
Visual Computing Systems
CMU 15-769, Fall 2016

Lecture 1:

Course Introduction +
Review of Throughput Hardware Concepts

 CMU 15-769, Fall 2016

Visual computing
2D/3D graphics

Image processing / computational photography

Computer vision (visual scene understanding)

Table 4. Results on NYUDv2. RGBD is early-fusion of the
RGB and depth channels at the input. HHA is the depth embed-
ding of [15] as horizontal disparity, height above ground, and
the angle of the local surface normal with the inferred gravity
direction. RGB-HHA is the jointly trained late fusion model
that sums RGB and HHA predictions.

pixel
acc.

mean
acc.

mean
IU

f.w.
IU

Gupta et al. [15] 60.3 - 28.6 47.0
FCN-32s RGB 60.0 42.2 29.2 43.9

FCN-32s RGBD 61.5 42.4 30.5 45.5
FCN-32s HHA 57.1 35.2 24.2 40.4

FCN-32s RGB-HHA 64.3 44.9 32.8 48.0
FCN-16s RGB-HHA 65.4 46.1 34.0 49.5

NYUDv2 [33] is an RGB-D dataset collected using the
Microsoft Kinect. It has 1449 RGB-D images, with pixel-
wise labels that have been coalesced into a 40 class seman-
tic segmentation task by Gupta et al. [14]. We report results
on the standard split of 795 training images and 654 testing
images. (Note: all model selection is performed on PAS-
CAL 2011 val.) Table 4 gives the performance of our model
in several variations. First we train our unmodified coarse
model (FCN-32s) on RGB images. To add depth informa-
tion, we train on a model upgraded to take four-channel
RGB-D input (early fusion). This provides little benefit,
perhaps due to the difficultly of propagating meaningful
gradients all the way through the model. Following the suc-
cess of Gupta et al. [15], we try the three-dimensional HHA
encoding of depth, training nets on just this information, as
well as a “late fusion” of RGB and HHA where the predic-
tions from both nets are summed at the final layer, and the
resulting two-stream net is learned end-to-end. Finally we
upgrade this late fusion net to a 16-stride version.

SIFT Flow is a dataset of 2,688 images with pixel labels
for 33 semantic categories (“bridge”, “mountain”, “sun”),
as well as three geometric categories (“horizontal”, “verti-
cal”, and “sky”). An FCN can naturally learn a joint repre-
sentation that simultaneously predicts both types of labels.
We learn a two-headed version of FCN-16s with seman-
tic and geometric prediction layers and losses. The learned
model performs as well on both tasks as two independently
trained models, while learning and inference are essentially
as fast as each independent model by itself. The results in
Table 5, computed on the standard split into 2,488 training
and 200 test images,9 show state-of-the-art performance on
both tasks.

9Three of the SIFT Flow categories are not present in the test set. We
made predictions across all 33 categories, but only included categories ac-
tually present in the test set in our evaluation. (An earlier version of this pa-
per reported a lower mean IU, which included all categories either present
or predicted in the evaluation.)

Table 5. Results on SIFT Flow9 with class segmentation
(center) and geometric segmentation (right). Tighe [36] is
a non-parametric transfer method. Tighe 1 is an exemplar
SVM while 2 is SVM + MRF. Farabet is a multi-scale con-
vnet trained on class-balanced samples (1) or natural frequency
samples (2). Pinheiro is a multi-scale, recurrent convnet, de-
noted RCNN3 (�3). The metric for geometry is pixel accuracy.

pixel
acc.

mean
acc.

mean
IU

f.w.
IU

geom.
acc.

Liu et al. [25] 76.7 - - - -
Tighe et al. [36] - - - - 90.8

Tighe et al. [37] 1 75.6 41.1 - - -
Tighe et al. [37] 2 78.6 39.2 - - -
Farabet et al. [9] 1 72.3 50.8 - - -
Farabet et al. [9] 2 78.5 29.6 - - -
Pinheiro et al. [31] 77.7 29.8 - - -

FCN-16s 85.2 51.7 39.5 76.1 94.3

FCN-8s SDS [17] Ground Truth Image

Figure 6. Fully convolutional segmentation nets produce state-
of-the-art performance on PASCAL. The left column shows the
output of our highest performing net, FCN-8s. The second shows
the segmentations produced by the previous state-of-the-art system
by Hariharan et al. [17]. Notice the fine structures recovered (first
row), ability to separate closely interacting objects (second row),
and robustness to occluders (third row). The fourth row shows a
failure case: the net sees lifejackets in a boat as people.

6. Conclusion

Fully convolutional networks are a rich class of mod-
els, of which modern classification convnets are a spe-
cial case. Recognizing this, extending these classification
nets to segmentation, and improving the architecture with
multi-resolution layer combinations dramatically improves
the state-of-the-art, while simultaneously simplifying and
speeding up learning and inference.

Acknowledgements This work was supported in part

 CMU 15-769, Fall 2016

Visual Computing Systems — Some History

Ivan Sutherland’s Sketchpad on MIT TX-2 (1962)

The frame buffer
Shoup’s SuperPaint (PARC 1972-73)

16 2K shift registers (640 x 486 x 8 bits)

The frame buffer
Shoup’s SuperPaint (PARC 1972-73)

16 2K shift registers (640 x 486 x 8 bits)

Xerox Alto (1973)

TI 74181 ALUBravo (WYSIWYG)

Goal: render everything you’ve ever seen

“Road to Pt. Reyes”
LucasFilm (1983)

“We take an average of three hours to draw a single frame on the fastest computer money can buy.”
 - Steve Jobs

Pixar’s Toy Story (1995)

UNC Pixel Planes (1981), computation-enhanced frame buffer

Figure 2: Photograph of the Geometry Engine.

Ed Clark’s Geometry Engine
(1982)

ASIC for geometric transforms
used in real-time graphics.

SGI RealityEngine GE8 board (1993)

4.4 Triangle Bus
All graphics architectures that implement parallel primitive pro-
cessing and parallel fragment/pixel processingmust also implement
a crossbar somewhere between the geometry processors and the
framebuffer[5]. While many of the issues concerning the placement
of this crossbar are beyond the scope of this paper, we will men-
tion some of the considerations that resulted in our Triangle Bus
architecture. The RealityEngine Triangle Bus is a crossbar between
the Geometry Engines and the Fragment Generators. Described
in RealityEngine terms, architectures such as the Evans & Suther-
land Freedom SeriesTM implement Geometry Engines and Fragment
Generators in pairs, then switch the resulting fragments to the ap-
propriate Image Engines using a fragment crossbar network. Such
architectures have an advantage in fragment generation efficiency,
due both to the improved locality of the fragments and to only one
Fragment Generator being initialized per primitive. They suffer
in comparison, however, for several reasons. First, transformation
and fragment generation rates are linked, eliminating the possibil-
ity of tuning a machine for unbalanced rendering requirements by
adding transformation or rasterization processors. Second, ultimate
fill rate is limited by the fragment bandwidth, rather than the prim-
itive bandwidth. For all but the smallest triangles the quantity of
data generated by rasterization is much greater than that required
for geometric specification, so this is a significant bottleneck. (See
Appendix 2.) Finally, if primitives must be rendered in the order
that they are specified, load balancing is almost impossible, because
the number of fragments generated by a primitive varies by many
orders of magnitude, and cannot be predicted prior to processor
assignment. Both OpenGL and the core X renderer require such
ordered rendering.
The PixelFlow[6] architecture also pairs Geometry Engines and

FragmentGenerators,but the equivalent of ImageEngines andmem-
ory for a pixel tile are also bundled with each Geome-
try/Fragment pair. The crossbar in this architecture is the composit-
ing tree that funnels the contents of rasterized tiles to a final display
buffer. Because the framebuffer associated with each processor is
smaller than the final display buffer, the final image is assembled as
a sequenceof logical tiles. Efficient operation is achieved
only when each logical tile is rasterized once in its entirety, rather
than being revisited when additional primitives are transformed. To
insure that all primitives that correspond to a logical tile are known,
all primitives must be transformed and sorted before rasterization
can begin. This substantially increases the system’s latency, and
requires that the rendering software support the notion of frame de-
marcation. Neither the core X renderer nor OpenGL support this
notion.

4.5 12-bit Color
Color component resolution was increased from the usual 8 bits to
12 bits for two reasons. First, the RealityEngine framebuffer stores
color components in linear, rather than gamma-corrected, format.
When 8-bit linear intensities are gamma corrected,single bit changes
at low intensities are discernible, resulting in visible banding. The
combination of 12-to-10 bit dithering and 10-bit gamma lookup ta-
bles used at display time eliminates visible banding. Second, it is
intended that images be computed, rather than just stored, in the
RealityEngine framebuffer. Volume rendering using 3D textures,
for example, requires back-to-front composition of multiple slices
through the data set. If the framebuffer resolution is just sufficient to
displayan acceptable image, repeatedcompositionswill degrade the

Figure 6. A scene from a driving simulation running full-screen at
30 Hz.

Figure 7. A 12x magnified subregion of the scene in figure 6. The
sky texture is properly sampled and the silhouettes of the ground
and buildings against the sky are antialiased.

resolution visibly. The 12-bit components allow substantial frame-
buffer composition to take place before artifacts become visible.

