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State of the Art
• Steady but slow progress 

towards digital humans.

• (As usual, rendering ahead 
of animation.)

• State of the art for animation 
production.

• State of the art for games.

• Uncanny Valley.

• Facial Animation.

• Most human animation is 
data driven. 

(Like saying that 
graphics is solved 

by the camera.)
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Body Representation

source: http://www.3eop.com/data/3d/images/08_05_26_anatomy_study_male.jpg

How to represent a human body on a computer?



Body Representation

• Kinematic Skeleton

source: https://buffy.eecs.berkeley.edu/PHP/resabs/resabs.php?
f_year=2005&f_submit=advgrp&f_advid=10917651
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Body Representation

• Kinematic Skeleton

• Anatomical

• Pure Mesh source: http://physbam.stanford.edu/~fedkiw/

To appear in SIGGRAPH 2005.

B C D E FA

Figure 5: Using MESHIK to pose a bar: (A) Two example poses superimposed on top of each other. (B) The left cap of the unbent bar is
constrained to stay in place while a single vertex on the right side is manipulated. Three edits using our nonlinear feature space are shown.
Note that MESHIK generalizes beyond the two examples and can create arbitrary bends in the plane. (C) In contrast, the linear feature space
interpolates and generalizes poorly. (D) In this top down view, moving the constrained vertex perpendicular to the bend causes a shear since
no examples were provided in this direction. (E)–(F) Providing one additional example in the perpendicular direction allows MESHIK to
generalize to bends in that direction as well as in the space in between.

A B C D

Figure 6: Top row: Ten lion example poses. Bottom row: A sequence of posing operations. (A) Two handle vertices are chosen. (B) The
front leg is pulled forward and the lion continuously deforms as the constraint is moved. (C) The red region is selected and frozen so that
the front leg can be edited in isolation. (D) A similar operation is performed to adjust the tail. The final pose is different from any individual
example.
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Figure 7: Posing simulated flag. Top row: Fourteen examples of a flag blowing in the wind created with a cloth simulation. (A) An
undeformed flag is used as the reference pose. (B)–(D) By positioning only the corners of the flag, we create realistic cloth deformations
without requiring any dynamic simulation. (E)–(F) Two frames from an animation in which the constraints on the corners were key-framed
to produce a walking motion.

... ... ......

Figure 8: Galloping horse and elephant animations were created using only four examples of each along with the same key-framed motion of
one vertex on each foot.
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Skeleton Representation

ω0 = [x0, θ0] ∈ R6

ωi = fi,Ω(ωi−1)

root: ω0

f1

f2 f3 f4 f5

ω5

Ω is the vector of 
internal joint 

angles, i.e. 
shoulders, hips, 

etc.



Motion Capture
• Attach markers to a humans body.

• Calibrate a skeleton which makes those 
markers “make sense.”

• Cameras capture 2D markers positions.

• Estimate 3D marker positions.

• Inverse kinematics: convert marker 
positions to skeleton...

• How?



Marker Energy Function

ωi = fi,Ω(ωi−1)
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Derivatives
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Inverse Kinematics Summary

• Telescoping composition of functions 
from root.

• Compute derivatives in the opposite 
direction!



Body Representation

• Kinematic Skeleton

• Anatomical

• Pure Mesh

• What are the 
advantages and 
disadvantages?
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Figure 5: Using MESHIK to pose a bar: (A) Two example poses superimposed on top of each other. (B) The left cap of the unbent bar is
constrained to stay in place while a single vertex on the right side is manipulated. Three edits using our nonlinear feature space are shown.
Note that MESHIK generalizes beyond the two examples and can create arbitrary bends in the plane. (C) In contrast, the linear feature space
interpolates and generalizes poorly. (D) In this top down view, moving the constrained vertex perpendicular to the bend causes a shear since
no examples were provided in this direction. (E)–(F) Providing one additional example in the perpendicular direction allows MESHIK to
generalize to bends in that direction as well as in the space in between.
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Figure 6: Top row: Ten lion example poses. Bottom row: A sequence of posing operations. (A) Two handle vertices are chosen. (B) The
front leg is pulled forward and the lion continuously deforms as the constraint is moved. (C) The red region is selected and frozen so that
the front leg can be edited in isolation. (D) A similar operation is performed to adjust the tail. The final pose is different from any individual
example.
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Figure 7: Posing simulated flag. Top row: Fourteen examples of a flag blowing in the wind created with a cloth simulation. (A) An
undeformed flag is used as the reference pose. (B)–(D) By positioning only the corners of the flag, we create realistic cloth deformations
without requiring any dynamic simulation. (E)–(F) Two frames from an animation in which the constraints on the corners were key-framed
to produce a walking motion.
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Figure 8: Galloping horse and elephant animations were created using only four examples of each along with the same key-framed motion of
one vertex on each foot.
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Dense Marker Capture

