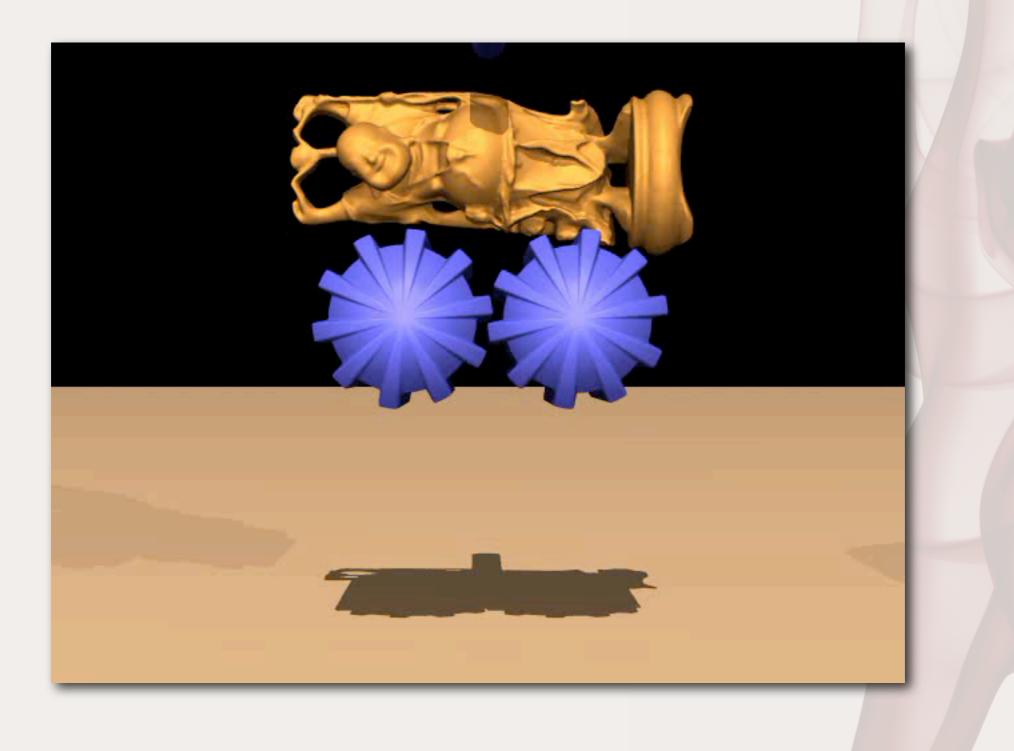
Deformable Materials

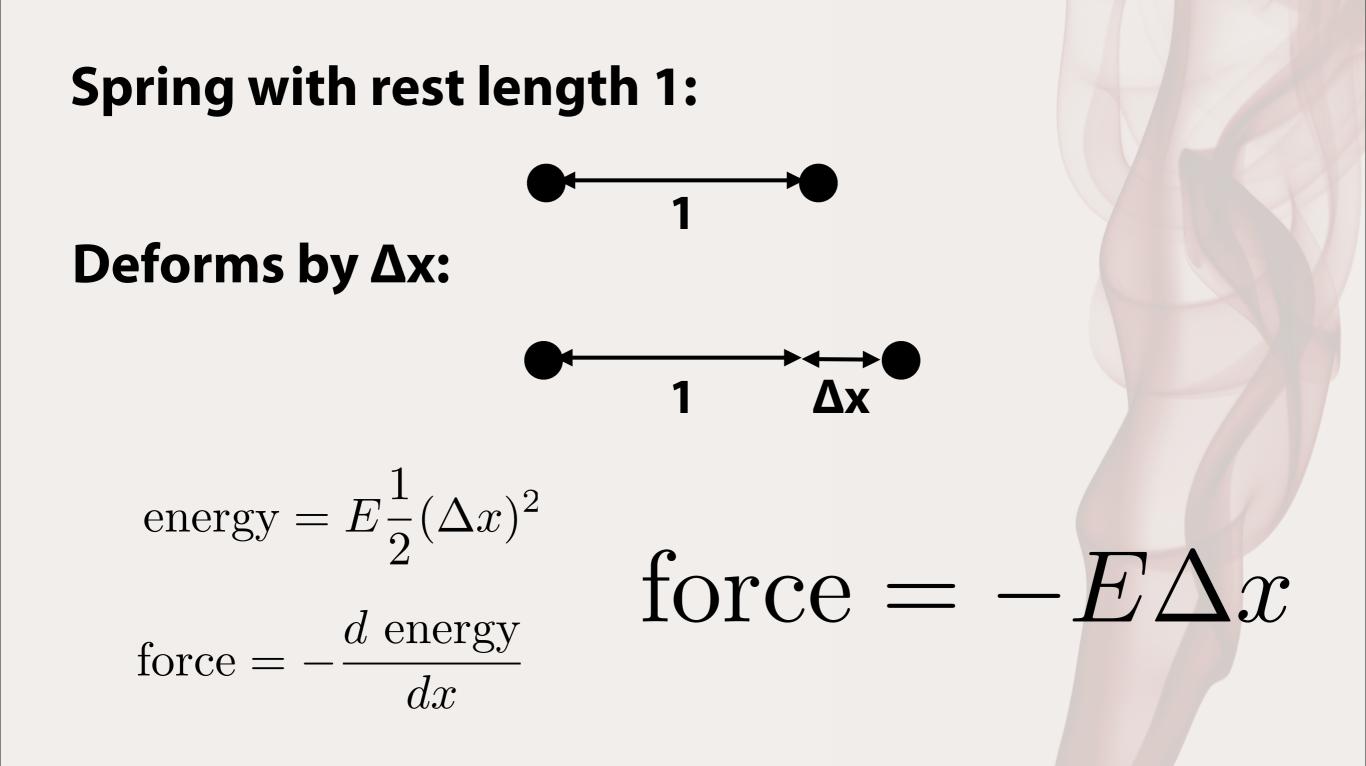
Adrien Treuille

TAing Undergrad Graphics?

Deformable Materials

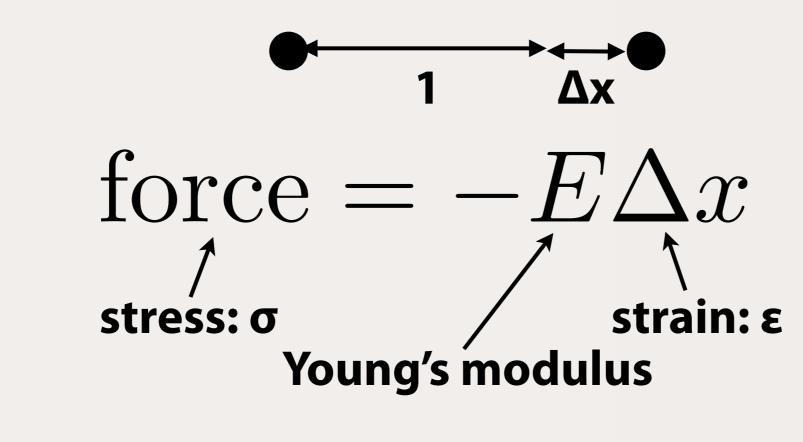


Taking a Hard Look at Soft Things

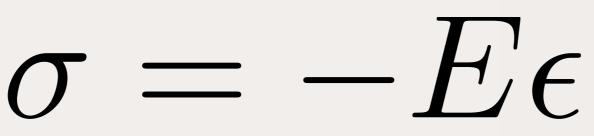


Deformations

Spring deformed by Δx :



Hooke's Law:



Steel: E=10¹¹ N/m² Rubber: E=10⁷~10⁸ N/m²

Hooke's Law

$\sigma = -E\epsilon$

- Want to generalize in two ways:
 - Continuum Deformations
 - 3D

Hooke's Law

$\sigma = -E\epsilon$

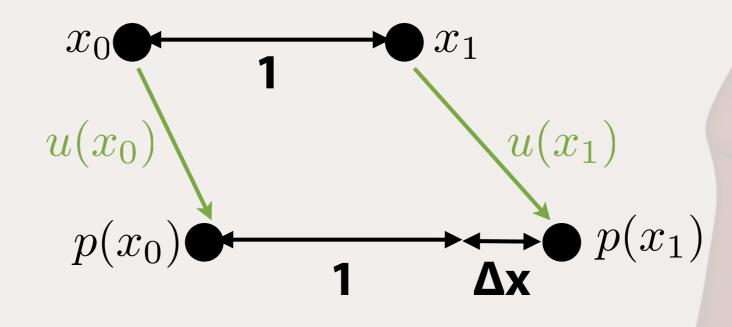
- Want to generalize in two ways:
 - Continuum Deformations
 - 3D