Conclusion

The RealityEngine system was designed as a high-end workstation
graphics accelerator with special abilities in image generation and
image processing. This paper has described its architecture and
capabilities in the realm of image generation: 20 to 60 Hz anima-
tions of full-screen, fully-textured, antialiased scenes. (Figures 6
and 7.) The image processing capabilities of the architecture have
not been described at all; they include convolution, color space
conversion, table lookup, histogramming, and a variety of warping
and mapping operations using the texture mapping hardware. Fu-
ture developments will investigate additional advanced rendering
features, while continually reducing the cost of high-performance,
high-quality graphics.

115

Unreal Engine Kite Demo (Epic Games 2015)

Real-time (30 fps) on a NVIDIA Titan X

NVIDIA Titan X GPU
(~ 7 TFLOPs fp32)

~ ASCI Red (top US supercomputer circa 2000)

Modern GPU: heterogeneous multi-core

DDR5

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Texture Texture

Texture Texture

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Tessellate Tessellate

Tessellate Tessellate

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Scheduler / Work Distributor

Multi-threaded, SIMD cores
Custom circuits for key graphics arithmetic
Custom circuits for HW-assisted graphics-specific DRAM compression
HW logic for scheduling work onto these resources

Domain-specific languages for heterogeneous computing

Vertex Processing

Vertex Generation

3D vertex stream

Projected
vertex stream

Primitive Generation

Primitive stream

Fragment Generation
(“Rasterization”)

Fragment stream

Fragment Processing

Fragment stream

Pixel Operations
Output

image buffer
(pixels)

Input vertex buffer

OpenGL Graphics Pipeline (circa 2007)

Domain-specific languages for heterogeneous computing

Vertex Processing

Vertex Generation

3D vertex stream

Projected
vertex stream

Primitive Generation

Primitive stream

Fragment Generation
(“Rasterization”)

Fragment stream

Fragment Processing

Fragment stream

Pixel Operations
Output

image buffer
(pixels)

Input vertex buffer

OpenGL Graphics Pipeline (circa 2007)

uniform	sampler2D	myTexture;

uniform	float3	lightDir;	

varying	vec3	norm;	

varying	vec2	uv;

void	myFragmentShader()

{

		vec3	kd	=	texture2D(myTexture,	uv);

		kd	*=	clamp(dot(lightDir,	norm),	0.0,	1.0);

		return	vec4(kd,	1.0);			

}	

read-only
global variables

“per-element” inputs

per-element output:
RGBA surface color at pixel

“fragment shader”
(a.k.a kernel function mapped onto
input fragment stream)

Generalization beyond graphics:
commodity parallel computing

NVIDIA CUDA (2007)
Brook for GPUs (Buck 2004)

Goals of visual computing (until recently)

Modeling the real-world in increasingly rich detail: so we
can simulate it (“render everything you’ve ever seen”)

Depict and organize information to augment human
thought: enable humans to effectively use computing to
create/analyze/interpret/communicate

Key characteristics of visual computing

Requires exceptional levels of efficiency
- Applications turn more ops/watt into new value
- Pack chips full of ALUs (parallel, heterogeneity/specialization are fundamental)
- Applications utilize hardware pipelines very well

Embrace domain-specific programming frameworks
- Achieve high efficiency/productivity
- Today: OpenGL, Halide, game engine frameworks, deep learning frameworks

Aspects of computation are fundamentally approximate
- Manifests as willingness to change algorithms (not approximate HW)

Visual computing — what’s next?

Goals of visual computing (present — future)

To capture everything that can be seen

To enable humans to communicate more effectively

To record and analyze the world’s visual information so
that computers can understand and reason about it

The immediate future: capturing rich visual
information to enhance communication

Ingesting/serving
the world’s photos

Ingesting/streaming
world’s video

2B photo uploads and shares
per day across Facebook sites
(incl. Instagram+WhatsApp)

[FB2015]

Youtube 2015: 300 hours
uploaded per minute [Youtube]

Cisco VNI projection:
80-90% of 2019 internet

traffic will be video.
(64% in 2014)

Capturing pixels to communicate

Richer content: beyond a single image
■ Example: Apple’s “Live Photos”
■ Each photo is not only a single frame, but a few seconds of video before and after the

shutter is clicked

Facebook Live

Acquiring richer content: light fields

Stanford camera array
Wilburn [2005]

Richer content: light fields

Light L16

Lytro Illum

What Does a 2D Photograph Record?

x

ux

u

Light field camera: capturing a light field

Sensor

Imagine Recording the Entire 4D Light Field

x

u
x

u

Camera
Aperture

Object being
photographed

2D traditional camera:
measures how much light hits a

point on sensor

“4D” light field camera:
measures how much light hits point
on sensor from a particular direction

[Slide courtesy Ren Ng]

Object being
photographed

[Slide courtesy Ren Ng]

[Slide courtesy Ren Ng]

[Slide courtesy Ren Ng]

[Slide courtesy Ren Ng]

[Slide courtesy Ren Ng]

[Slide courtesy Ren Ng]

Sensor industry has large untapped resolution

Full-Frame Sensor
36 x 24 mm
Up to 36 MP

4.9 micron pixel

1/3” Sensor
4.8 x 3.6 mm
Up to 13 MP

1.12 micron pixel
[Slide courtesy Ren Ng]

Full-Frame Sensor
36 x 24 mm
Up to 36 MP

4.9 micron pixel

Full-Frame Sensor
36 x 24 mm

688 MP
1.12 micron pixel

Sensor industry has large untapped resolution

[Slide courtesy Ren Ng]

Lytro Cinema 755 Mpixel camera

VR output

Example: Google’s JumpVR video
Input stream: 16 4K GoPro cameras

Register + 3D align video stream (on edge device)
Broadcast encoded video stream across
the country to millions of viewers

VR creates high resolution requirements

iPhone 6: 4.7 in “retina” display:
1.3 MPixel

326 ppi → 57 ppd

~5o

180o

Future “retina” VR display:
57 ppd covering 180o

 = 10K x 10K display per eye
= 200 MPixel

RAW data rate @ 120Hz ≈ 72 GB/sec

VR: Light field display

Near-Eye Light Field Displays
Douglas Lanman David Luebke

NVIDIA Research
Near-Eye Light Field DisplayBare Microdisplay

D
is

p
la

y
e

d
 I
m

a
g

e

“
P

e
r
c

e
iv

e
d

”
 I
m

a
g

e

(C
lo

s
e

-U
p

 P
h

o
to

)

Head-Mounted Near-Eye Light Field Display Prototype

Figure 1: Enabling thin, lightweight near-eye displays using light field displays. (Left) Our binocular near-eye display prototype is shown,
comprising a pair of OLED panels covered with microlens arrays. This design enables a thin head-mounted display, since the black box
containing driver electronics could be waist-mounted with longer OLED ribbon cables. (Right) Due to the limited range of human accom-
modation, a severely defocused image is perceived when a bare microdisplay is held close to the eye. Conventional near-eye displays require
bulky magnifying optics to facilitate accommodation. We propose near-eye light field displays as thin, lightweight alternatives, achieving
comfortable viewing by synthesizing a light field for a virtual scene located within the accommodation range (here implemented by viewing a
microdisplay, depicting interlaced perspectives, through a microlens array). Lorikeet source image courtesy of Robyn Jay.

Abstract

We propose near-eye light field displays that enable thin,
lightweight head-mounted displays (HMDs) capable of presenting
nearly correct convergence, accommodation, binocular disparity,
and retinal defocus depth cues. Sharp images are depicted by out-
of-focus elements by synthesizing light fields corresponding to vir-
tual objects within a viewer’s natural accommodation range. We
formally assess the capabilities of microlens arrays to achieve prac-
tical near-eye light field displays. Building on concepts shared with
existing integral imaging displays and light field cameras, we opti-
mize performance in the context of near-eye viewing. We establish
fundamental trade-offs between the quantitative parameters of res-
olution, field of view, and depth of field, as well as the ergonomic
parameters of form factor and ranges of allowed eye movement. As
with light field cameras, our design supports continuous accommo-
dation of the eye throughout a finite depth of field; as a result, binoc-
ular configurations provide a means to address the accommodation-
convergence conflict occurring with existing stereoscopic displays.
We construct a complete prototype display system, comprising:
a custom-fabricated HMD using modified off-the-shelf parts and
real-time, GPU-accelerated light field renderers (including a gen-
eral ray tracing method and a “backward compatible” rasterization
method supporting existing stereoscopic content). Through simula-
tions and experiments, we motivate near-eye light field displays as
thin, lightweight alternatives to conventional near-eye displays.

