Lecture 1:

Course Introduction +

Review of Throughput Hardware Concepts

Visual Computing Systems
CMU 15-769, Fall 2016

Visual computing
2D/3D graphics

I

T ‘R’\@ X | 4t
o [f oF |eee
é’é%ﬁgﬂ‘_‘
O.¢0.....0008.6068 .

Image processing / computational photography

g person 0.983"
. ._Ape|

(MU 15-769, Fall 2016

Visual Computing Systems — Some History

lvan Sutherland’s Sketchpad on MIT TX-2 (1962)

The frame buffer

16 2K shift registers (640 x 486 x 8 bits)

Shoup’s SuperPaint (PARC1972-73)

0 .

¥ P . ’ ‘ v
(/ i . o5 a g
-.A.:: Jdi; 17«.«... .uq\

urf.x.—'uﬁ .s..n.“ .\.pnﬂah.‘ﬁ.m“f&.A '

pas) d

? .:r. L...axxuﬁ.: ﬂ4§...quﬁ.:§?

o b.-

al4-.&;-_”4 ‘-"w.r r/”‘".ln.—. .p
TN 12 v ;
. .1 4 _’r .h‘ “.-'.o...lo.'/

T -.c»ul-‘.l-.ﬁls
oo A 'y
\”\ _tu. ¥ ,M.“..-ﬂ
-*.: .h«‘::",....\ .q
.v::aqri/ .0 iy .-.‘. I\.ka.q
wIP AN N v s
:.Jm \f.a ...04:::\#
A...-k Vi 5lf'o'.
..A - .J\ or'w-ﬂonu- (:.4

_ l.“ ..\@.:.-a... T ..g.oo.o..

.‘... T IR

. -.;:, BT 4..“» aﬂﬁplﬂ‘wn S.-....‘ﬂ\ skt 4

- -

LR
:». - -
- - - —— -

TN g e
oh‘or. RN N LR rr.o.m <&/
L T TR
Weh v o B %—
v o 2L . . ‘ ‘ ;
(L LA oy dv;.
p"l *’304-‘ "
Mﬂ 31:534“
WES e g vy

Gl sty , ..
A - N S
s ’ . o)
-..'w..id:\....\ LT g -y g

LT L D OWreR T ™ e - - '.

.

Th e fra m e b Uffe r 16 2K shift registers (640 x 486 x 8 bits)
Shoup’s SuperPaint (PARC1972-73)

SARALAARASR

\l
: 6 \\‘\\!(ltr -
Y C O AAARARRERN | | ——

| *»
{

nnln'nnni]é} i m’

Xerox Alto (1973)

Ciben Wiy

i, uf ‘: "f(v

EL e (e

A '#'-*#:‘sx;mu{*fsj Grd ,"z.rm_xg.#;,w-cxﬁmiﬁ ; _{: i

: : 14
'A% (s TP
g 314 Dot Sl LA

UL
WAL
WAL
TTTTTTEUNYATA |,
Wi e i

Bravo (WYSIWYG) 1174181 ALV

Goal: render everything you've ever seen

“Road to Pt. Reyes”
LucasFilm (1983)

Pixar’s Toy Story (1995)

“We take an average of three hours to draw a single frame on the fastest computer money can buy.”
- Steve Jobs

Pixel Cell

x-multiplier tree

PUNSUR S——

Gnd Cin Ain Cout A+Cout Clock inputs

- e
y .
|

mjs)f. | s

=] T R R e 2X2 Pixel
-g_-gi-i_i_-m — ., e Cell Array

y-multiplier | FEASmvl] || sl

tree b ~al | R —"-'229?@":5,"

th

Scan

Select
&

Test

Inputs

Control & Test I/O

UNC Pixel Planes (1981), computation-enhanced frame buffer

Ed Clark’s Geometry Engine
(1982)

ASIC for geometric transforms
used in real-time graphics.

i R
A iRk £ HER R
‘F”_*mﬁhwﬁ@-

gt ,_ i 1 A e B
Rl i e o W e Eih{ ‘“‘?
| : . : ST (A o ok

2 lis':- oAb s R Y S T R R SR R R R R R
@ t ,U' 2 #ﬁ*ﬁcﬁ*ﬂﬁ ' BN S LB EGEL SRR GLE,
EE & £

PNt 08 g e e m}w@wm e PR LA e [RS A
e ; ; '?M;.ﬁ-&*&*hﬂ?mﬂf&mn&
R)\:I M‘%m.uv}:llﬂw-ﬁ

ol

TI-
L&

E Ty SRS el |3

] iy - i

:' ! if i %1k Ea

il 2H i e g 13

el 0 0 *‘ﬁf—' t:%g: ,l‘m w*‘ga‘lia,:}fé :; i ?l

ﬁ ﬁ &%ﬁfm #LM‘M’ BELESE.

i sy ﬂsm

R S B i Py U i

\: \[n?ﬁiﬁi'“a %mﬁ%ﬁim

[
o e T

. N e o By ==
T e 1] = L E 5 oy i+
B i b il 2 i
! :_." I :' !!]i i ’Ei & | il
~7s i o1k $iE a4
w = b ks : § Sl e
e oy T 5 4= o =
E L 4 . 4y v ik sl | .
-5 -] em——— | NSRRIt Y -
-'1_] 4
. i 3 i

TN TR T F T T

: B Hebebko bR U ﬁ%&m&ﬁﬁm%&% LR b
PR RN T EA Mh&li&jdtﬂ_ir 31 1.:“5:,.1.; 4 5; ‘|

51 S miioaiaiihs ' mew PSRRI A RIS R :-“.-.-4'-1—‘ ;r{:.‘
: e - : __f“i;hﬁ‘.{.&p&& g

- S e o
- 3t

} 7
b g :
I Th d 2

L3
b i %
S b -
7 et ;
I:

g N B
Tk k[t

SRR - e Al i
SBE B o e DETETRTETE R TR Mikuﬁgﬁmﬂm LELEREL LI ELLEY

A =715 \ iy PSRN muv—n"w—w FE AN GOT Py

i ﬂ#ﬁh‘}ﬂ&%ﬁﬁhn n.-.uu_ﬂ-.. 1"@&.-‘?@ 3

"

=

1LAE GAElERER IR oRsEeETE

: e T g '5.5!1.-1-.-!9*...' r'dm.}v-w.r'hm e B iy |
- il ST L R P A ey o W‘w'ﬁ*-ﬁ--’ |
W T iEEY |
T R F i u*—:
i

gealy

[

¥ i
e)
¢
i
PE b
;

L

bl

e
s,

M

.: .‘l'lil‘lll
waax @ ; z
".ﬂ..i.r @ llllll!lll
-
- ot
g& ,
—e
-llnu..r....
T R ohuicivioin o i o = =

JAW.----

A’llllllll

dfﬂaaaa

r \ -:."..w
" i
" i

- ; so_>:3
.:.:-_.._.l—“x 1 NEILIVL

o,

TV ST

..n_ -.-;.D.t:..u-.nv
g SesEsssBEsERRRORNRED
ML L

ARy

METV AT
XARPON
TV ST

.P ii’i

- <

Clpw o v o v o o o =
e ————

o

LR R ELEERD.

LT -:_3-

SSOL2HET
s-axavanay

T

i860™XP

ABOBLEXP-50
o LIv2305s
SX557

_00:: 1990

. e -
A26S
O o

i
r)
-!f’_

L
A---"‘-_"_--—
y ! ®

T TR Y

IR BaiTA

TR
[

AR
AR
TLARPNON

ELEES
‘_“5

.aw

.. L)
LI L L
IR R A
(R R R R RN R L AR AR
IR R R NN LA

Coia —

S EEZEEEER R
@
IS b b A-Aa b A bt

2-
Eeos v o2
s

207

&
"
!
-7 |
v
i
'

TR y
" S

0

T el

S
All"I

0-3
— ..

