
Deformable Materials 3
Adrien Treuille

Overview
• Last Week’s Question

• Elastic Collision Detection

• Collision Detection for
Reduced Models

• Surface-Based Elastics

• New Question

Overview
• Last Week’s Question

• Elastic Collision Detection

• Collision Detection for
Reduced Models

• Surface-Based Elastics

• New Question

Question
• How could we reduce the cost of

simulation for a very finely discretized
surface?

• Are there cheap ways of getting
volumetric behavior without a full
tetrahedralization?

• How can collision constraints be
integrated?

• How to simulate plasticity?

Solutions
• bounding volume tree w/ tetrahedra at leaves

• simulate parent nodes instead of leaves (if stresses are close)

• simulate on a simplified mesh (make details into bump maps)

• adaptive tetrahedralization based on force magnitudes

• come up with tetrahedralization that best captures the simulation
based on precomputed simulations

• springs connected to a “skeleton”

• plasticity based on sparse springs connecting the surface mesh to
itself

• embed fine tetrahedral mesh as barycentric coordinates on a
coarse tetrahedral mesh, solve on coarse mesh

• angular springs in a surface discretization of the dynamics

• nonuniform tetrahedral mesh based on the curvature of the
surface mesh

• greater distance to the surface -- the larger the tetrahedron

• “shell” tetrahedralization with springs on the interior

Overview
• Last Week’s Question

• Elastic Collision Detection

• Collision Detection for
Reduced Models

• Surface-Based Elastics

• New Question

Overview
• Last Week’s Question

• Elastic Collision Detection

• Collision Detection for
Reduced Models

• Surface-Based Elastics

• New Question

Collision Detection

• Broad Phase:

• Guess collisions between objects.

• Narrow Phase:

• Determine collision points.

Broad Phase

Fast Interval Operations

• Temporal coherency: keep list between timesteps.
• Use insertion sort.
• Update overlaps during insertion sort.
• Three cases:

• A minimum and a maximum flip.
• Two minima flip.
• Two maxima flip.

class BroadIntersection {

int body_1_index;
int body_2_index;
bool x_overlap;
bool y_overlap;
bool z_overlap;

}

Expected O(n) runtime.

Toggle overlap bit.
Don’t toggle.
Don’t toggle.

Narrow Phase

• Find exact collision point.

• Use a geometric partitioning algorithm.

• Two types:

• Bounding Volume Hierarchies

• Spatial Partitioning

BVH vs. Spatial Partitioning

BVH: SP:
- Object centric - Space centric

- Spatial redundancy - Object redundancy

(From Doug James’s Slides.)

BVH vs. Spatial Partitioning

BVH: SP:
- Object centric - Space centric

- Spatial redundancy - Object redundancy

(From Doug James’s Slides.)

BVH vs. Spatial Partitioning

BVH: SP:
- Object centric - Space centric

- Spatial redundancy - Object redundancy

(From Doug James’s Slides.)

BVH vs. Spatial Partitioning

BVH: SP:
- Object centric - Space centric

- Spatial redundancy - Object redundancy

(From Doug James’s Slides.)

Bounding Volume Hierarchies
• How to create a BVH:

• Geometric Subdivision
• Topological Subdivision

• How implement?
• Which is better?

• How to update a BVH:
• Bottom Up
• Directly
• Which is faster?

Geometric
Subdivision

Topological
Subdivision

(How?)
(How?)

Triangle Intersection
• Edge-Edge

• Vertex-Face

Summary

•Broad Phase:

•Guess collisions between objects.

•Narrow Phase:

•Determine collision points.

Overview
• Last Week’s Question

• Elastic Collision Detection

• Collision Detection for
Reduced Models

• Surface-Based Elastics

• New Question

Overview
• Last Week’s Question

• Elastic Collision Detection

• Collision Detection for
Reduced Models

• Surface-Based Elastics

• New Question

Collision Detection for

1.1 Related Work

Many important methods have been developed for collision detec-
tion with rigid models. We refer the reader to these recent sur-
veys: [Lin and Gottschalk 1998; Jimenez et al. 2001]. Sphere
trees are a canonical example of a bounding volume hierarchy used
for collision detection and proximity queries (e.g., [Quinlan 1994;
Hubbard 1995; Brown et al. 2001; Guibas et al. 2002; Bradshaw
and O’Sullivan 2004]). Collision detection with bounding vol-
ume hierarchies is output-sensitive and provides graceful degrada-
tion [Hubbard 1995; Dingliana and O’Sullivan 2000]. Hierarchy
construction can be based on either spatial proximity between fea-
tures within the undeformed model or on mesh topology, as well as
inter-surface proximity (as in [Bridson et al. 2002] for cloth, and
in [Warren and Weimer 2001] for subdivision hierarchies).

Many of these methods could be directly applied to deformable
objects. The major cost for hierarchical collision detection algo-
rithms is updating the hierarchy after every deformation, e.g., at
each time step, before queries are performed. As a result, much at-
tention has been drawn to hierarchies with easy to compute bounds
(e.g., [van den Bergen 1997; Ganovelli et al. 2000]). Alterna-
tively, intelligent methods for updating the bounding hierarchies
and exploiting temporal coherence have been explored [Guibas
et al. 2002; Brown et al. 2001; Larsson and Akenine-Möller 2001].
Larsson et al. [2003] propose a collision detection algorithm spe-
cialized for morphing that has features similar to ours (and is a
special case). Because we use a more general deformation model
(Eq. 1) our method can be applied in a more general setting (see sec-
ond paragraph of Sec. 1), and we derive significantly less expensive
bounds (Secs. 3.2 and 3.5).

Recently, hardware-accelerated collision detection methods have
received increased attention; see [Manocha et al. 2002] for a recent
overview. These general purpose methods are very useful, but tend
to produce coarser approximations, since they are limited by the
size of frame buffer memory, and not floating point precision. Note
that the entire model has to be rendered for collision detection in
these methods, and not just visible portions; a notable advantage
of our approach is that it only requires touching a potentially small
output-sensitive subset of model polygons.

2 Reduced Deformation Model

BD-Trees exploit spatially coherent motion that can be described
as a combination of (hopefully smooth) displacement fields. Math-
ematically, we assume a general shape model based on the linear
superposition of displacement basis functions that are known at
the time of BD-Tree construction. The BD-Tree then tracks aver-
age motions associated with these displacement fields, and locally
bounds their displacement deviations. As we will see, the fewer
and more spatially coherent the displacement fields are, the better
BD-Trees tend to perform.

Suppose we have N undeformed point locations, p =
(p1, . . . ,pN)T . Without loss of generality, we will assume that the
deformed point locations, p′, are approximated by a linear super-
position of M displacement fields, given by the columns of U. The
amplitude of each displacement field is given by corresponding re-
duced coordinates q, so that (see Figure 2)

p′ = p+Uq or p′i = pi+
M

!
j=1

Ui jq j. (1)

Note that the reduced coordinates q are determined by some other
possibly nonlinear black box process; therefore, although the shape
model is linear (1), the deformation process can be arbitrary. The
columns of U represent displacement fields, or scaling functions,
that could arise from, e.g., an interpolation process, multiresolution
modeling, or modal analysis.

(a) (b) (c) (d)

Figure 2: Example deformation: (a) Reference shape p (b) Dis-
placement field U∗1 (c) Field U∗2 (d) Deformed shape p′.

3 Bounded Deformation Trees
This section describes the construction, derivation, post-
deformation updating, and use of BD-Trees. Without loss of
generality, we consider sphere trees constructed on polygonal
models henceforth, and briefly discuss how these could be extended
to bounding boxes. Throughout, we will describe the bounding
sphere with radius, R, and center point, c (see Figure 5).

3.1 BD-Tree Construction: A Wrapped Hierarchy

BD-Tree construction involves first constructing a sphere tree on the
undeformed model, after which it can be updated following defor-
mation using the approach of §3.2. In the terminology of [Guibas
et al. 2002], this undeformed BD-Tree is a wrapped hierarchy,
wherein spheres enclose (or wrap) associated geometry, and not
a layered hierarchy in which spheres merely enclose their child
spheres (see Figure 3). Layered hierarchies are important in pre-
vious work on updating using hierarchical linear-time sphere refit-
ting, e.g., see [Brown et al. 2001]. Unfortunately, layered bounds
can fit more loosely than wrapped ones [Guibas et al. 2002]. By
updating a wrapped hierarchy, BD-Trees can obtain tighter bounds
than the deformable layered case (see Figure 4).

Figure 3: The wrapped hierarchy (left) has smaller spheres than the
layered hierarchy (right). The base geometry is shown in green,
with five vertices. Notice that in a wrapped hierarchy the bounding
sphere of a node at one level need not contain the spheres of its de-
scendents and so can be significantly smaller. However, since each
sphere contains all the points in the base geometry, it is sufficient
for collision detection.

BD-Tree construction has two stages:

1. Build a hierarchy of the underlying geometry using any ef-
fective technique, e.g., [Quinlan 1994; Hubbard 1995; Brad-
shaw and O’Sullivan 2004]. In our examples, we use an ap-
proach similar to [Quinlan 1994] for binary sphere tree con-
struction, with a single leaf sphere bounding each triangle.
Note that even though this method and most others also com-
pute bounding spheres for each node in the hierarchy at the
same time, this is not necessary at this stage.