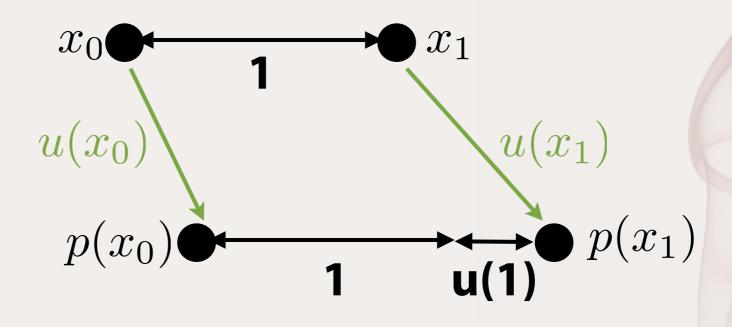
Continuum Deformations

- Given a displacement field *p*(*x*):
- Which defines a deformation field:

•
$$u(x) = p(x) - x$$

• (Like velocities in a fluid.)





- Suppose: $x_0 = 0$ and $x_1 = 1$
- p(0) = u(0)
- p(1) = 1 + u(1)
- energy = $\frac{1}{2} E (p(1) p(0) 1)^2$
- $p(1) \approx 1 + u(0) + \nabla u(0)$
- energy $\approx \frac{1}{2} E (1 + u(0) + \nabla u(0) u(0) 1)^2$
- energy $\approx \frac{1}{2} \mathbf{E} \nabla u^2$
- force = $-E\nabla u$

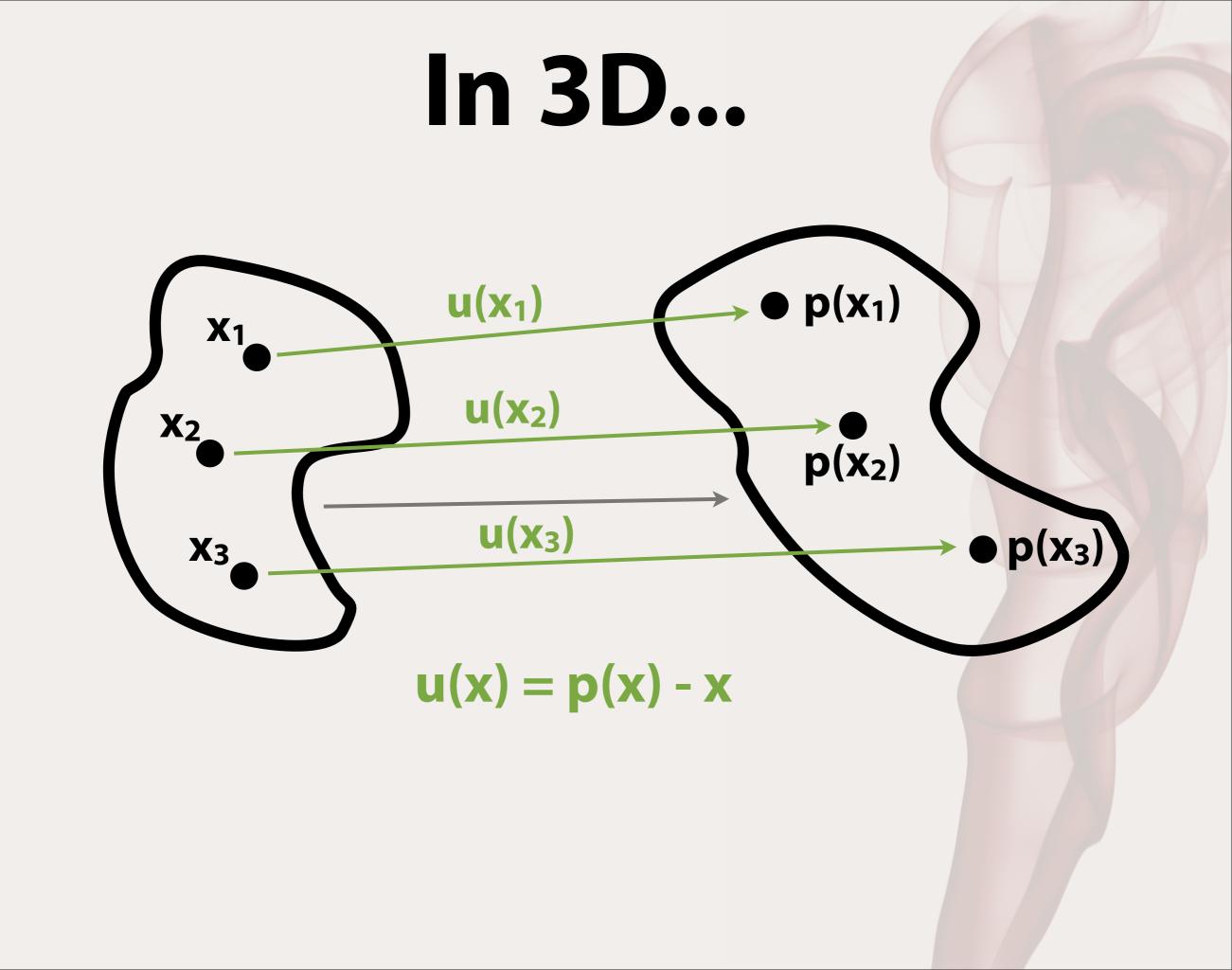
Therefore... • force = $-E \nabla u$ $\sigma = -E\epsilon$ In 1D, $\varepsilon = \nabla u$.