T ST
DAY

atihsd s

TV T
DASTOY

- X 1}

WCTW AT
—— -

=

FALLERE-TPC
5112 B3NN

L] -: _

nn.nu':
S-dxarenny
-

dX.098!
o IS

~ 4 = M L T
R R REREERR]

ccwy

ABBRsRXP-SB
o L3%23055

- §X657
801988 1970

1. =

R AEE
b=
‘ o

TV AT
TV ST

=

Z

= ..l:q

intel® -
1860~ XP

ABBBsAXP -

o L3423085 e
—mx-uu

S01988 1999

ITIINS BT

Jurmes
s

LR I

‘5

PR P —

Sessen
®0sescecnnnaee

OOCCOOI..OGOOOOI....

{

[
[V
‘.
DaALa e P

§eriey

TAF20N

HE

e

o
A . . 5
=

"

T8
s

. 5] ’ ABRBLOXP -
Sesnna’s o.oo-o] rucnu"um L
Ssssssans =R : -u 57

. 1988 1999

5GI RealityEngine GE8 board (1993)

Real-time (30 fps) on a NVIDIA Titan X

Unreal Engine Kite Demo (Epic Games 2015)

AR

NVIDIA Titan X GPU
(~ 7 TFLOPs fp32)

~ ASCI Red (top US supercomputer circa 2000)

Modern GPU: heterogeneous multi-core

Tessellate Tessellate

Tessellate Tessellate

Clip/Cull Clip/Cull
Rasterize Rasterize

Clip/Cull Clip/Cull
Rasterize Rasterize

Zbuffer / Zbuffer / Zbuffer /
Blend Blend Blend

Zbuffer / Zbuffer / Zbuffer /
Blend Blend Blend

Scheduler / Work Distributor

Multi-threaded, SIMD cores

Custom circuits for key graphics arithmetic

Custom circuits for HW-assisted graphics-specific DRAM compression
HW logic for scheduling work onto these resources

Domain-specific languages for heterogeneous computing

OpenGL Graphics Pipeline (circa 2007)

Input vertex buffer

Vertex Generation The OpenGL™ Graphics System:
v A Specification

BERRRRREEN 3D vertex stream (Version 1.0)

Mark Segal
Kurt Akeley

Projected Editor:
(Chris Frazier
vertex stream

\4

Primitive Generation

4
BERREREEEE Primitive stream
4

Fragment Generation
(“Rasterization”)

\
* Fragment stream

T

* Fragment stream

image buffer Pixel Operations
(pixels)

Output

Version 1.0 - 1 July 1994

Domain-specific languages for heterogeneous computing

OpenGL Graphics Pipeline (circa 2007)

Input vertex buffer

\ 4
e enah s i uniform sampler2D myTexture; read-only

Y ' ' ir; lobal variables
EEEENEEEEN 3D vertex stream uniform float3 lightDir; g

varying vec3 norm; . ”
, per-element” inputs
varying vec2 uv;

Projected
v I void myFragmentShader ()
Primitive Generation {
* Primitive stream vec3 kd = texture2D(myTexture, uv);
kd *= clamp(dot(lightDir, norm), 0.0, 1.0);
Fragment Generation
(”Rasterization”) return Vec4(kd > 1. 0) 3

4
* Fragment stream J T— per-element output:

M RGBA surface color at pixel

Fragment stream P "
* L fragment shader

image bluffer Pixel Operations (a.k.a kernel function mapped onto
(pixels) input fragment stream)

Output

Generalization beyond graphics:
commodity parallel computing

Brook for GPUs (Buck 2004) | ‘
NVIDIA CUDA (2007) §§§§§§§§§§§§ §§§§§§ éé %éié Bock 2 1

7' F@hViewer

(D Block (1, 1)

MM

NVIDIA. . m--«m»
e ;2 I T I T I

m-;«». 2) mgm 2)

Grid

Block (0, 0) Block(1,0) Block(2, 0)

Current Work Unit

Name: p5218_supervil Name: Anonymous
Progress: 509397 / 25000000 = 2.04% Team: 0

Performance: 236 ns / day Hardware: GeForce 8800M GTS
Time Left: 00d:04h:59m:28s

Goals of visual computing (until recently)

Modeling the real-world in increasingly rich detail: so we
can simulate it (“render everything you've ever seen”)

Depict and organize information to augment human
thought: enable humans to effectively use computing to
create/analyze/interpret/communicate

Key characteristics of visual computing

Requires exceptional levels of efficiency

= Applications turn more ops/watt into new value
= Pack chips full of ALUs (parallel, heterogeneity/specialization are fundamental)
= Applications utilize hardware pipelines very well

Embrace domain-specific programming frameworks

= Achieve high efficiency/productivity
= Today: OpenGL, Halide, game engine frameworks, deep learning frameworks

Aspects of computation are fundamentally approximate
= Manifests as willingness to change algorithms (not approximate HW)

Visual computing — what’s next?

Goals of visual computing (present — future)

To capture everything that can be seen
To enable humans to communicate more effectively

To record and analyze the world’s visual information so
that computers can understand and reason about it

The immediate future: capturing rich visual
information to enhance communication

Capturing pixels to communicate

Ingesting/serving Ingesting/streaming

the world’s photos world’s video

Y A IR T T &:a . Uit e
i vwm “gwmmw ' Rcn o Lot

",I Nar ¥ l’ . ! {?’
o e oy s gy
1; [{AV" N " .8 N ;5 Wi
oy e sl Lad F £
, ‘!-Hrﬂ i v e
:}_. &«w:‘"/]' "'V" " { -
.-"ﬁlv :r_w.‘ \,&‘ w :"\Q" ’ﬂ* y ?Pﬁ-/ ’ Vg
-‘iwem U 'W """ ’ a ﬂ . ‘ '..S: i W' -—m i‘ g
o ,-Q"‘""“a -- 4. “"iﬂ-, u"w PN
: f’*"w oy i PSY - GANGNAM STYLE (Z'e AEH) M/V
2B photo uploads and shares Youtube 2015: 300 hours
p.er day across Facebook sites uploaded per minute [Youtube]
(incl. Instagram+WhatsApp)
[FB2015] Cisco VNI projection:
80-90% of 2019 internet
traffic will be video.

(64% in 2014)

Richer content: beyond a single image

= Example: Apple’s “Live Photos”

= Each photo is not only a single frame, but a few seconds of video before and after the
shutter is clicked

Facebook Live

Broadcasting live from our

red carpet premiere! *
PUBLIC « & ' 9”'! ér I # ‘~

@

L 4
Go Live &

come out? Can’t wait to see it!

Jiwon Choi Love you Rock! You're an
inspiration to us all. You should show us the
red carpet and the rest of the cast.

Kevin Hart joined.

2:45

Acquiring richer content: light fields

EW N AT

Stanford camera array - é
Wilburn [2005] P /’/

Richer content: light fields

Light L16

Lytro lllum

Light field camera: capturing a light field

Object being - X Object being L X
photographed photographed
Camera U
Aperture v
Sensor
2D traditional camera: “4D” light field camera:
measures how much light hits a measures how much light hits point
point on sensor on sensor from a particular direction

[Slide courtesy Ren Ng]

rtesy Ren Ng]

[Slide cou

[Slide courtesy Ren Ng]

[Slide courtesy Ren Ng]

[Slide courtesy Ren Ng]

Sensor industry has large untapped resolution

Full-Frame Sensor 1/3” Sensor
36 Xx24 mm 4.8x3.6 mm
Up to 36 MP Up to 13 MP

4.9 micron pixel 1.12 micron pixel

[Slide courtesy Ren Ng]

Sensor industry has large untapped resolution

ammmmEEEE
an
- -
- ..

..
o'."...... .'.......I.
- .
-e .
.t® *ve
-t -

e -
- LA
.'..".'..lnco...'..’