2. Build bounding spheres for tree nodes. A simple method,
used in our examples, is to start with the loose fitting bound-
ing sphere produced during hierarchy construction, with cen-
ter point c. It contains a set of polygons with associated ver-
tex points {pi}i∈" where " is a list of vertex indices. We
then reduce the radius of each sphere as much as possible to
tightly wrap the underlying polygons, leaving the center c un-
changed. Specifically, the undeformed sphere’s radius, R, is

R≡max
i∈"

‖pi− c‖2. (2)

1.1 Related Work

Many important methods have been developed for collision detec-
tion with rigid models. We refer the reader to these recent sur-
veys: [Lin and Gottschalk 1998; Jimenez et al. 2001]. Sphere
trees are a canonical example of a bounding volume hierarchy used
for collision detection and proximity queries (e.g., [Quinlan 1994;
Hubbard 1995; Brown et al. 2001; Guibas et al. 2002; Bradshaw
and O’Sullivan 2004]). Collision detection with bounding vol-
ume hierarchies is output-sensitive and provides graceful degrada-
tion [Hubbard 1995; Dingliana and O’Sullivan 2000]. Hierarchy
construction can be based on either spatial proximity between fea-
tures within the undeformed model or on mesh topology, as well as
inter-surface proximity (as in [Bridson et al. 2002] for cloth, and
in [Warren and Weimer 2001] for subdivision hierarchies).

Many of these methods could be directly applied to deformable
objects. The major cost for hierarchical collision detection algo-
rithms is updating the hierarchy after every deformation, e.g., at
each time step, before queries are performed. As a result, much at-
tention has been drawn to hierarchies with easy to compute bounds
(e.g., [van den Bergen 1997; Ganovelli et al. 2000]). Alterna-
tively, intelligent methods for updating the bounding hierarchies
and exploiting temporal coherence have been explored [Guibas
et al. 2002; Brown et al. 2001; Larsson and Akenine-Möller 2001].
Larsson et al. [2003] propose a collision detection algorithm spe-
cialized for morphing that has features similar to ours (and is a
special case). Because we use a more general deformation model
(Eq. 1) our method can be applied in a more general setting (see sec-
ond paragraph of Sec. 1), and we derive significantly less expensive
bounds (Secs. 3.2 and 3.5).

Recently, hardware-accelerated collision detection methods have
received increased attention; see [Manocha et al. 2002] for a recent
overview. These general purpose methods are very useful, but tend
to produce coarser approximations, since they are limited by the
size of frame buffer memory, and not floating point precision. Note
that the entire model has to be rendered for collision detection in
these methods, and not just visible portions; a notable advantage
of our approach is that it only requires touching a potentially small
output-sensitive subset of model polygons.

2 Reduced Deformation Model

BD-Trees exploit spatially coherent motion that can be described
as a combination of (hopefully smooth) displacement fields. Math-
ematically, we assume a general shape model based on the linear
superposition of displacement basis functions that are known at
the time of BD-Tree construction. The BD-Tree then tracks aver-
age motions associated with these displacement fields, and locally
bounds their displacement deviations. As we will see, the fewer
and more spatially coherent the displacement fields are, the better
BD-Trees tend to perform.

Suppose we have N undeformed point locations, p =
(p1, . . . ,pN)T . Without loss of generality, we will assume that the
deformed point locations, p′, are approximated by a linear super-
position of M displacement fields, given by the columns of U. The
amplitude of each displacement field is given by corresponding re-
duced coordinates q, so that (see Figure 2)

p′ = p+Uq or p′i = pi+
M

!
j=1

Ui jq j. (1)

Note that the reduced coordinates q are determined by some other
possibly nonlinear black box process; therefore, although the shape
model is linear (1), the deformation process can be arbitrary. The
columns of U represent displacement fields, or scaling functions,
that could arise from, e.g., an interpolation process, multiresolution
modeling, or modal analysis.

(a) (b) (c) (d)

Figure 2: Example deformation: (a) Reference shape p (b) Dis-
placement field U∗1 (c) Field U∗2 (d) Deformed shape p′.

3 Bounded Deformation Trees
This section describes the construction, derivation, post-
deformation updating, and use of BD-Trees. Without loss of
generality, we consider sphere trees constructed on polygonal
models henceforth, and briefly discuss how these could be extended
to bounding boxes. Throughout, we will describe the bounding
sphere with radius, R, and center point, c (see Figure 5).

3.1 BD-Tree Construction: A Wrapped Hierarchy

BD-Tree construction involves first constructing a sphere tree on the
undeformed model, after which it can be updated following defor-
mation using the approach of §3.2. In the terminology of [Guibas
et al. 2002], this undeformed BD-Tree is a wrapped hierarchy,
wherein spheres enclose (or wrap) associated geometry, and not
a layered hierarchy in which spheres merely enclose their child
spheres (see Figure 3). Layered hierarchies are important in pre-
vious work on updating using hierarchical linear-time sphere refit-
ting, e.g., see [Brown et al. 2001]. Unfortunately, layered bounds
can fit more loosely than wrapped ones [Guibas et al. 2002]. By
updating a wrapped hierarchy, BD-Trees can obtain tighter bounds
than the deformable layered case (see Figure 4).

Figure 3: The wrapped hierarchy (left) has smaller spheres than the
layered hierarchy (right). The base geometry is shown in green,
with five vertices. Notice that in a wrapped hierarchy the bounding
sphere of a node at one level need not contain the spheres of its de-
scendents and so can be significantly smaller. However, since each
sphere contains all the points in the base geometry, it is sufficient
for collision detection.

BD-Tree construction has two stages:

1. Build a hierarchy of the underlying geometry using any ef-
fective technique, e.g., [Quinlan 1994; Hubbard 1995; Brad-
shaw and O’Sullivan 2004]. In our examples, we use an ap-
proach similar to [Quinlan 1994] for binary sphere tree con-
struction, with a single leaf sphere bounding each triangle.
Note that even though this method and most others also com-
pute bounding spheres for each node in the hierarchy at the
same time, this is not necessary at this stage.

2. Build bounding spheres for tree nodes. A simple method,
used in our examples, is to start with the loose fitting bound-
ing sphere produced during hierarchy construction, with cen-
ter point c. It contains a set of polygons with associated ver-
tex points {pi}i∈" where " is a list of vertex indices. We
then reduce the radius of each sphere as much as possible to
tightly wrap the underlying polygons, leaving the center c un-
changed. Specifically, the undeformed sphere’s radius, R, is

R≡max
i∈"

‖pi− c‖2. (2)

Source: Doug L. James and Dinesh K. Pai, BD-Tree: Output-Sensitive Collision Detection for Collision
Detection for Reduced Models, ACM Transactions on Graphics (ACM SIGGRAPH 2004), 23(3), pp.

393-398.

Hierarchy Types

Source: Doug L. James and Dinesh K. Pai, BD-Tree: Output-Sensitive Collision Detection for Collision
Detection for Reduced Models, ACM Transactions on Graphics (ACM SIGGRAPH 2004), 23(3), pp.

393-398.

1.1 Related Work

Many important methods have been developed for collision detec-
tion with rigid models. We refer the reader to these recent sur-
veys: [Lin and Gottschalk 1998; Jimenez et al. 2001]. Sphere
trees are a canonical example of a bounding volume hierarchy used
for collision detection and proximity queries (e.g., [Quinlan 1994;
Hubbard 1995; Brown et al. 2001; Guibas et al. 2002; Bradshaw
and O’Sullivan 2004]). Collision detection with bounding vol-
ume hierarchies is output-sensitive and provides graceful degrada-
tion [Hubbard 1995; Dingliana and O’Sullivan 2000]. Hierarchy
construction can be based on either spatial proximity between fea-
tures within the undeformed model or on mesh topology, as well as
inter-surface proximity (as in [Bridson et al. 2002] for cloth, and
in [Warren and Weimer 2001] for subdivision hierarchies).

Many of these methods could be directly applied to deformable
objects. The major cost for hierarchical collision detection algo-
rithms is updating the hierarchy after every deformation, e.g., at
each time step, before queries are performed. As a result, much at-
tention has been drawn to hierarchies with easy to compute bounds
(e.g., [van den Bergen 1997; Ganovelli et al. 2000]). Alterna-
tively, intelligent methods for updating the bounding hierarchies
and exploiting temporal coherence have been explored [Guibas
et al. 2002; Brown et al. 2001; Larsson and Akenine-Möller 2001].
Larsson et al. [2003] propose a collision detection algorithm spe-
cialized for morphing that has features similar to ours (and is a
special case). Because we use a more general deformation model
(Eq. 1) our method can be applied in a more general setting (see sec-
ond paragraph of Sec. 1), and we derive significantly less expensive
bounds (Secs. 3.2 and 3.5).

Recently, hardware-accelerated collision detection methods have
received increased attention; see [Manocha et al. 2002] for a recent
overview. These general purpose methods are very useful, but tend
to produce coarser approximations, since they are limited by the
size of frame buffer memory, and not floating point precision. Note
that the entire model has to be rendered for collision detection in
these methods, and not just visible portions; a notable advantage
of our approach is that it only requires touching a potentially small
output-sensitive subset of model polygons.

2 Reduced Deformation Model

BD-Trees exploit spatially coherent motion that can be described
as a combination of (hopefully smooth) displacement fields. Math-
ematically, we assume a general shape model based on the linear
superposition of displacement basis functions that are known at
the time of BD-Tree construction. The BD-Tree then tracks aver-
age motions associated with these displacement fields, and locally
bounds their displacement deviations. As we will see, the fewer
and more spatially coherent the displacement fields are, the better
BD-Trees tend to perform.