Links: DL PDF WEB VIDEO

CR Categories: B.4.2 [Input/Output and Data Communications]:
Input/Output Devices—Image Display I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Virtual Reality

Keywords: light field displays, head-mounted displays, microlens
arrays, accommodation-convergence conflict, virtual reality

1 Introduction

Near-eye displays project images directly into a viewer’s eye, en-
compassing both head-mounted displays (HMDs) and electronic
viewfinders. Such displays confront a fundamental problem: the
unaided human eye cannot accommodate (focus) on objects placed
in close proximity (see Figure 1). As reviewed by Rolland and
Hua [2005], a multitude of optical solutions have been proposed
since Sutherland [1968] introduced the first graphics-driven HMD.
The majority of such designs emulate the behavior of a simple mag-
nifier: synthesizing an enlarged image of a miniaturized display,
appearing to be located within the viewer’s natural accommodation
range. To be of practical utility, a near-eye display should provide
high-resolution, wide-field-of-view imagery with compact, com-
fortable magnifying optics. However, current magnifier designs
typically require multiple optical elements to minimize aberrations,
leading to bulky eyewear with limited fields of view that have, to
date, prohibited widespread consumer adoption.

Conventional displays are intended to emit light isotropically.
In contrast, a light field display supports the control of tightly-
clustered bundles of light rays, modulating radiance as a function
of position and direction across its surface. We consider a simple
near-eye architecture: placing a light field display directly in front
of a user’s eye (or a pair of such displays for binocular viewing).
As shown in Figure 1, sharp imagery is depicted by synthesizing
a light field for a virtual display (or a general 3D scene) within
the viewer’s unaided accommodation range. As characterized in
this paper, near-eye light field displays provide a means to achieve
thin, lightweight HMDs with wide fields of view and to address
accommodation-convergence conflict in binocular configurations;
however, these benefits come at a cost: spatial resolution is signif-
icantly reduced with microlens-based designs, although with com-

Simple idea:
Recreate the same light field that was
present in the scene when it was captured

146 x 78 spatial resolution
Using 1MP microdisplay

Near-Eye Light Field Displays
Douglas Lanman David Luebke

NVIDIA Research
Near-Eye Light Field DisplayBare Microdisplay

D
is

p
la

y
e

d
 I
m

a
g

e

“
P

e
r
c

e
iv

e
d

”
 I
m

a
g

e

(C
lo

s
e

-U
p

 P
h

o
to

)

Head-Mounted Near-Eye Light Field Display Prototype

Figure 1: Enabling thin, lightweight near-eye displays using light field displays. (Left) Our binocular near-eye display prototype is shown,
comprising a pair of OLED panels covered with microlens arrays. This design enables a thin head-mounted display, since the black box
containing driver electronics could be waist-mounted with longer OLED ribbon cables. (Right) Due to the limited range of human accom-
modation, a severely defocused image is perceived when a bare microdisplay is held close to the eye. Conventional near-eye displays require
bulky magnifying optics to facilitate accommodation. We propose near-eye light field displays as thin, lightweight alternatives, achieving
comfortable viewing by synthesizing a light field for a virtual scene located within the accommodation range (here implemented by viewing a
microdisplay, depicting interlaced perspectives, through a microlens array). Lorikeet source image courtesy of Robyn Jay.

Abstract

We propose near-eye light field displays that enable thin,
lightweight head-mounted displays (HMDs) capable of presenting
nearly correct convergence, accommodation, binocular disparity,
and retinal defocus depth cues. Sharp images are depicted by out-
of-focus elements by synthesizing light fields corresponding to vir-
tual objects within a viewer’s natural accommodation range. We
formally assess the capabilities of microlens arrays to achieve prac-
tical near-eye light field displays. Building on concepts shared with
existing integral imaging displays and light field cameras, we opti-
mize performance in the context of near-eye viewing. We establish
fundamental trade-offs between the quantitative parameters of res-
olution, field of view, and depth of field, as well as the ergonomic
parameters of form factor and ranges of allowed eye movement. As
with light field cameras, our design supports continuous accommo-
dation of the eye throughout a finite depth of field; as a result, binoc-
ular configurations provide a means to address the accommodation-
convergence conflict occurring with existing stereoscopic displays.
We construct a complete prototype display system, comprising:
a custom-fabricated HMD using modified off-the-shelf parts and
real-time, GPU-accelerated light field renderers (including a gen-
eral ray tracing method and a “backward compatible” rasterization
method supporting existing stereoscopic content). Through simula-
tions and experiments, we motivate near-eye light field displays as
thin, lightweight alternatives to conventional near-eye displays.

Links: DL PDF WEB VIDEO

CR Categories: B.4.2 [Input/Output and Data Communications]:
Input/Output Devices—Image Display I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Virtual Reality

Keywords: light field displays, head-mounted displays, microlens
arrays, accommodation-convergence conflict, virtual reality

1 Introduction

Near-eye displays project images directly into a viewer’s eye, en-
compassing both head-mounted displays (HMDs) and electronic
viewfinders. Such displays confront a fundamental problem: the
unaided human eye cannot accommodate (focus) on objects placed
in close proximity (see Figure 1). As reviewed by Rolland and
Hua [2005], a multitude of optical solutions have been proposed
since Sutherland [1968] introduced the first graphics-driven HMD.
The majority of such designs emulate the behavior of a simple mag-
nifier: synthesizing an enlarged image of a miniaturized display,
appearing to be located within the viewer’s natural accommodation
range. To be of practical utility, a near-eye display should provide
high-resolution, wide-field-of-view imagery with compact, com-
fortable magnifying optics. However, current magnifier designs
typically require multiple optical elements to minimize aberrations,
leading to bulky eyewear with limited fields of view that have, to
date, prohibited widespread consumer adoption.

Conventional displays are intended to emit light isotropically.
In contrast, a light field display supports the control of tightly-
clustered bundles of light rays, modulating radiance as a function
of position and direction across its surface. We consider a simple
near-eye architecture: placing a light field display directly in front
of a user’s eye (or a pair of such displays for binocular viewing).
As shown in Figure 1, sharp imagery is depicted by synthesizing
a light field for a virtual display (or a general 3D scene) within
the viewer’s unaided accommodation range. As characterized in
this paper, near-eye light field displays provide a means to achieve
thin, lightweight HMDs with wide fields of view and to address
accommodation-convergence conflict in binocular configurations;
however, these benefits come at a cost: spatial resolution is signif-
icantly reduced with microlens-based designs, although with com-

Near-Eye Light Field Displays
Douglas Lanman David Luebke

NVIDIA Research
Near-Eye Light Field DisplayBare Microdisplay

D
is

p
la

y
e

d
 I
m

a
g

e

“
P

e
r
c

e
iv

e
d

”
 I
m

a
g

e

(C
lo

s
e

-U
p

 P
h

o
to

)

Head-Mounted Near-Eye Light Field Display Prototype

Figure 1: Enabling thin, lightweight near-eye displays using light field displays. (Left) Our binocular near-eye display prototype is shown,
comprising a pair of OLED panels covered with microlens arrays. This design enables a thin head-mounted display, since the black box
containing driver electronics could be waist-mounted with longer OLED ribbon cables. (Right) Due to the limited range of human accom-
modation, a severely defocused image is perceived when a bare microdisplay is held close to the eye. Conventional near-eye displays require
bulky magnifying optics to facilitate accommodation. We propose near-eye light field displays as thin, lightweight alternatives, achieving
comfortable viewing by synthesizing a light field for a virtual scene located within the accommodation range (here implemented by viewing a
microdisplay, depicting interlaced perspectives, through a microlens array). Lorikeet source image courtesy of Robyn Jay.

Abstract

We propose near-eye light field displays that enable thin,
lightweight head-mounted displays (HMDs) capable of presenting
nearly correct convergence, accommodation, binocular disparity,
and retinal defocus depth cues. Sharp images are depicted by out-
of-focus elements by synthesizing light fields corresponding to vir-
tual objects within a viewer’s natural accommodation range. We
formally assess the capabilities of microlens arrays to achieve prac-
tical near-eye light field displays. Building on concepts shared with
existing integral imaging displays and light field cameras, we opti-
mize performance in the context of near-eye viewing. We establish
fundamental trade-offs between the quantitative parameters of res-
olution, field of view, and depth of field, as well as the ergonomic
parameters of form factor and ranges of allowed eye movement. As
with light field cameras, our design supports continuous accommo-
dation of the eye throughout a finite depth of field; as a result, binoc-
ular configurations provide a means to address the accommodation-
convergence conflict occurring with existing stereoscopic displays.
We construct a complete prototype display system, comprising:
a custom-fabricated HMD using modified off-the-shelf parts and
real-time, GPU-accelerated light field renderers (including a gen-
eral ray tracing method and a “backward compatible” rasterization
method supporting existing stereoscopic content). Through simula-
tions and experiments, we motivate near-eye light field displays as
thin, lightweight alternatives to conventional near-eye displays.

Links: DL PDF WEB VIDEO

CR Categories: B.4.2 [Input/Output and Data Communications]:
Input/Output Devices—Image Display I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Virtual Reality

Keywords: light field displays, head-mounted displays, microlens
arrays, accommodation-convergence conflict, virtual reality

1 Introduction

Near-eye displays project images directly into a viewer’s eye, en-
compassing both head-mounted displays (HMDs) and electronic
viewfinders. Such displays confront a fundamental problem: the
unaided human eye cannot accommodate (focus) on objects placed
in close proximity (see Figure 1). As reviewed by Rolland and
Hua [2005], a multitude of optical solutions have been proposed
since Sutherland [1968] introduced the first graphics-driven HMD.
The majority of such designs emulate the behavior of a simple mag-
nifier: synthesizing an enlarged image of a miniaturized display,
appearing to be located within the viewer’s natural accommodation
range. To be of practical utility, a near-eye display should provide
high-resolution, wide-field-of-view imagery with compact, com-
fortable magnifying optics. However, current magnifier designs
typically require multiple optical elements to minimize aberrations,
leading to bulky eyewear with limited fields of view that have, to
date, prohibited widespread consumer adoption.

