
Human Motion

Adrien Treuille

source: http://scaq.blogspot.com/2006_11_01_archive.html

Overview

• Data-Driven Motion

• Physics Based Motion

• Motion of other Animals

• Questions

Overview

• Data-Driven Motion

• Physics Based Motion

• Motion of other Animals

• Questions

Motion Capture

• Telescoping composition of functions
from root.

• Compute derivatives in the opposite
direction!

Clips

source: Kovar et al. [2002]source: Treuille et al. [2002]

Sequences

source: Kovar et al. [2002]source: Treuille et al. [2002]

How?

Pose Metrics
To appear in Proceedings of SIGGRAPH ’02

3.1 Detecting Candidate Transitions

As in our system, motion capture data is typically represented as
vectors of parameters specifying the root position and joint rota-
tions of a skeleton on each frame. One might attempt to locate
transition points by computing some vector norm to measure the
difference between poses at each pair of frames. However, such
a simple approach is ill-advised, as it fails to address a number of
important issues:

1. Simple vector norms fail to account for the meanings of the
parameters. Specifically, in the joint angle representation
some parameters have a much greater overall effect on the
character than others (e.g., hip orientation vs. wrist orienta-
tion). Moreover, there is no meaningful way to assign fixed
weights to these parameters, as the effect of a joint rotation on
the shape of the body depends on the current configuration of
the body.

2. A motion is defined only up to a rigid 2D coordinate trans-
formation. That is, the motion is fundamentally unchanged if
we translate it along the floor plane or rotate it about the ver-
tical axis. Hence comparing two motions requires identifying
compatible coordinate systems.

3. Smooth blends require more information than can be obtained
at individual frames. A seamless transition must account not
only for differences in body posture, but also in joint veloci-
ties, accelerations, and possibly higher-order derivatives.

Our similarity metric incorporates each of these considerations. To
motivate it, we note that the skeleton is only a means to an end.
In a typical animation, a polygonal mesh is deformed according to
the skeleton’s pose. This mesh is all that is seen, and hence it is a
natural focus when considering how close two frames of animation
are to each other. For this reason we measure the distance between
two frames of animation in terms of a point cloud driven by the
skeleton. Ideally this point cloud is a downsampling of the mesh
defining the character.

To calculate the distance D(i, j) between two frames i and

j, we consider the point clouds formed over two windows of
frames of user-defined length k, one bordered at the beginning by

i and the other bordered at the end by j. That is, each point
cloud is the composition of smaller point clouds representing the
pose at each frame in the window. The use of windows of frames
effectively incorporates derivative information into the metric, and
is similar to the approach in [Schödl et al. 2000]. The size of the
windows are the same as the length of the transitions, so D(i, j)
is affected by every pair of frames that form the transition. We use
a value of k corresponding to a window of about a third of a second
in length, as in [Mizuguchi et al. 2001]

The distance between i and j may be calculated by computing
a weighted sum of squared distances between corresponding points
pi and p′

i in the two point clouds. To address the problem of find-
ing coordinate systems for these point clouds (item 2 in the above
list), we calculate the minimal weighted sum of squared distances
given that an arbitrary rigid 2D transformation may be applied to
the second point cloud:

min
θ ,x0,z0

∑
i

wi‖pi −Tθ ,x0,z0
p′

i‖
2 (1)

where the linear transformation Tθ ,x0,z0
rotates a point p about the

y (vertical) axis by θ degrees and then translates it by (x0,z0). The

Figure 3: An example error function for two motions. The entry at (i, j) contains
the error for making a transition from the ith frame of the first motion to the jth frame of
the second. White values correspond to lower errors and black values to higher errors.
The colored dots represent local minima.

index is over the number of points in each point cloud. The weights
wi may be chosen both to assign more importance to certain joints
(e.g., those with constraints) and to taper off towards the end of the
window.

This optimization has a closed-form solution:

θ = arctan
∑i wi(xiz

′
i −x′izi)−

1
∑i wi

(xz′−x′z)

∑i wi(xix′i + ziz′i)−
1

∑i wi
(xx′ + zz′)

(2)

x0 =
1

∑i wi
(x−x′ cos(θ)− z′ sinθ) (3)

z0 =
1

∑i wi
(z +x′ sin(θ)− z′ cosθ) (4)

where x = ∑i wixi and the other barred terms are defined similarly.

We compute the distance as defined above for every pair of frames
in the database, forming a sampled 2D error function. Figure 3
shows a typical result. To make our transition model more com-
pact, we find all the local minima of this error function, thereby ex-
tracting the “sweet spots” at which transitions are locally the most
opportune. This tactic was also used in [Schödl et al. 2000]. These
local minima are our candidate transition points.

3.2 Selecting Transition Points

A local minimum in the distance function does not necessarily im-
ply a high-quality transition; it only implies a transition better than
its neighbors. We are specifically interested in local minima with
small error values. The simplest approach is to only accept local
minima below an empirically determined threshold. This can be
done without user intervention. However, often users will want to

4

pose index

po
se

 in
de

x

Contributions. Our main contribution is to show that the inherent
smoothness of the value function for many tasks in character ani-
mation enables the construction of low-dimensional, near-optimal
controllers for these tasks. We also focus on controllers that can
be optimized in parallel for a subset of input parameters, allowing
us further to increase the dimensionality of the controller. We hope
these ideas will extend the applicability of optimal control theory
to more problems in motion synthesis.