(a) (b)
Figure 2: Capture setup: (a) Twelve cameras surrounding a small
capture region. Two cameras (shown in red) were aimed up rather
than down to capture downward facing markers; (b) 350 small
markers attached to the subject’s body.

frames/second [Vicon Motion Systems 2006]. To increase accu-
racy, we positioned the cameras close to the subject with a small
capture region (approximately 2 m by 2 m by 2.5 m high). Two
cameras were aimed up rather than down to capture markers facing
toward the ground. Figure 2(a) shows the camera configuration.

We placed approximately 350 reflective markers on the subject’s
body. To capture the subtle movement of the skin effectively, we
chose small markers (diameter 3.0 mm) with a hemispherical shape
to minimize the offset of the markers from the body. Although
it is not necessary to have an even distribution of the markers on
the body, we drew an approximate grid on the subject’s body, and
placed the markers on that grid. The average distance between two
neighboring markers was 4-5 cm. We supplemented the grid pat-
tern with additional markers in areas where more resolution would
likely be needed (the tip of the elbow and the point on the lower part
of the shoulder blade, for example). Figure 2(b) shows the marker
placement.

We reconstructed the 3D positions of the markers with the VICON
IQ 2.0 software [Vicon Motion Systems 2006]. In conventional mo-
tion capture, reconstruction is aided by a skeleton model and a rigid
link assumption; however, because of the significant deformations
in our captures, we could not make this assumption. This assump-
tion is also not valid for motion capture of the face, but our whole
body capture was fully 3D and therefore contained many more oc-
clusions than are seen in the more nearly 2D data captured from the
face. Occlusions are difficult to handle because they occur simulta-
neously in regions.

In the next section, we present a novel method for cleaning and
recovering damaged marker data based on a local reference frame
defined at each marker and the spatial relationship with neighboring
markers. We first define the local reference frame and then explain
how it can be used to clean and recover corrupted data by identify-
ing trajectories that can be merged and facilitating hole filling. The
final step in the cleaning process is smoothing.

4.1 Local Reference Frame

We first select a pose as the reference pose and use it to estimate the
local shape of the body. We selected the pose shown in Figure 2(b)
as the reference pose because few markers were occluded. We as-
sume that subjects begin each motion in the reference pose and that
there are no missing markers in the first frame. This last assump-
tion was reasonable for our experiments because only two or three
markers near the armpit were occluded and these could be filled in
manually by referring to frames where they were visible. We create

xi
xi,1

xi,2 xi,3 xi,4
xi,5

nit i bi
0
0

0
00

00
0

0

xi,60
(a) (b)

Figure 3: (a) a marker (red dot) and its one-ring neighbors (blue
dots); (b) a local reference frame on the marker.
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left arm

Figure 4: The reference pose: (a) markers; (b) marker surface; (c)
local frame at each marker.

a mesh from the marker positions in the reference pose. Neighbor-
ing markers are identified based on the geodesic distance along the
skin. This process was done manually for our experiments. We call
the resulting mesh the marker surface (Figure 4(a) and (b)). The
indices of the vertices on the surface are assigned to the markers as
labels. The construction of the marker surface is done only once for
each subject.

