

...	

...		

...	

...	

...	

...	

ld	r0	mem[r2]	

ld	r1	mem[r3]	

add	r0,	r0,	r1

data arrives in cache

data arrives in cache

Note: Prefetching can also reduce 
performance if the guess is wrong 
(hogs bandwidth, pollutes caches) 

(more detail later in course)

These loads are cache hits
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Multi-threading reduces stalls
▪ Idea: interleave processing of multiple threads on the same 

core to hide stalls 

▪ Like prefetching, multi-threading is a latency hiding, not a 
latency reducing technique
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Hiding stalls with multi-threading
Time

Thread 1 
Elements 0 … 7

 

Fetch/ 
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

1 Core (1 thread)

Exec Ctx
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Hiding stalls with multi-threading
Time

 

Thread 2 
Elements 8 … 15

 

Thread 3 
Elements 16 … 23

 

Thread 4 
Elements 24 … 31

 

1 2 3 4

Thread 1 
Elements 0 … 7

Fetch/ 
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

1 2

3 4

1 Core (4 hardware threads)
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Hiding stalls with multi-threading
Time

    

1 2 3 4

Stall

Runnable

Fetch/ 
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

1 2

3 4

1 Core (4 hardware threads)

Thread 2 
Elements 8 … 15

Thread 3 
Elements 16 … 23

Thread 4 
Elements 24 … 31

Thread 1 
Elements 0 … 7
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Hiding stalls with multi-threading
Time

    

1 2 3 4

Stall

Runnable

Stall

Runnable

Done!

Stall

Runnable

Stall

Runnable
Done!

Fetch/ 
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

1 2

3 4

1 Core (4 hardware threads)

Thread 2 
Elements 8 … 15

Thread 3 
Elements 16 … 23

Thread 4 
Elements 24 … 31

Thread 1 
Elements 0 … 7
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Throughput computing trade-off
Time

    

Stall

Runnable

Done!

Key idea of throughput-oriented systems: 
Potentially increase time to complete work by any 
one any one thread, in order to increase overall 
system throughput when running multiple threads.

During this time, this thread is runnable, but it is not being executed 
by the processor. (The core is running some other thread.)

Thread 2 
Elements 8 … 15

Thread 3 
Elements 16 … 23

Thread 4 
Elements 24 … 31

Thread 1 
Elements 0 … 7
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. . .

. . .
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. . .

. . .

L2 Cache (2 MB)

GPU memory 
(DDR5 DRAM)

224 GB/sec

NVIDIA GTX 980 (2014)
1.1 GHz clock 

16 SMM “cores” per chip 
  
16 x 128 = 2,048 SIMD mul-add ALUs 
                   = 4.6 TFLOPs 

64-way multi-threading per SMM 

32-SIMD execution 

Translating to CUDA/OpenCL-speak for those familiar with programming GPUs: 
1 warp = 32 CUDA threads 
64 warps per SMM 
16 x 64 = 1024 interleaved warps per chip (32,768 CUDA threads/chip, a.k.a. “32K pixels at once”) 

(1 warp ~ hardware thread, 1 CUDA thread ~ 1 SIMD vector lane)
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Another example: 
for review and to check your understanding 

(if you understand the following sequence you understand this lecture)
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Running code on a simple processor

void	sinx(int	N,	int	terms,	float*	x,	float*	result)	

{	

			for	(int	i=0;	i<N;	i++)	

			{	

				float	value	=	x[i];	

				float	numer	=	x[i]	*	x[i]	*	x[i];	

				int	denom	=	6;		//	3!	

				int	sign	=	-1;	

				for	(int	j=1;	j<=terms;	j++)	

				{		

							value	+=	sign	*	numer	/	denom;	

							numer	*=	x[i]	*	x[i];	

							denom	*=	(2*j+2)	*	(2*j+3);	

							sign	*=	-1;	

						}	

						result[i]	=	value;	

			}	

}

My very simple program: 
compute sin(x) using Taylor expansion

Fetch/ 
Decode

Execution 
Context

ALU 
(Execute)