2 Related Work
Human motion capture data provides an effective basis for creating
new animations. By interpolating and concatenating motions, real-
istic new animation can be generated [Witkin and Popović 1995].
A graph representation often describes allowable transitions be-
tween poses. Pullen and Bregler [2002] segmented motion data into
small pieces and rearranged them to meet user-specified keyframes.
Kovar et al. [2002] generated a graph structure from motion data
allowing characters to follow sketched paths using a branch and
bound algorithm. Arikan and Forsyth [2002] created a hierarchy
of graphs and employed a randomized search algorithm for synthe-
sizing a new motion subject to temporal and position constraints.
These algorithms employ complex graph search and optimization
techniques to produce animations and are not well suited for inter-
active control. Lee et al. [2002] used a local on-line search algo-
rithm which is demonstrated to generate 5 to 8 frames of motion
per second when the search horizon is limited. The graph search
can be made more efficient by using a simple cyclic graph struc-
ture [Gleicher et al. 2003], by composing the world from smaller
environment-specific graphs [Lee et al. 2006], by precomputing
search trees [Lau and Kuffner 2006], and by grouping similar mo-
tion segments into parametrized graph nodes and building sparse
hierarchical motion graphs [Kwon and Shin 2005]. Choi et al.
[2003] generated environment-specific graph representations that
enable biped locomotion through a complex environment with ob-
stacles. Arikan et al. [2003] showed that motion synthesis from a
graph structure can be cast as dynamic programming. Our motion
model uses a graph structure, but the blending algorithm admits
blends between any two clips of motion and automatically prevents
foot-skate without inverse kinematics for a wide class of motion.
Researchers have also generalized transition graphs to form richer,
more complete motion spaces [Shin and Oh 2006; Safonova and
Hodgins 2007]. It would be highly interesting to extend our idea to
these more general spaces.

Our controller uses reinforcement learning methods, which are
well studied in the control community. Kaelbling et al. [1996] pro-
vide a good overview of the discrete reinforcement learning prob-
lem. Bertsekas [2001] presents in-depth coverage of the continu-
ous case, as well as of the delayed rewards model which we use.
LaValle [2006] provides a good overview with many applications
to robotics and motion planning. Atkeson et al. [1997] frame re-
inforcement learning in the broader context of function approxima-
tion. However, these techniques suffer acutely from dimensionality,
making control difficult or impossible in high-dimensional spaces.
Moore and Atkeson [1995] address this problem specifically with
a multi-resolution reinforcement learning algorithm; however this
method relies heavily on storing samples which can become in-
tractable for the large-scale problems we wish to solve. Researchers
have explored linear programming to efficiently solve reinforce-
ment learning problems [Singh and Yee 1994; Trick and Zin 1997].
In this vein, Pucci de Farias presented a linear programming ap-
proach that uses basis functions to compactly approximate the value
function without storing samples [2002]. This algorithm forms the
basis for our approach to character animation because it greatly mit-
igates the cost of dimensionality by avoiding runtime sampling. In
this paper, we also reduce the dimensionality burden by learning

optimal controllers only within certain subspaces, while paralleliz-
ing precomputation along other dimensions.

Reinforcement learning is increasingly appearing in the graph-
ics literature, for example to create video textures [Schödl and Essa
2001] or for local character navigation [Ikemoto et al. 2005]. The
closest work to our own is that of Lee and Lee [2004] which used
value iteration to construct a sample-based value function for box-
ing. Relative to this method, our precomputations are 7× faster on
comparably sized problems, but require more memory. At runtime,
however, our basis approximation requires 30-90× less memory
than Lee and Lee’s sample representation. To be similarly compact,
sample-based methods such as Lee and Lee’s would require very
coarse discretizations, incurring significant risk of missing minima
and other important features of the value function. Concurrently
with our work, McCann and Pollard [2007] have integrated a model
of user behavior into reinforcement learning, enabling highly re-
sponsive realtime character animation.

3 Motion Model

Our approach has two main components: a motion engine blends
through captured motion clips to produce realtime human anima-
tion, while a control policy determines the best sequence of clips to
achieve some multivariate control objective. We begin by describ-
ing the motion engine.

Our model generates poses in realtime by blending sequences of
prerecorded motion clips. Unlike standard motion graphs [Kovar
et al. 2002; Arikan and Forsyth 2002; Lee et al. 2002], we allow
transitions between any two clips, and our method automatically
prevents foot-skate for a large class of motion. Our model assumes
that we have captured a set C of motion clips, where each clip C ∈ C
consists of a sequence of poses: C = (p1, . . . ,pm). Each pose p ∈
Rn is a vector specifying all joint positions in a kinematic skeleton.
We further assume that each clip C covers a single walk cycle and
is divided into two subsequences Cin and Cout. The subsequences
start and end during flight or mid-stance, and each covers one foot
plant. We specify one constraint frame in each subsequence that
occurs during the middle of the ground contact phase (Figure 2).

Figure 2: A clip. The first subsequence Cin runs from (a) to (c), while the second Cout

comprises (c) through (e). The constraint frames are (b) and (d).

To create longer motions, we partially overlap successive clips
and blend between them. The constraint frames allow us to prevent
foot-skate during the foot plant without inverse kinematics. Two
realizations make this possible. First, when blending from C to C′,
we may mirror or arbitrarily reorient the root of C′ while preserving
continuity. Second, kinematic blending is linear in the root of the
skeleton (although nonlinear in all other skeletal nodes). Therefore,
if we properly orient the foot and “re-root” the skeleton at its foot,
we can satisfy a foot position constraint. Blending between clips C
and C′ is a four step process. First, clip C′ is mirrored if necessary
to blend along the same foot. Second, we overlap the constraint
frames from Cout and C′

in (Figure 3). Third, clip C′ is reoriented so
that its ground-contact foot coincides with that of C at the constraint
frame. Finally, we blend from Cout to C′

in, with the ground contact
foot treated as the root of the kinematic skeleton. By the linearity
of blending at the root, if the foot is fixed during interval [ta, tb] of

Contributions. Our main contribution is to show that the inherent
smoothness of the value function for many tasks in character ani-
mation enables the construction of low-dimensional, near-optimal
controllers for these tasks. We also focus on controllers that can
be optimized in parallel for a subset of input parameters, allowing
us further to increase the dimensionality of the controller. We hope
these ideas will extend the applicability of optimal control theory
to more problems in motion synthesis.

