Deformable Materials 3

 Adrien Treuille
Overview

- Last Week's Question
- Elastic Collision Detection
- Collision Detection for Reduced Models
- Surface-Based Elastics
- New Question

Overview

- Last Week's Question
- Elastic Collision Detection
- Collision Detection for Reduced Models
- Surface-Based Elastics
- New Question

Question

- How could we reduce the cost of simulation for a very finely discretized surface?
- Are there cheap ways of getting volumetric behavior without a full tetrahedralization?
- How can collision constraints be integrated?
- How to simulate plasticity?

Solutions

- bounding volume tree w/tetrahedra at leaves
- simulate parent nodes instead of leaves (if stresses are close)
- simulate on a simplified mesh (make details into bump maps)
- adaptive tetrahedralization based on force magnitudes
- come up with tetrahedralization that best captures the simulation based on precomputed simulations
- springs connected to a "skeleton"
- plasticity based on sparse springs connecting the surface mesh to itself
- embed fine tetrahedral mesh as barycentric coordinates on a coarse tetrahedral mesh, solve on coarse mesh
- angular springs in a surface discretization of the dynamics
- nonuniform tetrahedral mesh based on the curvature of the surface mesh
- greater distance to the surface -- the larger the tetrahedron
- "shell" tetrahedralization with springs on the interior

Overview

- Last Week's Question
- Elastic Collision Detection
- Collision Detection for Reduced Models
- Surface-Based Elastics
- New Question

Overview

- Last Week's Question
 - Elastic Collision Detection

- Collision Detection for Reduced Models
- Surface-Based Elastics
- New Question

Collision Detection

- Broad Phase:
- Guess collisions between objects.
- Narrow Phase:
- Determine collision points.

Broad Phase

Fast Interval Operations

class BroadIntersection \{
int body_1_index; int body_2_index; bool x_overlap; bool y_overlap; bool z_overlap;

- Temporal coherency: keep list between timesteps.
- Use insertion sort. Expected O(n) runtime.
- Update overlaps during insertion sort.
- Three cases:
- A minimum and a maximum flip. Toggle overlap bit.
- Two minima flip.
- Two maxima flip. Don't toggle.
Don't toggle.

Narrow Phase

- Find exact collision point.
- Use a geometric partitioning algorithm.
- Two types:
- Bounding Volume Hierarchies
- Spatial Partitioning

BVH vs. Spatial Partitioning

BVH:

- Object centric
- Spatial redundancy

SP:

- Space centric
- Object redundancy

BVH vs. Spatial Partitioning

BVH:

- Object centric
- Spatial redundancy

SP:

- Space centric
- Object redundancy

BVH vs. Spatial Partitioning

BVH:

- Object centric
- Spatial redundancy

SP:

- Space centric
- Object redundancy

BVH vs. Spatial Partitioning

BVH:

- Object centric
- Spatial redundancy

SP:

- Space centric
- Object redundancy

Bounding Volume Hierarchies

- How to create a BVH:
- Geometric Subdivision
- Topological Subdivision
- How implement?
- Which is better?

Geometric Subdivision

Topological Subdivision

- How to update a BVH:
- Bottom Up (How?)
- Directly (How?)
\bullet Which is faster?

Triangle Intersection

 - Edge-Edge- Vertex-Face

Summary

- Broad Phase:
- Guess collisions between objects.
- Narrow Phase:
- Determine collision points.

Overview

- Last Week's Question
 - Elastic Collision Detection

- Collision Detection for Reduced Models
- Surface-Based Elastics
- New Question

Overview

- Last Week's Question
- Elastic Collision Detection
- Collision Detection for Reduced Models
- Surface-Based Elastics
- New

Question

Collision Detection for

Figure 2: Example deformation: (a) Reference shape p (b) Displacement field $U_{* 1}$ (c) Field $U_{* 2}$ (d) Deformed shape p^{\prime}.