Suppose we have N undeformed point locations, p =
(p1, . . . ,pN)T . Without loss of generality, we will assume that the
deformed point locations, p′, are approximated by a linear super-
position of M displacement fields, given by the columns of U. The
amplitude of each displacement field is given by corresponding re-
duced coordinates q, so that (see Figure 2)

p′ = p+Uq or p′i = pi+
M

!
j=1

Ui jq j. (1)

Note that the reduced coordinates q are determined by some other
possibly nonlinear black box process; therefore, although the shape
model is linear (1), the deformation process can be arbitrary. The
columns of U represent displacement fields, or scaling functions,
that could arise from, e.g., an interpolation process, multiresolution
modeling, or modal analysis.

(a) (b) (c) (d)

Figure 2: Example deformation: (a) Reference shape p (b) Dis-
placement field U∗1 (c) Field U∗2 (d) Deformed shape p′.

3 Bounded Deformation Trees
This section describes the construction, derivation, post-
deformation updating, and use of BD-Trees. Without loss of
generality, we consider sphere trees constructed on polygonal
models henceforth, and briefly discuss how these could be extended
to bounding boxes. Throughout, we will describe the bounding
sphere with radius, R, and center point, c (see Figure 5).

3.1 BD-Tree Construction: A Wrapped Hierarchy

BD-Tree construction involves first constructing a sphere tree on the
undeformed model, after which it can be updated following defor-
mation using the approach of §3.2. In the terminology of [Guibas
et al. 2002], this undeformed BD-Tree is a wrapped hierarchy,
wherein spheres enclose (or wrap) associated geometry, and not
a layered hierarchy in which spheres merely enclose their child
spheres (see Figure 3). Layered hierarchies are important in pre-
vious work on updating using hierarchical linear-time sphere refit-
ting, e.g., see [Brown et al. 2001]. Unfortunately, layered bounds
can fit more loosely than wrapped ones [Guibas et al. 2002]. By
updating a wrapped hierarchy, BD-Trees can obtain tighter bounds
than the deformable layered case (see Figure 4).

Figure 3: The wrapped hierarchy (left) has smaller spheres than the
layered hierarchy (right). The base geometry is shown in green,
with five vertices. Notice that in a wrapped hierarchy the bounding
sphere of a node at one level need not contain the spheres of its de-
scendents and so can be significantly smaller. However, since each
sphere contains all the points in the base geometry, it is sufficient
for collision detection.

BD-Tree construction has two stages:

1. Build a hierarchy of the underlying geometry using any ef-
fective technique, e.g., [Quinlan 1994; Hubbard 1995; Brad-
shaw and O’Sullivan 2004]. In our examples, we use an ap-
proach similar to [Quinlan 1994] for binary sphere tree con-
struction, with a single leaf sphere bounding each triangle.
Note that even though this method and most others also com-
pute bounding spheres for each node in the hierarchy at the
same time, this is not necessary at this stage.

2. Build bounding spheres for tree nodes. A simple method,
used in our examples, is to start with the loose fitting bound-
ing sphere produced during hierarchy construction, with cen-
ter point c. It contains a set of polygons with associated ver-
tex points {pi}i∈" where " is a list of vertex indices. We
then reduce the radius of each sphere as much as possible to
tightly wrap the underlying polygons, leaving the center c un-
changed. Specifically, the undeformed sphere’s radius, R, is

R≡max
i∈"

‖pi− c‖2. (2)

Wrapped
Hierarchy

Layered
Hierarchy

Sphere Center Update

Source: Doug L. James and Dinesh K. Pai, BD-Tree: Output-Sensitive Collision Detection for Collision
Detection for Reduced Models, ACM Transactions on Graphics (ACM SIGGRAPH 2004), 23(3), pp.

393-398.

Level 0 Level 2 Level 4 Level 6

Figure 4: Comparison of undeformed layered hierarchy (top) ver-
sus the wrapped BD-Tree (bottom). Throughout the paper, dark red
denotes at least 3 times greater sphere volume (or ≥1.44× radius)
than the undeformed wrapped BD-Tree sphere, and dark blue im-
plies a negligible size increase.

Alternatively, one could just construct the smallest enclosing
sphere for the underlying geometry of each node using, for
instance, the efficient randomized algorithm of Welzl [1991].

3.2 Fast BD-Tree Updates

Given points {pi}i∈! associated with a node in a hierarchy, how
can we compute new bounding spheres as the object deforms? We
propose to compute each sphere’s updated center, c′, and an updated
conservative radius, R′, as functions of the reduced coordinates, q.
The update process is illustrated in Figure 5. A key point is that
this update can be performed independently for each sphere, and
also efficiently for many reduced models.

c c

c '

R '' R 'R

Figure 5: BD-Tree bounding sphere during deformation illustrating
the change in the center c → c′ evaluated as a weighted average of
the points, pi → p′i, and the conservatively enlarged radius R→ R′

that bounds the effect of each component of the reduced coordinate
q using the triangle inequality. The inexpensive bound R′′ of §3.5
is also shown.

3.2.1 Sphere Center Update (c → c′)

Following deformation, the undeformed sphere center c is displaced
by a weighted average of the contained points’ displacements u,
with weights {"i}i∈!. Specifically, c

′, is given by

c′ = c+#
i∈!

"iui = c+#
i∈!

"i

(

M

#
j=1

Ui jq j

)

(3)

= c+
M

#
j=1

(

#
i∈!

"iUi j

)

q j (4)

≡ c+
M

#
j=1

Ū jq j = c+ Ūq ≡ c′ (5)

where Ū j ∈ R3 is a " -weighted average of the jth displacement
field, U∗ j, where #i∈! "i = 1 and "i ∈ [0,1]∀i ∈ !. In our exam-
ples, we track the mean displacement using "i =1/|!|. Note that
the center, c′, has linear dependence on the deformation parame-
ters, q, and that computing the center involves only 6M flops forM
displacement fields.

3.2.2 Sphere Radius Update (R→ R′)

Following deformation, the bounding sphere radius is conserva-
tively enlarged using the triangle inequality as follows:

max
i∈!

‖p′i− c′‖2 = max
i∈!

‖(pi− c)+
M

#
j=1

(Ui j− Ū j)q j‖2 (6)

≤ max
i∈!

‖pi− c‖2+
M

#
j=1

(

max
i∈!

‖Ui j− Ū j‖2

)

|q j|

≡ R+
M

#
j=1

$Rj|q j| = R+$RTqABS ≡ R′ (7)

where $Rj is the radius increment due to the j
th displacement field.

Note that the radius, R′, has linear dependence on the absolute value
of the deformation parameters, qABS, and that computing the radius
involves only 2M flops for M displacement fields.

3.3 Tightness of Conservative Bounding Spheres

A key question regarding BD-Trees is how well the conservative
bound fits the deformed model. Certainly, the undeformed BD-
Tree’s wrapped hierarchy is much better than the usual layered hi-
erarchy used with deformable models. Fortunately, it can be shown
theoretically and in practice, that the conservative radius increase
$RTqABS still provides useful bounds. For example, Figure 6 shows
that the deformed BD-Tree needn’t be any worse than the hierarchi-
cally updated layered hierarchy even for large deformations.

To build intuition about why the conservative bound is effec-
tive, notice that for uniform translation of a sphere’s points by each
mode, Ui j = t j, the bounding radius is conveniently invariant (since

Ui j = Ū j∀i, j and so $R = 0). This suggests that the BD-Tree will
have tighter spheres when the displacement fields are locally con-
stant (even if the displacements are large), and spheres may remain
tighter near the leaves of the tree.

More specifically, for Lipschitz continuous displacement fields,
we show in Appendix A that ‖$R‖2 is bounded by a constant times
the sphere’s undeformed radius R; furthermore, the proportionality
constant in question is monotonically decreasing for child spheres.
Consequently, smaller spheres (alt. finer levels) should tend to have
proportionately smaller radius increases, and thus the deformed
BD-Tree will remain an effective bounding hierarchy. This trend is
clearly observed in numerical experiments, e.g., the ‖$R‖2 values
for the plastic chair (normalized per-level averages) exhibit quick
decay: 1.000, 0.684, 0.575, 0.399, 0.252, 0.167, 0.110, 0.080,
0.057, 0.041, 0.030, 0.022, 0.017, 0.016, 0.015, 0.013, 0.007,
0.004, 0.003.

3.4 Summary of BD-Tree Method

To summarize, with the BD-Trees, collision detection and proxim-
ity queries with deformable objects are performed as in standard
sphere tree methods for rigid objects, with traversals proceeding
from coarse to fine sphere nodes. The only differences are:

Precomputation: Build a sphere tree on the undeformed
model, and tighten spheres to wrap underlying geometry. At each
node in the hierarchy, in addition to the undeformed sphere center
c and wrapped radius R, compute and store the matrices Ū and $R
(4M additional numbers per node).

Level 0 Level 2 Level 4 Level 6

Figure 4: Comparison of undeformed layered hierarchy (top) ver-
sus the wrapped BD-Tree (bottom). Throughout the paper, dark red
denotes at least 3 times greater sphere volume (or ≥1.44× radius)
than the undeformed wrapped BD-Tree sphere, and dark blue im-
plies a negligible size increase.

