Model Reduction
Adrien Treuille
Example

Vertices: 3321
Triangles: 6638
Overview

General Model Reduction
Model Reduction of Fluids
Model Reduction of Deformable Solids
Coupling
Questions
Overview

General Model Reduction

Model Reduction of Fluids

Model Reduction of Deformable Solids

Coupling

Questions
Full Space
\(u \in \mathbb{R}^n \)
\(n \approx 3,000,000 \)

Reduced Space
\(r \in \mathbb{R}^m \)
\(m \approx 64 \)

\[B^T u = r \]
\[u = Br \]
Full Space
\[\mathbf{u} \in \mathbb{R}^n \quad n \approx 3,000,000 \]
\[\dot{\mathbf{u}} = F(\mathbf{u}) \]

Reduced Space
\[\mathbf{r} \in \mathbb{R}^m \quad m \approx 64 \]
\[\dot{\mathbf{r}} = \hat{F}(\mathbf{r}) \]

\[\mathbf{B}^T \mathbf{u} = \mathbf{r} \]
\[\mathbf{u} = \mathbf{B} \mathbf{r} \]
Full Space
\[u \in \mathbb{R}^n \]
\[n \approx 3,000,000 \]

\[\dot{u} = F(u) \]

Reduced Space
\[r \in \mathbb{R}^m \]
\[m \approx 64 \]

\[\dot{r} = \hat{F}(r) \]

How?
(Blackboard)
Full Space
\[u \in \mathbb{R}^n \]
\[n \approx 3,000,000 \]

Reduced Space
\[r \in \mathbb{R}^m \]
\[m \approx 64 \]

\[\dot{u} = F(u) \]
\[\dot{r} = \hat{F}(r) \]
\[\hat{F} = B^T \circ F \circ B \]
\[\hat{F} = B^T \circ F \circ B \]

Example:

If: \[F(u) = Mu \]

Then: \[\hat{F}(r) = \underbrace{B^TMBr}_{\text{precompute}} = \hat{M}r \]
Overview

General Model Reduction

Model Reduction of Fluids

Model Reduction of Deformable Solids

Coupling

Questions
Overview

General Model Reduction

Model Reduction of Fluids

Model Reduction of Deformable Solids

Coupling

Questions
\[\dot{u} = -(u \cdot \nabla)u - \nu \nabla^2 u + \nabla p + f \]

- Advection
- Diffusion
- Projection
- Forces
\[\mathbf{\dot{u}} = - (\mathbf{u} \cdot \nabla)\mathbf{u} - \nu \nabla^2 \mathbf{u} + \nabla p + \mathbf{f} \]

Advection:

\[\mathbf{\hat{A}} \in \mathbb{R}^{6400000 \times 6400000} \times 3000000 \]

\[\mathbf{r}' = E e^{\Delta t \Lambda} E^{-1} \mathbf{r} \]

(where)

\[E \Lambda E^{-1} = \mathbf{\hat{A}} \otimes_1 \mathbf{r} \]
\[
\dot{u} = - (u \cdot \nabla) u - \nu \nabla^2 u + \nabla p + f
\]

Diffusion:

\[
\hat{D} \in \mathbb{R}^{3000000 \times 3000000}
\]

\[
r' = E e^{\Delta t \Lambda} E^{-1} r
\]

(\text{where})

\[
E \Lambda E^{-1} = \hat{D}
\]
\[\dot{u} = -(u \cdot \nabla)u - \nu \nabla^2 u + \nabla p + f \]

Projection:

- Divergence free
- Boundary conditions

```c
void project(state *s) { return; }
```
\[\dot{u} = -(u \cdot \nabla)u - \nu \nabla^2 u + \nabla p + f \]

Forces:

\[r \quad + = \quad B^T f \]
\[\dot{u} = -(u \cdot \nabla)u - \nu \nabla^2 u + \nabla p + f \]

Summary:

<table>
<thead>
<tr>
<th>Process</th>
<th>Full</th>
<th>Reduced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advection</td>
<td>$O(n)$</td>
<td>$O(m^3)$</td>
</tr>
<tr>
<td>Diffusion</td>
<td>$O(n)$</td>
<td>$O(m^2)$</td>
</tr>
<tr>
<td>Projection</td>
<td>$O(n)$</td>
<td>$O(0)$</td>
</tr>
<tr>
<td>Forces</td>
<td>$O(n)$</td>
<td>$O(m)$</td>
</tr>
</tbody>
</table>

- **Time:**
 - Full: 8.8 ms/ frame
 - Reduced: 0.8 ms/ frame
Example
Overview

General Model Reduction

Model Reduction of Fluids

Model Reduction of Deformable Solids

Coupling

Questions
Overview

General Model Reduction

Model Reduction of Fluids

Model Reduction of Deformable Solids

Coupling

Questions
Reduced Deformation

Full System:

\[M\ddot{u} + D(u, \dot{u}) + R(u) = f. \]

Reduced System:

\[\ddot{q} + \tilde{D}(q, \dot{q}) + \tilde{R}(q) = \tilde{f} \]

\[\tilde{D} = U^T D(Uq, U\dot{q}), \]
\[\tilde{R}(q) = U^T R(Uq), \]
\[\tilde{f} = U^T f. \]
Example

Vertices: 3321
Triangles: 6638
Example

Vertices: 41361
Triangles: 59630
Overview

General Model Reduction

Model Reduction of Fluids

Model Reduction of Deformable Solids

Coupling

Questions
Overview

General Model Reduction

Model Reduction of Fluids

Model Reduction of Deformable Solids

Coupling

Questions
Background \rightarrow Object

\[0 = S(\hat{B}\hat{r} + Br) \]

\[\hat{r} = Mr \]
Background → Object

Full

\[0 = S (\hat{B}\hat{r} + Br) \]

Reduced

\[\hat{r} = Mr \]

Object → Background

Full

\[r += B^T \hat{B}\hat{r} \]

Reduced

\[r += N\hat{r} \]
QuickTime® and a decompressor are needed to see this picture.
Overview

General Model Reduction

Model Reduction of Fluids

Model Reduction of Deformable Solids

Coupling

Questions
Overview

General Model Reduction

Model Reduction of Fluids

Model Reduction of Deformable Solids

Coupling

Questions
• Good Reviews :)
• What’s the next big thing?
• Machine Learning + Graphics:
 • Learning physics?
• Networking + Graphics:
 • Distributed physics?
• Biology + Graphics:
 • Animal Morphology?
• Other disciplines:
 • Urban planning?
 • What else?
What’s the next big thing?

- video tape an object under known lighting conditions to create a “data driven” model of its surface reflectance
- huge database of mocap data
- if we get the physics right, machine learning should be able to estimate parameters
 - how much force is being applied from a motion capture animation?
- distribute the calculation of massive fluid simulations across a network
- distributing computation between CPU and GPU
- once we solve biomechanics in graphics + then we can build robotic prothetic arms
- network-based graphics
 - separate the objects from the scene, render each separately
 - take advantage of the # of cores to do faster rendering
- computer graphics must wait for developments in machine learning for certain applications
- physics is parallel, computer cores are becoming parallel... how can we take advantage of this?
- sound synthesis
 - model reduction for sound synthesis
- haptics: glove with little actuators
- surface feeling “rendering” - “roughness rendering”
- wear and tear on an environment
Future Directions

- More Phenomena
- Coupling
- Control