My very simple processor: 
completes one instruction per clock
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Review: superscalar execution

void	sinx(int	N,	int	terms,	float*	x,	float*	result)	

{	

			for	(int	i=0;	i<N;	i++)	

			{	

				float	value	=	x[i];	

				float	numer	=	x[i]	*	x[i]	*	x[i];	

				int	denom	=	6;		//	3!	

				int	sign	=	-1;	

				for	(int	j=1;	j<=terms;	j++)	

				{		

							value	+=	sign	*	numer	/	denom;	

							numer	*=	x[i]	*	x[i];	

							denom	*=	(2*j+2)	*	(2*j+3);	

							sign	*=	-1;	

						}	

						result[i]	=	value;	

			}	

}

Unmodified program

Execution 
Context

My single core, superscalar processor: 
executes up to two instructions per clock 

from a single instruction stream.

Fetch/ 
Decode

Exec 
1

Fetch/ 
Decode

Exec 
2

Independent operations in 
instruction stream 

(They are detected by the processor 
at run-time and may be executed in 
parallel on execution units 1 and 2)
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Review: multi-core execution (two cores)
Modify program to create two threads of 

control (two instruction streams) 
My dual-core processor: 

executes one instruction per clock 
from an instruction stream on each core.

Fetch/ 
Decode

Execution 
Context

ALU 
(Execute)

Fetch/ 
Decode

Execution 
Context

ALU 
(Execute)

typedef	struct	{	

			int	N;	

			int	terms;	

			float*	x;	

			float*	result;	

}	my_args;	

void	parallel_sinx(int	N,	int	terms,	float*	x,	float*	result)	

{	

				pthread_t	thread_id;	

				my_args	args;	

				args.N	=	N/2;	

				args.terms	=	terms;	

				args.x	=	x;	

				args.result	=	result;	

				pthread_create(&thread_id,	NULL,	my_thread_start,	&args);	//	launch	thread			

				sinx(N	-	args.N,	terms,	x	+	args.N,	result	+	args.N);	//	do	work	

				pthread_join(thread_id,	NULL);	

}	

void	my_thread_start(void*	thread_arg)	

{	

			my_args*	thread_args	=	(my_args*)thread_arg;	

			sinx(args->N,	args->terms,	args->x,	args->result);	//	do	work	

}
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Review: multi-core + superscalar execution
Modify program to create two threads of 

control (two instruction streams) 
My superscalar dual-core processor: 

executes up to two instructions per clock 
from an instruction stream on each core.

Execution 
Context

typedef	struct	{	

			int	N;	

			int	terms;	

			float*	x;	

			float*	result;	

}	my_args;	

void	parallel_sinx(int	N,	int	terms,	float*	x,	float*	result)	

{	

				pthread_t	thread_id;	

				my_args	args;	

				args.N	=	N/2;	

				args.terms	=	terms;	

				args.x	=	x;	

				args.result	=	result;	

				pthread_create(&thread_id,	NULL,	my_thread_start,	&args);	//	launch	thread			

				sinx(N	-	args.N,	terms,	x	+	args.N,	result	+	args.N);	//	do	work	

				pthread_join(thread_id,	NULL);	

}	

void	my_thread_start(void*	thread_arg)	

{	

			my_args*	thread_args	=	(my_args*)thread_arg;	

			sinx(args->N,	args->terms,	args->x,	args->result);	//	do	work	

}

Fetch/ 
Decode

Exec 
1

Fetch/ 
Decode

Exec 
2

Execution 
Context

Fetch/ 
Decode

Exec 
1

Fetch/ 
Decode

Exec 
2
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Review: multi-core (four cores)
Modify program to create many threads of control: 

recall Kayvon’s fictitious language 
My quad-core processor: 

executes one instruction per clock 
from an instruction stream on each core.