On the marker surface, we denote the marker with index i as mi,
1 ≤ i ≤ N, where N is the number of markers, and its one-ring
neighbor as mi,k, 1 ≤ k ≤ di, where di is the valence of marker i.
We denote the position of the i-th marker by x0

i and the position of
its one-ring neighbors as x0

i,k in the reference pose. Using a similar
technique to that of Lipman and his colleagues [2005], we define
the local frame for marker i in the reference pose with its origin
located at x0

i and the triplet (t0
i ,b0

i ,n0
i ), where n0

i is the normal
vector of the marker surface at the i-th marker in the reference pose,
t0
i is a unit vector with direction equal to the projection of the vector

(x0
i,1 −x0

i ) onto the tangential plane defined by n0
i , and b0

i is a unit
vector orthogonal both to n0

i and t0
i . We call this local frame of

the reference pose the local reference frame. Note that t0
i can be

defined using any of the one-ring neighbors, and our choice of x0
i,1

is arbitrary. Figure 3 illustrates the definition of the local frame.

The position x̂0
i,k of the k-th 1-ring neighbor measured in the local

reference frame of marker i is

x̂0
i,k = R0

i (x0
i,k −x0

i ), (1)

where R0
i ∈ R3×3 is a rotation matrix defined as [t0

i b0
i n0

i ]
T.

4.2 Merging Disconnected Trajectories

The 3D marker data from the optical motion capture system con-
sists of a set of reconstructed marker trajectories. However, as men-
tioned above, a marker trajectory may be broken into many partial

(a) (b)
Figure 2: Capture setup: (a) Twelve cameras surrounding a small
capture region. Two cameras (shown in red) were aimed up rather
than down to capture downward facing markers; (b) 350 small
markers attached to the subject’s body.

frames/second [Vicon Motion Systems 2006]. To increase accu-
racy, we positioned the cameras close to the subject with a small
capture region (approximately 2 m by 2 m by 2.5 m high). Two
cameras were aimed up rather than down to capture markers facing
toward the ground. Figure 2(a) shows the camera configuration.

We placed approximately 350 reflective markers on the subject’s
body. To capture the subtle movement of the skin effectively, we
chose small markers (diameter 3.0 mm) with a hemispherical shape
to minimize the offset of the markers from the body. Although
it is not necessary to have an even distribution of the markers on
the body, we drew an approximate grid on the subject’s body, and
placed the markers on that grid. The average distance between two
neighboring markers was 4-5 cm. We supplemented the grid pat-
tern with additional markers in areas where more resolution would
likely be needed (the tip of the elbow and the point on the lower part
of the shoulder blade, for example). Figure 2(b) shows the marker
placement.

We reconstructed the 3D positions of the markers with the VICON
IQ 2.0 software [Vicon Motion Systems 2006]. In conventional mo-
tion capture, reconstruction is aided by a skeleton model and a rigid
link assumption; however, because of the significant deformations
in our captures, we could not make this assumption. This assump-
tion is also not valid for motion capture of the face, but our whole
body capture was fully 3D and therefore contained many more oc-
clusions than are seen in the more nearly 2D data captured from the
face. Occlusions are difficult to handle because they occur simulta-
neously in regions.

In the next section, we present a novel method for cleaning and
recovering damaged marker data based on a local reference frame
defined at each marker and the spatial relationship with neighboring
markers. We first define the local reference frame and then explain
how it can be used to clean and recover corrupted data by identify-
ing trajectories that can be merged and facilitating hole filling. The
final step in the cleaning process is smoothing.

4.1 Local Reference Frame

We first select a pose as the reference pose and use it to estimate the
local shape of the body. We selected the pose shown in Figure 2(b)
as the reference pose because few markers were occluded. We as-
sume that subjects begin each motion in the reference pose and that
there are no missing markers in the first frame. This last assump-
tion was reasonable for our experiments because only two or three
markers near the armpit were occluded and these could be filled in
manually by referring to frames where they were visible. We create
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Figure 3: (a) a marker (red dot) and its one-ring neighbors (blue
dots); (b) a local reference frame on the marker.

(a) (b) (c)
left arm

Figure 4: The reference pose: (a) markers; (b) marker surface; (c)
local frame at each marker.

a mesh from the marker positions in the reference pose. Neighbor-
ing markers are identified based on the geodesic distance along the
skin. This process was done manually for our experiments. We call
the resulting mesh the marker surface (Figure 4(a) and (b)). The
indices of the vertices on the surface are assigned to the markers as
labels. The construction of the marker surface is done only once for
each subject.