$$
\mathrm{p}^{\prime}=\mathrm{p}+\mathrm{Uq} \quad \text { or } \quad \mathrm{p}_{i}^{\prime}=\mathrm{p}_{i}+\sum_{j=1}^{M} \mathrm{U}_{i j} \mathrm{q}_{j}
$$

Hierarchy Types

Wrapped Hierarchy

Layered
Hierarchy

Sphere Center Update

$$
\begin{aligned}
& \mathrm{c}^{\prime}=\mathrm{c}+\sum_{i \in \Lambda} \beta_{i} \mathrm{u}_{i}=\mathrm{c}+\sum_{i \in \Lambda} \beta_{i}\left(\sum_{j=1}^{M} \mathrm{U}_{i j} \mathrm{q}_{j}\right) \\
& =\mathrm{c}+\sum_{j=1}^{M}\left(\sum_{i \in \Lambda} \beta_{i} \mathrm{U}_{i j}\right) \mathrm{q}_{j} \\
& \equiv \mathrm{c}+\sum_{j=1}^{M} \mathrm{U}_{j \mathrm{q}_{j}}=\mathrm{c}+\overline{\mathrm{U} \mathrm{q} \equiv \mathrm{c}^{\prime}}
\end{aligned}
$$

Sphere Center Update

$$
\begin{align*}
\max _{i \in \Lambda}\left\|\mathrm{p}_{i}^{\prime}-\mathrm{c}^{\prime}\right\|_{2} & =\max _{i \in \Lambda}\left\|\left(\mathrm{p}_{i}-\mathrm{c}\right)+\sum_{j=1}^{M}\left(\mathrm{U}_{i j}-\overline{\mathrm{U}}_{j}\right) \mathrm{q}_{j}\right\|_{2} \\
& \equiv \max _{i \in \Lambda}\left\|\mathrm{p}_{i}-\mathrm{c}\right\|_{2}+\sum_{j=1}^{M}\left(\max _{i \in \Lambda}\left\|\mathrm{U}_{i j}-\bar{U}_{j}\right\|_{2}\right)\left|\mathrm{q}_{j}\right| \\
& =\sum_{j=1}^{M} \Delta R_{j}\left|\mathrm{q}_{j}\right|=\operatorname{Rn}+\Delta R^{T} \mathrm{q}^{A B S} \equiv R^{\prime} \tag{6}
\end{align*}
$$

Example

Overview

- Last Week's Question
- Elastic Collision Detection
- Collision Detection for Reduced Models
- Surface-Based Elastics
- New

Question

Overview

- Last Week's Question
- Elastic Collision Detection
- Collision Detection for Reduced Models
- Surface-Based Elastics
- New Question

Surface-Based Elastics

$$
\begin{gathered}
\text { (a) } \\
\mathbf{A}=\sum_{j \in n b r(i)}\left(\mathbf{x}_{j}(t)-\mathbf{x}_{i}(t)\right)\left(\mathbf{x}_{j}^{0}-\mathbf{x}_{i}^{0}\right)^{T} . \\
\mathbf{c}_{i}(t)=\frac{1}{|n b r(i)|} \sum_{j \in n b r(i)}\left(\mathbf{R}\left(\mathbf{x}_{i}^{0}-\mathbf{x}_{j}^{0}\right)+\mathbf{x}_{j}(t)\right) . \\
\mathbf{L}_{i}(t)=\frac{\mathbf{c}_{i}(t)-\mathbf{x}_{i}(t)}{h^{2}} .
\end{gathered}
$$

Volumetric Behavior

Example

our result

physically-based simulation

Overview

- Last Week's Question
- Elastic Collision Detection
- Collision Detection for Reduced Models
- Surface-Based Elastics
- New Question

Overview

- Last Week's Question
- Elastic Collision Detection
- Collision Detection for Reduced Models
- Surface-Based Elastics
- New Question

Questions

- How could we represent a human body on a computer with few dimensions.
- What kind of optical technology could we use to capture a human body?
- How can we convert the captured data into the human body representation.
- In animation, what do you think are the most important aspects of human motion to capture / model?
- Physically / Stylistically?