Fetch/ 
Decode

Execution 
Context

ALU 
(Execute)

Fetch/ 
Decode

Execution 
Context

ALU 
(Execute)

Fetch/ 
Decode

Execution 
Context

ALU 
(Execute)

Fetch/ 
Decode

Execution 
Context

ALU 
(Execute)

void	sinx(int	N,	int	terms,	float*	x,	float*	result)	

{	

			//	declare	independent	loop	iterations	

			forall	(int	i	from	0	to	N-1)		

			{	

				float	value	=	x[i];	

				float	numer	=	x[i]	*	x[i]	*	x[i];	

				int	denom	=	6;		//	3!	

				int	sign	=	-1;	

				for	(int	j=1;	j<=terms;	j++)	

				{		

							value	+=	sign	*	numer	/	denom	

							numer	*=	x[i]	*	x[i];	

							denom	*=	(2*j+2)	*	(2*j+3);	

							sign	*=	-1;	

						}	

						result[i]	=	value;	

			}	

}
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Review: four, 8-wide SIMD cores
Observation: program must execute many iterations of the same loop body. 
Optimization: share instruction stream across execution of multiple 
iterations (single instruction multiple data = SIMD) My SIMD quad-core processor: 

executes one 8-wide SIMD instruction per clock 
from an instruction stream on each core.

Fetch/ 
Decode

Execution 
Context

void	sinx(int	N,	int	terms,	float*	x,	float*	result)	

{	

			//	declare	independent	loop	iterations	

			forall	(int	i	from	0	to	N-1)		

			{	

				float	value	=	x[i];	

				float	numer	=	x[i]	*	x[i]	*	x[i];	

				int	denom	=	6;		//	3!	

				int	sign	=	-1;	

				for	(int	j=1;	j<=terms;	j++)	

				{		

							value	+=	sign	*	numer	/	denom	

							numer	*=	x[i]	*	x[i];	

							denom	*=	(2*j+2)	*	(2*j+3);	

							sign	*=	-1;	

						}	

						result[i]	=	value;	

			}	

}

Fetch/ 
Decode

Execution 
Context

Fetch/ 
Decode

Execution 
Context

Fetch/ 
Decode

Execution 
Context
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Review: four SIMD, multi-threaded cores
Observation: memory operations have very long latency 
Solution: hide latency of loading data for one iteration by 
executing arithmetic instructions from other iterations
void	sinx(int	N,	int	terms,	float*	x,	float*	result)	

{	

			//	declare	independent	loop	iterations	

			forall	(int	i	from	0	to	N-1)		

			{	

				float	value	=	x[i];	

				float	numer	=	x[i]	*	x[i]	*	x[i];	

				int	denom	=	6;		//	3!	

				int	sign	=	-1;	

				for	(int	j=1;	j<=terms;	j++)	

				{		

							value	+=	sign	*	numer	/	denom	

							numer	*=	x[i]	*	x[i];	

							denom	*=	(2*j+2)	*	(2*j+3);	

							sign	*=	-1;	

						}	

						result[i]	=	value;	

			}	

}

Fetch/ 
DecodeMemory load

Memory store

Execution 
Context

Execution 
Context

Fetch/ 
Decode

Execution 
Context

Execution 
Context

Fetch/ 
Decode

Execution 
Context

Execution 
Context

Fetch/ 
Decode

Execution 
Context

Execution 
Context

My multi-threaded, SIMD quad-core processor: 
executes one SIMD instruction per clock 

from one instruction stream on each core.  But 
can switch to processing the other instruction 

stream when faced with a stall.



 CMU 15-769, Fall 2016

Summary: four superscalar, SIMD, multi-threaded cores

Execution 
Context

Execution 
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Execution 
Context

Fetch/ 
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Fetch/ 
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SIMD Exec 2

Exec 1

My multi-threaded, superscalar, SIMD quad-core processor: 
executes up to two instructions per clock  from one instruction stream on each core 

(in this example: one SIMD instruction + one scalar instruction).  
Processor can switch to execute the other instruction stream when faced with stall.