Conventional displays are intended to emit light isotropically.
In contrast, a light field display supports the control of tightly-
clustered bundles of light rays, modulating radiance as a function
of position and direction across its surface. We consider a simple
near-eye architecture: placing a light field display directly in front
of a user’s eye (or a pair of such displays for binocular viewing).
As shown in Figure 1, sharp imagery is depicted by synthesizing
a light field for a virtual display (or a general 3D scene) within
the viewer’s unaided accommodation range. As characterized in
this paper, near-eye light field displays provide a means to achieve
thin, lightweight HMDs with wide fields of view and to address
accommodation-convergence conflict in binocular configurations;
however, these benefits come at a cost: spatial resolution is signif-
icantly reduced with microlens-based designs, although with com-

Output of display (prior to optics)

[Lanman 2013]

Enhancing communication: understanding
images to improve acquired content

AutoEnhance: Photo “fix up” [Hayes 2007]

My bad vacation photo Part to fix

Similar photos others
have taken

Fixed!

Summary

We are observing rapid growth in the richness of visual
communication

Sensing the world with higher fidelity to deliver improved
content to humans

Future challenge: recording and analyzing the
world’s visual information, so computers can

understand and reason about it

Capturing everything about the visual world

To understand people
To understand the world around vehicles/drones
To understand cities

Mobile
Continuous (always on)
Exceptionally high resolution
Capture for computers to analyze, not humans to watch

Sensing human social interactions

CMU Panoptic Studio
480 video cameras (640 x 480 @ 25fps)
116 GPixel video sensor
(2.9 TPixel /sec)

[Joo 2015]

Capturing social interactions

[Courtesy Yaser Sheikh, Tomas Simon, Hanbyul Joo]

Capturing social interactions

[Courtesy Yaser Sheikh, Tomas Simon, Hanbyul Joo]

Robot navigation depends on low-latency
localization and surrounding object recognition

NVIDIA Drive PX

Tegra X1 (1 TFlop fp16 at 1GHz)

AR requires low-latency localization and
scene object recognition

Making “maps”: pervasive 3D construction

Outline
1. Large scale MVS for organized photos  

(Aerial photos) 
 
 
 

2. Large scale MVS for unorganized photos  
(Internet community photos)  
 
 
 

3. Large scale indoor modeling  

Smart headlight system

~1000 Hz (1 - 1.5 ms latency)

[Tamburo 2016]

Seeing clearly through precipitation
[Tamburo 2016]

Urban video command center
(Centro de Operações Preifetura do Rio de Janeiro)

Overview summary
§ Visual computing has always involved a healthy interaction

between architecture, programming systems, and algorithms
– Domain focus has been exceptionally useful for vertical thought
– Willing to throw out old and re-engineer software (new hardware enables

programs that haven’t been written yet!)
– Architects should know the algorithms well, and influence them!

§ Visual computing has always challenged computer systems by
its desire to simulate/synthesize complex visual information

§ Next 1-2 decades: interpreting the worldwide visual signal
– Acquiring and modeling everything humans would see, to enable computers to

interpret and analyze
– We will continue to take every op (op/Watt) you can give us

 CMU 15-769, Fall 2016

Course Logistics

 CMU 15-769, Fall 2016

What this course is about

VISUAL COMPUTING
WORKLOADS

Algorithms for 3D graphics, image
processing, compression, etc.

MACHINE
ORGANIZATION

High-throughput hardware designs:
Parallel and heterogeneous

mapping/scheduling

Parallelism
Exploiting locality

Minimizing communication

DESIGN OF GOOD ABSTRACTIONS
FOR VISUAL COMPUTING

choice of programming primitives
level of abstraction

1. The characteristics/requirements of important visual computing workloads
2. Techniques used to achieve efficient system implementations

 CMU 15-769, Fall 2016

In other words

It is about understanding the fundamental structure of problems
in the visual computing domain, and then leveraging that
understanding to…

To design better algorithms

To build the most efficient hardware to run these applications

To design the right programming systems to make developing new
applications simpler and also highly performant.

 CMU 15-769, Fall 2016

What this course is NOT about

▪ This is not an [OpenGL, CUDA, OpenCL] programming course
- But we will be analyzing and critiquing the design of these systems in detail

- I expect students to pick up familiarity with relevant systems as we go

Many excellent references...

 CMU 15-769, Fall 2016

Major course themes/topics

Expressing and accelerating deep
learning for computer vision

High-performance image processing
Algorithms for processing images/video in a modern
digital camera
Image processing hardware components
Image/video compression

Large-scale 3D reconstruction

 CMU 15-769, Fall 2016

Major course themes/topics

The GPU-accelerated 3D graphics
pipelines
(high-performance rendering for real
time applications)

 CMU 15-769, Fall 2016

Logistics
▪ Course web site:

- http://graphics.cs.cmu.edu/courses/15769/fall2016/

▪ All announcements will go out via Piazza
- http://www.piazza.com/cmu/fall2016/15769

▪ Kayvon’s office hours: drop in or by appointment (EDSH 225)

 CMU 15-769, Fall 2016

Expectations of you
▪ 30% participation

- There will be ~1-2 assigned paper readings per class
- Everyone is expected to come to class and participate in discussions based on readings
- You are encouraged discuss papers and or my lectures on the course discussion board.
- If you form a weekly course reading/study group, I will buy Pizza for said group.

▪ 15% mini-assignments (2-3 short programming assignments)
- Assignment 1: implement and optimize a basic RAW image processing pipeline

▪ 20% 2 take-home “exams”
- Exam 1: covers course parts 1 and 2
- Exam 2: covers course parts 3 and 4

▪ 35% self-selected final project
- I suggest you start talking to me now (can be teams of up to two)

 CMU 15-769, Fall 2016

Review: throughput computing hardware

 CMU 15-769, Fall 2016

Review concepts
▪ What are these design concepts, and what problem/goals do they

address?
- Muti-core processing
- SIMD processing
- Hardware multi-threading

▪ What is the motivation for specialization via
- Multiple types of processors (e.g., CPUs, GPUs)
- Custom hardware units (ASIC)

▪ What is memory bandwidth a major constraint when mapping
applications to modern systems?

 CMU 15-769, Fall 2016

Let’s crack open a modern smartphone

Multi-core GPU
(3D graphics,

OpenCL data-parallel compute)

Display engine
(compresses pixels for
transfer to 4K screen)

Image Signal Processor
(ISP): ASIC for processing pixels

off camera (25MP at 30Hz)

Multi-core ARM CPU

Video encode/decode
ASIC (H.265 @ 4K)

“Hexagon”
Programmable DSP
data-parallel multi-media

processing

Samsung Galaxy S7 phone with
Qualcomm Snapdragon 820 processor

 CMU 15-769, Fall 2016

Multi-core processing

 CMU 15-769, Fall 2016

Executing an instruction stream

x[i]

Fetch/
Decode

Execution
Context

ALU
(Execute)

ld			r0,	addr[r1]

mul		r1,	r0,	r0

mul		r1,	r1,	r0

...

...

...

...

...	

...

st			addr[r2],	r0

result[i]

 CMU 15-769, Fall 2016

x[i]

Fetch/
Decode

Execution
Context

ALU
(Execute)

PC

My very simple processor: executes one instruction per clock

ld			r0,	addr[r1]

mul		r1,	r0,	r0

mul		r1,	r1,	r0

...

...

...

...

...	

...

st			addr[r2],	r0

result[i]

Executing an instruction stream

 CMU 15-769, Fall 2016

x[i]

Fetch/
Decode

Execution
Context

ALU
(Execute)

PC

My very simple processor: executes one instruction per clock

ld			r0,	addr[r1]

mul		r1,	r0,	r0

mul		r1,	r1,	r0

...

...

...

...

...	

...

st			addr[r2],	r0

result[i]

Executing an instruction stream

 CMU 15-769, Fall 2016

x[i]

Fetch/
Decode

Execution
Context

ALU
(Execute)

PC

My very simple processor: executes one instruction per clock

ld			r0,	addr[r1]

mul		r1,	r0,	r0

mul		r1,	r1,	r0

...

...

...

...

...	