2 Related Work
Human motion capture data provides an effective basis for creating
new animations. By interpolating and concatenating motions, real-
istic new animation can be generated [Witkin and Popović 1995].
A graph representation often describes allowable transitions be-
tween poses. Pullen and Bregler [2002] segmented motion data into
small pieces and rearranged them to meet user-specified keyframes.
Kovar et al. [2002] generated a graph structure from motion data
allowing characters to follow sketched paths using a branch and
bound algorithm. Arikan and Forsyth [2002] created a hierarchy
of graphs and employed a randomized search algorithm for synthe-
sizing a new motion subject to temporal and position constraints.
These algorithms employ complex graph search and optimization
techniques to produce animations and are not well suited for inter-
active control. Lee et al. [2002] used a local on-line search algo-
rithm which is demonstrated to generate 5 to 8 frames of motion
per second when the search horizon is limited. The graph search
can be made more efficient by using a simple cyclic graph struc-
ture [Gleicher et al. 2003], by composing the world from smaller
environment-specific graphs [Lee et al. 2006], by precomputing
search trees [Lau and Kuffner 2006], and by grouping similar mo-
tion segments into parametrized graph nodes and building sparse
hierarchical motion graphs [Kwon and Shin 2005]. Choi et al.
[2003] generated environment-specific graph representations that
enable biped locomotion through a complex environment with ob-
stacles. Arikan et al. [2003] showed that motion synthesis from a
graph structure can be cast as dynamic programming. Our motion
model uses a graph structure, but the blending algorithm admits
blends between any two clips of motion and automatically prevents
foot-skate without inverse kinematics for a wide class of motion.
Researchers have also generalized transition graphs to form richer,
more complete motion spaces [Shin and Oh 2006; Safonova and
Hodgins 2007]. It would be highly interesting to extend our idea to
these more general spaces.

Our controller uses reinforcement learning methods, which are
well studied in the control community. Kaelbling et al. [1996] pro-
vide a good overview of the discrete reinforcement learning prob-
lem. Bertsekas [2001] presents in-depth coverage of the continu-
ous case, as well as of the delayed rewards model which we use.
LaValle [2006] provides a good overview with many applications
to robotics and motion planning. Atkeson et al. [1997] frame re-
inforcement learning in the broader context of function approxima-
tion. However, these techniques suffer acutely from dimensionality,
making control difficult or impossible in high-dimensional spaces.
Moore and Atkeson [1995] address this problem specifically with
a multi-resolution reinforcement learning algorithm; however this
method relies heavily on storing samples which can become in-
tractable for the large-scale problems we wish to solve. Researchers
have explored linear programming to efficiently solve reinforce-
ment learning problems [Singh and Yee 1994; Trick and Zin 1997].
In this vein, Pucci de Farias presented a linear programming ap-
proach that uses basis functions to compactly approximate the value
function without storing samples [2002]. This algorithm forms the
basis for our approach to character animation because it greatly mit-
igates the cost of dimensionality by avoiding runtime sampling. In
this paper, we also reduce the dimensionality burden by learning

optimal controllers only within certain subspaces, while paralleliz-
ing precomputation along other dimensions.

Reinforcement learning is increasingly appearing in the graph-
ics literature, for example to create video textures [Schödl and Essa
2001] or for local character navigation [Ikemoto et al. 2005]. The
closest work to our own is that of Lee and Lee [2004] which used
value iteration to construct a sample-based value function for box-
ing. Relative to this method, our precomputations are 7× faster on
comparably sized problems, but require more memory. At runtime,
however, our basis approximation requires 30-90× less memory
than Lee and Lee’s sample representation. To be similarly compact,
sample-based methods such as Lee and Lee’s would require very
coarse discretizations, incurring significant risk of missing minima
and other important features of the value function. Concurrently
with our work, McCann and Pollard [2007] have integrated a model
of user behavior into reinforcement learning, enabling highly re-
sponsive realtime character animation.

3 Motion Model

Our approach has two main components: a motion engine blends
through captured motion clips to produce realtime human anima-
tion, while a control policy determines the best sequence of clips to
achieve some multivariate control objective. We begin by describ-
ing the motion engine.

Our model generates poses in realtime by blending sequences of
prerecorded motion clips. Unlike standard motion graphs [Kovar
et al. 2002; Arikan and Forsyth 2002; Lee et al. 2002], we allow
transitions between any two clips, and our method automatically
prevents foot-skate for a large class of motion. Our model assumes
that we have captured a set C of motion clips, where each clip C ∈ C
consists of a sequence of poses: C = (p1, . . . ,pm). Each pose p ∈
Rn is a vector specifying all joint positions in a kinematic skeleton.
We further assume that each clip C covers a single walk cycle and
is divided into two subsequences Cin and Cout. The subsequences
start and end during flight or mid-stance, and each covers one foot
plant. We specify one constraint frame in each subsequence that
occurs during the middle of the ground contact phase (Figure 2).

Figure 2: A clip. The first subsequence Cin runs from (a) to (c), while the second Cout

comprises (c) through (e). The constraint frames are (b) and (d).

To create longer motions, we partially overlap successive clips
and blend between them. The constraint frames allow us to prevent
foot-skate during the foot plant without inverse kinematics. Two
realizations make this possible. First, when blending from C to C′,
we may mirror or arbitrarily reorient the root of C′ while preserving
continuity. Second, kinematic blending is linear in the root of the
skeleton (although nonlinear in all other skeletal nodes). Therefore,
if we properly orient the foot and “re-root” the skeleton at its foot,
we can satisfy a foot position constraint. Blending between clips C
and C′ is a four step process. First, clip C′ is mirrored if necessary
to blend along the same foot. Second, we overlap the constraint
frames from Cout and C′

in (Figure 3). Third, clip C′ is reoriented so
that its ground-contact foot coincides with that of C at the constraint
frame. Finally, we blend from Cout to C′

in, with the ground contact
foot treated as the root of the kinematic skeleton. By the linearity
of blending at the root, if the foot is fixed during interval [ta, tb] of

-

∣∣∣∣∣

∣∣∣∣∣ =?

∣∣∣∣∣

∣∣∣∣∣

How can we define
a metric on poses?

Pairwise pose
differences.