Alternatively, one could just construct the smallest enclosing
sphere for the underlying geometry of each node using, for
instance, the efficient randomized algorithm of Welzl [1991].

3.2 Fast BD-Tree Updates

Given points {pi}i∈! associated with a node in a hierarchy, how
can we compute new bounding spheres as the object deforms? We
propose to compute each sphere’s updated center, c′, and an updated
conservative radius, R′, as functions of the reduced coordinates, q.
The update process is illustrated in Figure 5. A key point is that
this update can be performed independently for each sphere, and
also efficiently for many reduced models.

c c

c '

R '' R 'R

Figure 5: BD-Tree bounding sphere during deformation illustrating
the change in the center c → c′ evaluated as a weighted average of
the points, pi → p′i, and the conservatively enlarged radius R→ R′

that bounds the effect of each component of the reduced coordinate
q using the triangle inequality. The inexpensive bound R′′ of §3.5
is also shown.

3.2.1 Sphere Center Update (c → c′)

Following deformation, the undeformed sphere center c is displaced
by a weighted average of the contained points’ displacements u,
with weights {"i}i∈!. Specifically, c

′, is given by

c′ = c+#
i∈!

"iui = c+#
i∈!

"i

(

M

#
j=1

Ui jq j

)

(3)

= c+
M

#
j=1

(

#
i∈!

"iUi j

)

q j (4)

≡ c+
M

#
j=1

Ū jq j = c+ Ūq ≡ c′ (5)

where Ū j ∈ R3 is a " -weighted average of the jth displacement
field, U∗ j, where #i∈! "i = 1 and "i ∈ [0,1]∀i ∈ !. In our exam-
ples, we track the mean displacement using "i =1/|!|. Note that
the center, c′, has linear dependence on the deformation parame-
ters, q, and that computing the center involves only 6M flops forM
displacement fields.

3.2.2 Sphere Radius Update (R→ R′)

Following deformation, the bounding sphere radius is conserva-
tively enlarged using the triangle inequality as follows:

max
i∈!

‖p′i− c′‖2 = max
i∈!

‖(pi− c)+
M

#
j=1

(Ui j− Ū j)q j‖2 (6)

≤ max
i∈!

‖pi− c‖2+
M

#
j=1

(

max
i∈!

‖Ui j− Ū j‖2

)

|q j|

≡ R+
M

#
j=1

$Rj|q j| = R+$RTqABS ≡ R′ (7)

where $Rj is the radius increment due to the j
th displacement field.

Note that the radius, R′, has linear dependence on the absolute value
of the deformation parameters, qABS, and that computing the radius
involves only 2M flops for M displacement fields.

3.3 Tightness of Conservative Bounding Spheres

A key question regarding BD-Trees is how well the conservative
bound fits the deformed model. Certainly, the undeformed BD-
Tree’s wrapped hierarchy is much better than the usual layered hi-
erarchy used with deformable models. Fortunately, it can be shown
theoretically and in practice, that the conservative radius increase
$RTqABS still provides useful bounds. For example, Figure 6 shows
that the deformed BD-Tree needn’t be any worse than the hierarchi-
cally updated layered hierarchy even for large deformations.

To build intuition about why the conservative bound is effec-
tive, notice that for uniform translation of a sphere’s points by each
mode, Ui j = t j, the bounding radius is conveniently invariant (since

Ui j = Ū j∀i, j and so $R = 0). This suggests that the BD-Tree will
have tighter spheres when the displacement fields are locally con-
stant (even if the displacements are large), and spheres may remain
tighter near the leaves of the tree.

More specifically, for Lipschitz continuous displacement fields,
we show in Appendix A that ‖$R‖2 is bounded by a constant times
the sphere’s undeformed radius R; furthermore, the proportionality
constant in question is monotonically decreasing for child spheres.
Consequently, smaller spheres (alt. finer levels) should tend to have
proportionately smaller radius increases, and thus the deformed
BD-Tree will remain an effective bounding hierarchy. This trend is
clearly observed in numerical experiments, e.g., the ‖$R‖2 values
for the plastic chair (normalized per-level averages) exhibit quick
decay: 1.000, 0.684, 0.575, 0.399, 0.252, 0.167, 0.110, 0.080,
0.057, 0.041, 0.030, 0.022, 0.017, 0.016, 0.015, 0.013, 0.007,
0.004, 0.003.

3.4 Summary of BD-Tree Method

To summarize, with the BD-Trees, collision detection and proxim-
ity queries with deformable objects are performed as in standard
sphere tree methods for rigid objects, with traversals proceeding
from coarse to fine sphere nodes. The only differences are:

Precomputation: Build a sphere tree on the undeformed
model, and tighten spheres to wrap underlying geometry. At each
node in the hierarchy, in addition to the undeformed sphere center
c and wrapped radius R, compute and store the matrices Ū and $R
(4M additional numbers per node).

Sphere Center Update

Source: Doug L. James and Dinesh K. Pai, BD-Tree: Output-Sensitive Collision Detection for Collision
Detection for Reduced Models, ACM Transactions on Graphics (ACM SIGGRAPH 2004), 23(3), pp.

393-398.

Level 0 Level 2 Level 4 Level 6

Figure 4: Comparison of undeformed layered hierarchy (top) ver-
sus the wrapped BD-Tree (bottom). Throughout the paper, dark red
denotes at least 3 times greater sphere volume (or ≥1.44× radius)
than the undeformed wrapped BD-Tree sphere, and dark blue im-
plies a negligible size increase.

Alternatively, one could just construct the smallest enclosing
sphere for the underlying geometry of each node using, for
instance, the efficient randomized algorithm of Welzl [1991].

3.2 Fast BD-Tree Updates

Given points {pi}i∈! associated with a node in a hierarchy, how
can we compute new bounding spheres as the object deforms? We
propose to compute each sphere’s updated center, c′, and an updated
conservative radius, R′, as functions of the reduced coordinates, q.
The update process is illustrated in Figure 5. A key point is that
this update can be performed independently for each sphere, and
also efficiently for many reduced models.

c c

c '

R '' R 'R

Figure 5: BD-Tree bounding sphere during deformation illustrating
the change in the center c → c′ evaluated as a weighted average of
the points, pi → p′i, and the conservatively enlarged radius R→ R′

that bounds the effect of each component of the reduced coordinate
q using the triangle inequality. The inexpensive bound R′′ of §3.5
is also shown.

3.2.1 Sphere Center Update (c → c′)

Following deformation, the undeformed sphere center c is displaced
by a weighted average of the contained points’ displacements u,
with weights {"i}i∈!. Specifically, c

′, is given by

c′ = c+#
i∈!

"iui = c+#
i∈!

"i

(

M

#
j=1

Ui jq j

)

(3)

= c+
M

#
j=1

(

#
i∈!

"iUi j

)

q j (4)

≡ c+
M

#
j=1

Ū jq j = c+ Ūq ≡ c′ (5)

where Ū j ∈ R3 is a " -weighted average of the jth displacement
field, U∗ j, where #i∈! "i = 1 and "i ∈ [0,1]∀i ∈ !. In our exam-
ples, we track the mean displacement using "i =1/|!|. Note that
the center, c′, has linear dependence on the deformation parame-
ters, q, and that computing the center involves only 6M flops forM
displacement fields.

3.2.2 Sphere Radius Update (R→ R′)

Following deformation, the bounding sphere radius is conserva-
tively enlarged using the triangle inequality as follows:

max
i∈!

‖p′i− c′‖2 = max
i∈!

‖(pi− c)+
M

#
j=1

(Ui j− Ū j)q j‖2 (6)

≤ max
i∈!

‖pi− c‖2+
M

#
j=1

(

max
i∈!

‖Ui j− Ū j‖2

)

|q j|

≡ R+
M

#
j=1

$Rj|q j| = R+$RTqABS ≡ R′ (7)

where $Rj is the radius increment due to the j
th displacement field.

Note that the radius, R′, has linear dependence on the absolute value
of the deformation parameters, qABS, and that computing the radius
involves only 2M flops for M displacement fields.

3.3 Tightness of Conservative Bounding Spheres

A key question regarding BD-Trees is how well the conservative
bound fits the deformed model. Certainly, the undeformed BD-
Tree’s wrapped hierarchy is much better than the usual layered hi-
erarchy used with deformable models. Fortunately, it can be shown
theoretically and in practice, that the conservative radius increase
$RTqABS still provides useful bounds. For example, Figure 6 shows
that the deformed BD-Tree needn’t be any worse than the hierarchi-
cally updated layered hierarchy even for large deformations.

To build intuition about why the conservative bound is effec-
tive, notice that for uniform translation of a sphere’s points by each
mode, Ui j = t j, the bounding radius is conveniently invariant (since

Ui j = Ū j∀i, j and so $R = 0). This suggests that the BD-Tree will
have tighter spheres when the displacement fields are locally con-
stant (even if the displacements are large), and spheres may remain
tighter near the leaves of the tree.

More specifically, for Lipschitz continuous displacement fields,
we show in Appendix A that ‖$R‖2 is bounded by a constant times
the sphere’s undeformed radius R; furthermore, the proportionality
constant in question is monotonically decreasing for child spheres.
Consequently, smaller spheres (alt. finer levels) should tend to have
proportionately smaller radius increases, and thus the deformed
BD-Tree will remain an effective bounding hierarchy. This trend is
clearly observed in numerical experiments, e.g., the ‖$R‖2 values
for the plastic chair (normalized per-level averages) exhibit quick
decay: 1.000, 0.684, 0.575, 0.399, 0.252, 0.167, 0.110, 0.080,
0.057, 0.041, 0.030, 0.022, 0.017, 0.016, 0.015, 0.013, 0.007,
0.004, 0.003.

