Model Reduction Adrien Treuille

Example

Vertices: 3321 Triangles: 6638

General Model Reduction

Model Reduction of Fluids Model Reduction of Deformable Solids

Questions

Full Space $\mathbf{u} \in \mathbf{R}^n$ $\mathbf{n} \approx 3,000,000$

Reduced Space $\mathbf{r} \in \mathbf{R}^{m}$ m ≈ 64

Reduced Space $\mathbf{r} \in \mathbf{R}^m$ m ≈ 64

How? (Blackboard)

Full Space $\mathbf{u} \in \mathbf{R}^n$ n ≈ 3,000,000

Reduced Space $\mathbf{r} \in \mathbf{R}^m$ $m \approx 64$

٩

•

$$\hat{F} = B^T \circ F \circ B$$

Example:If:
$$F(\mathbf{u}) = M\mathbf{u}$$
Then: $\hat{F}(\mathbf{r}) = B^T M B \mathbf{r} = \hat{M} \mathbf{r}$ Precompute

General Model Reduction

Model Reduction of Fluids Model Reduction of Deformable Solids Coupling

Questions

Advection
Diffusion
Projection
Forces

$$\dot{\mathbf{u}} = -(\mathbf{u} \cdot \nabla)\mathbf{u} - \nu\nabla^2\mathbf{u} + \nabla p + \mathbf{f}$$

Advection:

 $\hat{A} \in \mathbb{R}^{64064864300000\times 300000}$

 $\mathbf{r}' = E e^{\Delta t \Lambda} E^{-1} \mathbf{r}$

(where)

 $E\Lambda E^{-1} = \hat{A} \otimes_1 \mathbf{r}$

$$\dot{\mathbf{u}} = -(\mathbf{u} \cdot \nabla)\mathbf{u} - \nu\nabla^2\mathbf{u} + \nabla p + \mathbf{f}$$

Diffusion:

 $\hat{D} \in \mathbf{R}^{\texttt{GOOOOO} \times 3000000}$ $\mathbf{r}' = Ee^{\Delta t \Lambda} E^{-1} \mathbf{r}$ (where) $E \Lambda E^{-1} = \hat{D}$

 $\dot{\mathbf{u}} = -(\mathbf{u} \cdot \nabla)\mathbf{u} - \nu\nabla^2\mathbf{u} + \nabla p + \mathbf{f}$

Projection:

divergence free

boundary conditions

void project(state *s) { return;

 $\dot{\mathbf{u}} = -(\mathbf{u} \cdot \nabla)\mathbf{u} - \nu\nabla^2\mathbf{u} + \nabla p + \mathbf{f}$

Forces:

$\mathbf{r} + = B^T \mathbf{f}$

$\dot{\mathbf{u}} = -(\mathbf{u} \cdot \nabla)\mathbf{u} - \nu\nabla^2\mathbf{u} + \nabla p + \mathbf{f}$

Summary: Advection Diffusion Projection Forces

Reduced Full $O(m^3)$ O(n) $O(m^2)$ O(n) $\overline{O(0)}$ O(n)O(n)O(m)minutés/ frame frame

Example

General Model Reduction

Model Reduction of Fluids Model Reduction of Deformable Solids Coupling

Questions

General Model Reduction

Model Reduction of Fluids

Model Reduction of Deformable Solids

Coupling

Questions

Reduced Deformation

Full System:
$$M\ddot{u} + D(u, \dot{u}) + R(u) = f.$$

Reduced System:

$$\ddot{q} + \tilde{D}(q, \dot{q}) + \tilde{R}(q) = \tilde{f}$$
$$\tilde{D} = U^T D(Uq U\dot{q})$$

$$\tilde{R}(q) = U^T D(Uq, Uq),$$

$$\tilde{R}(q) = U^T R(Uq),$$

$$\tilde{f} = U^T f.$$

Example

Vertices: 3321 Triangles: 6638

Example

General Model Reduction

Model Reduction of Fluids

Model Reduction of Deformable Solids

Coupling

Questions

Background → Object

Background → Object

Quick⊤ime™ and a decompressor are needed to see this picture.

Good Reviews :)

What's the next big thing?

- Machine Learning + Graphics:
 - Learning physics?
- Networking + Graphics:
 - Distributed physics?
- Biology + Graphics:
 - Animal Morphology?
- Other disciplines:
 - Urban planning?
 - What else?

What's the next big thing?

- video tape an object under known lighting conditions to create a "data driven" model of its surface reflectance
- huge database of mocap data
- if we get the physics right, machine learning should be able to estimate parameters
 - how much force is being applied from a motion capture animation?
- distribute the calculation of massive fluid simulations across a network
- distributing computation between CPU and GPU
- once we solve biomechanics in graphics + then we can build robotic prothetic arms
- network-based graphics
 - separate the objects from the scene, render each separately
 - take advantage of the # of cores to do faster rendering
- computer graphics must wait for developments in machine learning for certain applications
- physics is parallel, computer cores are becoming parallel... how can we take advantage of this?
- sound synthesis
 - model reduction for sound synthesis
- haptics: glove with little actuators
- surface feeling "rendering" "roughness rendering"
- wear and tear on an environment

Future Directions

More Phenomena

Coupling