To appear in Proceedings of SIGGRAPH ’02

move trees [Mizuguchi et al. 2001], which (like motion graphs) are
graph structures representing connections in a database of motion.
However, move trees are created manually — short motion clips are
collected in carefully scripted capture sessions and blends are cre-
ated by hand using interactive tools. Motion graphs are constructed
automatically. Also, move trees are typically geared for rudimen-
tary motion planning (“I want to turn left, so I should follow this
transition”), as opposed to more complicated objectives.

The generation of transitions is an important part of our approach.
Early work in this area was done by Perlin [1995], who presented a
simple method for smoothly interpolating between two clips to cre-
ate a blend. Lee [2000] defined orientation filters that allowed these
blending operations to be performed on rotational data in a more
principled fashion. Rose et al. [1996] presented a more complex
method for creating transitions that preserved kinematic constraints
and basic dynamic properties.

Our main application of motion graphs is to control a character’s
locomotion. This problem is important enough to have received
a great deal of prior attention. Because a character’s path isn’t
generally known in advance, synthesis is required. Procedural and
physically based synthesis methods have been developed for a few
activities such as walking [Multon et al. 1999; Sun and Metaxas
2001] and running [Hodgins et al. 1995; Bruderlin and Calvert
1996]. While techniques such as these can generate flexible motion
paths, the current range of movement styles is limited. Also, these
methods do not produce the quality of motion attainable by hand
animation or motion capture. While Gleicher [2001] presented a
method for editing the path traversed in a clip of motion capture,
it did not address the need for continuous streams of motion, nor
could it choose which clip is correct to fit a path (e.g. that a turning
motion is better when we have a curved path).

Our basic approach — detecting transitions, constructing a graph,
and using graph search techniques to find sequences satisfying user
demands — has been applied previously to other problems. Schödl
et al. [2000] developed a similar method for synthesizing seamless
streams of video from example footage and driving these streams
according to high-level user input.

Since writing this paper, we have learned of similar work done
concurrently by a number of research groups. Arikan and
Forsythe [2002] constructed from a motion database a hierarchi-
cal graph similar to ours and used a randomized search algorithm
to extract motion that meets user constraints. Lee et al. [2002] also
constructed a graph and generated motion via three user interfaces:
a list of choices, a sketch-based interface similar to what we use
for path fitting (Section 5), and a live video feed. Pullen and Bre-
gler [2002] keyframed a subset of a character’s degrees of freedom
and matched small segments of this keyframed animation with the
lower frequency bands of motion data. This resulted in sequences
of short clips forming complete motions. Li et al [2002] generated
a two-level statistical model of motion. At the lower level were lin-
ear dynamic systems representing characteristic movements called
“textons”, and the higher level contained transition probabilities
among textons. This model was used both to generate new motion
based on user keyframes and to edit existing motion.

3 Motion Graph Construction

In this section, we define the motion graph structure and the proce-
dure for constructing it from a database of clips.

A clip of motion is defined as a regular sampling of the charac-
ter’s parameters, which consist of the position of the root joint
and quaternions representing the orientations of each joint. We

Figure 2: Consider a motion graph built from two initial clips. (top) We can trivially
insert a node to divide an initial clip into two smaller clips. (bottom) We can also insert
a transition joining either two different initial clips or different parts of the same initial
clip.

also allow clips (or, more generally, sets of frames) to be anno-
tated with other information, such as descriptive labels (“walking,”
“karate”) and constraint information (left heel must be planted on
these frames).

A motion graph is a directed graph where all edges correspond to
clips of motion. Nodes serve as choice points connecting these
clips, i.e., each outgoing edge is potentially the successor to any
incoming edge. A trivial motion graph can be created by placing
all the initial clips from the database as arcs in the graph. This cre-
ates a disconnected graph with 2n nodes, one at the beginning and
end of each clip. Similarly, an initial clip can be broken into two
clips by inserting a node, since the later part of the motion is a valid
successor to the earlier part (see Figure 2).

A more interesting graph requires greater connectivity. For a node
to have multiple outgoing edges, there must be multiple clips that
can follow the clip(s) leading into the node. Since it is unlikely that
two pieces of original data are sufficiently similar, we need to create
clips expressly for this purpose. Transitions are clips designed such
that they can seamlessly connect two segments of original data. By
introducing nodes within the initial clips and inserting transition
clips between otherwise disconnected nodes, we can create a well-
connected structure with a wide range of possible graph walks (see
Figure 2).

Unfortunately, creating transitions is a hard animation problem.
Imagine, for example, creating a transition between a run and a
backflip. In real life this would require several seconds for an ath-
lete to perform, and the transition motion looks little like the mo-
tions it connects. Hence the problem of automatically creating such
a transition is arguably as difficult as that of creating realistic mo-
tion in the first place. On the other hand, if two motions are “close”
to each other then simple blending techniques can reliably gener-
ate a transition. In light of this, our strategy is to identify portions
of the initial clips that are sufficiently similar that straightforward
blending is almost certain to produce valid transitions.

The remainder of this section is divided into three parts. First we
describe our algorithm for detecting a set of candidate transition
points. In the following two sections we discuss how we select
among these candidate transitions and how blends are created at
the chosen transition points. Finally, we explain how to prune the
graph to eliminate problematic edges.

3

Motion Graph SchematicPairwise Pose Differences

Pose Metrics

Results

source: Kovar et al. [2002]

Constraints

• Pose blending may violate physical
constriants

• Linear Momentum Conservation

• Angular Momentum Conservation

• Frictional Constraints (“Foot Skate”)

“Foot Skate” Poblem

source: http://www.cs.wisc.edu/graphics/Gallery/kovar.vol/Cleanup/

Inverse Kinematic Solution

dE

dΩ
= 2

∑

j

(m̂!
j − m̂j)T dm̂j

dΩ

ωi = fi,Ω(ωi−1)

derivative
calculation

goes
towards

root

dm̂j

dΩ
=

∂m̂j

∂ωi

(
∂ωi

∂Ω
+

∂ωi

∂ωi−1

∂ωi−1

∂Ω
+

∂ωi

∂ωi−1

∂ωi−1

∂ωi−2

∂ωi−2

∂Ω
+ · · ·

)

IK Results

source: http://www.cs.wisc.edu/graphics/Gallery/kovar.vol/Cleanup/

Smart Blending

Contributions. Our main contribution is to show that the inherent
smoothness of the value function for many tasks in character ani-
mation enables the construction of low-dimensional, near-optimal
controllers for these tasks. We also focus on controllers that can
be optimized in parallel for a subset of input parameters, allowing
us further to increase the dimensionality of the controller. We hope
these ideas will extend the applicability of optimal control theory
to more problems in motion synthesis.