3.4 Summary of BD-Tree Method

To summarize, with the BD-Trees, collision detection and proxim-
ity queries with deformable objects are performed as in standard
sphere tree methods for rigid objects, with traversals proceeding
from coarse to fine sphere nodes. The only differences are:

Precomputation: Build a sphere tree on the undeformed
model, and tighten spheres to wrap underlying geometry. At each
node in the hierarchy, in addition to the undeformed sphere center
c and wrapped radius R, compute and store the matrices Ū and $R
(4M additional numbers per node).

Level 0 Level 2 Level 4 Level 6

Figure 4: Comparison of undeformed layered hierarchy (top) ver-
sus the wrapped BD-Tree (bottom). Throughout the paper, dark red
denotes at least 3 times greater sphere volume (or ≥1.44× radius)
than the undeformed wrapped BD-Tree sphere, and dark blue im-
plies a negligible size increase.

Alternatively, one could just construct the smallest enclosing
sphere for the underlying geometry of each node using, for
instance, the efficient randomized algorithm of Welzl [1991].

3.2 Fast BD-Tree Updates

Given points {pi}i∈! associated with a node in a hierarchy, how
can we compute new bounding spheres as the object deforms? We
propose to compute each sphere’s updated center, c′, and an updated
conservative radius, R′, as functions of the reduced coordinates, q.
The update process is illustrated in Figure 5. A key point is that
this update can be performed independently for each sphere, and
also efficiently for many reduced models.

c c

c '

R '' R 'R

Figure 5: BD-Tree bounding sphere during deformation illustrating
the change in the center c → c′ evaluated as a weighted average of
the points, pi → p′i, and the conservatively enlarged radius R→ R′

that bounds the effect of each component of the reduced coordinate
q using the triangle inequality. The inexpensive bound R′′ of §3.5
is also shown.

3.2.1 Sphere Center Update (c → c′)

Following deformation, the undeformed sphere center c is displaced
by a weighted average of the contained points’ displacements u,
with weights {"i}i∈!. Specifically, c

′, is given by

c′ = c+#
i∈!

"iui = c+#
i∈!

"i

(

M

#
j=1

Ui jq j

)

(3)

= c+
M

#
j=1

(

#
i∈!

"iUi j

)

q j (4)

≡ c+
M

#
j=1

Ū jq j = c+ Ūq ≡ c′ (5)

where Ū j ∈ R3 is a " -weighted average of the jth displacement
field, U∗ j, where #i∈! "i = 1 and "i ∈ [0,1]∀i ∈ !. In our exam-
ples, we track the mean displacement using "i =1/|!|. Note that
the center, c′, has linear dependence on the deformation parame-
ters, q, and that computing the center involves only 6M flops forM
displacement fields.

3.2.2 Sphere Radius Update (R→ R′)

Following deformation, the bounding sphere radius is conserva-
tively enlarged using the triangle inequality as follows:

max
i∈!

‖p′i− c′‖2 = max
i∈!

‖(pi− c)+
M

#
j=1

(Ui j− Ū j)q j‖2 (6)

≤ max
i∈!

‖pi− c‖2+
M

#
j=1

(

max
i∈!

‖Ui j− Ū j‖2

)

|q j|

≡ R+
M

#
j=1

$Rj|q j| = R+$RTqABS ≡ R′ (7)

where $Rj is the radius increment due to the j
th displacement field.

Note that the radius, R′, has linear dependence on the absolute value
of the deformation parameters, qABS, and that computing the radius
involves only 2M flops for M displacement fields.

3.3 Tightness of Conservative Bounding Spheres

A key question regarding BD-Trees is how well the conservative
bound fits the deformed model. Certainly, the undeformed BD-
Tree’s wrapped hierarchy is much better than the usual layered hi-
erarchy used with deformable models. Fortunately, it can be shown
theoretically and in practice, that the conservative radius increase
$RTqABS still provides useful bounds. For example, Figure 6 shows
that the deformed BD-Tree needn’t be any worse than the hierarchi-
cally updated layered hierarchy even for large deformations.

To build intuition about why the conservative bound is effec-
tive, notice that for uniform translation of a sphere’s points by each
mode, Ui j = t j, the bounding radius is conveniently invariant (since

Ui j = Ū j∀i, j and so $R = 0). This suggests that the BD-Tree will
have tighter spheres when the displacement fields are locally con-
stant (even if the displacements are large), and spheres may remain
tighter near the leaves of the tree.

More specifically, for Lipschitz continuous displacement fields,
we show in Appendix A that ‖$R‖2 is bounded by a constant times
the sphere’s undeformed radius R; furthermore, the proportionality
constant in question is monotonically decreasing for child spheres.
Consequently, smaller spheres (alt. finer levels) should tend to have
proportionately smaller radius increases, and thus the deformed
BD-Tree will remain an effective bounding hierarchy. This trend is
clearly observed in numerical experiments, e.g., the ‖$R‖2 values
for the plastic chair (normalized per-level averages) exhibit quick
decay: 1.000, 0.684, 0.575, 0.399, 0.252, 0.167, 0.110, 0.080,
0.057, 0.041, 0.030, 0.022, 0.017, 0.016, 0.015, 0.013, 0.007,
0.004, 0.003.

3.4 Summary of BD-Tree Method

To summarize, with the BD-Trees, collision detection and proxim-
ity queries with deformable objects are performed as in standard
sphere tree methods for rigid objects, with traversals proceeding
from coarse to fine sphere nodes. The only differences are:

Precomputation: Build a sphere tree on the undeformed
model, and tighten spheres to wrap underlying geometry. At each
node in the hierarchy, in addition to the undeformed sphere center
c and wrapped radius R, compute and store the matrices Ū and $R
(4M additional numbers per node).

Example

Overview
• Last Week’s Question

• Elastic Collision Detection

• Collision Detection for
Reduced Models

• Surface-Based Elastics

• New Question

Overview
• Last Week’s Question

• Elastic Collision Detection

• Collision Detection for
Reduced Models

• Surface-Based Elastics

• New Question

Surface-Based Elastics

equations) for x(t) are differential equations describing the dynam-
ical behavior of the system:

Mẍ+Cẋ+K(x−x0) = fext , (1)

where M is the mass matrix, C is the damping coefficient matrix, K
is the stiffness matrix, x0 is the rest pose, and fext is the generalized
external force. Small displacements are usually assumed for linear
models to work, while simple generalizations to large deformation
through corotational frames exist, see e.g. [Müller and Gross 2004].

In our real-time deformable model, we simulate the deformable ob-
ject using an elastic thin shell supported by elastic spokes emanat-
ing from the bones in the skeleton. As we target secondary motions
caused by the primary motion, we add, on top of the elastic forces,
a restoration force to each vertex towards its position in the primary
motion x̂:

Mẍ−F(x,x0, ẋ, x̂) = fext , (2)

where F is the total internal force. This is the governing equation
we use for our surface-based model. Note that the volumetric elas-
tic force acting on surface nodes consists of two parts: those coming
from surface neighbors, and those coming from interior neighbors.
Since our model is surface-based, the degrees of freedom repre-
senting interior neighbors are not present. We detail how we ap-
proximate the elastic force from interior neighbors using spokes in
Section 2.1.

In FEM, the state of the object is usually evolved in time using
implicit integration when large time steps are used for improved
stability. We choose, instead, to use a simple, GPU-friendly explicit
time integration since we seek parallelism of the process instead of
high accuracy. Forces will be carefully implemented so that they do
not overshoot when our explicit integration scheme is applied.

We call the original surface mesh the rest pose, and the skeleton-
driven poses the goal poses (we employ SSD [Magnenat-Thalmann
et al. 1988] to generate goal poses in our paper). For the i-th vertex
the surface mesh, we denote its position in the rest pose by x0

i , its
position in goal poses (i.e., the goal positions) by x̂i(t), its dynamic
position by xi(t) and its velocity by vi(t), where t ∈ [0,T] is time
and T is the duration of the animation. In the following sections,
we first elaborate on each of the simulation forces, then on time
integration.

2.1 Per-Vertex Forces

For each vertex of the mesh, four forces besides external force are
evaluated and applied at each frame of the animation. They are:
restoration force from goal position Gi(t), elastic force from sur-
face neighbors Li(t), volumetric elastic force Bi(t), and damping
Di(t) (see Figure 2). When summed up to get the total force, each
force is scaled by a factor denoting the strength of the force (e.g.,
neighborhood stiffness, strength of the spoke attaching that vertex
to the bone, etc.) which best approximates the desired volumetric
behavior. In other words, these factors are the material properties of
the surface mesh. We follow the common practice of mass lumping
in elasticity simulation. Thus, without loss of generality, we can
use the terms force and acceleration interchangeably, assuming the
mass associated to the node is taken into account.

Fi(Πi, t) = αiGi(t)+βiLi(t)+ γiBi(t)+λiDi(t)+Fext(t). (3)

These per-vertex parameters Π = {αi,βi,γi,λi}i∈vertices allow the
model to achieve different dynamical behaviors. The user may tune
the parameters via a painting or curve-based editing interface, or
use the fitting algorithm described in Section 3 to learn parameters
from example animations.