...

st			addr[r2],	r0

result[i]

Executing an instruction stream

 CMU 15-769, Fall 2016

Multi-core: process multiple instruction streams in parallel

Sixteen cores, sixteen simultaneous instruction streams

 CMU 15-769, Fall 2016

Core 1

Multi-core examples

Intel “Skylake” Core i7 quad-core CPU
(2015)

NVIDIA GTX 980 GPU
16 replicated processing cores (“SM”)

(2014)

Core 4

Shared L3 cache

Core 2

Core 3

 CMU 15-769, Fall 2016

More multi-core examples

Intel Xeon Phi “Knights Landing “ 76-core CPU
(2015)

Apple A9 dual-core CPU
(2015)

A9 image credit: Chipworks (obtained via Anandtech)
http://www.anandtech.com/show/9686/the-apple-iphone-6s-and-iphone-6s-plus-review/3

Core 1

Core 2

 CMU 15-769, Fall 2016

Superscalar execution

 CMU 15-769, Fall 2016

Superscalar execution

result	sinx(int	N,	int	terms,	float	x)	

{	

				float	value	=	x;	

				float	numer	=	x	*	x	*	x;	

				int	denom	=	6;		//	3!	

				int	sign	=	-1;	

				for	(int	j=1;	j<=terms;	j++)	

				{		

							value	+=	sign	*	numer	/	denom;	

							numer	*=	x	*	x;	

							denom	*=	(2*j+2)	*	(2*j+3);	

							sign	*=	-1;	

						}	

						return	value;	

}

Program: computes sin of input x via Taylor expansion

Execution
Context

My single core, superscalar processor:
executes up to two instructions per clock

from a single instruction stream.

Fetch/
Decode

Exec
1

Fetch/
Decode

Exec
2

Independent operations in
instruction stream

(They are detected by the processor
at run-time and may be executed in
parallel on execution units 1 and 2)

 CMU 15-769, Fall 2016

SIMD processing

 CMU 15-769, Fall 2016

Add ALUs to increase compute capability

Idea #2:
Amortize cost/complexity of managing an
instruction stream across many ALUs

SIMD processing
Single instruction, multiple data

Same instruction broadcast to all ALUs
Executed in parallel on all ALUs

Fetch/
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

Execution Context

 CMU 15-769, Fall 2016

Scalar program

ld			r0,	addr[r1]

mul		r1,	r0,	r0

mul		r1,	r1,	r0

...

...

...

...

...	

...

st			addr[r2],	r0

void	sinx(int	N,	int	terms,	float*	x,	float*	result)	

{	

			for	(int	i=0;	i<N;	i++)	

			{	

				float	value	=	x[i];	

				float	numer	=	x[i]	*	x[i]	*	x[i];	

				int	denom	=	6;		//	3!	

				int	sign	=	-1;	

				for	(int	j=1;	j<=terms;	j++)	

				{		

							value	+=	sign	*	numer	/	denom;	

							numer	*=	x[i]	*	x[i];	

							denom	*=	(2*j+2)	*	(2*j+3);	

							sign	*=	-1;	

						}	

						result[i]	=	value;	

			}	

}

Original compiled program:

Processes one array element using scalar
instructions on scalar registers (e.g., 32-bit floats)

 CMU 15-769, Fall 2016

Vector program (using AVX intrinsics)
#include	<immintrin.h>	

void	sinx(int	N,	int	terms,	float*	x,	float*	sinx)	

{	

			float	three_fact	=	6;		//	3!		

			for	(int	i=0;	i<N;	i+=8)	

			{	

							__m256	origx	=	_mm256_load_ps(&x[i]);	

				__m256	value	=	origx;	

				__m256	numer	=	_mm256_mul_ps(origx,	_mm256_mul_ps(origx,	origx));	

				__m256	denom	=	_mm256_broadcast_ss(&three_fact);	

				int	sign	=	-1;	

				for	(int	j=1;	j<=terms;	j++)	

				{		

							//	value	+=	sign	*	numer	/	denom	

							__m256	tmp	=	_mm256_div_ps(_mm256_mul_ps(_mm256_broadcast_ss(sign),numer),denom);	

							value	=	_mm256_add_ps(value,	tmp);	

							numer	=	_mm256_mul_ps(numer,	_mm256_mul_ps(origx,	origx));	

							denom	=	_mm256_mul_ps(denom,	_mm256_broadcast_ss((2*j+2)	*	(2*j+3)));	

							sign	*=	-1;	

						}	

						_mm256_store_ps(&sinx[i],	value);	

			}	

}

vloadps		xmm0,	addr[r1]

vmulps			xmm1,	xmm0,	xmm0

vmulps			xmm1,	xmm1,	xmm0
...
...
...
...
...	

...
vstoreps		addr[xmm2],	xmm0

Compiled program:

Processes eight array elements
simultaneously using vector
instructions on 256-bit vector registers

 CMU 15-769, Fall 2016

16 SIMD cores: 128 elements in parallel

16 cores, 128 ALUs, 16 simultaneous instruction streams

 CMU 15-418/618, Spring 2016 CMU 15-418/618, Spring 2016

 CMU 15-418/618, Spring 2016 CMU 15-418/618, Spring 2016

 CMU 15-769, Fall 2016

Data-parallel expression
void	sinx(int	N,	int	terms,	float*	x,	float*	result)	

{	

			//	declare	independent	loop	iterations	

			forall	(int	i	from	0	to	N-1)	

			{	

				float	value	=	x[i];	

				float	numer	=	x[i]	*	x[i]	*	x[i];	

				int	denom	=	6;		//	3!	

				int	sign	=	-1;	

				for	(int	j=1;	j<=terms;	j++)	

				{		

							value	+=	sign	*	numer	/	denom	

							numer	*=	x[i]	*	x[i];	

							denom	*=	(2*j+2)	*	(2*j+3);	

							sign	*=	-1;	

						}	

						result[i]	=	value;	

			}	

}

Compiler understands loop iterations
are independent, and that same loop
body will be executed on a large
number of data elements.

Abstraction facilitates automatic
generation of both multi-core parallel
code, and vector instructions to make
use of SIMD processing capabilities
within a core.

(in Kayvon’s fictitious data-parallel language)

 CMU 15-769, Fall 2016

What about conditional execution?

ALU 1 ALU 2 . . . ALU 8. . .
Time (clocks) 2 . . . 1 . . . 8

if	(x	>	0)	{

}	else	{

}

<unconditional	code>

<resume	unconditional	code>

float	tmp	=	exp(x,5.f);	

tmp	*=	kMyConst1;	

x	=	tmp	+	kMyConst2;		

float	tmp	=	kMyConst1;		

x	=	2.f	*	tmp;

float	x	=	A[i];

result[i]	=	x;

(assume logic below is to be executed for each
element in input array ‘A’, producing output into
the array ‘result’)

 CMU 15-769, Fall 2016

What about conditional execution?

ALU 1 ALU 2 . . . ALU 8. . .
Time (clocks) 2 . . . 1 . . . 8

if	(x	>	0)	{

}	else	{

}

<unconditional	code>

<resume	unconditional	code>

float	tmp	=	exp(x,5.f);	

tmp	*=	kMyConst1;	

x	=	tmp	+	kMyConst2;		

float	tmp	=	kMyConst1;		

x	=	2.f	*	tmp;

T T T F FF F F
float	x	=	A[i];

result[i]	=	x;

(assume logic below is to be executed for each
element in input array ‘A’, producing output into
the array ‘result’)

 CMU 15-769, Fall 2016

Mask (discard) output of ALU

ALU 1 ALU 2 . . . ALU 8. . .
Time (clocks) 2 . . . 1 . . . 8

if	(x	>	0)	{

}	else	{

}

<unconditional	code>

<resume	unconditional	code>

T T T F FF F F

Not all ALUs do useful work!

Worst case: 1/8 peak performance

float	tmp	=	exp(x,5.f);	

tmp	*=	kMyConst1;	

x	=	tmp	+	kMyConst2;		

float	tmp	=	kMyConst1;		

x	=	2.f	*	tmp;

float	x	=	A[i];

result[i]	=	x;

(assume logic below is to be executed for each
element in input array ‘A’, producing output into
the array ‘result’)

 CMU 15-769, Fall 2016

After branch: continue at full performance

ALU 1 ALU 2 . . . ALU 8. . .
Time (clocks) 2 . . . 1 . . . 8

if	(x	>	0)	{

}	else	{

}

<unconditional	code>

<resume	unconditional	code>

T T T F FF F F
float	tmp	=	exp(x,5.f);	

tmp	*=	kMyConst1;	

x	=	tmp	+	kMyConst2;		

float	tmp	=	kMyConst1;		

x	=	2.f	*	tmp;

float	x	=	A[i];

result[i]	=	x;

(assume logic below is to be executed for each
element in input array ‘A’, producing output into
the array ‘result’)

 CMU 15-769, Fall 2016

Example: Intel Core i7
4 cores
8 SIMD ALUs per core
(AVX instructions)

 CMU 15-418/618, Spring 2016

Fetch/
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

Execution Context

 CMU 15-418/618, Spring 2016

Fetch/
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

Execution Context

 CMU 15-418/618, Spring 2016

Fetch/
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

Execution Context

 CMU 15-418/618, Spring 2016

Fetch/
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

Execution Context

 CMU 15-769, Fall 2016

Hardware multi-threading

 CMU 15-769, Fall 2016

Terminology
▪ Memory latency

- The amount of time for a memory request (e.g., load, store) from a
processor to be serviced by the memory system

- Example: 100 cycles, 100 nsec

▪ Memory bandwidth
- The rate at which the memory system can provide data to a processor
- Example: 20 GB/s

 CMU 15-769, Fall 2016

Stalls
▪ A processor “stalls” when it cannot run the next instruction in

an instruction stream because of a dependency on a previous
instruction.