Full-Frame Sensor
36 X24 mm
688 MP
1.12 micron pixel

Full-Frame Sensor
6x24 mm
Up to 36 MP

4.9 micron pixel
[Slide courtesy Ren Ng]

ixel camera

755 Mp

Lytro Cinema

et
=

Yox Clip Langth =e=s== ax fecerd Length

"

bz}

R

VR output

Example: Google’s JumpVR video

Inputstream: 16 4K GoPro cam{erds

VR creates high resolution requirements

RO

Future “retina” VR display:
57 ppd covering 180°
= 10K x 10K display per eye
= 200 MPixel

RAW data rate @ 120Hz = 72 GB/sec

iIPhone 6: 4.7 in “retina” display:
1.3 MPixel

326 ppi — 57 ppd

[Lanman 2013]

VR: Light field display

Simple idea:
Recreate the same light field that was
present in the scene when it was captured

I. T
il
L LT3 & Y
{128 YT

[R TTR
UL
'll..'

- —
-

p— - -

_ SRR’ beb |
146 x 78 spatial resolution Output of display (prior to optics)
Using TMP microdisplay

Enhancing communication: understanding
Images to improve acquired content

AutoEnhance: Photo “fix up” [Hayes 2007]

2" ENHANCED

3

Similar photos oers Fixed!'

have taken

Summary

We are observing rapid growth in the richness of visual
communication

Sensing the world with higher fidelity to deliver improved
content to humans

Future challenge: recording and analyzing the
world’s visual information, so computers can
understand and reason about it

Capturing everything about the visual world

To understand people
To understand the world around vehicles/drones
To understand cities

Mobile

Continuous (always on)

Exceptionally high resolution

Capture for computers to analyze, not humans to watch

Sensing huuma

n social interactions 1100 2015]

A 3 i CMU Panoptic Studio
7 £ » 480 video cameras (640 x 480 @ 25fps)
i - E Y 116 GPixel video sensor

2 - (2.9 TPixel /sec)

Capturing social interactions

R i‘\ ‘

» \
»
:
»
»
» \
. .
» - .
»
. » . »
- - . -
.
‘I
’
. » . : o
'
» » J o
N
.
x

[Courtesy Yaser Sheikh, Tomas Simon, Hanbyul Joo]

Capturing social interactions

[Courtesy Yaser Sheikh, Tomas Simon, Hanbyul Joo]

Robot navigation depends on low-latency
localization and surrounding object recognition

Under the bonnet

How a self-driving car works

. Signals from GPS (global pos

itioning system)

¥ satellites are combined with readings from

tachometers, altimeters
and gyroscopes to provide
more accurate positioning
g8 than s possible with
§ GPSalone —m o o

Radar
¥ sensor

Ultrasonic sensors may
be used to measure the
position of objects very
close to the vehicle,
such as curbs and other
vehicles when parking

Source: The Economist

Lidar (light detection and ranging)
sensors bounce pulses of light off the
surroundings. These are analysed to
identify lane markings and the

- pdges of roads

The information from all

of the sensors is analysed
by a central computer that
manipulates the steenng,
accelerator and brakes. Its
software must understand
the rules of the road, both
formal and informal

Video cameras detect traffic lights,
read road signs, keep track of the
position of other vehicles and look
out for pedestnans and obstacles
0 —————————— or theroad

Radar sensors monitor the position of other
vehicles nearby. Such sensors are already used
in adaptive cruise-control systems

NVIDIA Drive PX

NVIDIA.

TEGRA X1

otl_ul.'{,?.m.
‘mo -

uunrmm 4
SLHIE,, T

-

0-4;‘.;; ive ;‘

Tegra X1 (1 TFlop fp16 at 1GHz)

...i;-- .
~

7 0 z“"‘t- ,,,",*,‘f,';;,;
CHINEE LT

\vwr

O l!{:§!=

l

m:
o L=

I RENA) . A
= ll i

l“ Ym

(l!"ﬂ L L
o ‘o

NVIDIA.
TEGRA X1 S

;:::m. . @:!"

NMOj -~

. - O.IJC .(:-‘.)‘ a o'y

] . .' -—ea
OH.‘ “ { .' ‘

=~ ..}"\' L ?.. .0.;. ‘“.s."

- 3 o™ »s e ._ -

e = Zr Nl et CF

M fl LR i,

o-" m)-"’
.‘()F lnml. “.. .‘Qr“w

AR requires low-latency localization and
scene object recognition

Making “maps”: pervasive 3D construction

ll
-
g

'}

=444

—

22> M\

it
e ~ 5 MY y
SRS e NP A

[Tamburo 2016]

Smart headlight system

Spatial Light
Modulator

Beamsplitter

\
h By, | |
O\
l\ : .
C : Camera Processor
Mk .
University cs.cmu.edu/smartheadlight

~71000 Hz (1 - 1.5 ms latency)

[Tamburo 2016]

Seeing clearly through precipitation

Idea: Stream Light Between Snowflakes

Goal: High Light Throughput and Accuracy

Illustration adapted from de Charette (ICCP, 2012)

Urban video command center

(Centro de Operacoes Preifetura do Rio de Janeiro)

*éﬁ“s CENTRO DE OPERACOES
_ PREFEITURA DO RIO

e
-

a—

IPLANRIO Zmauell

SENHORES OPER,\DORES: O MUNICIMO ESTA
O/DO TEMPO PARA AS PROKIMAS HORAS DESTASEXTAFEIRA £ DE (CF U CLARD A PARCIALMENTE

-

e

>

(entro Operagdes

e

Overview summary

= Visual computing has always involved a healthy interaction

between architecture, programming systems, and algorithms

— Domain focus has been exceptionally useful for vertical thought
— Willing to throw out old and re-engineer software (new hardware enables

programs that haven’t been written yet!)
— Architects should know the algorithms well, and influence them!

= Visual computing has always challenged computer systems by
its desire to simulate/synthesize complex visual information

= Next 1-2 decades: interpreting the worldwide visual signal

— Acquiring and modeling everything humans would see, to enable computers to

interpret and analyze
— We will continue to take every op (op/Watt) you can give us

Course Logistics

CMU 15-769, Fall 2016

What this course is about

1. The characteristics/requirements of important visual computing workloads
2. Techniques used to achieve efficient system implementations

" VISUAL COMPUTING | agag™PPnoschetuing (" pancinE
WORKLOADS paralelsm ORGANIZATION

Algorithms for 3D graphics, image Exploiting locality _

processing, compression, etc. Minimizing communication E '

|_

~

l

O

010 |0
N
ololo|o

\o olo'o
o olo o
e

S

OnO 0|00
o
olblolololo|oy0
olololololololololo
olo\lojojo|ojoloqo|o

o\'o|o

o

0 0
0.0
=
Q\

High-throughput hardware designs:

\ / \ Parallel and heterogeneous /

" DESIGN OF GOOD ABSTRACTIONS '
FOR VISUAL COMPUTING

choice of programming primitives
_ level of abstraction -

(MU 15-769, Fall 2016

In other words

It is about understanding the fundamental structure of problems
in the visual computing domain, and then leveraging that
understanding to...

To design better algorithms
To build the most efficient hardware to run these applications

To design the right programming systems to make developing new
applications simpler and also highly performant.

CMU 15-769, Fall 2016

What this course is NOT about

m This is not an [OpenGL, CUDA, Open(CL] programming course

= But we will be analyzing and critiquing the design of these systems in detail

- | expect students to pick up familiarity with relevant systems as we go

Many excellent references...