 CMU 15-769, Fall 2016

Connecting it all together
Kayvon’s simple quad-core processor:
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Context
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SIMD Exec 2

Exec 1

L1 Cache
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Execution 
Context

Execution 
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Fetch/ 
Decode

SIMD Exec 2

Exec 1

L1 Cache
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Execution 
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SIMD Exec 2

Exec 1

L1 Cache

L2 Cache

L3 Cache
Memory 

Controller

Memory Bus 
(to DRAM)

On-chip 
interconnect

Four cores, two-way multi-threading per core (max eight threads active on chip at once), up to two 
instructions per clock per core (one of those instructions is 8-wide SIMD)
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Thought experiment
▪ You write a C application that spawns two pthreads 
▪ The application runs on the processor shown below 

- Two cores, two-execution contexts per core, up to instructions per clock, one 
instruction is an 8-wide SIMD instruction.

Execution 
Context

Execution 
Context

Fetch/ 
Decode

Fetch/ 
Decode

SIMD Exec 2

Exec 1

Execution 
Context

Execution 
Context

Fetch/ 
Decode

Fetch/ 
Decode

SIMD Exec 2

Exec 1

▪ Question: “who” is responsible for mapping your pthreads to the 
processor’s thread execution contexts? 
Answer: the operating system

▪ Question: If you were the OS, how would to assign the two threads to 
the four available execution contexts? 

▪ Another question: How would you 
assign threads to execution contexts 
if your C program spawned five 
pthreads?



 CMU 15-769, Fall 2016

Another thought experiment
Task: element-wise multiplication of two vectors A and B 
Assume vectors contain millions of elements 

- Load input A[i] 
- Load input B[i] 
- Compute A[i] × B[i] 
- Store result into C[i]

=

A

B

C

×

~ <1% efficiency… but 10x faster than quad-core CPU! 
(4 GHz Core i7 Gen 6 quad-core CPU connected to 34 GB/sec memory bus)

Three memory operations (12 bytes) for every MUL 
NVIDIA GTX 1080 GPU can do 2560 MULs per clock (@ 1.6 GHz) 
Need ~50 TB/sec of bandwidth to keep functional units busy (only have 320 GB/sec)
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Bandwidth limited!
If processors request data at too high a rate, the memory system cannot keep up.

No amount of latency hiding helps this.

Bandwidth is a critical resource 

Overcoming bandwidth limits are a common challenge for 
application developers on throughput-optimized systems.
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Hardware specialization
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Why does energy efficiency matter?
▪ General in mobile processing rule: the longer a task runs the less power it can use 

- Processor’s power consumption is limited by heat generated (efficiency is 
required for more than just maximizing battery life)

Po
we

r

Time

Electrical limit:  max power that can be supplied to chip

Die temp: (junction temp -- Tj): chip becomes unreliable above this temp 
(chip can run at high power for short period of time until chip heats to Tj)

Case temp: mobile device gets too hot for user to comfortably hold 
(chip is at suitable operating temp, but heat is dissipating into case)

Battery life: chip and case are cool, but want to reduce power 
consumption to sustain long battery life for given task

Slide credit: adopted from original slide from M. Shebanow: HPG 2013 keynote 

iPhone 6 battery: 7 watt-hours 
9.7in iPad Pro battery: 28 watt-hours 
15in Macbook Pro: 99 watt-hours
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Efficiency benefits of compute specialization
▪ Rules of thumb: compared to high-quality C code on CPU... 

▪ Throughput-maximized processor architectures: e.g., GPU cores 
- Approximately 10x improvement in perf / watt 
- Assuming code maps well to wide data-parallel execution and is compute bound 

▪ Fixed-function ASIC (“application-specific integrated circuit”) 
- Can approach 100-1000x or greater improvement in perf/watt 
- Assuming code is compute bound and 

and is not floating-point math

[Source: Chung et al. 2010 , Dally 08] [Figure credit Eric Chung]
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Hardware specialization increases efficiency

[Chung et al. MICRO 2010]
lg2(N)  (data set size)

FPGA
GPUs

FPGA
GPUs

lg2(N)  (data set size)

ASIC delivers same performance 
as one CPU core with ~ 1/1000th 
the chip area. 
  
GPU cores: ~ 5-7 times more area 
efficient than CPU cores. 