2 Related Work
Human motion capture data provides an effective basis for creating
new animations. By interpolating and concatenating motions, real-
istic new animation can be generated [Witkin and Popović 1995].
A graph representation often describes allowable transitions be-
tween poses. Pullen and Bregler [2002] segmented motion data into
small pieces and rearranged them to meet user-specified keyframes.
Kovar et al. [2002] generated a graph structure from motion data
allowing characters to follow sketched paths using a branch and
bound algorithm. Arikan and Forsyth [2002] created a hierarchy
of graphs and employed a randomized search algorithm for synthe-
sizing a new motion subject to temporal and position constraints.
These algorithms employ complex graph search and optimization
techniques to produce animations and are not well suited for inter-
active control. Lee et al. [2002] used a local on-line search algo-
rithm which is demonstrated to generate 5 to 8 frames of motion
per second when the search horizon is limited. The graph search
can be made more efficient by using a simple cyclic graph struc-
ture [Gleicher et al. 2003], by composing the world from smaller
environment-specific graphs [Lee et al. 2006], by precomputing
search trees [Lau and Kuffner 2006], and by grouping similar mo-
tion segments into parametrized graph nodes and building sparse
hierarchical motion graphs [Kwon and Shin 2005]. Choi et al.
[2003] generated environment-specific graph representations that
enable biped locomotion through a complex environment with ob-
stacles. Arikan et al. [2003] showed that motion synthesis from a
graph structure can be cast as dynamic programming. Our motion
model uses a graph structure, but the blending algorithm admits
blends between any two clips of motion and automatically prevents
foot-skate without inverse kinematics for a wide class of motion.
Researchers have also generalized transition graphs to form richer,
more complete motion spaces [Shin and Oh 2006; Safonova and
Hodgins 2007]. It would be highly interesting to extend our idea to
these more general spaces.

Our controller uses reinforcement learning methods, which are
well studied in the control community. Kaelbling et al. [1996] pro-
vide a good overview of the discrete reinforcement learning prob-
lem. Bertsekas [2001] presents in-depth coverage of the continu-
ous case, as well as of the delayed rewards model which we use.
LaValle [2006] provides a good overview with many applications
to robotics and motion planning. Atkeson et al. [1997] frame re-
inforcement learning in the broader context of function approxima-
tion. However, these techniques suffer acutely from dimensionality,
making control difficult or impossible in high-dimensional spaces.
Moore and Atkeson [1995] address this problem specifically with
a multi-resolution reinforcement learning algorithm; however this
method relies heavily on storing samples which can become in-
tractable for the large-scale problems we wish to solve. Researchers
have explored linear programming to efficiently solve reinforce-
ment learning problems [Singh and Yee 1994; Trick and Zin 1997].
In this vein, Pucci de Farias presented a linear programming ap-
proach that uses basis functions to compactly approximate the value
function without storing samples [2002]. This algorithm forms the
basis for our approach to character animation because it greatly mit-
igates the cost of dimensionality by avoiding runtime sampling. In
this paper, we also reduce the dimensionality burden by learning

optimal controllers only within certain subspaces, while paralleliz-
ing precomputation along other dimensions.

Reinforcement learning is increasingly appearing in the graph-
ics literature, for example to create video textures [Schödl and Essa
2001] or for local character navigation [Ikemoto et al. 2005]. The
closest work to our own is that of Lee and Lee [2004] which used
value iteration to construct a sample-based value function for box-
ing. Relative to this method, our precomputations are 7× faster on
comparably sized problems, but require more memory. At runtime,
however, our basis approximation requires 30-90× less memory
than Lee and Lee’s sample representation. To be similarly compact,
sample-based methods such as Lee and Lee’s would require very
coarse discretizations, incurring significant risk of missing minima
and other important features of the value function. Concurrently
with our work, McCann and Pollard [2007] have integrated a model
of user behavior into reinforcement learning, enabling highly re-
sponsive realtime character animation.

3 Motion Model

Our approach has two main components: a motion engine blends
through captured motion clips to produce realtime human anima-
tion, while a control policy determines the best sequence of clips to
achieve some multivariate control objective. We begin by describ-
ing the motion engine.

Our model generates poses in realtime by blending sequences of
prerecorded motion clips. Unlike standard motion graphs [Kovar
et al. 2002; Arikan and Forsyth 2002; Lee et al. 2002], we allow
transitions between any two clips, and our method automatically
prevents foot-skate for a large class of motion. Our model assumes
that we have captured a set C of motion clips, where each clip C ∈ C
consists of a sequence of poses: C = (p1, . . . ,pm). Each pose p ∈
Rn is a vector specifying all joint positions in a kinematic skeleton.
We further assume that each clip C covers a single walk cycle and
is divided into two subsequences Cin and Cout. The subsequences
start and end during flight or mid-stance, and each covers one foot
plant. We specify one constraint frame in each subsequence that
occurs during the middle of the ground contact phase (Figure 2).

Figure 2: A clip. The first subsequence Cin runs from (a) to (c), while the second Cout

comprises (c) through (e). The constraint frames are (b) and (d).