On the marker surface, we denote the marker with index i as mi,
1 ≤ i ≤ N, where N is the number of markers, and its one-ring
neighbor as mi,k, 1 ≤ k ≤ di, where di is the valence of marker i.
We denote the position of the i-th marker by x0

i and the position of
its one-ring neighbors as x0

i,k in the reference pose. Using a similar
technique to that of Lipman and his colleagues [2005], we define
the local frame for marker i in the reference pose with its origin
located at x0

i and the triplet (t0
i ,b0

i ,n0
i ), where n0

i is the normal
vector of the marker surface at the i-th marker in the reference pose,
t0
i is a unit vector with direction equal to the projection of the vector

(x0
i,1 −x0

i ) onto the tangential plane defined by n0
i , and b0

i is a unit
vector orthogonal both to n0

i and t0
i . We call this local frame of

the reference pose the local reference frame. Note that t0
i can be

defined using any of the one-ring neighbors, and our choice of x0
i,1

is arbitrary. Figure 3 illustrates the definition of the local frame.

The position x̂0
i,k of the k-th 1-ring neighbor measured in the local

reference frame of marker i is

x̂0
i,k = R0

i (x0
i,k −x0

i ), (1)

where R0
i ∈ R3×3 is a rotation matrix defined as [t0

i b0
i n0

i ]
T.

4.2 Merging Disconnected Trajectories

The 3D marker data from the optical motion capture system con-
sists of a set of reconstructed marker trajectories. However, as men-
tioned above, a marker trajectory may be broken into many partial
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source: Allen, Curless, Popović. The space of human body shapes: reconstruction and 
parameterization from range scans.

How could this be accomplished?
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mode 1
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mode 3

d1

d2

d3

(a) (b) (c) (d)

T

Figure 2: In (a) we show a 3rd-order (3-mode) tensor T whose
modes have d1, d2, and d3 elements respectively. Depending on
how we look at the data within the tensor, we can identify three
mode spaces. By viewing the data as vectors parallel to the first
mode (b), we define mode-1 space as the span of those vectors.
Similarly, mode-2 space is spanned by vectors parallel to the second
mode (c), and mode-3 space by vectors in the third mode (d).

Mode-n Product. The most obvious way of manipulating mode
spaces is via linear transformation, officially referred to as the
mode-n product. It is defined between a tensor T and a matrix
M for a specific mode n, and is written as a multiplication with a
subscript: T ×n M. This notation indicates a linear transforma-
tion of vectors in T ’s mode-n space by the matrix M. Concretely,
T ×2 M would replace each mode-2 vector v (Figure 2c) with a
transformed vector Mv.

Tensor Decomposition. One particularly useful linear transfor-
mation of mode data is the N-mode singular value decomposition
(N-mode SVD). It rotates the mode spaces of a data tensor T pro-
ducing a core tensor C , whose variance monotonically decreases
from first to last element in each mode (analogous to matrix SVD).
This enables us to truncate the insignificant components and get a
reduced model of our data.

Mathematically, N-mode SVD can be expressed with mode
products

T ×1 U"1 ×2 U"2 ×3 U"3 · · ·×N U"N = C (1)
=⇒ T = C ×1 U1×2 U2×3 U3 · · ·×N UN , (2)

where T is the data tensor, C is the core tensor, and Ui’s (or more
precisely their transposes) rotate the mode spaces. Each Ui is an
orthonormal matrix whose columns contain left singular vectors of
the ith mode space, and can be computed via regular SVD of those
spaces [De Lathauwer 1997]. Since variance is concentrated in one
corner of the core tensor, data can be approximated by

T $ Creduced×1 Ǔ1×2 Ǔ2×3 Ǔ3 · · ·×N ǓN , (3)

where Ǔi’s are truncated versions of Ui’s with last few columns
removed. This truncation generally yields high quality approxima-
tions but it is not optimal—one of several matrix-SVD properties
that do not generalize in multilinear algebra. One can obtain a bet-
ter approximation with further refinement of Ǔi’s and Creduced via
alternating least squares [De Lathauwer 1997].

4 Multilinear Face Model

To construct the multilinear face model, we first acquire a range
of 3D face scans, put them in full correspondence, appropriately
arrange them into a data tensor (Figure 3), and use the N-mode
SVD to compute a model that captures the face geometry and its
variation due to attributes such as identity and expression.

vertices

expression

identity

Figure 3: Data tensor for a bilinear model that varies with iden-
tity and expression; the first mode contains vertices, while the sec-
ond and third modes correspond to expression and identity respec-
tively. The data is arranged so that each slice along the second mode
contains the same expression (in different identities) and each slice
along the third mode contains the same identity (in different expres-
sions). In our trilinear experiments we have added a fourth mode,
where scans in each slice share the same viseme.