ASIC delivers same performance 
as one CPU core with only ~ 
1/100th the power.
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Modern systems use ASICs for…
▪ Image/video encode/decode  (e.g., H.264, JPG) 
▪ Audio recording/playback  
▪ Voice “wake up” (e.g., Ok Google) 
▪ Camera “RAW” processing: processing data acquired by image 

sensor into images that are pleasing to humans 
▪ Many 3D graphics tasks (rasterization, texture mapping, 

occlusion using the Z-buffer) 

▪ Significant modern interest in ASICS for deep network 
evaluation (e.g., Google’s Tensor Processing Unit)



CMU 15-769, Fall 2016

Qualcomm Hexagon DSP
▪ Originally used for audio/LTE support on Qualcomm SoC’s 
▪ Multi-threaded, VLIW DSP 
▪ Third major programmable unit on Qualcomm SoCs 

- Multi-core CPU 
- Multi-core GPU (Adreno) 
- Hexagon DSP

7
Qualcomm Technologies, Inc. All Rights Reserved

Instruction Unit

VLIW: Area & power efficient multi-issue

Data Unit 
(Load/ 
Store/ 
ALU)

Data Unit 
(Load/ 
Store/ 
ALU)

Execution 
Unit 

(64-bit 
Vector)

Execution 
Unit 

(64-bit 
Vector)

Data Cache

L2 
Cache 
/ TCM

Instruction 
Cache

• Dual 64-bit 
load/store 
units

• Also 32-bit 
ALU

Variable sized 
instruction packets 
(1 to 4 instructions 
per Packet)

• Dual 64-bit execution units
• Standard 8/16/32/64bit data 

types
• SIMD vectorized MPY / ALU 

/ SHIFT, Permute, BitOps
• Up to 8 16b MAC/cycle
• 2 SP FMA/cycle

Register File
Register File

Register File/Thread

• Unified 32x32bit 
General Register 
File is best for 
compiler. 

• No separate Address 
or Accum Regs

• Per-Thread

Device
DDR

Memory

7
Qualcomm Technologies, Inc. All Rights Reserved

Instruction Unit

VLIW: Area & power efficient multi-issue

Data Unit 
(Load/ 
Store/ 
ALU)

Data Unit 
(Load/ 
Store/ 
ALU)

Execution 
Unit 

(64-bit 
Vector)

Execution 
Unit 

(64-bit 
Vector)

Data Cache

L2 
Cache 
/ TCM

Instruction 
Cache

• Dual 64-bit 
load/store 
units

• Also 32-bit 
ALU

Variable sized 
instruction packets 
(1 to 4 instructions 
per Packet)

• Dual 64-bit execution units
• Standard 8/16/32/64bit data 

types
• SIMD vectorized MPY / ALU 

/ SHIFT, Permute, BitOps
• Up to 8 16b MAC/cycle
• 2 SP FMA/cycle

Register File
Register File

Register File/Thread

• Unified 32x32bit 
General Register 
File is best for 
compiler. 

• No separate Address 
or Accum Regs

• Per-Thread

Device
DDR

Memory



CMU 15-769, Fall 2016

Summary: choosing the right tool for the job

Energy-optimized CPU
Throughput-oriented 

processor (GPU)

~10X more efficient

Credit Pat Hanrahan for this taxonomy

ASIC

~100-1000X 
more efficient

Video encode/decode, 
Audio playback, 

Camera RAW processing, 
neural nets (future?)

Programmable DSP

7
Qualcomm Technologies, Inc. All Rights Reserved
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FPGA/Future 
reconfigurable logic

~100X??? 
(jury still out)

Easiest to program Difficult to program 
(making it easier is 

active area of research)

Not programmable + 
costs 10-100’s millions 
of dollars to design / 

verify / create
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Data movement has high energy cost
▪ Rule of thumb in mobile system design: always seek to reduce amount of 

data transferred from memory 
- Earlier in class we discussed minimizing communication to reduce stalls (poor performance).  