To create longer motions, we partially overlap successive clips
and blend between them. The constraint frames allow us to prevent
foot-skate during the foot plant without inverse kinematics. Two
realizations make this possible. First, when blending from C to C′,
we may mirror or arbitrarily reorient the root of C′ while preserving
continuity. Second, kinematic blending is linear in the root of the
skeleton (although nonlinear in all other skeletal nodes). Therefore,
if we properly orient the foot and “re-root” the skeleton at its foot,
we can satisfy a foot position constraint. Blending between clips C
and C′ is a four step process. First, clip C′ is mirrored if necessary
to blend along the same foot. Second, we overlap the constraint
frames from Cout and C′

in (Figure 3). Third, clip C′ is reoriented so
that its ground-contact foot coincides with that of C at the constraint
frame. Finally, we blend from Cout to C′

in, with the ground contact
foot treated as the root of the kinematic skeleton. By the linearity
of blending at the root, if the foot is fixed during interval [ta, tb] of

In Phase Out Phase

One Walkcycle

Cout and during [t ′a, t ′b] of C′in, then there cannot be foot-skate on the
interval [ta, tb]∩ [t ′a, t ′b] of the blended animation.

In summary, in our model, any subsequence of clips produces a
valid animation. Because our control algorithm avoids nonsmooth
blends, we do not need an explicit graph structure to ensure good
transitions, yet our model’s high branching factor allows for quick
motion changes. Another advantage of this model is that maximum
blending occurs during ground contact when ground forces can ac-
count for changes in direction; minimal blending occurs during the
flight phase, better preserving the linear and angular momentum of
correct motion. The major drawback is that we can enforce only
one constraint per blend, thus preventing foot-skate for only one
foot at a time. When two feet are on the ground, one foot might
slide unless all double-stance clips have the feet spaced at a fixed
distance. Nonetheless, we believe our model is highly useful for
realtime foot-skate prevention for the wide class of motions which
do not have double stance, such as walking and running.

A in

B in

C in E in

D in

A out

B out D out

E outC out

time

b
le

n
d

: constraint frames

Figure 3: Clip blending. We blend the sequence A,B,C,D,E ⊆ C. Constraint frames
(shown as solid vertical bars) are aligned across successive clips. Blending occurs
where two clips overlap.

4 Control

The motion model described above creates a valid motion for any
sequence of clips. The controller must decide which sequence best
achieves it goals quickly and naturally. Before explaining the con-
trol algorithm itself, we describe the state space S on which the
controller is defined.

Since our model blends through sequences of clips, it would
seem natural to define the state X ∈ S as the current clip. Un-
fortunately, this representation is insufficient for many tasks. For
example, if the character is to walk along a line, the state must keep
track of the character’s orientation relative to this line. Other tasks
may require other state variables. Therefore, although our control
formulation is general, the specific state representation depends on
our controller’s objectives. In our results, we learned four tasks:

• Navigation. We divide the clips into several gaits, including
standing, walking, and running. The user controls the gait,
linear motion path, and torso orientation.

• Spinning Navigation. The user controls the motion direction
as the character spins in circles (Figure 1, left).

• Fixed Obstacle Avoidance. The character follows a line,
avoiding a fixed planar obstacle (Figure 1, right).

• Moving Obstacle Avoidance. The character follows a direc-
tion, avoiding a planar obstacle with linear motion.

Although we learn these objectives independently, we consider
them jointly in the state:

X =
(
C,x,z,θ ,u,v, u̇, v̇, Ĝ, τ̂, ω̂

)
. (1)

Here, C ∈ C is the current clip, (x,z,θ) is the character’s position
and orientation on the x-z plane, (u,v) is the relative position of
the obstacle, and (u̇, v̇) is the obstacle’s speed (Figure 4). Finally
Ĝ, τ̂ , and ω̂ are the character’s desired gait, torso orientation, and
spin, respectively. The latter three variables represent intentions,
and only change if the user directly edits them (for example, by

root

desired path

x

z

z

x

torso

motion
!
" #

u

v

(a) (b)

!

!

v
.

u
.

Figure 4: State Variables. Root orientation θ is measured relative to the desired path
(along the positive x-axis). The torso orientation τ and actual motion direction ρ are
measured relative to the root.

pushing the button to change the desired gait speed). Nonetheless,
it will be useful to consider these part of the state.

For every pair of clips, the blending algorithm (Section 3) deter-
mines the length of the blend ∆t, as well as the linear and angular
change (∆x,∆y,∆θ) in the character’s position. Suppose we transi-
tion from clip C to C′. Then the state changes from X = (C, · · ·) to
X ′ = (C′, · · ·) according to the transition function f : S×C→ S as
follows:

f (X ,C′)=X ′=

C′
x′
z′
θ ′
u′
v′
u̇′
v̇′

Ĝ′
τ̂ ′
ω̂ ′

=

C′
x+ cos(θ)∆x− sin(θ)∆z
z+ sin(θ)∆x+ cos(θ)∆z

θ +∆θ
u+ u̇∆t− cos(θ)∆x+ sin(θ)∆z
v+ v̇∆t− sin(θ)∆x− cos(θ)∆z

u̇
v̇
Ĝ
τ̂
ω̂

. (2)

4.1 Cost
We express goals by assigning a cost to each state and transition

cs : S→ R : State cost
ct : S×S→ R : Transition cost (3)

which are inversely proportional to how well these fulfill the goal.
This framework is very broad and can handle a great number of
objectives. We now describe the costs used specifically for our four
tasks. Again, although we learn these tasks independently (Table
1), we consider them jointly for now.

The gaits partition the clip set C into different kinds of motion.
For the navigation task, we treat the desired gait Ĝ as a hard con-
straint so that if X = (C, · · ·) but C /∈ Ĝ, then cs(X) = ∞. Otherwise,
we ignore the gait and orient the coordinate system so that the de-
sired path coincides with x-axis. We penalize deviation from this
path and proximity to the obstacle:

cs(X) = γx|x|
︸ ︷︷ ︸
deviation

+γO exp
(
− (u2 + v2)σ−2

O

)

︸ ︷︷ ︸
obstacle

. (4)

Here, γx and γO are scaling parameters, and σO controls the width
of the obstacle. The transition cost ct ensures smooth character
motion in the right direction and with the correct torso orientation
and spin:

ct(X ,X ′) = γΨΨ(C,C′)
︸ ︷︷ ︸

Physics.