4.1 Face Data

We demonstrate our proof-of-concept system on two separate face
models: a bilinear model, and a trilinear model. Both were es-
timated from detailed 3D scans (∼ 30K vertices) acquired with
3dMD/3Q’s structured light scanner (http://www.3dmd.com/) in
a process similar to regular flash photography, although our meth-
ods would apply equally to other geometric data sets such as motion
capture. As a preprocess, the scans were smoothed using the bilat-
eral filter [Jones et al. 2003] to eliminate some of the capture noise.
The subject pool included men, women, Caucasians, and Asians,
from the mid-20s to mid-50s.

Bilinear model. 15 subjects were scanned performing the same
10 facial expressions. The expressions were picked for their famil-
iarity as well as distinctiveness, and include neutral, smile, frown,
surprise, anger, and others. The scans were assembled into a third
order (3-mode) data tensor (30K vertices × 10 expressions × 15
identities). After N-mode SVD reduction, the resulting bilinear
model offers 6 knobs for manipulating expression and 9 for identity.

Trilinear model. 16 subjects were asked to perform 5 visemes in
5 different expressions (neutral, smiling, scowling, surprised, and
sad). The visemes correspond to the boldfaced sounds in man, car,
eel, too, and she. Principal components analysis of detailed speech
motion capture indicated that these five expressions broadly span
the space of lip shapes, and should give a good approximate basis
for all other visemes—with the possible exception of exaggerated
fricatives. The resulting fourth order (4-mode) data tensor (30K
vertices × 5 visemes × 5 expressions × 16 identities) was decom-
posed to yield a trilinear model providing 4 knobs for viseme, 4 for
expression, and 16 for identity (we have kept the number of knobs
large since our data sets were small).

4.2 Correspondence

Training meshes that are not placed in perfect correspondence can
considerably muddle the question of how to displace vertices to
change one attribute versus another (e.g. identity versus expres-
sion), and thus the multilinear analysis may not give a model with
good separability. We show here how to put a set of unstructured
face scans into correspondence suitable for multilinear analysis.

Despite rapid advances in automatic parameterization of meshes
(e.g., [Praun and Hoppe 2003; Gotsman et al. 2003]), it took consid-
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source: Anguelov, Srinivasan, Koller, Thrun, Rodgers, Davis. SCAPE: Shape Completion and Animation of People.

source: Vlasic, Brand, Pfister, Popović. Face Transfer with Multilinear Models.
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move trees [Mizuguchi et al. 2001], which (like motion graphs) are
graph structures representing connections in a database of motion.
However, move trees are created manually — short motion clips are
collected in carefully scripted capture sessions and blends are cre-
ated by hand using interactive tools. Motion graphs are constructed
automatically. Also, move trees are typically geared for rudimen-
tary motion planning (“I want to turn left, so I should follow this
transition”), as opposed to more complicated objectives.

The generation of transitions is an important part of our approach.
Early work in this area was done by Perlin [1995], who presented a
simple method for smoothly interpolating between two clips to cre-
ate a blend. Lee [2000] defined orientation filters that allowed these
blending operations to be performed on rotational data in a more
principled fashion. Rose et al. [1996] presented a more complex
method for creating transitions that preserved kinematic constraints
and basic dynamic properties.

Our main application of motion graphs is to control a character’s
locomotion. This problem is important enough to have received
a great deal of prior attention. Because a character’s path isn’t
generally known in advance, synthesis is required. Procedural and
physically based synthesis methods have been developed for a few
activities such as walking [Multon et al. 1999; Sun and Metaxas
2001] and running [Hodgins et al. 1995; Bruderlin and Calvert
1996]. While techniques such as these can generate flexible motion
paths, the current range of movement styles is limited. Also, these
methods do not produce the quality of motion attainable by hand
animation or motion capture. While Gleicher [2001] presented a
method for editing the path traversed in a clip of motion capture,
it did not address the need for continuous streams of motion, nor
could it choose which clip is correct to fit a path (e.g. that a turning
motion is better when we have a curved path).