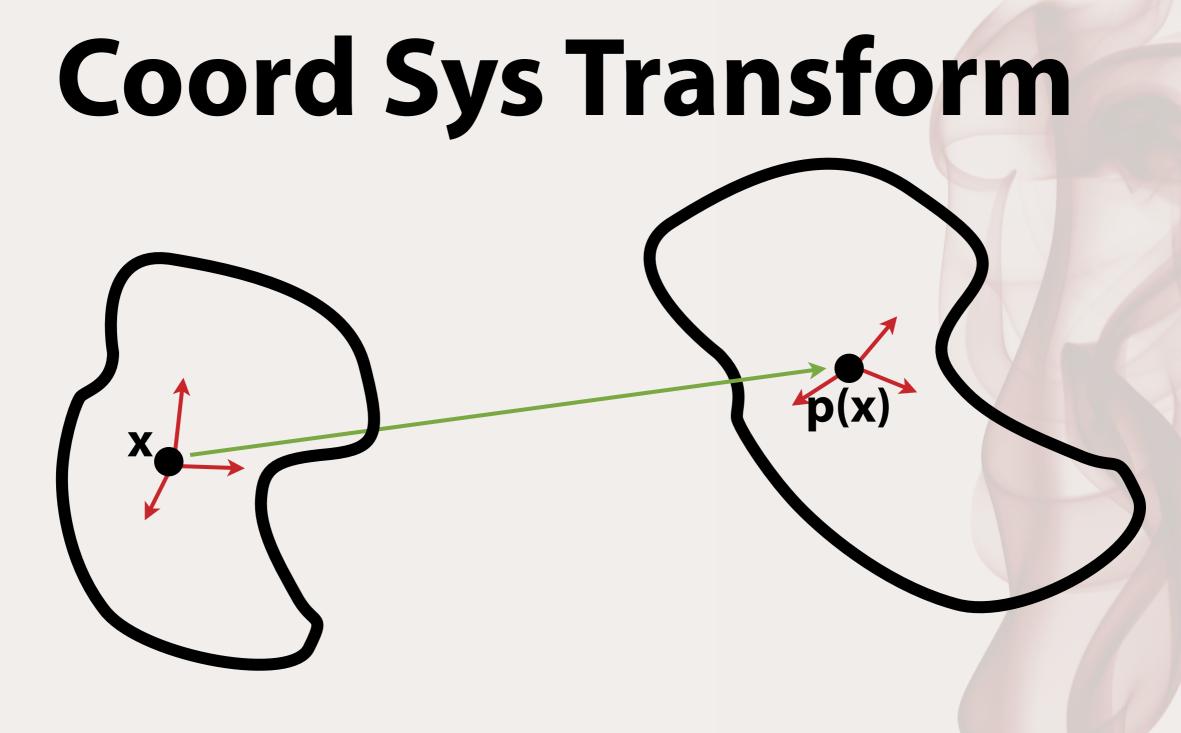
(Would like to generalize to 3D.)