+γρ |θ +ρ|
︸ ︷︷ ︸
Direction.

+γτ |τ− τ̂|
︸ ︷︷ ︸

Torso.

+γω |ω− ω̂|
︸ ︷︷ ︸

Spinning.

. (5)

Again, γΨ, γρ , γτ , and γω are scaling constants. The physics cost Ψ :
C×C→R measures the “physical error” in blending from C to C′ as

constraint 1 constraint 2

Smart Blending Example

source: Treuille et al. [2002]

Open Problems

• How to pick to which clip to transition?

• How to enforce temporal contraints?

• How to generalize beyond the given
clips?

Overview

• Data-Driven Motion

• Physics Based Motion

• Motion of other Animals

• Questions

Overview

• Data-Driven Motion

• Physics Based Motion

• Motion of other Animals

• Questions

Physical Model

x,v,R,ω,m,I
joint

joint

joint

joint

joint

Joint Types
All joints can be written as the composition of...

Rotary Prismatic

...and have two forms:
1. Constraint Form
2. Functional Form

Joint Enforcement

• Penalty Methods

• Contraint Methods
• aka Maximal Coordinate

• Minimal Coordinates

joint

joint

joint
joint

joint

Internal Coordinates

• Forward Dynamics Problem

• Compute q = F(q, q, f, τ)
• f: external forces

• τ: internal torques

• Then use ODE solver.

• Inverse Dynamics Problem

• Compute τ = G(q, q, q, f)

• q: the skeletal coordinates
• q: joint velocities
• q: joint accelerations

Featherstone Algorithm

inboard
joint

outboard
joint

O

link i!1

f
I

i!1

fO
i!1 τO

i!1

gmi!1

τI
i!1

link 0
(base)

link 1

link i

link n

joint 1

joint i
joint i+1

joint n

outboardinboard

Constraints
• Accelerations are linear in applied

torques and forces.

• Use of “test forces”

• Multiple test forces

222222

Computing jComputing Computing jj

 pa

 pa

AA

BB

 n

 n

 jn

 jn

cj + b = d

cj + b = d

 n • pa
+

 = – ()! n • pa
–

 n • pa
+

 = – ()! n • pa
–

af = kf + a0

af = Kf + a0

Examples

Overview

• Data-Driven Motion

• Physics Based Motion

• Motion of other Animals

• Questions

Overview

• Data-Driven Motion

• Physics Based Motion

• Motion of other Animals

• Questions

Bird Flight
Published in ACM Transactions on Graphics (SIGGRAPH 2003)

angle of attack

spread

feather

wrist bend

tail bend

elbow bend
forearm twist

shoulder
(quaternion joint)

tail spread

tail twist

Figure 2: The bird skeleton. Note that in order to model both twist
and bend movement, the forearms and the tail are each divided into
two links. The actuated joints are shoulder × 2, elbow bend × 2,
forearm twist × 2, wrist bend × 2, tail bend, tail twist, and tail
spread. The shoulder joint has 3 DOFs and the other joints each has
1 DOF. The trunk has 6 DOFs representing its global position and
orientation.

bend springs

twist spring

aerodynamic
forces

Figure 3: Left: Angular springs on a feather. Right: Because
of vane asymmetry, air pressure may create different amounts of
forces on both sides of the shaft and cause the feather to rotate
around its shaft.

torque. To avoid the concentration of mass at the front edge of the
wing because of the massless feathers, links with feathers are ex-
tended in the direction of feather growth for a more accurate mass
distribution.

4.1 Wingbeat parameterization
In order to represent the desired DOF patterns q∗(t) for a wing-
beat, we use a set of wingbeat parameters u. The size of u defines
the dimensionality of the search space for the optimization and di-
rectly impacts the performance of the optimization process. It is,
therefore, important that we specify each wingbeat using as few
parameters as possible while still giving the bird enough maneuver-
ability. The parameters are shown in Table 1. The superscripts u
and d indicate upstroke and downstroke parameters. Most of these
parameters are replicated for the left and right wings. For simplic-
ity, we do not list them here separately. The dihedral and sweep
angles are defined in Figure 4.

These parameters are used to determine the composite func-
tions gk which in turn determine q∗:

q∗i (t) = qi +(qi −qi)gk(u
d
µ(i),u

u
µ(i),φ(t))

where qi and qi are the maximum and minimum allowed values for
DOF i (i.e. the joint limits), and φ is the phase of the wingbeat cycle.

Parameter Description
ud

1 , uu
1 arm dihedral angles

ud
2 , uu

2 arm sweep angle
ud

3 , uu
3 arm twist angles

ud
4 , uu

4 forearm twist angles
ud

5 , uu
5 wing spread extents

ud
6 , uu

6 tail bend angles
u7 tail twist angle
u8 tail spread angle
uT duration of the wingbeat

Table 1: Wingbeat parameters.

dihedral angle

sweep angle

front view top view

Figure 4: Arm dihedral and sweep angles.

Each wingbeat starts with the downstroke, i.e. , φ = 0 is the begin-
ning of the downstroke, and φ = 2π is the end of the upstroke. The
function µ(i) determines the mapping between DOFs and wingbeat
parameters. DOF i is determined by the parameters ud

µ(i) and uu
µ(i).

The composite functions gk are

g1(u
d
j ,u

u
j ,φ) = (uu

j −ud
j)

1+ cosφ
2

+ud
j

g2(u
d
j ,u

u
j ,φ) =

{
ud

j 0 ≤ φ < π
(uu

j −ud
j)

1−cos(2φ)
2 +ud

j π ≤ φ < 2π

Figure 5(a) shows curves generated by these two composite func-
tions.

Based on observations made in the biomechanics literature, we
use g1 for upper arm dihedral and tail bend. We use g2 for the
arm sweep, arm and forearm twists, and wing spread extends. We
provide the rationale for the specific choice of composite functions
in Appendix A.

