Humans: The Final Frontier

source: http://www.gimartex.es/myfiles/Ballet-dancer_01.jpg

Adrien Treuille

- State of the art.
 Body models.
- Animation
- Vote.
- Questions

• State of the art. Body models. Animation • Vote. Questions

• Steady but *slow* progress towards digital humans.

- Steady but *slow* progress towards digital humans.
 - (As usual, rendering ahead of animation.)

- Steady but *slow* progress towards digital humans.
 - (As usual, rendering ahead of animation.)
- State of the art for animation production.

- Steady but *slow* progress towards digital humans.
 - (As usual, rendering ahead of animation.)
- State of the art for animation production.
- State of the art for games.

- Steady but *slow* progress towards digital humans.
 - (As usual, rendering ahead of animation.)
- State of the art for animation production.
- State of the art for games.
- Uncanny Valley.

- Steady but *slow* progress towards digital humans.
 - (As usual, rendering ahead of animation.)
- State of the art for animation production.
- State of the art for games.
- Uncanny Valley.
- Facial Animation.

- Steady but *slow* progress towards digital humans.
 - (As usual, rendering ahead of animation.)
- State of the art for animation production.
- State of the art for games.
- Uncanny Valley.
- Facial Animation.
- Most human animation is data driven.

(Like saying that graphics is solved by the camera.)

• State of the art. Body models. Animation • Vote. Questions

• State of the art. Body models. Animation • Vote. Questions

Body Representation

source: http://www.3eop.com/data/3d/images/08_05_26_anatomy_study_male.jpg

How to represent a human body on a computer?

Body Representation

Kinematic Skeleton

source: https://buffy.eecs.berkeley.edu/PHP/resabs/resabs.php? f_year=2005&f_submit=advgrp&f_advid=10917651

Body Representation

- Kinematic Skeleton
- Anatomical

source: http://physbam.stanford.edu/~fedkiw/

- Kinematic Skeleton
- Anatomical
- Pure Mesh

source: http://people.csail.mit.edu/sumner/research/meshik/

- **Kinematic Skeleton**
- Anatomical
- Pure Mesh
- What are the advantages and disadvantages?

Skeleton Representation

Ω is the vector of *internal* joint angles, i.e. shoulders, hips, etc.

 $\omega_0 = [\mathbf{x}_0, \theta_0] \in \mathbf{R}^6$ $\omega_i = f_{i,\Omega}(\omega_{i-1})$

Motion Capture

- Attach markers to a humans body.
- Calibrate a skeleton which makes those markers "make sense."
- Cameras capture 2D markers positions.
- Estimate 3D marker positions.
- Inverse kinematics: convert marker positions to skeleton...

• How?

Marker Energy Function

$$\omega_{i} = f_{i,\Omega}(\omega_{i-1})$$
$$\hat{\mathbf{m}}_{j} = \tau_{i}(\omega_{i})\mathbf{m}_{j}$$
$$E = \sum_{i} ||\hat{\mathbf{m}}_{j}^{\star} - \hat{\mathbf{m}}_{j}||^{2}$$

J

Derivatives

$$\begin{split} \omega_{i} &= f_{i,\Omega}(\omega_{i-1}) \\ \frac{dE}{d\Omega} &= 2\sum_{j} \underbrace{(\hat{\mathbf{m}}_{j}^{\star} - \hat{\mathbf{m}}_{j})^{T}}_{\mathbf{Q}} \underbrace{d\hat{\mathbf{m}}_{j}}_{\mathbf{Q}\Omega} \\ \text{vector matrix} \\ \frac{d\hat{\mathbf{m}}_{j}}{d\Omega} &= \underbrace{\frac{\partial \hat{\mathbf{m}}_{j}}{\partial \omega_{i}}}_{\mathbf{Q}} \underbrace{\left(\frac{\partial \omega_{i}}{\partial \Omega} + \frac{\partial \omega_{i}}{\partial \omega_{i-1}} \frac{\partial \omega_{i-1}}{\partial \Omega} + \frac{\partial \omega_{i}}{\partial \omega_{i-1}} \frac{\partial \omega_{i-1}}{\partial \omega_{i-2}} \frac{\partial \omega_{i-2}}{\partial \Omega} + \cdots \\ \mathbf{matrix} & \mathbf{matrix multiplies} \end{split}$$

Inverse Kinematics Summary

- Telescoping composition of functions from root.
- Compute derivatives in the opposite direction!

Capturing and Animating Skin Deformation

left arm

(c)

Robotics Institute, Carnegie Mellon University

Laser Range Scanning

Filling in Missing Data

source: Allen, Curless, Popović. The space of human body shapes: reconstruction and parameterization from range scans.

How could this be accomplished?

What can you do with a huge set of human meshes in vertex correspondence?

source: Allen, Curless, Popović. The space of human body shapes: reconstruction and parameterization from range scans.

PCA Shape Analysis

Multilinear Analysis

source: Vlasic, Brand, Pfister, Popović. Face Transfer with Multilinear Models.

Example

SCAPE: Shape Completion and Animation of People

• State of the art. Body models. Animation • Vote. Questions

• State of the art. Body models. Animation • Vote. Questions

Data Driven Human Animation

source: Kovar, Gleicher, Pighin. Motion Graphs.

Motion Graph Schematic

Finding Candidate Transitions

Examples

• State of the art. Body models. Animation • Vote. Questions

State of the art. Body models. Animation Vote. Questions

Vote

- We have only two lectures left!
- Possible topics:
 - Model Reduction / Real-time Simulation - 10
 - Physics-based human animation. - 10
 - Animal Motion / Morphology
 - Optimization Control 5
 - Anything else?

State of the art. Body models. Animation Vote. Questions

State of the art. Body models. Animation Vote. Questions

Questions

- How do we fix the foot skate problem?
- How can we generalize away from existing motion capture data?
- How could we search for motion clips?
- How could we motion capture wild animals?
- How could we go from "motion capture" to "physics capture?"