(a) (b)

Figure 2: (a) The dynamics of our model (green) is guided by the
skeleton and the goal pose (blue). (b) Per-vertex Forces: A vertex
(red dot) experiences four forces besides external force: restora-
tion force (purple arrow) to goal position (blue dot), elastic force
(red arrow) from surface neighbor (green umbrella), elastic force
(brown arrow) from bone (red segment) and damping force (not
drawn here).

Restoration Force from Goal Position Each vertex is pushed to-
wards its goal position so that the simulated mesh can achieve equi-
librium near the goal pose and converge if the goal pose stops mov-
ing.

Gi(t) =
x̂i(t)−xi(t)

h2
. (4)

This term follows the formulation of [Müller et al. 2005], as it is the
largest possible acceleration that does not produce overshoot over
one time step h. The next two terms are also treated in the same
fashion.

Elastic Force from Surface Neighbors In FEM, adjacent nodes
exert elastic forces on each other when the element between them
changes shape, inducing a locally non-zero strain tensor. We mimic
this effect by maintaining the surface details: the position which
best preserves the Laplacian coordinates is calculated, and the ver-
tex is moved towards this position.

More precisely, let us consider a single vertex i and its local neigh-
borhood nbr(i). First, the optimal rotation R from the rest pose
(of the neighborhood) to the current pose is calculated via a polar
decomposition of

A = ∑
j∈nbr(i)

(

x j(t)−xi(t)
)

(x0
j −x0

i)
T
. (5)

In terms of the singular value decomposition of A, A = UDV, one
has R = UV [Haralick et al. 1989]. Then, the position which best
preserves the Laplacian coordinates is calculated as

ci(t) =
1

|nbr(i)| ∑
j∈nbr(i)

(

R(x0
i −x0

j)+x j(t)
)

. (6)

Thus the surface detail preserving force is

Li(t) =
ci(t)−xi(t)

h2
. (7)

Here we choose the graph Laplacian over other forms of Laplacian
operators (e.g., cotangent form) mainly due to its simple uniform
weights, which means no extra texture storage or tex-read opera-
tions needed for GPU implementation. The same reasoning also
leads us to use the graph Laplacian in the damping term discussed
below.

equations) for x(t) are differential equations describing the dynam-
ical behavior of the system:

Mẍ+Cẋ+K(x−x0) = fext , (1)

where M is the mass matrix, C is the damping coefficient matrix, K
is the stiffness matrix, x0 is the rest pose, and fext is the generalized
external force. Small displacements are usually assumed for linear
models to work, while simple generalizations to large deformation
through corotational frames exist, see e.g. [Müller and Gross 2004].

In our real-time deformable model, we simulate the deformable ob-
ject using an elastic thin shell supported by elastic spokes emanat-
ing from the bones in the skeleton. As we target secondary motions
caused by the primary motion, we add, on top of the elastic forces,
a restoration force to each vertex towards its position in the primary
motion x̂:

Mẍ−F(x,x0, ẋ, x̂) = fext , (2)

where F is the total internal force. This is the governing equation
we use for our surface-based model. Note that the volumetric elas-
tic force acting on surface nodes consists of two parts: those coming
from surface neighbors, and those coming from interior neighbors.
Since our model is surface-based, the degrees of freedom repre-
senting interior neighbors are not present. We detail how we ap-
proximate the elastic force from interior neighbors using spokes in
Section 2.1.

In FEM, the state of the object is usually evolved in time using
implicit integration when large time steps are used for improved
stability. We choose, instead, to use a simple, GPU-friendly explicit
time integration since we seek parallelism of the process instead of
high accuracy. Forces will be carefully implemented so that they do
not overshoot when our explicit integration scheme is applied.

We call the original surface mesh the rest pose, and the skeleton-
driven poses the goal poses (we employ SSD [Magnenat-Thalmann
et al. 1988] to generate goal poses in our paper). For the i-th vertex
the surface mesh, we denote its position in the rest pose by x0

i , its
position in goal poses (i.e., the goal positions) by x̂i(t), its dynamic
position by xi(t) and its velocity by vi(t), where t ∈ [0,T] is time
and T is the duration of the animation. In the following sections,
we first elaborate on each of the simulation forces, then on time
integration.

2.1 Per-Vertex Forces

For each vertex of the mesh, four forces besides external force are
evaluated and applied at each frame of the animation. They are:
restoration force from goal position Gi(t), elastic force from sur-
face neighbors Li(t), volumetric elastic force Bi(t), and damping
Di(t) (see Figure 2). When summed up to get the total force, each
force is scaled by a factor denoting the strength of the force (e.g.,
neighborhood stiffness, strength of the spoke attaching that vertex
to the bone, etc.) which best approximates the desired volumetric
behavior. In other words, these factors are the material properties of
the surface mesh. We follow the common practice of mass lumping
in elasticity simulation. Thus, without loss of generality, we can
use the terms force and acceleration interchangeably, assuming the
mass associated to the node is taken into account.

Fi(Πi, t) = αiGi(t)+βiLi(t)+ γiBi(t)+λiDi(t)+Fext(t). (3)

These per-vertex parameters Π = {αi,βi,γi,λi}i∈vertices allow the
model to achieve different dynamical behaviors. The user may tune
the parameters via a painting or curve-based editing interface, or
use the fitting algorithm described in Section 3 to learn parameters
from example animations.

(a) (b)

Figure 2: (a) The dynamics of our model (green) is guided by the
skeleton and the goal pose (blue). (b) Per-vertex Forces: A vertex
(red dot) experiences four forces besides external force: restora-
tion force (purple arrow) to goal position (blue dot), elastic force
(red arrow) from surface neighbor (green umbrella), elastic force
(brown arrow) from bone (red segment) and damping force (not
drawn here).

Restoration Force from Goal Position Each vertex is pushed to-
wards its goal position so that the simulated mesh can achieve equi-
librium near the goal pose and converge if the goal pose stops mov-
ing.

Gi(t) =
x̂i(t)−xi(t)

h2
. (4)

This term follows the formulation of [Müller et al. 2005], as it is the
largest possible acceleration that does not produce overshoot over
one time step h. The next two terms are also treated in the same
fashion.

Elastic Force from Surface Neighbors In FEM, adjacent nodes
exert elastic forces on each other when the element between them
changes shape, inducing a locally non-zero strain tensor. We mimic
this effect by maintaining the surface details: the position which
best preserves the Laplacian coordinates is calculated, and the ver-
tex is moved towards this position.

More precisely, let us consider a single vertex i and its local neigh-
borhood nbr(i). First, the optimal rotation R from the rest pose
(of the neighborhood) to the current pose is calculated via a polar
decomposition of

A = ∑
j∈nbr(i)

(

x j(t)−xi(t)
)

(x0
j −x0

i)
T
. (5)

In terms of the singular value decomposition of A, A = UDV, one
has R = UV [Haralick et al. 1989]. Then, the position which best
preserves the Laplacian coordinates is calculated as

ci(t) =
1

|nbr(i)| ∑
j∈nbr(i)

(

R(x0
i −x0

j)+x j(t)
)

. (6)

Thus the surface detail preserving force is

Li(t) =
ci(t)−xi(t)

h2
. (7)

Here we choose the graph Laplacian over other forms of Laplacian
operators (e.g., cotangent form) mainly due to its simple uniform
weights, which means no extra texture storage or tex-read opera-
tions needed for GPU implementation. The same reasoning also
leads us to use the graph Laplacian in the damping term discussed
below.

equations) for x(t) are differential equations describing the dynam-
ical behavior of the system:

Mẍ+Cẋ+K(x−x0) = fext , (1)

where M is the mass matrix, C is the damping coefficient matrix, K
is the stiffness matrix, x0 is the rest pose, and fext is the generalized
external force. Small displacements are usually assumed for linear
models to work, while simple generalizations to large deformation
through corotational frames exist, see e.g. [Müller and Gross 2004].

In our real-time deformable model, we simulate the deformable ob-
ject using an elastic thin shell supported by elastic spokes emanat-
ing from the bones in the skeleton. As we target secondary motions
caused by the primary motion, we add, on top of the elastic forces,
a restoration force to each vertex towards its position in the primary
motion x̂:

Mẍ−F(x,x0, ẋ, x̂) = fext , (2)

where F is the total internal force. This is the governing equation
we use for our surface-based model. Note that the volumetric elas-
tic force acting on surface nodes consists of two parts: those coming
from surface neighbors, and those coming from interior neighbors.
Since our model is surface-based, the degrees of freedom repre-
senting interior neighbors are not present. We detail how we ap-
proximate the elastic force from interior neighbors using spokes in
Section 2.1.

In FEM, the state of the object is usually evolved in time using
implicit integration when large time steps are used for improved
stability. We choose, instead, to use a simple, GPU-friendly explicit
time integration since we seek parallelism of the process instead of
high accuracy. Forces will be carefully implemented so that they do
not overshoot when our explicit integration scheme is applied.

We call the original surface mesh the rest pose, and the skeleton-
driven poses the goal poses (we employ SSD [Magnenat-Thalmann
et al. 1988] to generate goal poses in our paper). For the i-th vertex
the surface mesh, we denote its position in the rest pose by x0

i , its
position in goal poses (i.e., the goal positions) by x̂i(t), its dynamic
position by xi(t) and its velocity by vi(t), where t ∈ [0,T] is time
and T is the duration of the animation. In the following sections,
we first elaborate on each of the simulation forces, then on time
integration.