For DOF i with constant desired state such as tail twist and tail
spread, the desired state is

q∗i = qi +(qi −qi)uµ(i)

The mapping µ(i) is straightforward for most DOFs, with the
exception of the wrist bend and elbow bend DOFs. These DOFs are
both determined by the wing spread parameters ud

5 and uu
5 because

of a bird’s musculoskeletal constraints. The wing linkage allows the
forearm and the hand to fold and unfold synchronously [Norberg
1990]. As the wing folds, it also causes the forearm to rotate so
that the hand is depressed downward [King and McLelland 1985].
We linearly decrease the bounds for the arm twist depending on
the wing spread parameters to achieve this. We could avoid this
inelegance by modeling the complete linkage system, but doing so
would make the skeletal model unnecessarily complex and hinder
the simulation performance.

4.2 Phase transformation
As previously defined, the functions g1 and g2 generate wingbeats
with equal downstroke and upstroke durations. To allow variability

3

Published in ACM Transactions on Graphics (SIGGRAPH 2003)

0 π/2 π 3π/2 2π
0

π/2

π

3π/2

2π

φ

φ

uα = 0.25
 = 0.5
 = 0.75uα

uα

0 π/2 π 3π/2 2π
φ

ud

uu

g2

g1

(a) (b)

Figure 5: (a) Two curves generated by the composite functions.
(b) Shows phase transformation function with different downstroke
fraction uα .

in these durations, we introduce two more parameters uα and uβ
that represent the fractions of time that the downstroke takes up
the wingbeat duration and a phase transformation function h(φ)
(Figure 5(b)) which satisfies the following conditions:

h(0) = 0, h(2u{α,β}π) = π, h(2π) = 2π, ḣ(0) = ḣ(2π) = 1

We then use φ ′ = h(φ) instead of φ in g1 and g2. We use uα and uβ
in g1 and g2 respectively, and the resulting wingbeat has a down-
stroke/upstroke ratio of uα

1−uα
. Using uβ in addition to uα produces

a wider variety of wingbeats and also enables the optimization to
find a better timing between different DOFs. In order to keep DOFs
synchronized, we offset the phase of any q∗i generated using g2 so
that its midpoints of upstroke and downstroke coincide with those
that belong to DOFs generated using g1.

4.3 Wingbeat blending
Functions g1 and g2 are intentionally designed to be cyclic in order
to easily model repetitive wingbeats. Unfortunately, when compos-
ing two different consecutive wingbeats, there are invariably C0 and
C1 discontinuities at the time of transition. These discontinuities
will result in drastic fluctuations of the torques from the PD con-
troller. We deal with these discontinuities by blending the desired
state patterns near the transition point. In order to decouple the flap-
ping amplitudes between adjacent wingbeats, we have found that it
is better if each wingbeat starts and ends at the middle of the up-
stroke because that is when the wings are usually at their neutral
dihedral angles. In other words, the wingbeat phase starts and ends
at 2(uα + 1−uα

2)π .
Let tT denote the time at which the wingbeat transition occurs

(i.e. when the first wingbeat ends and the second wingbeat begins).
We blend the wingbeats from time ts = tT − tb to te = tT + tb. As
seen in Figure 6, we first extend q∗(t) from both wingbeats into the
neighboring regions by duplicating them, and then blend them as
in [Lee and Kim 1995]. Note that unlike in [Lee and Kim 1995]
where they directly manipulated the final animation, our blended
curves represent the desired values for the DOFs and not the sim-
ulation results. We feed the blended desired state patterns to the
PD controller to generate the torques used in the final simulation.
Because the end of the first wingbeat is changed by the blending,
we back up and start the simulation from ts when we optimize the
second wingbeat.

4.4 Simplified aerodynamics
Currently, the only external force modeled in our system besides
gravity is the aerodynamics force. The lift and drag model used in
our system is as follows. Given the velocity of air v relative to a

q

time

blended
curve

1st wing beat 2nd wing beat

ts tetT

*

Figure 6: Wingbeat blending. The solid blue curves are the original
curves. The dotted blue curves are the duplicate of the original
curves to extend the them beyond the transition time tT . The thick
red curve is the blended result.

ap
as

Figure 7: Wing areas: ap is the wing area formed by the primaries,
and as is the wing area formed by the secondaries.

surface with normal n, we decompose the velocity into the normal
and tangential components vn and vt with respect to the surface.
The angle of attack θ is

θ = tan−1
(

vn ·n
‖vt‖

)

By definition, the direction d of drag and the direction l of lift are

d =
v
‖v‖ , l =

d×n
‖d×n‖ ×d

With lift and drag coefficients cl(θ) and cd(θ) , we compute lift
and drag for every segment on each feather using the area of the
segment and the angle of attack the air has on the segment. The
measured coefficients for bird wings are only available for limited
range of angle of attack (see, for example, [Withers 1981]). More
extreme angles of attack such as those that would appear during
takeoff are usually outside of this range. We use synthesized func-
tions to produce lift and drag coefficients at any particular angle
of attack while maintaining their characteristics within the range
where measured data are available. Simply summing up the lift
and drag forces thus derived to obtain the forces for the wing will
not give a good approximation because the overlap of the feathers
is ignored. We therefore scale the segment area by si = ap/∑i ai
for each primary feather segment i and by s j = as/∑ j a j for each
secondary feather segment j, where ap and as are the wing areas
formed by the primaries and the secondaries respectively and ai
and a j are the unscaled segment areas. We approximate ap and as
by connecting the roots and tips of adjacent feathers and summing
up the polygonal area (Figure 7).

4

source: Wu and Popović [2003]

Bird Flight Examples

Dogs

Model Vibration Modes Trot = 3 + 14 + 20 Amble = 4 + 14 + 20 Gallop = 0 + 1 + 3

source: Kry et al [2007]

Overview

• Data-Driven Motion

• Physics Based Motion

• Motion of other Animals

• Questions

Overview

• Data-Driven Motion

• Physics Based Motion

• Motion of other Animals

• Questions

Questions

• Suppose we have an object which always
deforms in some way.

• Represent this deformation without a
high resolution tetrahedral mesh?

• Compute “low dimensional” dynamics
equivalent to high resolution mesh?