▪ Accessing memory is a major source of stalls
ld	r0	mem[r2]	

ld	r1	mem[r3]	

add	r0,	r0,	r1	

▪ Memory access times ~ 100’s of cycles
- Memory “access time” is a measure of latency

Dependency: cannot execute ‘add’ instruction until data at mem[r2] and
mem[r3] have been loaded from memory

 CMU 15-769, Fall 2016

25 GB/sec

L3 cache
(8 MB)

L1 cache
(32 KB)

L2 cache
(256 KB)

L1 cache
(32 KB)

L2 cache
(256 KB)

. . .

Memory
DDR3 DRAM

(Gigabytes)

Core 1

Core N

Review: why do modern processors have caches?

 CMU 15-769, Fall 2016

Caches reduce length of stalls (reduce latency)
Processors run efficiently when data is resident in caches

Caches reduce memory access latency *

25 GB/sec

L3 cache
(8 MB)

L1 cache
(32 KB)

L2 cache
(256 KB)

L1 cache
(32 KB)

L2 cache
(256 KB)

. . .

Memory
DDR3 DRAM

(Gigabytes)

Core 1

Core N

* Caches also provide high bandwidth data transfer to CPU

 CMU 15-769, Fall 2016

Prefetching reduces stalls (hides latency)
▪ All modern CPUs have logic for prefetching data into caches

- Dynamically analyze program’s access patterns, predict what it will access soon

▪ Reduces stalls since data is resident in cache when accessed

predict	value	of	r2,	initiate	load	

predict	value	of	r3,	initiate	load	

...	

...		

...	

...	

...	

...	

ld	r0	mem[r2]	

ld	r1	mem[r3]	

add	r0,	r0,	r1

data arrives in cache

data arrives in cache

Note: Prefetching can also reduce
performance if the guess is wrong
(hogs bandwidth, pollutes caches)

(more detail later in course)

These loads are cache hits

 CMU 15-769, Fall 2016

Multi-threading reduces stalls
▪ Idea: interleave processing of multiple threads on the same

core to hide stalls

▪ Like prefetching, multi-threading is a latency hiding, not a
latency reducing technique

 CMU 15-769, Fall 2016

Hiding stalls with multi-threading
Time

Thread 1
Elements 0 … 7

Fetch/
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

1 Core (1 thread)

Exec Ctx

 CMU 15-769, Fall 2016

Hiding stalls with multi-threading
Time

Thread 2
Elements 8 … 15

Thread 3
Elements 16 … 23

Thread 4
Elements 24 … 31

1 2 3 4

Thread 1
Elements 0 … 7

Fetch/
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

1 2

3 4

1 Core (4 hardware threads)

 CMU 15-769, Fall 2016

Hiding stalls with multi-threading
Time

1 2 3 4

Stall

Runnable

Fetch/
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

1 2

3 4

1 Core (4 hardware threads)

Thread 2
Elements 8 … 15

Thread 3
Elements 16 … 23

Thread 4
Elements 24 … 31

Thread 1
Elements 0 … 7

 CMU 15-769, Fall 2016

Hiding stalls with multi-threading
Time

1 2 3 4

Stall

Runnable

Stall

Runnable

Done!

Stall

Runnable

Stall

Runnable
Done!

Fetch/
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

1 2

3 4

1 Core (4 hardware threads)

Thread 2
Elements 8 … 15

Thread 3
Elements 16 … 23

Thread 4
Elements 24 … 31

Thread 1
Elements 0 … 7

 CMU 15-769, Fall 2016

Throughput computing trade-off
Time

Stall

Runnable

Done!

Key idea of throughput-oriented systems:
Potentially increase time to complete work by any
one any one thread, in order to increase overall
system throughput when running multiple threads.

During this time, this thread is runnable, but it is not being executed
by the processor. (The core is running some other thread.)

Thread 2
Elements 8 … 15

Thread 3
Elements 16 … 23

Thread 4
Elements 24 … 31

Thread 1
Elements 0 … 7

CMU 15-769, Fall 2016

 CMU 15-418/618, Spring 2016

. . .

. . .

 CMU 15-418/618, Spring 2016

. . .

. . .

 CMU 15-418/618, Spring 2016

. . .

. . .

 CMU 15-418/618, Spring 2016

. . .

. . .

 CMU 15-418/618, Spring 2016

. . .

. . .

 CMU 15-418/618, Spring 2016

. . .

. . .

 CMU 15-418/618, Spring 2016

. . .

. . .

 CMU 15-418/618, Spring 2016

. . .

. . .

 CMU 15-418/618, Spring 2016

. . .

. . .

 CMU 15-418/618, Spring 2016

. . .

. . .

 CMU 15-418/618, Spring 2016

. . .

. . .

 CMU 15-418/618, Spring 2016

. . .

. . .

 CMU 15-418/618, Spring 2016

. . .

. . .

 CMU 15-418/618, Spring 2016

. . .

. . .

 CMU 15-418/618, Spring 2016

. . .

. . .

 CMU 15-418/618, Spring 2016

. . .

. . .

L2 Cache (2 MB)

GPU memory
(DDR5 DRAM)

224 GB/sec

NVIDIA GTX 980 (2014)
1.1 GHz clock

16 SMM “cores” per chip

16 x 128 = 2,048 SIMD mul-add ALUs
 = 4.6 TFLOPs

64-way multi-threading per SMM

32-SIMD execution

Translating to CUDA/OpenCL-speak for those familiar with programming GPUs:
1 warp = 32 CUDA threads
64 warps per SMM
16 x 64 = 1024 interleaved warps per chip (32,768 CUDA threads/chip, a.k.a. “32K pixels at once”)

(1 warp ~ hardware thread, 1 CUDA thread ~ 1 SIMD vector lane)

 CMU 15-769, Fall 2016

Another example:
for review and to check your understanding

(if you understand the following sequence you understand this lecture)

 CMU 15-769, Fall 2016

Running code on a simple processor

void	sinx(int	N,	int	terms,	float*	x,	float*	result)	

{	

			for	(int	i=0;	i<N;	i++)	

			{	

				float	value	=	x[i];	

				float	numer	=	x[i]	*	x[i]	*	x[i];	

				int	denom	=	6;		//	3!	

				int	sign	=	-1;	

				for	(int	j=1;	j<=terms;	j++)	

				{		

							value	+=	sign	*	numer	/	denom;	

							numer	*=	x[i]	*	x[i];	

							denom	*=	(2*j+2)	*	(2*j+3);	

							sign	*=	-1;	

						}	

						result[i]	=	value;	

			}	

}

My very simple program:
compute sin(x) using Taylor expansion

Fetch/
Decode

Execution
Context

ALU
(Execute)

My very simple processor:
completes one instruction per clock

 CMU 15-769, Fall 2016

Review: superscalar execution

void	sinx(int	N,	int	terms,	float*	x,	float*	result)	

{	

			for	(int	i=0;	i<N;	i++)	

			{	

				float	value	=	x[i];	

				float	numer	=	x[i]	*	x[i]	*	x[i];	

				int	denom	=	6;		//	3!	

				int	sign	=	-1;	

				for	(int	j=1;	j<=terms;	j++)	

				{		

							value	+=	sign	*	numer	/	denom;	

							numer	*=	x[i]	*	x[i];	

							denom	*=	(2*j+2)	*	(2*j+3);	

							sign	*=	-1;	

						}	

						result[i]	=	value;	

			}	

}

Unmodified program

Execution
Context

My single core, superscalar processor:
executes up to two instructions per clock

from a single instruction stream.

Fetch/
Decode

Exec
1

Fetch/
Decode

Exec
2

Independent operations in
instruction stream

(They are detected by the processor
at run-time and may be executed in
parallel on execution units 1 and 2)

 CMU 15-769, Fall 2016

Review: multi-core execution (two cores)
Modify program to create two threads of

control (two instruction streams)
My dual-core processor:

executes one instruction per clock
from an instruction stream on each core.

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

typedef	struct	{	

			int	N;	

			int	terms;	

			float*	x;	

			float*	result;	

}	my_args;	

void	parallel_sinx(int	N,	int	terms,	float*	x,	float*	result)	

{	

				pthread_t	thread_id;	

				my_args	args;	

				args.N	=	N/2;	

				args.terms	=	terms;	

				args.x	=	x;	

				args.result	=	result;	

				pthread_create(&thread_id,	NULL,	my_thread_start,	&args);	//	launch	thread			

				sinx(N	-	args.N,	terms,	x	+	args.N,	result	+	args.N);	//	do	work	

				pthread_join(thread_id,	NULL);	

}	

void	my_thread_start(void*	thread_arg)	

{	

			my_args*	thread_args	=	(my_args*)thread_arg;	

			sinx(args->N,	args->terms,	args->x,	args->result);	//	do	work	

}

 CMU 15-769, Fall 2016

Review: multi-core + superscalar execution
Modify program to create two threads of

control (two instruction streams)
My superscalar dual-core processor:

executes up to two instructions per clock
from an instruction stream on each core.