Now, we wish to reduce communication to reduce energy consumption 

▪ “Ballpark” numbers 
- Integer op: ~ 1 pJ * 
- Floating point op: ~20 pJ * 
- Reading 64 bits from small local SRAM (1mm away on chip): ~ 26 pJ 
- Reading 64 bits from low power mobile DRAM (LPDDR): ~1200 pJ 

▪ Implications 
- Reading 10 GB/sec from memory: ~1.6 watts 
- Entire power budget for mobile GPU: ~1 watt  (remember phone is also running CPU, display, 

radios, etc.) 
- iPhone 6 battery: ~7 watt-hours   (note: my Macbook Pro laptop: 99 watt-hour battery) 
- Exploiting locality matters!!!

* Cost to just perform the logical operation, not counting overhead of instruction decode, load data from registers, etc.

[Sources: Bill Dally (NVIDIA), Tom Olson (ARM)]

Suggests that recomputing values, 
rather than storing and reloading 
them, is a better answer when 
optimizing code for energy efficiency!
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Welcome to 15-769!
▪ Make sure you are signed up on Piazza so you get 

announcements 

▪ Tonight’s reading: 
- “The Rise of Mobile Visual Computing Systems”, Fatahalian, IEEE Mobile 

Computing 2016 
- “The Compute Architecture of Intel Processor Graphics Gen9” - Intel Technical 

Report, 2015
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More review
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For the rest of this class, know these terms
▪ Multi-core processor 
▪ SIMD execution 
▪ Coherent control flow 
▪ Hardware multi-threading 

- Interleaved multi-threading 
- Simultaneous multi-threading 

▪ Memory latency 
▪ Memory bandwidth 
▪ Bandwidth bound application 
▪ Arithmetic intensity
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Which program performs better?
void	add(int	n,	float*	A,	float*	B,	float*	C)	{	
				for	(int	i=0;	i<n;	i++)	
							C[i]	=	A[i]	+	B[i];					
}	

void	mul(int	n,	float*	A,	float*	B,	float*	C)	{	
				for	(int	i=0;	i<n;	i++)	
							C[i]	=	A[i]	*	B[i];					
}	

float*	A,	*B,	*C,	*D,	*E,	*tmp1,	*tmp2;	

//	assume	arrays	are	allocated	here	

//	compute	E	=	D	+	((A	+	B)	*	C)	
add(n,	A,	B,	tmp1);	
mul(n,	tmp1,	C,	tmp2);	
add(n,	tmp2,	D,	E);

void	fused(int	n,	float*	A,	float*	B,	float*	C,	float*	D,	float*	E)	{	
				for	(int	i=0;	i<n;	i++)	
							E[i]	=	D[i]	+	(A[i]	+	B[i])	*	C[i];					
}	

//	compute	E	=	D	+	(A	+	B)	*	C	
fused(n,	A,	B,	C,	D,	E);

Program 1

Program 2

(Note: an answer probably needs 
to state its assumptions.)
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More thought questions
void	add(int	n,	float*	A,	float*	B,	float*	C)	{	
				for	(int	i=0;	i<n;	i++)	
							C[i]	=	A[i]	+	B[i];					
}	

void	mul(int	n,	float*	A,	float*	B,	float*	C)	{	
				for	(int	i=0;	i<n;	i++)	
							C[i]	=	A[i]	*	B[i];					
}	

float*	A,	*B,	*C,	*D,	*E,	*tmp1,	*tmp2;	

//	assume	arrays	are	allocated	here	

//	compute	E	=	D	+	((A	+	B)	*	C)	
add(n,	A,	B,	tmp1);	
mul(n,	tmp1,	C,	tmp2);	
add(n,	tmp2,	D,	E);

void	fused(int	n,	float*	A,	float*	B,	float*	C,	float*	D,	float*	E)	{	
				for	(int	i=0;	i<n;	i++)	
							E[i]	=	D[i]	+	(A[i]	+	B[i])	*	C[i];					
}	

//	compute	E	=	D	+	(A	+	B)	*	C	
fused(n,	A,	B,	C,	D,	E);

Program 1

Program 2

Which code structuring style 
would you rather write? 

Consider running either of these 
programs: would CPU support for 
hardware-multi-threading help 
performance?