Hooke's Law

$\sigma = -E\epsilon$

- Want to generalize in two ways:
 - Continuum Deformations
 - 3D (things will get a little silly)



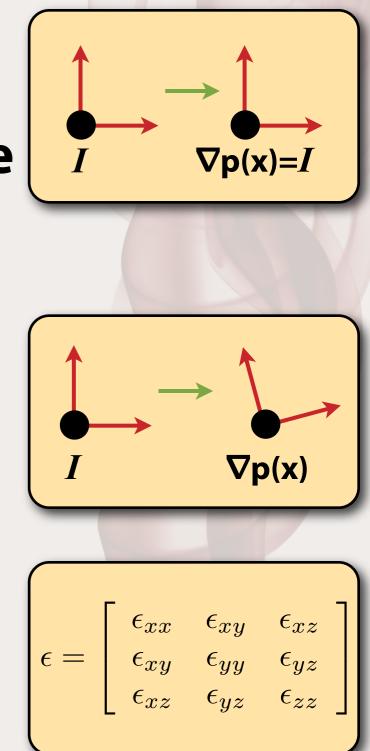


point: p(x)local coordinates: ∇p

point: *x* local coordinates: *I*

Defining Strain

- Strain is invariant to translation.
 - Ignore *p*(*x*)
 - Define in terms of local coordinate system transform: ∇p(x).
- Strain is invariant to rotation.
 - If $[\nabla p(x)]^T \nabla p(x) = I$,
 - Then ε=0
- Natural to define strain as:
 - $\varepsilon = \frac{1}{2}([\nabla p(x)]^T \nabla p(x) I)$
 - 6 DOFs



Defining Strain

$$\epsilon = \frac{1}{2} \left[\nabla p(x) \right]^T \nabla p(x) - I$$

u(x) = p(x) - x

$$\nabla u(x) = \nabla p(x) - I$$

$$\epsilon = \frac{1}{2} \left[\nabla u(x) + I \right]^T \left[\nabla u(x) + I \right] - I$$

Green's Strain:

Cauchy's Strain:

1D Strain:

$$\epsilon_{G} = \frac{1}{2} \left(\nabla u + [\nabla u]^{T} + [\nabla u]^{T} \nabla u \right)$$

$$\epsilon_{C} = \frac{1}{2} \left(\nabla u + [\nabla u]^{T} \right) \text{ (no rotation)}$$

 $\epsilon_{1D} = \nabla u \checkmark$

Defining Strain

$$\epsilon = \frac{1}{2} \left[\nabla p(x) \right]^T \nabla p(x) - I$$

u(x) = p(x) - x

$$\nabla u(x) = \nabla p(x) - I$$

$$\epsilon = \frac{1}{2} \left[\nabla u(x) + I \right]^T \left[\nabla u(x) + I \right] - I$$

Green's Strain:

Cauchy's Strain:

1D Strain:

$$\epsilon_{G} = \frac{1}{2} \left(\nabla u + [\nabla u]^{T} + [\nabla u]^{T} \nabla u \right)$$

$$\epsilon_{C} = \frac{1}{2} \left(\nabla u + [\nabla u]^{T} \right) \text{ (no rotation)}$$

 $\epsilon_{1D} = \nabla u \checkmark$

Cauchy's vs. Green's Strain

	$\epsilon_{C} = \frac{1}{2} \left(\nabla u + [\nabla u]^{T} \right)$ Cauchy's Strain	$\epsilon_G = \frac{1}{2} \left(\nabla u + [\nabla u]^T + [\nabla u]^T \nabla u \right)$ Green's Strain
$\mathbf{x} \rightarrow \mathbf{x}$ $u(x) = x$ $\nabla u(x) = I$	$\left[\begin{array}{rrrrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]$	$ \frac{3}{2} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} $
$\nabla u = \begin{bmatrix} -1 & -1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	$\left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right]$

Question