L2)4

OpenGL

Programming Guide
Sixth Edition

The Official Guide to Learning

OpenGL®, Version 2.1

Real-Time
Rendering

Third Edition

Jej|ON-euIu

g1
H
<
M
=]
Q
®
3.
- |
Q
Th

i awl-|eay” |

EDWARD KANDROT

Programming Massively
Parallel Processors
JASON SANDERS A Hai Approach

Aaftab Munshi « Benedict R. Gaster
Timothy G. Mattson « James Fung + Dan Ginsburg
Foreword by Professar Pat jlancehan, Stanford University

(MU 15-769, Fall 2016

Aug 31

Sep 5

Sep 7

Sep 9

Sep 12

Sep 14

Sep 19
Sep 21
Sep 26

Sep 28

Oct3

Oct5

Oct 10

Oct 12

Oct 17

Oct 19

Oct 24

Course Introduction + Parallel Hardware Architecture Review
Review of multi-core, multi-threading, SIMD, heterogeneity via CPUs/GPUs/ASICs/FPGAs

No Class (Labor Day Holiday)

Part 1: High-Efficiency Image Processing
The Digital Camera Image Processing Pipeline: Part |

From raw sensor measurements to an RGB image: demosaicing, correcting aberrations, color space conversions

The Digital Camera Image Processing Pipeline: Part Il (FRIDAY LECTURE)

JPG image compression, high-dynamic range processing

Efficiently Scheduling Image Processing Algorithms on Multi-Core Hardware
Balancing parallelism/local/extra work, programming using Halide

Image Processing Algorithm Grab Bag
Bilateral filter, median filter, local Laplacian filtering, optical flow

No class -- Kayvon out of town
No class -- Kayvon out of town

Image and Video Processing Hardware
Contrasting efficiency of GPUs, DSPs, Image Signal Processors, and FGPAs for image processing

H.264 Video Compression

Part 2: Trends in Deep Network Acceleration

Efficient Deep Neural Network Evaluation
Reduction to dense linear algebra, sparsification and pruning, expression via data flow frameworks (TensorFlow,

Authoring Deep Networks for Image Analysis
Examples of modern deep network design.

Hardware Accelerators for Deep Neural Network Evaluation
A comparison of the various ISCA 2016 hardware accelerator papers

Large-scale Parallel DNN Training
Asynchronous parameter update, conflicting goals of work efficiency and parallelism

Part 3: Systems Challenges of 3D Reconstruction

Real-Time 3D Reconstruction
Space vs. dense methods, KinectFusion

Large-Scale 3D Reconstruction
City-scale reconstruction

3D Reconstruction Topic TBD
Probably VR video

Major course themes/topics

|

High-performance image processing

Algorithms for processing images/video in a modern
digital camera

Image processing hardware components
Image/video compression

Expressing and accelerating deep
learning for computer vision

Large-scale 3D reconstruction

(MU 15-769, Fall 2016

Oct 26

Oct 31

Nov 2

Nov 7

Nov 9

Nov 14

Nov 16

Nov 21

Major course themes/to

Part 4: The Design and Implementation of 3D Graphics Systems

Architecture of the GPU-Accelerated Real-Time 3D Graphics Pipeline
Graphics pipeline abstractions, scheduling challenges

Rasterization and Occlusion
Hardware acceleration, depth and color compression algorithms

Texture Mapping
Texture sampling and prefiltering, texture compression, data layout optimizations

Parallel Scheduling of the Graphics Pipeline
Molnar taxonomy, scheduling under data amplification, tiled rendering

Deferred Shading and Image-Space Rendering Techniques
Deferred shading as a scheduling decision, image-space anti-aliasing

Hardware-Accelerated Ray Tracing
Ray-tracing as an alternative to rasterization, what does modern ray tracing HW do?

Shading Language Design
Contrasting different shading languages, is CUDA a DSL?

Case Study: The Spire Shading Language

Discussion of relationship to other recent DSLs

1CS

The GPU-accelerated 3D graphics

pipelines

(high-performance rendering for real

time applications)

(MU 15-769, Fall 2016

Logistics

m (Course web site:
- http://graphics.cs.cmu.edu/courses/15769/fall2016/

m All announcements will go out via Piazza
- http://www.piazza.com/cmu/fall2016/15769

m Kayvon's office hours: drop in or by appointment (EDSH 225)

CMU 15-769, Fall 2016

Expectations of you

® 30% participation
- There will be ~1-2 assigned paper readings per class
- Everyone is expected to come to class and participate in discussions based on readings

- You are encouraged discuss papers and or my lectures on the course discussion board.
- Ifyou form a weekly course reading/study group, | will buy Pizza for said group.

B 15% mini-assignments (2-3 short programming assignments)
- Assignment 1: implement and optimize a basic RAW image processing pipeline

B 20% 2 take-home “exams”

— Exam 1: covers course parts 1 and 2
— Exam 2: covers course parts 3 and 4

B 35% self-selected final project
- |suggest you start talking to me now (can be teams of up to two)

CMU 15-769, Fall 2016

Review: throughput computing hardware

Review concepts

B What are these design concepts, and what problem/goals do they
address?

- Muti-core processing
- SIMD processing
- Hardware multi-threading

m What is the motivation for specialization via
- Multiple types of processors (e.g., CPUs, GPUs)
- Custom hardware units (ASIC)

® What is memory bandwidth a major constraint when mapping
applications to modern systems?

CMU 15-769, Fall 2016

Let’s crack open a modern smartphone

Samsung Galaxy S7 phone with
Qualcomm Snapdragon 820 processor

Multi-core GPU

(3D graphics,
OpenCL data-parallel compute)

Display engine
(compresses pixels for
transfer to 4K screen)

Image Signal Processor

(ISP): ASIC for processing pixels
off camera (25MP at 30Hz)

Multi-core ARM CPU

Video encode/decode

ASIC (H.265 @ 4K)

“Hexagon”
Programmable DSP

data-parallel multi-media
processing

(MU 15-769, Fall 2016

Multi-core processing

CMU 15-769, Fall 2016

Executing an instruction stream

x[1]

- 1d ro, addr[ri]

mul rl, ro, ro
ALU mul rl1, rl, ro

(Execute)

st addr[r2], re

[r'esult[i]]

(MU 15-769, Fall 2016

Executing an instruction stream

My very simple processor: executes one instruction per clock

x[1i]

- b 1d ro, addr'[r'l]

mul rl, ro, ro
ALU mul rl1, rl, ro

(Execute)

st addr[r2], re

[r'esult[i]]

(MU 15-769, Fall 2016

Executing an instruction stream

My very simple processor: executes one instruction per clock

x[1i]

- 1d ro, addr[ri]

b mul ri1, ro, ro

ALU mul rl1, rl, ro
(Execute)

st addr[r2], re

[r'esult[i]]

(MU 15-769, Fall 2016

Executing an instruction stream

My very simple processor: executes one instruction per clock

x[1i]

- 1d ro, addr[ri]

mul rl, ro, ro

ALU B>

(Execute)

st addr[r2], re

[r'esult[i]]

(MU 15-769, Fall 2016

Multi-core: process multiple instruction streams in parallel

ALU

ALU

ALU

ALU

11
11
1

ALU

ALU

.
l l

1 [

il L

el [

ALU

ALU

ALU

e A

ALU

el [

Sixteen cores, sixteen simultaneous instruction streams

(MU 15-769, Fall 2016

Multi-core examples

per 3
S !..
< | -
- X
5
|
- ey = Eees
S S
% = e
= I=s
- = g
-3 =
R zpee X FmEly
sSan Ses
il
—
o
=
—
—
&
1
- -] .
R g 3
2 == — B 3
s g
- 3 A
3 : -
. i

Intel “Skylake” Core i7 quad-core CPU
(2015)

16 replicate

TP T] TIEEL]] ANaNaN 11111
LLLELL L L LEEEL L] L L] L]
TELEL L] S LEEEL L annaaN L L LD
LLEL)L L LLLL L) LLLEL L ANENaN L Ll Ll
L LEL L L] iNNNNNN INNaNEN L L] Ll L)
L LLL L} iNNaaaN ISNaNEN anaNaN anaNaN
L LELL L ELELEL L B bR L L anaNaN

— Rpepp——— T T L TTTTT
— — L TTTTT
T L TTTTT

TEETT]

L TTTTT]

T

TEETT]

fonsom | oo | oonmn || o | f st | f s || s | f of oo | f oo || oo | f oo | o |] o || o |

AR L L L
L EELL L
INNANAN
. L L
L LLLLL

TTETTT
TTEETT
TTEETT
TTTETT

LLLELL

ANNNNN
AL LD

AL LR LD

L EEL L

AL L L

L LD

‘PP L

L)L
AL L L
L LLE)L
LELLEL L
AL L

NVIDIA GTX 980 GPU

(2014)