2.1 Per-Vertex Forces

For each vertex of the mesh, four forces besides external force are
evaluated and applied at each frame of the animation. They are:
restoration force from goal position Gi(t), elastic force from sur-
face neighbors Li(t), volumetric elastic force Bi(t), and damping
Di(t) (see Figure 2). When summed up to get the total force, each
force is scaled by a factor denoting the strength of the force (e.g.,
neighborhood stiffness, strength of the spoke attaching that vertex
to the bone, etc.) which best approximates the desired volumetric
behavior. In other words, these factors are the material properties of
the surface mesh. We follow the common practice of mass lumping
in elasticity simulation. Thus, without loss of generality, we can
use the terms force and acceleration interchangeably, assuming the
mass associated to the node is taken into account.

Fi(Πi, t) = αiGi(t)+βiLi(t)+ γiBi(t)+λiDi(t)+Fext(t). (3)

These per-vertex parameters Π = {αi,βi,γi,λi}i∈vertices allow the
model to achieve different dynamical behaviors. The user may tune
the parameters via a painting or curve-based editing interface, or
use the fitting algorithm described in Section 3 to learn parameters
from example animations.

(a) (b)

Figure 2: (a) The dynamics of our model (green) is guided by the
skeleton and the goal pose (blue). (b) Per-vertex Forces: A vertex
(red dot) experiences four forces besides external force: restora-
tion force (purple arrow) to goal position (blue dot), elastic force
(red arrow) from surface neighbor (green umbrella), elastic force
(brown arrow) from bone (red segment) and damping force (not
drawn here).

Restoration Force from Goal Position Each vertex is pushed to-
wards its goal position so that the simulated mesh can achieve equi-
librium near the goal pose and converge if the goal pose stops mov-
ing.

Gi(t) =
x̂i(t)−xi(t)

h2
. (4)

This term follows the formulation of [Müller et al. 2005], as it is the
largest possible acceleration that does not produce overshoot over
one time step h. The next two terms are also treated in the same
fashion.

Elastic Force from Surface Neighbors In FEM, adjacent nodes
exert elastic forces on each other when the element between them
changes shape, inducing a locally non-zero strain tensor. We mimic
this effect by maintaining the surface details: the position which
best preserves the Laplacian coordinates is calculated, and the ver-
tex is moved towards this position.

More precisely, let us consider a single vertex i and its local neigh-
borhood nbr(i). First, the optimal rotation R from the rest pose
(of the neighborhood) to the current pose is calculated via a polar
decomposition of

A = ∑
j∈nbr(i)

(

x j(t)−xi(t)
)

(x0
j −x0

i)
T
. (5)

In terms of the singular value decomposition of A, A = UDV, one
has R = UV [Haralick et al. 1989]. Then, the position which best
preserves the Laplacian coordinates is calculated as

ci(t) =
1

|nbr(i)| ∑
j∈nbr(i)

(

R(x0
i −x0

j)+x j(t)
)

. (6)

Thus the surface detail preserving force is

Li(t) =
ci(t)−xi(t)

h2
. (7)

Here we choose the graph Laplacian over other forms of Laplacian
operators (e.g., cotangent form) mainly due to its simple uniform
weights, which means no extra texture storage or tex-read opera-
tions needed for GPU implementation. The same reasoning also
leads us to use the graph Laplacian in the damping term discussed
below.

equations) for x(t) are differential equations describing the dynam-
ical behavior of the system:

Mẍ+Cẋ+K(x−x0) = fext , (1)

where M is the mass matrix, C is the damping coefficient matrix, K
is the stiffness matrix, x0 is the rest pose, and fext is the generalized
external force. Small displacements are usually assumed for linear
models to work, while simple generalizations to large deformation
through corotational frames exist, see e.g. [Müller and Gross 2004].

In our real-time deformable model, we simulate the deformable ob-
ject using an elastic thin shell supported by elastic spokes emanat-
ing from the bones in the skeleton. As we target secondary motions
caused by the primary motion, we add, on top of the elastic forces,
a restoration force to each vertex towards its position in the primary
motion x̂:

Mẍ−F(x,x0, ẋ, x̂) = fext , (2)

where F is the total internal force. This is the governing equation
we use for our surface-based model. Note that the volumetric elas-
tic force acting on surface nodes consists of two parts: those coming
from surface neighbors, and those coming from interior neighbors.
Since our model is surface-based, the degrees of freedom repre-
senting interior neighbors are not present. We detail how we ap-
proximate the elastic force from interior neighbors using spokes in
Section 2.1.

In FEM, the state of the object is usually evolved in time using
implicit integration when large time steps are used for improved
stability. We choose, instead, to use a simple, GPU-friendly explicit
time integration since we seek parallelism of the process instead of
high accuracy. Forces will be carefully implemented so that they do
not overshoot when our explicit integration scheme is applied.

We call the original surface mesh the rest pose, and the skeleton-
driven poses the goal poses (we employ SSD [Magnenat-Thalmann
et al. 1988] to generate goal poses in our paper). For the i-th vertex
the surface mesh, we denote its position in the rest pose by x0

i , its
position in goal poses (i.e., the goal positions) by x̂i(t), its dynamic
position by xi(t) and its velocity by vi(t), where t ∈ [0,T] is time
and T is the duration of the animation. In the following sections,
we first elaborate on each of the simulation forces, then on time
integration.

2.1 Per-Vertex Forces

For each vertex of the mesh, four forces besides external force are
evaluated and applied at each frame of the animation. They are:
restoration force from goal position Gi(t), elastic force from sur-
face neighbors Li(t), volumetric elastic force Bi(t), and damping
Di(t) (see Figure 2). When summed up to get the total force, each
force is scaled by a factor denoting the strength of the force (e.g.,
neighborhood stiffness, strength of the spoke attaching that vertex
to the bone, etc.) which best approximates the desired volumetric
behavior. In other words, these factors are the material properties of
the surface mesh. We follow the common practice of mass lumping
in elasticity simulation. Thus, without loss of generality, we can
use the terms force and acceleration interchangeably, assuming the
mass associated to the node is taken into account.

Fi(Πi, t) = αiGi(t)+βiLi(t)+ γiBi(t)+λiDi(t)+Fext(t). (3)

These per-vertex parameters Π = {αi,βi,γi,λi}i∈vertices allow the
model to achieve different dynamical behaviors. The user may tune
the parameters via a painting or curve-based editing interface, or
use the fitting algorithm described in Section 3 to learn parameters
from example animations.

(a) (b)

Figure 2: (a) The dynamics of our model (green) is guided by the
skeleton and the goal pose (blue). (b) Per-vertex Forces: A vertex
(red dot) experiences four forces besides external force: restora-
tion force (purple arrow) to goal position (blue dot), elastic force
(red arrow) from surface neighbor (green umbrella), elastic force
(brown arrow) from bone (red segment) and damping force (not
drawn here).

Restoration Force from Goal Position Each vertex is pushed to-
wards its goal position so that the simulated mesh can achieve equi-
librium near the goal pose and converge if the goal pose stops mov-
ing.

Gi(t) =
x̂i(t)−xi(t)

h2
. (4)

This term follows the formulation of [Müller et al. 2005], as it is the
largest possible acceleration that does not produce overshoot over
one time step h. The next two terms are also treated in the same
fashion.

Elastic Force from Surface Neighbors In FEM, adjacent nodes
exert elastic forces on each other when the element between them
changes shape, inducing a locally non-zero strain tensor. We mimic
this effect by maintaining the surface details: the position which
best preserves the Laplacian coordinates is calculated, and the ver-
tex is moved towards this position.

More precisely, let us consider a single vertex i and its local neigh-
borhood nbr(i). First, the optimal rotation R from the rest pose
(of the neighborhood) to the current pose is calculated via a polar
decomposition of

A = ∑
j∈nbr(i)

(

x j(t)−xi(t)
)

(x0
j −x0

i)
T
. (5)

In terms of the singular value decomposition of A, A = UDV, one
has R = UV [Haralick et al. 1989]. Then, the position which best
preserves the Laplacian coordinates is calculated as

ci(t) =
1

|nbr(i)| ∑
j∈nbr(i)

(

R(x0
i −x0

j)+x j(t)
)

. (6)

Thus the surface detail preserving force is

Li(t) =
ci(t)−xi(t)

h2
. (7)

Here we choose the graph Laplacian over other forms of Laplacian
operators (e.g., cotangent form) mainly due to its simple uniform
weights, which means no extra texture storage or tex-read opera-
tions needed for GPU implementation. The same reasoning also
leads us to use the graph Laplacian in the damping term discussed
below.

Source: Xiaohan Shi, Kun Zhou, Yiying Tong, Mathieu Desbrun, Hujun Bao, Baining Guo.
Example-Based Dynamic Skinning in Real Time. ACM TOG (SIGGRAPH 2008)

Volumetric Behavior

Source: Xiaohan Shi, Kun Zhou, Yiying Tong, Mathieu Desbrun, Hujun Bao, Baining Guo.
Example-Based Dynamic Skinning in Real Time. ACM TOG (SIGGRAPH 2008)

(c)(b)

(a)

Figure 3: Volumetric Behavior. The bone (red) accelerates down-
ward, causing the rubber tube to deform. With the help of the spokes
(yellow in (c)), our model (a) exhibits volumetric behavior, in con-
trast to the result generated without spokes (b). In the illustration
(c), the D’Alembert force (cyan) resulting from the acceleration of
the bone and the elastic force from the bone (brown) together drive
the two vertices (blue) to accelerate in their respective directions
(green). Without the support from the bone, such volumetric behav-
ior would be hard to emulate.