Execution
Context

typedef	struct	{	

			int	N;	

			int	terms;	

			float*	x;	

			float*	result;	

}	my_args;	

void	parallel_sinx(int	N,	int	terms,	float*	x,	float*	result)	

{	

				pthread_t	thread_id;	

				my_args	args;	

				args.N	=	N/2;	

				args.terms	=	terms;	

				args.x	=	x;	

				args.result	=	result;	

				pthread_create(&thread_id,	NULL,	my_thread_start,	&args);	//	launch	thread			

				sinx(N	-	args.N,	terms,	x	+	args.N,	result	+	args.N);	//	do	work	

				pthread_join(thread_id,	NULL);	

}	

void	my_thread_start(void*	thread_arg)	

{	

			my_args*	thread_args	=	(my_args*)thread_arg;	

			sinx(args->N,	args->terms,	args->x,	args->result);	//	do	work	

}

Fetch/
Decode

Exec
1

Fetch/
Decode

Exec
2

Execution
Context

Fetch/
Decode

Exec
1

Fetch/
Decode

Exec
2

 CMU 15-769, Fall 2016

Review: multi-core (four cores)
Modify program to create many threads of control:

recall Kayvon’s fictitious language
My quad-core processor:

executes one instruction per clock
from an instruction stream on each core.

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

void	sinx(int	N,	int	terms,	float*	x,	float*	result)	

{	

			//	declare	independent	loop	iterations	

			forall	(int	i	from	0	to	N-1)		

			{	

				float	value	=	x[i];	

				float	numer	=	x[i]	*	x[i]	*	x[i];	

				int	denom	=	6;		//	3!	

				int	sign	=	-1;	

				for	(int	j=1;	j<=terms;	j++)	

				{		

							value	+=	sign	*	numer	/	denom	

							numer	*=	x[i]	*	x[i];	

							denom	*=	(2*j+2)	*	(2*j+3);	

							sign	*=	-1;	

						}	

						result[i]	=	value;	

			}	

}

 CMU 15-769, Fall 2016

Review: four, 8-wide SIMD cores
Observation: program must execute many iterations of the same loop body.
Optimization: share instruction stream across execution of multiple
iterations (single instruction multiple data = SIMD) My SIMD quad-core processor:

executes one 8-wide SIMD instruction per clock
from an instruction stream on each core.

Fetch/
Decode

Execution
Context

void	sinx(int	N,	int	terms,	float*	x,	float*	result)	

{	

			//	declare	independent	loop	iterations	

			forall	(int	i	from	0	to	N-1)		

			{	

				float	value	=	x[i];	

				float	numer	=	x[i]	*	x[i]	*	x[i];	

				int	denom	=	6;		//	3!	

				int	sign	=	-1;	

				for	(int	j=1;	j<=terms;	j++)	

				{		

							value	+=	sign	*	numer	/	denom	

							numer	*=	x[i]	*	x[i];	

							denom	*=	(2*j+2)	*	(2*j+3);	

							sign	*=	-1;	

						}	

						result[i]	=	value;	

			}	

}

Fetch/
Decode

Execution
Context

Fetch/
Decode

Execution
Context

Fetch/
Decode

Execution
Context

 CMU 15-769, Fall 2016

Review: four SIMD, multi-threaded cores
Observation: memory operations have very long latency
Solution: hide latency of loading data for one iteration by
executing arithmetic instructions from other iterations
void	sinx(int	N,	int	terms,	float*	x,	float*	result)	

{	

			//	declare	independent	loop	iterations	

			forall	(int	i	from	0	to	N-1)		

			{	

				float	value	=	x[i];	

				float	numer	=	x[i]	*	x[i]	*	x[i];	

				int	denom	=	6;		//	3!	

				int	sign	=	-1;	

				for	(int	j=1;	j<=terms;	j++)	

				{		

							value	+=	sign	*	numer	/	denom	

							numer	*=	x[i]	*	x[i];	

							denom	*=	(2*j+2)	*	(2*j+3);	

							sign	*=	-1;	

						}	

						result[i]	=	value;	

			}	

}

Fetch/
DecodeMemory load

Memory store

Execution
Context

Execution
Context

Fetch/
Decode

Execution
Context

Execution
Context

Fetch/
Decode

Execution
Context

Execution
Context

Fetch/
Decode

Execution
Context

Execution
Context

My multi-threaded, SIMD quad-core processor:
executes one SIMD instruction per clock

from one instruction stream on each core. But
can switch to processing the other instruction

stream when faced with a stall.

 CMU 15-769, Fall 2016

Summary: four superscalar, SIMD, multi-threaded cores

Execution
Context

Execution
Context

Fetch/
Decode

Fetch/
Decode

SIMD Exec 2

Exec 1

Execution
Context

Execution
Context

Fetch/
Decode

Fetch/
Decode

SIMD Exec 2

Exec 1

Execution
Context

Execution
Context

Fetch/
Decode

Fetch/
Decode

SIMD Exec 2

Exec 1

Execution
Context

Execution
Context

Fetch/
Decode

Fetch/
Decode

SIMD Exec 2

Exec 1

My multi-threaded, superscalar, SIMD quad-core processor:
executes up to two instructions per clock from one instruction stream on each core

(in this example: one SIMD instruction + one scalar instruction).
Processor can switch to execute the other instruction stream when faced with stall.

 CMU 15-769, Fall 2016

Connecting it all together
Kayvon’s simple quad-core processor:

Execution
Context

Execution
Context

Fetch/
Decode

Fetch/
Decode

SIMD Exec 2

Exec 1

L1 Cache

L2 Cache

Execution
Context

Execution
Context

Fetch/
Decode

Fetch/
Decode

SIMD Exec 2

Exec 1

L1 Cache

L2 Cache

Execution
Context

Execution
Context

Fetch/
Decode

Fetch/
Decode

SIMD Exec 2

Exec 1

L1 Cache

L2 Cache

Execution
Context

Execution
Context

Fetch/
Decode

Fetch/
Decode

SIMD Exec 2

Exec 1

L1 Cache

L2 Cache

L3 Cache
Memory

Controller

Memory Bus
(to DRAM)

On-chip
interconnect

Four cores, two-way multi-threading per core (max eight threads active on chip at once), up to two
instructions per clock per core (one of those instructions is 8-wide SIMD)

 CMU 15-769, Fall 2016

Thought experiment
▪ You write a C application that spawns two pthreads
▪ The application runs on the processor shown below

- Two cores, two-execution contexts per core, up to instructions per clock, one
instruction is an 8-wide SIMD instruction.

Execution
Context

Execution
Context

Fetch/
Decode

Fetch/
Decode

SIMD Exec 2

Exec 1

Execution
Context

Execution
Context

Fetch/
Decode

Fetch/
Decode

SIMD Exec 2

Exec 1

▪ Question: “who” is responsible for mapping your pthreads to the
processor’s thread execution contexts?
Answer: the operating system

▪ Question: If you were the OS, how would to assign the two threads to
the four available execution contexts?

▪ Another question: How would you
assign threads to execution contexts
if your C program spawned five
pthreads?

 CMU 15-769, Fall 2016

Another thought experiment
Task: element-wise multiplication of two vectors A and B
Assume vectors contain millions of elements

- Load input A[i]
- Load input B[i]
- Compute A[i] × B[i]
- Store result into C[i]

=

A

B

C

×

~ <1% efficiency… but 10x faster than quad-core CPU!
(4 GHz Core i7 Gen 6 quad-core CPU connected to 34 GB/sec memory bus)

Three memory operations (12 bytes) for every MUL
NVIDIA GTX 1080 GPU can do 2560 MULs per clock (@ 1.6 GHz)
Need ~50 TB/sec of bandwidth to keep functional units busy (only have 320 GB/sec)

 CMU 15-769, Fall 2016

Bandwidth limited!
If processors request data at too high a rate, the memory system cannot keep up.

No amount of latency hiding helps this.

Bandwidth is a critical resource

Overcoming bandwidth limits are a common challenge for
application developers on throughput-optimized systems.

 CMU 15-769, Fall 2016

Hardware specialization

CMU 15-769, Fall 2016

Why does energy efficiency matter?
▪ General in mobile processing rule: the longer a task runs the less power it can use

- Processor’s power consumption is limited by heat generated (efficiency is
required for more than just maximizing battery life)

Po
we

r

Time

Electrical limit: max power that can be supplied to chip

Die temp: (junction temp -- Tj): chip becomes unreliable above this temp
(chip can run at high power for short period of time until chip heats to Tj)

Case temp: mobile device gets too hot for user to comfortably hold
(chip is at suitable operating temp, but heat is dissipating into case)

Battery life: chip and case are cool, but want to reduce power
consumption to sustain long battery life for given task

Slide credit: adopted from original slide from M. Shebanow: HPG 2013 keynote

iPhone 6 battery: 7 watt-hours
9.7in iPad Pro battery: 28 watt-hours
15in Macbook Pro: 99 watt-hours

CMU 15-769, Fall 2016

Efficiency benefits of compute specialization
▪ Rules of thumb: compared to high-quality C code on CPU...

▪ Throughput-maximized processor architectures: e.g., GPU cores
- Approximately 10x improvement in perf / watt
- Assuming code maps well to wide data-parallel execution and is compute bound

▪ Fixed-function ASIC (“application-specific integrated circuit”)
- Can approach 100-1000x or greater improvement in perf/watt
- Assuming code is compute bound and

and is not floating-point math

[Source: Chung et al. 2010 , Dally 08] [Figure credit Eric Chung]

CMU 15-769, Fall 2016

Hardware specialization increases efficiency

[Chung et al. MICRO 2010]
lg2(N) (data set size)

FPGA
GPUs

FPGA
GPUs

lg2(N) (data set size)

ASIC delivers same performance
as one CPU core with ~ 1/1000th
the chip area.