ANENEN
d 1L

IANENaN
iamENan

IaNENaN
iaNaNan
anmENaN
anENaN
anaNan
IAnNNaN
IaaaNaN

B LLLLL
HANNANE
AL L)L
L LLEL L

[l

d processing cores (“SM”

(MU 15-769, Fall 2016

More multi-core examples

B ececas), qm- l?l'll’l‘l

Hit) d'\

2

i
il

e

=
=

o
.~1:H§'nﬂ':l A

Intel Xeon Phi “Knights Landing “ 76-core CPU Apple A9 dual-core CPU
(2015) (2015)

A9 image credit: Chipworks (obtained via Anandtech)
http://www.anandtech.com/show/9686/the-apple-iphone-6s-and-iphone-6s-plus-review/3 CMU 15-769, Fall 2016

Superscalar execution

(MU 15-769, Fall 2016

Superscalar execution

Program: computes sin of input x via Taylor expansion

result sinx(int N, int terms, float x)

{

float value = Xx;
float numer =
int denom = 6;

int sign =

for (int j=1; j<=terms; j++)

ign * numer / denom;

} Independent operations in

instruction stream

return value;

(They are detected by the processor
} at run-time and may be executed in
parallel on execution units 1and 2)

My single core, superscalar processor:
executes up to two instructions per clock
from a single instruction stream.

Exec

Exec

(MU 15-769, Fall 2016

SIMD processing

(MU 15-769, Fall 2016

ALUO

ALU 1

ALU 2

ALU 3

ALU 4

ALU 5

ALU 6

ALU 7

Add ALUs to increase compute capability

|dea #2:

Amortize cost/complexity of managing an
instruction stream across many ALUs

SIMD processing

Single instruction, multiple data

Same instruction broadcast to all ALUs
Executed in parallel on all ALUs

(MU 15-769, Fall 2016

Scalar program

void sinx(int N, int terms, float* x, float* result) Original (ompi|Ed program:

{
for (int i=0; i<N; i++) Processes one array element using scalar

{ instructions on scalar registers (e.g., 32-bit floats)

float value = x[i];
float numer = x[i] * x[i] * x[i];
int denom = 6; // 3!

int sign = -1; 1d ro, addr[ri]

mul rl1, ro, ro
for (int j=1; j<=terms; j++)

{

value += sign * numer / denom;

mul rl1, rl, ro

numer *= x[i] * x[i];
denom *= (2*j+2) * (2*j+3);

sign *= -1;

st addr[r2], reo
result[i] = value;

(MU 15-769, Fall 2016

#include <immintrin.h>

void sinx(int N, int terms, float* x, float* sinx)

{
float three fact = 6; // 3!
for (int i=0; i<N; i+=8)
{
__m256 origx = mm256_load ps(&x[i]);
__m256 value = origx;
__m256 numer = mm256_mul_ps(origx, _mm256 _mul ps(origx, origx));
__m256 denom = mm256_broadcast_ss(&three_fact);
int sign = -1;
for (int j=1; j<=terms; j++)
{
// value += sign * numer / denom
__m256 tmp = mm256_div_ps(_mm256_mul_ ps(_mm256_broadcast_ss(sign),numer),denom);
value = mm256_add ps(value, tmp);
numer = _mm256_mul_ps(numer, _mm256 _mul ps(origx, origx));
denom = _mm256_mul_ps(denom, _mm256_broadcast_ss((2*j+2) * (2*3j+3)));
sign *= -1;
}
_mm256_store_ps(&sinx[i], value);
}
}

Vector program (using AVX intrinsics)

vloadps xmmo, addr[ril]

vmulps xmml, xmm@, Xxmmo

vmulps xmml, xmml, Xxmmo

vstoreps addr[xmm2], xmm@

Compiled program:

Processes eight array elements
simultaneously using vector
instructions on 256-bit vector registers

(MU 15-769, Fall 2016

16 SIMD cores: 128 elements in parallel

0000
Q000

!

00
00
00
00

Q0
00
00
00

00
00
00
00

0000
Q000

00
00
00
00

0000
Q000

00
00
00
00

0000
Q000

!

0000
Q000

!

00
Q0
00
00

Q0
00
00
00

00
00O
00
00O

0000
Q000

00
Q0
00
00

0000
Q000

!
0000
0000

0000
Q000

!

Q0
00

00

Q
Q

Ceell i R R

el el R R

el el R R

ceell il R R

16 cores, 128 ALUs, 16 simultaneous instruction streams

(MU 15-769, Fall 2016

Data-parallel expression

(in Kayvon’s fictitious data-parallel language)

void sinx(int N, int terms, float* x, float* result)

Compiler understands loop iterations

{ .
// declare independent loop iterations are md?pendent’ and that Same |00p
SR Lo @ to N-1) body will be executed on a large
{ number of data elements.
float value = x[i];
float numer = x[i] * x[1] * x[1i];
int denom = 6; // 3! . oge o
int sign = -1; Abstraction facilitates automatic
generation of both multi-core parallel
for (int j=1; j<=terms; J++) code, and vector instructions to make
{ , use of SIMD processing capabilities
value += sign * numer / denom L.
aumer *= x[i] * x[il; within a core.
denom *= (2*j+2) * (2*j+3);
sign *= -1;
}
result[i] = value;
}
}

(MU 15-769, Fall 2016

What about conditional execution?

Time (clocks)

1 2 1]... .o.|| 8
ALU1 ALU2 ALUS8

(assume logic below is to be executed for each
element in input array ‘A, producing output into
the array ‘result’)

<unconditional code>
float x = A[i];
if (x > 0) {
float tmp = exp(x,5.f);
tmp *= kMyConstl;

X = tmp + kMyConst2;
} else {
float tmp = kMyConstl;

X = 2.f * tmp;
}

<resume unconditional code>»

result[i] = Xx;

(MU 15-769, Fall 2016

What about conditional execution?

Time (clocks)

1|2]

)

8 |

ALU1 ALU2 ...

. ALUS

(assume logic below is to be executed for each
element in input array ‘A; producing output into
the array ‘result’)

<unconditional code>
float x = A[i];
if (x > 0) {
float tmp = exp(x,5.f);
tmp *= kMyConstl;

X = tmp + kMyConst2;
} else {
float tmp = kMyConstl;

X = 2.f * tmp;
}

<resume unconditional code>»

result[i] = Xx;

(MU 15-769, Fall 2016

Mask (discard) output of ALU

1] 2]]]]]] 8] (assume logic below is to be executed for each
- ”' element in input array ‘A, producing output into

ALU1 ALU2 ALUS the array ‘result’)

Time (clocks)

<unconditional code>
float x = A[i];

if (x > 0) {

} else {
float tmp = kMyConstl;

X = 2.f * tmp; |

}

<resume unconditional code>»

Not all ALUs do useful work!

result[i] = Xx;

Worst case: 1/8 peak performance

(MU 15-769, Fall 2016

After branch: continue at full performance

1] 2]]]]]] 8] (assume logic below is to be executed for each
- - element in input array ‘A, producing output into

ALU1 ALU2 ALUS the array ‘result’)

Time (clocks)

<unconditional code>
float x = A[i];

if (x > 0) {

} else {
float tmp = kMyConstl;

X = 2.f * tmp;

}

<resume unconditional code>»

result[i] = Xx;

(MU 15-769, Fall 2016

Example: Intel Core 17

ALU 1

ALU 2

ALU 3

ALU 5

ALU 6

ALU 7

ALU 1

ALU 2

ALUS5

ALU 6

4 cores

8 SIMD ALUs per core
(AVX instructions)

(MU 15-769, Fall 2016

Hardware multi-threading

(MU 15-769, Fall 2016

Terminology

m Memory latency

- The amount of time for a memory request (e.g., load, store) from a
processor to be serviced by the memory system

- Example: 100 cycles, 100 nsec

m Memory bandwidth

- The rate at which the memory system can provide data to a processor
- Example: 20 GB/s

(MU 15-769, Fall 2016

Stalls

m A processor “stalls” when it cannot run the next instruction in

an instruction stream because of a dependency on a previous
instruction.