Volumetric Elastic Force In FEM, surface vertices experience
elastic forces not only from surface neighbors, but also from the
inside of the material. Since we reduce our model to be purely
boundary-based for efficiency, the positions and momenta usually
stored at interior vertices are unavailable. It is impossible in theory
to use only a thin shell model to simulate volumetric elasticity with
full accuracy. However, for models with a skeleton, we observe that
visually one of the most important volumetric behaviors not already
captured by the restoration force to goal positions is the tendency
to restore the distance between the boundary vertex and the bone
supporting it. Modeling this behavior alone obviously omits the
subtle interaction between boundary vertices and interior vertices,
and the interaction between nonadjacent boundary vertices through
internal elements. However, these detailed effects are not compat-
ible with interactive-rate requirements. Nevertheless, it is conceiv-
able to extend our basic model to include a proper treatment of the
low-frequency modes if the application requires so. We delay the
discussion of this extension to Section 6.

For the sake of performance, we take a simplistic model where the
surface vertices are linked directly to the bones by pseudo-springs
that can slide along the bones. (Adding a stick of specific mass
and moment of inertia would be more desirable, but we choose to
use this simple model since the restoration force to goal position
has partially taken the other volumetric effects into account, and in
practice it serves its purpose well.) During the simulation, a force
along the spoke tries to maintain the length of the spring through
the following term:

Bi(t) =

(

|x0
ib|/|xib(t)|−1

)

xib(t)

h2
, (8)

where xib is the difference between a vertex and its projection on the
bone. For joint regions, a surface vertex is linked to several bones.
In this case, the forces from each bone are averaged using the usual
skin weights. With this term, our model is capable of reproducing
the visually important part of the volumetric behavior, i.e., it can
mimic the resistance to local volume change (see Figure 3).

Damping With the commonly used Rayleigh damping, a vertex
experiences resistance when its velocity differs from its neighbors.
To approximate the effect of such damping forces, the velocity of
a vertex is smoothed based on its 1-ring neighbors, again using the

graph Laplacian:

Di(t) =
1

h |nbr(i)| ∑
j∈nbr(i)

v j(t)−vi(t). (9)

Ranges of the Parameters To simulate different material proper-
ties, the terms above are scaled by corresponding parameters before
being employed in the dynamics described in the next section (see
Figure 4). Since we normalized the largest possible forces without
causing instability to be 1 (the parameters actually correspond to
F/m instead of F), the natural limits to these parameters are [0,1],
with the exception of λ which should be within [0,0.5] to ensure
the stability of the system.

2.2 Dynamical Simulation

The dynamical simulation of our model is straightforward. A sym-
plectic Euler integration scheme similar to [Müller et al. 2005] is
used for its simplicity and efficiency. At each time step, the velocity
of the vertices are first updated explicitly based on the above terms,
then the positions are updated explicitly using the latest velocity:

vi(t +h) = vi(t)+hFi(Π, t), (10)

xi(t +h) = xi(t)+hvi(t +h). (11)

3 Iterative Fitting Algorithm

The model we described above contains four parameters for each
vertex. Although manual tuning via painting or a spline-based edit-
ing interface can be applied, the user may have already obtained
satisfactory examples for the behavior of the given mesh. Thus we
propose an iterative fitting algorithm to learn the material properties
directly from example animations.

The input of the fitting algorithm includes a surface mesh with a
skeleton structure, and two skeleton-driven animations - one with
physical details (the example pose) and one without (the goal pose).
The fitting process optimizes the set of per-vertex parameters Π so
that when driven by the goal pose, the surface mesh follows the
example pose as closely as possible:

Π = argmin
Π

E(Π). (12)

We measure the similarity of the two animations by the difference
between the positions of vertices computed as:

E(Π) = ∑
t

∑
i

‖xi(t)−pi(t)‖
2, (13)

where pi(t) is the position of the i-th vertex in the example ani-
mation (assuming regular time steps). The above measure can also

Figure 4: Armadillo’s skeleton and an example of the four per-
vertex parameters. Blue and red correspond to 0 and 1, respec-
tively.

(c)(b)

(a)

Figure 3: Volumetric Behavior. The bone (red) accelerates down-
ward, causing the rubber tube to deform. With the help of the spokes
(yellow in (c)), our model (a) exhibits volumetric behavior, in con-
trast to the result generated without spokes (b). In the illustration
(c), the D’Alembert force (cyan) resulting from the acceleration of
the bone and the elastic force from the bone (brown) together drive
the two vertices (blue) to accelerate in their respective directions
(green). Without the support from the bone, such volumetric behav-
ior would be hard to emulate.

Volumetric Elastic Force In FEM, surface vertices experience
elastic forces not only from surface neighbors, but also from the
inside of the material. Since we reduce our model to be purely
boundary-based for efficiency, the positions and momenta usually
stored at interior vertices are unavailable. It is impossible in theory
to use only a thin shell model to simulate volumetric elasticity with
full accuracy. However, for models with a skeleton, we observe that
visually one of the most important volumetric behaviors not already
captured by the restoration force to goal positions is the tendency
to restore the distance between the boundary vertex and the bone
supporting it. Modeling this behavior alone obviously omits the
subtle interaction between boundary vertices and interior vertices,
and the interaction between nonadjacent boundary vertices through
internal elements. However, these detailed effects are not compat-
ible with interactive-rate requirements. Nevertheless, it is conceiv-
able to extend our basic model to include a proper treatment of the
low-frequency modes if the application requires so. We delay the
discussion of this extension to Section 6.

For the sake of performance, we take a simplistic model where the
surface vertices are linked directly to the bones by pseudo-springs
that can slide along the bones. (Adding a stick of specific mass
and moment of inertia would be more desirable, but we choose to
use this simple model since the restoration force to goal position
has partially taken the other volumetric effects into account, and in
practice it serves its purpose well.) During the simulation, a force
along the spoke tries to maintain the length of the spring through
the following term:

Bi(t) =

(

|x0
ib|/|xib(t)|−1

)

xib(t)

h2
, (8)

where xib is the difference between a vertex and its projection on the
bone. For joint regions, a surface vertex is linked to several bones.
In this case, the forces from each bone are averaged using the usual
skin weights. With this term, our model is capable of reproducing
the visually important part of the volumetric behavior, i.e., it can
mimic the resistance to local volume change (see Figure 3).

Damping With the commonly used Rayleigh damping, a vertex
experiences resistance when its velocity differs from its neighbors.
To approximate the effect of such damping forces, the velocity of
a vertex is smoothed based on its 1-ring neighbors, again using the

graph Laplacian:

Di(t) =
1

h |nbr(i)| ∑
j∈nbr(i)

v j(t)−vi(t). (9)

Ranges of the Parameters To simulate different material proper-
ties, the terms above are scaled by corresponding parameters before
being employed in the dynamics described in the next section (see
Figure 4). Since we normalized the largest possible forces without
causing instability to be 1 (the parameters actually correspond to
F/m instead of F), the natural limits to these parameters are [0,1],
with the exception of λ which should be within [0,0.5] to ensure
the stability of the system.

2.2 Dynamical Simulation

The dynamical simulation of our model is straightforward. A sym-
plectic Euler integration scheme similar to [Müller et al. 2005] is
used for its simplicity and efficiency. At each time step, the velocity
of the vertices are first updated explicitly based on the above terms,
then the positions are updated explicitly using the latest velocity:

vi(t +h) = vi(t)+hFi(Π, t), (10)

xi(t +h) = xi(t)+hvi(t +h). (11)

3 Iterative Fitting Algorithm

The model we described above contains four parameters for each
vertex. Although manual tuning via painting or a spline-based edit-
ing interface can be applied, the user may have already obtained
satisfactory examples for the behavior of the given mesh. Thus we
propose an iterative fitting algorithm to learn the material properties
directly from example animations.

The input of the fitting algorithm includes a surface mesh with a
skeleton structure, and two skeleton-driven animations - one with
physical details (the example pose) and one without (the goal pose).
The fitting process optimizes the set of per-vertex parameters Π so
that when driven by the goal pose, the surface mesh follows the
example pose as closely as possible:

Π = argmin
Π

E(Π). (12)

We measure the similarity of the two animations by the difference
between the positions of vertices computed as:

E(Π) = ∑
t

∑
i

‖xi(t)−pi(t)‖
2, (13)

where pi(t) is the position of the i-th vertex in the example ani-
mation (assuming regular time steps). The above measure can also

Figure 4: Armadillo’s skeleton and an example of the four per-
vertex parameters. Blue and red correspond to 0 and 1, respec-
tively.

Example

Overview
• Last Week’s Question

• Elastic Collision Detection

• Collision Detection for
Reduced Models

• Surface-Based Elastics

• New Question

Overview
• Last Week’s Question

• Elastic Collision Detection

• Collision Detection for
Reduced Models

• Surface-Based Elastics

• New Question

Questions
• How could we represent a human body

on a computer with few dimensions.

• What kind of optical technology could
we use to capture a human body?

• How can we convert the captured data
into the human body representation.

• In animation, what do you think are the
most important aspects of human
motion to capture / model?

• Physically / Stylistically?