GPU cores: ~ 5-7 times more area
efficient than CPU cores.

ASIC delivers same performance
as one CPU core with only ~
1/100th the power.

CMU 15-769, Fall 2016

Modern systems use ASICs for…
▪ Image/video encode/decode (e.g., H.264, JPG)
▪ Audio recording/playback
▪ Voice “wake up” (e.g., Ok Google)
▪ Camera “RAW” processing: processing data acquired by image

sensor into images that are pleasing to humans
▪ Many 3D graphics tasks (rasterization, texture mapping,

occlusion using the Z-buffer)

▪ Significant modern interest in ASICS for deep network
evaluation (e.g., Google’s Tensor Processing Unit)

CMU 15-769, Fall 2016

Qualcomm Hexagon DSP
▪ Originally used for audio/LTE support on Qualcomm SoC’s
▪ Multi-threaded, VLIW DSP
▪ Third major programmable unit on Qualcomm SoCs

- Multi-core CPU
- Multi-core GPU (Adreno)
- Hexagon DSP

7
Qualcomm Technologies, Inc. All Rights Reserved

Instruction Unit

VLIW: Area & power efficient multi-issue

Data Unit
(Load/
Store/
ALU)

Data Unit
(Load/
Store/
ALU)

Execution
Unit

(64-bit
Vector)

Execution
Unit

(64-bit
Vector)

Data Cache

L2
Cache
/ TCM

Instruction
Cache

• Dual 64-bit
load/store
units

• Also 32-bit
ALU

Variable sized
instruction packets
(1 to 4 instructions
per Packet)

• Dual 64-bit execution units
• Standard 8/16/32/64bit data

types
• SIMD vectorized MPY / ALU

/ SHIFT, Permute, BitOps
• Up to 8 16b MAC/cycle
• 2 SP FMA/cycle

Register File
Register File

Register File/Thread

• Unified 32x32bit
General Register
File is best for
compiler.

• No separate Address
or Accum Regs

• Per-Thread

Device
DDR

Memory

7
Qualcomm Technologies, Inc. All Rights Reserved

Instruction Unit

VLIW: Area & power efficient multi-issue

Data Unit
(Load/
Store/
ALU)

Data Unit
(Load/
Store/
ALU)

Execution
Unit

(64-bit
Vector)

Execution
Unit

(64-bit
Vector)

Data Cache

L2
Cache
/ TCM

Instruction
Cache

• Dual 64-bit
load/store
units

• Also 32-bit
ALU

Variable sized
instruction packets
(1 to 4 instructions
per Packet)

• Dual 64-bit execution units
• Standard 8/16/32/64bit data

types
• SIMD vectorized MPY / ALU

/ SHIFT, Permute, BitOps
• Up to 8 16b MAC/cycle
• 2 SP FMA/cycle

Register File
Register File

Register File/Thread

• Unified 32x32bit
General Register
File is best for
compiler.

• No separate Address
or Accum Regs

• Per-Thread

Device
DDR

Memory

CMU 15-769, Fall 2016

Summary: choosing the right tool for the job

Energy-optimized CPU
Throughput-oriented

processor (GPU)

~10X more efficient

Credit Pat Hanrahan for this taxonomy

ASIC

~100-1000X
more efficient

Video encode/decode,
Audio playback,

Camera RAW processing,
neural nets (future?)

Programmable DSP

7
Qualcomm Technologies, Inc. All Rights Reserved

Instruction Unit

VLIW: Area & power efficient multi-issue

Data Unit
(Load/
Store/
ALU)

Data Unit
(Load/
Store/
ALU)

Execution
Unit

(64-bit
Vector)

Execution
Unit

(64-bit
Vector)

Data Cache

L2
Cache
/ TCM

Instruction
Cache

• Dual 64-bit
load/store
units

• Also 32-bit
ALU

Variable sized
instruction packets
(1 to 4 instructions
per Packet)

• Dual 64-bit execution units
• Standard 8/16/32/64bit data

types
• SIMD vectorized MPY / ALU

/ SHIFT, Permute, BitOps
• Up to 8 16b MAC/cycle
• 2 SP FMA/cycle

Register File
Register File

Register File/Thread

• Unified 32x32bit
General Register
File is best for
compiler.

• No separate Address
or Accum Regs

• Per-Thread

Device
DDR

Memory

FPGA/Future
reconfigurable logic

~100X???
(jury still out)

Easiest to program Difficult to program
(making it easier is

active area of research)

Not programmable +
costs 10-100’s millions
of dollars to design /

verify / create

 CMU 15-769, Fall 2016

Data movement has high energy cost
▪ Rule of thumb in mobile system design: always seek to reduce amount of

data transferred from memory
- Earlier in class we discussed minimizing communication to reduce stalls (poor performance).

Now, we wish to reduce communication to reduce energy consumption

▪ “Ballpark” numbers
- Integer op: ~ 1 pJ *
- Floating point op: ~20 pJ *
- Reading 64 bits from small local SRAM (1mm away on chip): ~ 26 pJ
- Reading 64 bits from low power mobile DRAM (LPDDR): ~1200 pJ

▪ Implications
- Reading 10 GB/sec from memory: ~1.6 watts
- Entire power budget for mobile GPU: ~1 watt (remember phone is also running CPU, display,

radios, etc.)
- iPhone 6 battery: ~7 watt-hours (note: my Macbook Pro laptop: 99 watt-hour battery)
- Exploiting locality matters!!!

* Cost to just perform the logical operation, not counting overhead of instruction decode, load data from registers, etc.

[Sources: Bill Dally (NVIDIA), Tom Olson (ARM)]

Suggests that recomputing values,
rather than storing and reloading
them, is a better answer when
optimizing code for energy efficiency!

CMU 15-769, Fall 2016

Welcome to 15-769!
▪ Make sure you are signed up on Piazza so you get

announcements

▪ Tonight’s reading:
- “The Rise of Mobile Visual Computing Systems”, Fatahalian, IEEE Mobile

Computing 2016
- “The Compute Architecture of Intel Processor Graphics Gen9” - Intel Technical

Report, 2015

CMU 15-769, Fall 2016

More review

 CMU 15-769, Fall 2016

For the rest of this class, know these terms
▪ Multi-core processor
▪ SIMD execution
▪ Coherent control flow
▪ Hardware multi-threading

- Interleaved multi-threading
- Simultaneous multi-threading

▪ Memory latency
▪ Memory bandwidth
▪ Bandwidth bound application
▪ Arithmetic intensity

 CMU 15-769, Fall 2016

Which program performs better?
void	add(int	n,	float*	A,	float*	B,	float*	C)	{	
				for	(int	i=0;	i<n;	i++)	
							C[i]	=	A[i]	+	B[i];					
}	

void	mul(int	n,	float*	A,	float*	B,	float*	C)	{	
				for	(int	i=0;	i<n;	i++)	
							C[i]	=	A[i]	*	B[i];					
}	

float*	A,	*B,	*C,	*D,	*E,	*tmp1,	*tmp2;	

//	assume	arrays	are	allocated	here	

//	compute	E	=	D	+	((A	+	B)	*	C)	
add(n,	A,	B,	tmp1);	
mul(n,	tmp1,	C,	tmp2);	
add(n,	tmp2,	D,	E);

void	fused(int	n,	float*	A,	float*	B,	float*	C,	float*	D,	float*	E)	{	
				for	(int	i=0;	i<n;	i++)	
							E[i]	=	D[i]	+	(A[i]	+	B[i])	*	C[i];					
}	

//	compute	E	=	D	+	(A	+	B)	*	C	
fused(n,	A,	B,	C,	D,	E);

Program 1

Program 2

(Note: an answer probably needs
to state its assumptions.)

 CMU 15-769, Fall 2016

More thought questions
void	add(int	n,	float*	A,	float*	B,	float*	C)	{	
				for	(int	i=0;	i<n;	i++)	
							C[i]	=	A[i]	+	B[i];					
}	

void	mul(int	n,	float*	A,	float*	B,	float*	C)	{	
				for	(int	i=0;	i<n;	i++)	
							C[i]	=	A[i]	*	B[i];					
}	

float*	A,	*B,	*C,	*D,	*E,	*tmp1,	*tmp2;	

//	assume	arrays	are	allocated	here	

//	compute	E	=	D	+	((A	+	B)	*	C)	
add(n,	A,	B,	tmp1);	
mul(n,	tmp1,	C,	tmp2);	
add(n,	tmp2,	D,	E);

void	fused(int	n,	float*	A,	float*	B,	float*	C,	float*	D,	float*	E)	{	
				for	(int	i=0;	i<n;	i++)	
							E[i]	=	D[i]	+	(A[i]	+	B[i])	*	C[i];					
}	

//	compute	E	=	D	+	(A	+	B)	*	C	
fused(n,	A,	B,	C,	D,	E);

Program 1

Program 2

Which code structuring style
would you rather write?

Consider running either of these
programs: would CPU support for
hardware-multi-threading help
performance?