B Accessing memory is a major source of stalls

1d r@ mem[r2]
1d r1 mem[r3] :j \ Dependency: cannot execute ‘add’ instruction until data at mem[r2] and
add ro, re, ri mem(r3] have been loaded from memory

B Memory access times ~ 100’s of cycles
- Memory “access time” is a measure of latency

(MU 15-769, Fall 2016

Review: why do modern processors have caches?

Core 1

CoreN

L1 cache
(32 KB)

L2 cache
(256 KB)

L1 cache
(32 KB)

L2 cache
(256 KB)

L3 cache
(8 MB)

25 GB/sec

<)

Memory
DDR3 DRAM

(Gigabytes)

(MU 15-769, Fall 2016

Caches reduce length of stalls (reduce latency)

Processors run efficiently when data is resident in caches

Caches reduce memory access latency *

L1 cache
(32 KB)

Core 1

L2 cache
(256 KB)

L1 cache
(32 KB)

CoreN

L2 cache
(256 KB)

L3 cache
(8 MB)

* Caches also provide high bandwidth data transfer to CPU

25 GB/sec

<)

Memory
DDR3 DRAM

(Gigabytes)

(MU 15-769, Fall 2016

Prefetching reduces stalls (hides latency)

m All modern CPUs have logic for prefetching data into caches

- Dynamically analyze program’s access patterns, predict what it will access soon

B Reduces stalls since data is resident in cache when accessed

predict value of r2, initiate load

Note: Prefetching can also reduce
performance if the guess is wrong
(hogs bandwidth, pollutes caches)

predict value of r3, initiate load

data arrives in cache

(more detail later in course)

data arrives in cache

1d re mem[r2]
1d rl mem[r3]
add ro, ro, ril

:| These loads are cache hits

(MU 15-769, Fall 2016

Multi-threading reduces stalls

B |dea: interleave processing of multiple threads on the same
core to hide stalls

B Like prefetching, multi-threading is a latency hiding, not a
latency reducing technique

(MU 15-769, Fall 2016

Hiding stalls with multi-threading

Thread 1

. Elements0...7
Time

IIIIIIII 1 Core (1 thread)
\/

ALU O| ALU 1| |ALU 2 (ALU3

ALU 4 [ALU 5| |ALUG6| |ALU 7

(MU 15-769, Fall 2016

Hiding stalls with multi-threading

Thread 1 Thread 2 Thread 3 Thread 4
Time Elements0...7 Elements8...15 Elements16... 23 Elements 24 ... 31

1 Core (4 hardware threads)

ALUO| (ALU 1] |ALU 2| (ALU3

ALU 4] |ALU 5| |ALU 6| |ALU 7

1

8o

A/ |
|

(MU 15-769, Fall 2016

Hiding stalls with multi-threading

Thread 1 Thread 2 Thread 3 Thread 4
Time Elements0...7 Elements8...15 Elements16... 23 Elements 24 ... 31

(1 2 3 4

1 Core (4 hardware threads)

ALUO| (ALU 1] |ALU 2| (ALU3

ALU 4{ |ALU 5| |ALU6| |ALU 7

Runnable
R

1

(MU 15-769, Fall 2016

Hiding stalls with multi-threading

Thread 1 Thread 2 Thread 3 Thread 4
Elements0...7 Elements8...15 Elements16... 23 Elements 24 ... 31

(1 12) © 4
- 1 Core (4 hardware threads)

Time

N | M
— Stall
‘,/ [' I ALUO ALU 1| (ALU 2| |ALU3
ALU 4| |ALU5| [ALU 6| |ALU 7
Runnable Stall !wll!

YN

Stall

i i

el
b

Done! Runnable

- I

Runnable

CMU 15-769, Fall 2016
™ T Tty

Throughput computing trade-off

Thread 1 Thread 2 Thread 3 Thread 4
Elements0...7 Elements8...15 Elements16... 23 Elements 24 ... 31

Time
ool o0 4y w99y Wy o ouuygyuyuy

Al Key idea of throughput-oriented systems:
“ stall Potentially increase time to complete work by any
one any one thread, in order to increase overall
system throughput when running multiple threads.

Runnable

During this time, this thread is runnable, but it is not being executed
by the processor. (The core is running some other thread.)

Done!

(MU 15-769, Fall 2016

NVIDIA GTX 980 (2014)

1.1 GHz clock

16 SMM “cores” per chip

16 x 128 = 2,048 SIMD mul-add ALUs

4.6 TFLOPs

64-way multi-threading per SMM

32-SIMD execution

OO0 OO0 OO OO
OO0 00 00 OO

00 OO0 OO0 OO
00 OO0 OO0 OO
1 s A
OO0 OO OO0 OO
OO0 OO0 OO0 oo
00 OO0 OO0 OO
1 s A
00 00 OO0 OO
00 OO0 OO0 OO
00 OO OO0 OO
00 OO OO0 Oog
OO0 OO OO0 00
00 OO 00 OO
00 OO OO0 OO

N oo
[

00 OO0 OO0 OO
00 OO0 OO0 OO
00 OO OO0 Oog
OO0 OO0 OO0 00
00 OO 00 OO
00 OO0 OO0 OO

00 OO0 OO0 OO

00 OO 00 OO

00 OO0 OO0 OO

00 OO OO OO

og
[mm]
g4
B8O

00 OO OO OO

og
[mm]
g4
B8O

00 OO0 OO0 OO

OO0 OO0 OO OQ

@_W_H_@_mﬁ_@_@“_@
RN

OO0 OO0 OO OO

00 OO0 OO0 OO

00 OO0 OO0 oo

00 OO0 OO0 OO

00 OO0 OO0 OO
00 OO0 OO0 OO
00 OO0 OO0 OO
00 OO0 OO0 OO
0O OO OO0 OO

00 OO OO OO
00 OO OO0 OO

og
[mm]
g4
B8O

00 OO OO OO
00 OO OO0 OO

og
[mm]
g4
B8O

00 OO0 OO0 OO
00 OO0 OO0 OO
00 OO0 OO0 OO

L2 Cache (2 MB)

224 GB/sec

GPU memory

(DDR5 DRAM)

GPUs:

ing

th programmi

lar wi

Translating to CUDA/OpenCL-speak for those fam

1 warp = 32 CUDA threads (1 warp ~ hardware thread, 1 CUDA thread ~ 1 SIMD vector lane)

64 warps per SMM

16 x 64 = 1024 interleaved warps per chip (32,768 CUDA threads/chip, a.k.a. “32K pixels at once”)

(MU 15-769, Fall 2016

Another example:
for review and to check your understanding

(if you understand the following sequence you understand this lecture)

(MU 15-769, Fall 2016

Running code on a simple processor

My very simple program:
compute sin(x) using Taylor expansion

void sinx(int N, int terms, float* x, float* result)

{ :
for (int i=@; i<N; i++) My very simple processor:
{ completes one instruction per clock
float value = x[i];
float numer = x[i] * x[i] * x[1];
int denom = 6; // 3! Fetch/
int sign = -1; Decode
for (int j=1; j<=terms; j++) ALU
((Execute)
value += sign * numer / denom; i
numer *= x[i] * x[i]; Execution
Context
denom *= (2*j+2) * (2*3j+3);
sign *= -1;
}
result[i] = value;
}
}

(MU 15-769, Fall 2016

Review: superscalar execution

Unmodified program

void sinx(int N, int terms, float* x, float* result) My single core, superscalar processor:
{ executes up to two instructions per clock
for (int 1i=0; i<N; i++) . . o
froma smgle Instruction stream.