Our basic approach — detecting transitions, constructing a graph,
and using graph search techniques to find sequences satisfying user
demands — has been applied previously to other problems. Schödl
et al. [2000] developed a similar method for synthesizing seamless
streams of video from example footage and driving these streams
according to high-level user input.

Since writing this paper, we have learned of similar work done
concurrently by a number of research groups. Arikan and
Forsythe [2002] constructed from a motion database a hierarchi-
cal graph similar to ours and used a randomized search algorithm
to extract motion that meets user constraints. Lee et al. [2002] also
constructed a graph and generated motion via three user interfaces:
a list of choices, a sketch-based interface similar to what we use
for path fitting (Section 5), and a live video feed. Pullen and Bre-
gler [2002] keyframed a subset of a character’s degrees of freedom
and matched small segments of this keyframed animation with the
lower frequency bands of motion data. This resulted in sequences
of short clips forming complete motions. Li et al [2002] generated
a two-level statistical model of motion. At the lower level were lin-
ear dynamic systems representing characteristic movements called
“textons”, and the higher level contained transition probabilities
among textons. This model was used both to generate new motion
based on user keyframes and to edit existing motion.

3 Motion Graph Construction

In this section, we define the motion graph structure and the proce-
dure for constructing it from a database of clips.

A clip of motion is defined as a regular sampling of the charac-
ter’s parameters, which consist of the position of the root joint
and quaternions representing the orientations of each joint. We

Figure 2: Consider a motion graph built from two initial clips. (top) We can trivially
insert a node to divide an initial clip into two smaller clips. (bottom) We can also insert
a transition joining either two different initial clips or different parts of the same initial
clip.

also allow clips (or, more generally, sets of frames) to be anno-
tated with other information, such as descriptive labels (“walking,”
“karate”) and constraint information (left heel must be planted on
these frames).

A motion graph is a directed graph where all edges correspond to
clips of motion. Nodes serve as choice points connecting these
clips, i.e., each outgoing edge is potentially the successor to any
incoming edge. A trivial motion graph can be created by placing
all the initial clips from the database as arcs in the graph. This cre-
ates a disconnected graph with 2n nodes, one at the beginning and
end of each clip. Similarly, an initial clip can be broken into two
clips by inserting a node, since the later part of the motion is a valid
successor to the earlier part (see Figure 2).

A more interesting graph requires greater connectivity. For a node
to have multiple outgoing edges, there must be multiple clips that
can follow the clip(s) leading into the node. Since it is unlikely that
two pieces of original data are sufficiently similar, we need to create
clips expressly for this purpose. Transitions are clips designed such
that they can seamlessly connect two segments of original data. By
introducing nodes within the initial clips and inserting transition
clips between otherwise disconnected nodes, we can create a well-
connected structure with a wide range of possible graph walks (see
Figure 2).

Unfortunately, creating transitions is a hard animation problem.
Imagine, for example, creating a transition between a run and a
backflip. In real life this would require several seconds for an ath-
lete to perform, and the transition motion looks little like the mo-
tions it connects. Hence the problem of automatically creating such
a transition is arguably as difficult as that of creating realistic mo-
tion in the first place. On the other hand, if two motions are “close”
to each other then simple blending techniques can reliably gener-
ate a transition. In light of this, our strategy is to identify portions
of the initial clips that are sufficiently similar that straightforward
blending is almost certain to produce valid transitions.

The remainder of this section is divided into three parts. First we
describe our algorithm for detecting a set of candidate transition
points. In the following two sections we discuss how we select
among these candidate transitions and how blends are created at
the chosen transition points. Finally, we explain how to prune the
graph to eliminate problematic edges.
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source: Kovar, Gleicher, Pighin. Motion Graphs.

Motion Graph Schematic Finding Candidate
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• We have only two lectures left!

• Possible topics:

• Model Reduction / Real-time 
Simulation - 10

• Physics-based human 
animation. - 10
• Animal Motion / Morphology

• Optimization Control - 5
• Anything else?
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Questions
• How do we fix the foot skate problem?

• How can we generalize away from 
existing motion capture data?

• How could we search for motion clips?

• How could we motion capture wild 
animals?

• How could we go from “motion capture” 
to “physics capture?”