{
float value = x[i];
float numer = x[i] * x[i] * x[i];
int denom = 6; // 3! --
int sign = -1;
for (int j=1; j<=terms; j++) Eﬁfc Eéfc
{
} Independent operations in

instruction stream

result[i] = value; (They are detected by the processor

} at run-time and may be executed in

} parallel on execution units 1and 2)

(MU 15-769, Fall 2016

Review: multi-core execution (two cores)

Modify program to create two threads of
control (two instruction streams)

typedef struct {

My dual-core processor:

int N;

int terms; executes one instruction per clock

float* x;

float* result; from an instruction stream on each core.
} my_args;

void parallel _sinx(int N, int terms, float* x, float* result)
{

pthread_t thread_id;

my_args args; ALU
(Execute)

args.N = N/2;
args.terms = terms;
args.x = X;

args.result = result;

ALU
(Execute)

pthread _create(&thread_id, NULL, my_thread_start, &args); // launch thread
sinx(N - args.N, terms, x + args.N, result + args.N); // do work
pthread_join(thread_id, NULL);

void my_thread_start(void* thread_arg)

{
my_args* thread _args = (my_args*)thread_arg;

sinx(args->N, args->terms, args->x, args->result); // do work

(MU 15-769, Fall 2016

Review: multi-core + superscalar execution

Modify program to create two threads of
control (two instruction streams)

typedef struct {
int N;
int terms;
float* x;

float* result;

} my_args;

void parallel _sinx(int N, int terms, float* x, float* result)
{
pthread_t thread_id;

my_args args;

args.N = N/2;
args.terms = terms;
args.x = X;

args.result = result;

pthread _create(&thread_id, NULL, my_thread_start, &args); // launch thread
sinx(N - args.N, terms, x + args.N, result + args.N); // do work
pthread_join(thread_id, NULL);

void my_thread_start(void* thread_arg)

{
my_args* thread _args = (my_args*)thread_arg;

sinx(args->N, args->terms, args->x, args->result); // do work

My superscalar dual-core processor:

executes up to two instructions per clock
from an instruction stream on each core.

Exec

Exec

Exec

Exec

(MU 15-769, Fall 2016

Review: multi-core (four cores)

Modify program to create many threads of control:

recall Kayvon's fictitious language
My quad-core processor:

void sinx(int N, int terms, float* x, float* result)

{ executes one instruction per clock
// declare independent loop iterations from an instruction stream on each core.
forall (int i from @ to N-1)
{

float value = x[i];

float numer = x[i] * x[i] * x[i];

ALU ALU
int denom = 6; // 3! (Execute) (Execute)

int sign = -1;

for (int j=1; j<=terms; j++)

{

value += sign * numer / denom

numer *= x[i] * x[i];
denom *= (2*j+2) * (2*j+3);

sign *= -1; ALU ALU
8 > (Execute) (Execute)

result[i] = value;

(MU 15-769, Fall 2016

Review: four, 8-wide SIMD cores

Observation: program must execute many iterations of the same loop body.

Optimization: share instruction stream across execution of multiple
iterations (single instruction multiple data = SIMD)

My SIMD quad-core processor:

void sinx(int N, int terms, float* x, float* result) executes one 8-wide SIMD instruction per clock

{

B e e enendant loop iterations from an instruction stream on each core.

forall (int i from @ to N-1)
{

float value = x[i];

float numer = x[i] * x[i] * x[i];
int denom = 6; // 3!

{

value += sign * numer / denom

numer *= x[1i] * x[i];

denom *= (2*j+2) * (2*j+3);

sigh *= -1;

N 5 5
for (int j=1; j<=terms; j++)

result[i] = value;

(MU 15-769, Fall 2016

Review: four SIMD, multi-threaded cores

Observation: memory operations have very long latency

Solution: hide latency of loading data for one iteration by
executing arithmetic instructions from other iterations

void sinx(int N, int terms, float* x, float* result)
{

// declare independent loop iterations

forall (int i from @ to N-1)

{
float value Memory Ioad
float numer = x[1] * x[i] * x[i];

int denom = 6; // 3!

int sign = -1;

for (int j=1; j<=terms; j++)
{
value += sign * numer / denom
numer *= x[1i] * x[i];
denom *= (2*j+2) * (2*j+3);
Memory store

sigh *= -1;

My multi-threaded, SIMD quad-core processor:

executes one SIMD instruction per clock

from one instruction stream on each core. But
can switch to processing the other instruction
stream when faced with a stall.

=sl==

===

===

(MU 15-769, Fall 2016

===

Summary: four superscalar, SIMD, multi-threaded cores

My multi-threaded, superscalar, SIMD quad-core processor:

executes up to two instructions per clock from one instruction stream on each core

(in this example: one SIMD instruction + one scalar instruction).

Processor can switch to execute the other instruction stream when faced with stall.

SIMD Exec 2

Exec 1

SIMD Exec 2

Exec 1

==

==

SIMD Exec 2

Exec 1

SIMD Exec 2

Exec1| — — — —

==

==

(MU 15-769, Fall 2016

Connecting it all together

Kayvon's simple quad-core processor:

Four cores, two-way multi-threading per core (max eight threads active on chip at once), up to two
instructions per clock per core (one of those instructions is 8-wide SIMD)

Fetch/ | | Fetch/ Fetch/ | | Fetch/ Fetch/ | | Fetch/ Fetch/ | | Fetch/
Decode| | Decode Decode | | Decode Decode| | Decode Decode | [Decode
SIMD Exec 2 SIMD Exec 2 SIMD Exec 2 SIMD Exec 2
Exec 1 Exec 1 Exec 1 Exec 1
Execution Execution Execution Execution Execution Execution Execution Execution
Context Context Context Context Context Context Context Context
L1 Cache L1 Cache L1 Cache L1 Cache
L2 Cache L2 Cache L2 Cache L2 Cache
4_,_ On-chip
: interconnect
Memory :
L3 Cache Controller

Memory Bus
(to DRAM)

(MU 15-769, Fall 2016

Thought experiment

m You write a Capplication that spawns two pthreads
m The application runs on the processor shown below

- Two cores, two-execution contexts per core, up to instructions per clock, one
instruction is an 8-wide SIMD instruction.

m Question: “who” is responsible for mapping your pthreads to the
processor’s thread execution contexts?

Answer: the operating system

B Question: If you were the 0S, how would to assign the two threads to

the four available execution contexts? ...
: Fetch/ Fetch/ Fetch/ Fetch/
Decode| | Decode Decode| | Decode
B Another question: How would you
o o : Exec 1 Exec 1
assign threads to execution contexts :
if yo ur c p rog ram spawn ed ﬁve ontoxt. | | context ontoxt. | | context
pthreads? =

(MU 15-769, Fall 2016

Another thought experiment

Task: element-wise multiplication of two vectors A and B

Assume vectors contain millions of elements

= Load input A[i]

- Load input Bi]
= Compute Ali] x Bli]

NIl (VXD

- Store result into ([i]

Three memory operations (12 bytes) for every MUL
NVIDIA GTX 1080 GPU can do 2560 MULs per clock (@ 1.6 GHz)

Need ~50 TB/sec of bandwidth to keep functional units busy (only have 320 GB/sec)

~ <1% efficiency... but 10x faster than quad-core CPU!

(4 GHz Core i7 Gen 6 quad-core CPU connected to 34 GB/sec memory bus)

(MU 15-769, Fall 2016

Bandwidth limited!

If processors request data at too high a rate, the memory system cannot keep up.

No amount of latency hiding helps this.

Bandwidth is a critical resource

Overcoming bandwidth limits are a common challenge for
application developers on throughput-optimized systems.

(MU 15-769, Fall 2016

Hardware specialization

(MU 15-769, Fall 2016

Why does energy efficiency matter?

B General in mobile processing rule: the longer a task runs the less power it can use
- Processor’s power consumption is limited by heat generated (efficiency is
required for more than just maximizing battery life)

€ Electrical limit: max power that can be supplied to chip

______ Die temp: (junction temp -- Tj): chip becomes unreliable above this temp
———— (chip can run at high power for short period of time until chip heats to Tj)
Case temp: mobile device gets too hot for user to comfortably hold
/(chip is at suitable operating temp, but heat is dissipating into case)

Power

g .- Battery life: chip and case are cool, but want to reduce power
consumption to sustain long battery life for given task

iPhone 6 battery: 7 watt-hours
9.7iniPad Pro battery: 28 watt-hours
15in Machook Pro: 99 watt-hours

Time

Slide credit: adopted from original slide from M. Shebanow: HPG 2013 keynote CMU 15-769, Fall 2016

Efficiency benefits of compute specialization

B Rules of thumb: compared to high-quality C code on CPU...

B Throughput-maximized processor architectures: e.g., GPU cores
- Approximately 10x improvement in perf / watt

- Assuming code maps well to wide data-parallel execution and is compute bound

® Fixed-function ASIC (“application-specific integrated circuit”)

- Can approach 100-1000x or greater improvement in perf/watt

. . Clock and Data supply
= Assuming code is compute bound and Control 28%

and is not floating-point math 2%

Arithmetic ___
6%
Instruction

supply
42%

Efficient Embedded Computing [Dally et al. 08]

[Source: Chung et al. 2010, Dally 08] [Figure credit Eric Chung] CMU 15-769, Fall 2016

Hardware specialization increases efficiency

Area-normalized FFT Performance (40nm)

N—x‘—ﬂ(—-*——)e)(ﬂ(H—H—H—X

— ===@==s O ¥
a 100 LX760 +------ FPGA
0 A— GTX285 -
& — % GTxago < GPUS
E'DNE 10 *— ASIC
™
OE ASIC delivers same performance
S 1 W as one CPU core with ~ 1/1000th
3 - -O-0-0-0-9-9._ the chip area.
o N D S T PR P
a 0.1 aan ; .

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 PU cores: ~ 5-7 times more area

Ig2(N) (data set size) efficient than CPU cores.
FFT Energy Efficiency (40nm)

:IE\HH 3K ---®---Core i/
g o - LX760 «------- FPGA
< A— GTX285 ~-..__
= — s GTxag0 < GPUS
o 10 o ASIC
o WW
=
3 1 ASIC delivers same performance
o ,0-‘0“’"’“’“‘"’"""”-*--0--0--0.\ as one CPU core with only ~
E: e - 1/100th the power.
7]
7 0
o

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ig2(N) (data set size)
[Chung et al. MICRO 2010]

(MU 15-769, Fall 2016

Modern systems use ASICs for...

Image/video encode/decode (e.g., H.264, JPG)
Audio recording/playback
Voice “wake up” (e.g., Ok Google)

Camera “RAW” processing: processing data acquired by image
sensor into images that are pleasing to humans

m Many 3D graphics tasks (rasterization, texture mapping,
occlusion using the Z-buffer)

m Significant modern interest in ASICS for deep network
evaluation (e.g., Google’s Tensor Processing Unit)

CMU 15-769, Fall 2016

Qualcomm Hexagon DSP §oxxacon

B Originally used for audio/LTE support on Qualcomm So(’s
® Multi-threaded, VLIW DSP
B Third major programmable unit on Qualcomm So(Cs

- Multi-core CPU

- Multi-core GPU (Adreno)

- Hexagon DSP

» Dual 64-bit execution units

' - Standard 8/16/32/64bit data
Instruction types
Cache - SIMD vectorized MPY / ALU

Variable sized
iInstruction packets
(1 to 4 instructions

per Packet) L . . / SHIFT, Permute, BitOps
Instruction Unit - Up to 8 16b MAC/cycle
« 2 SP FMA/cycle
Device l_ l
DDR
Memory
- .”.I.Data Unit Data Unit Execution Execution
+ Dual 64-bit
load/store (Load/ (Load/ Unit Unit
units Store/ Store/ (64-bit (64-bit
- Also 32-bit ALU) ALU) Vector) Vector)
ALU —— - Unified 32x32bit

General Register
File is best for
compiler.

| No separate Address
Register File/Thread or Accum Regs

Per-Thread

(MU 15-769, Fall 2016

Summary: choosing the right tool for the job

Throughput-oriented FPGA/Future
Energy-optimized (CPU processor (GPU) Programmable DSP reconfigurable logic ASIC
O x4 con: | Video encode/decode,
- Audio playback,

Camera RAW processing,
neural nets (future?)

~10X more efficient . ~100.X??? ~100-1000X
(jury still out) more efficient
Easiest to program Difficult to program Not programmable +

(making it easieris costs 10-100’s millions
active area of research) of dollars to design /

verify / create

Credit Pat Hanrahan for this taxonomy CMU 15-769. Fall 2016

Data movement has high energy cost

B Rule of thumb in mobile system design: always seek to reduce amount of

data transferred from memory

- Earlier in class we discussed minimizing communication to reduce stalls (poor performance).
Now, we wish to reduce communication to reduce energy consumption

m “Ballpark” numbers (sources: Bill Dally (NVIDIA), Tom Olson (ARM)]
= Integerop:~1pJ*
- Floating point op: ~20 pJ *
- Reading 64 bits from small local SRAM (1mm away on chip): ~ 26 pJ

- Reading 64 bits from low power mobile DRAM (LPDDR): ~1200 p) <«—— Suggests that recomputing values,
rather than storing and reloading

u |mp|i(ations them, is a better answer when

optimizing code for energy efficiency!
- Reading 10 GB/sec from memory: ~1.6 watts

- Entire power budget for mobile GPU: ~1 watt (remember phone is also running CPU, display,
radios, etc.)

- iPhone 6 battery: ~7 watt-hours (note: my Machook Pro laptop: 99 watt-hour battery)
- Exploiting locality matters!!!

* Cost to just perform the logical operation, not counting overhead of instruction decode, load data from registers, etc. CMU 15-769, Fall 2016

Welcome to 15-769!

m Make sure you are signed up on Piazza so you get
announcements

® Tonight’s reading:

- “The Rise of Mobile Visual Computing Systems’, Fatahalian, IEEE Mobile
Computing 2016

- “The Compute Architecture of Intel Processor Graphics Gen9” - Intel Technical
Report, 2015

CMU 15-769, Fall 2016

More review

CMU 15-769, Fall 2016

For the rest of this class, know these terms

Multi-core processor
SIMD execution
Coherent control flow

Hardware multi-threading

- Interleaved multi-threading

- Simultaneous multi-threading
Memory latency

Memory bandwidth

Bandwidth bound application

Arithmeticintensity

(MU 15-769, Fall 2016

Which program performs better?

Program 1

void add(int n, float* A, float* B, float* C) {

(Note: an answer probably needs
for (int i=0@; i<n; i++)

| Clal - AL Bl to state its assumptions.)

void mul(int n, float* A, float* B, float* C) {
for (int i=0@; i<n; i++)
C[i] = A[i] * B[1i];

float* A, *B, *C, *D, *E, *tmpl, *tmp2;
// assume arrays are allocated here

// compute E =D + ((A + B) * C)
add(n, A, B, tmpl);

mul(n, tmpl, C, tmp2);

add(n, tmp2, D, E);

Program 2

void fused(int n, float* A, float* B, float* C, float* D, float* E) {
for (int i=0@; i<n; i++)
E[i] = D[1] + (A[i] + B[i]) * C[i];
}

// compute E =D + (A + B) *C
fused(n, A, B, C, D, E);

(MU 15-769, Fall 2016

More thought questions

Program 1
void add(int n, float* A, float* B, float* C) { WhICh COde StrUCturlng Style
for (int i=0; i<n; i++) PR
C[i] = A[1] + B[i]; would you rather write?

}

void mul(int n, float* A, float* B, float* C) {
for (int i=0@; i<n; i++)
C[i] = A[i] * B[1i];

) Consider running either of these
programs: would CPU support for
// assume arrays are allocated here hardwarE'mUItl'threadlng help
P a1 B) " <) performance?

add(n, A, B, tmpl);
mul(n, tmpl, C, tmp2);
add(n, tmp2, D, E);

float* A, *B, *C, *D, *E, *tmpl, *tmp2;

Program 2

void fused(int n, float* A, float* B, float* C, float* D, float* E) {
for (int i=0@; i<n; i++)
E[i] = D[1] + (A[i] + B[i]) * C[i];
}

// compute E =D + (A + B) *C
fused(n, A, B, C, D, E);

(MU 15-769, Fall 2016

