Rigid Body Collisions treuille@cs.cmu.edu

Rigid Body Dynamics

Collision and Contact

Davide Baraiff

$$
P \& B \quad A
$$

Outline

- Detect Collisions
- Compute Collision Type
- Depending on Collision Type... - Apply Impulse Force
- Compute Resting Contact Forces

Outline

- Detect Collisions
- Compute Collision Type
- Depending on Collision Type... - Apply Impulse Force
- Compute Resting Contact Forces

Problem

- Positions NOT OK

Collision Detection

Assume we have some spatial collision detection algorithm.

(This can be solved in less than $\mathbf{O}\left(\mathrm{n}^{2}\right)$ time.)

Simulations with Collisions

$\mathrm{Y}\left(\mathrm{t}_{0}\right)^{\bullet}$

Simulations with Collisions

Simulations with Collisions

An Illegal State \mathbf{Y}

Backing up to the Collision Tlime

Outline

- Detect Collisions
- Compute Collision Type

Depending on Collision Type...

- Apply Impulse Force
- Compute Resting Contact Forces

Geometric Contact

Figure 3. (a) Vertex-plane contact (side view). (b) Edge-edge contact. (c) Contact geometry.
source: http://www.cs.ubc.ca/~van/cpsc526/Vjan2003/projects/gao/index.htm

- Vertex-Face
- Edge-Edge

Physical Contact

- Impulse Collision ("bounce")
- Resting Contact

Physical Contact

$$
\begin{aligned}
& \mathrm{Pa}_{\mathrm{a}}(\mathrm{t})=\text { contact point on body } \mathrm{A} \\
& \mathrm{~Pb}(\mathrm{t})=\text { contact point on body } B
\end{aligned}
$$

$$
\mathrm{Pa}\left(\mathrm{t}_{0}\right)=\mathrm{Pb}\left(\mathrm{t}_{0}\right) \text { but in general } \dot{\mathrm{P}}_{\mathrm{a}}\left(\mathrm{t}_{0}\right) \neq \dot{\mathrm{P}}_{\mathrm{b}}\left(\mathrm{t}_{0}\right)
$$

Physical Contact

$$
\begin{aligned}
& \left(\dot{p}_{a}\left(t_{0}\right)-\dot{p}_{b}\left(t_{0}\right)\right) \cdot n<0 \\
& \text { Impulse collision. }
\end{aligned}
$$

$$
\begin{aligned}
& \left(\dot{p}_{a}\left(t_{0}\right)-\dot{p}_{b}\left(t_{0}\right)\right) \cdot n=0 \\
& \text { Resting contact. }
\end{aligned}
$$

$$
\left(\dot{p}_{a}\left(t_{0}\right)-\dot{p}_{b}\left(t_{0}\right)\right) \cdot n>0
$$

No collision.

Outline

Detect Collisions

- Compute Collision Type
- Depending on Collision Type...
- Apply Impulse Force
- Compute Resting Contact Forces

Problem

- Positions OK
- Velocities NOT OK

Colliding Contact

$$
\hat{n} \cdot \dot{p}_{a}<0
$$

Collision Process

Video

Collision Process

A Soft Collision

force

A Harder Collision

force
velocity

A Very Hard Collision

velocity

A Rigid Body Collision

Notice

$\Delta \mathrm{v}$ remains constant!

Colliding Contact

Mathematically...

Computing Impulses

Coefficient of Restitution

$$
\widehat{n} \cdot \dot{p}_{a}^{+}=-\varepsilon\left(\hat{n} \bullet \dot{p}_{a}^{-}\right)
$$

Computing j

$$
\begin{aligned}
v_{a}^{+}\left(t_{0}\right) & =v_{a}^{-}\left(t_{0}\right)+\frac{j \hat{n}\left(t_{0}\right)}{M_{a}} \\
\omega_{a}^{+}\left(t_{0}\right) & =\omega_{a}^{-}\left(t_{0}\right)+I_{a}^{-1}\left(r_{a} \times j \hat{n}\left(t_{0}\right)\right) \\
\dot{p}_{a}^{+}\left(t_{0}\right) & =v_{a}^{+}\left(t_{0}\right)+\omega_{a}^{+}\left(t_{0}\right) \times r_{a} \\
& \Downarrow \\
\dot{p}_{a}^{+}\left(t_{0}\right) & =a j+b
\end{aligned}
$$

Computing j

$$
\hat{n} \cdot \dot{p}_{a}^{+}=-\varepsilon\left(\hat{n} \bullet \dot{p}_{a}^{-}\right) \quad \longrightarrow c j+b=d
$$

Computing j

$$
\hat{n} \bullet\left(\dot{p}_{a}^{+}-\dot{p}_{b}^{+}\right)=-\varepsilon\left(\hat{n} \bullet\left(\dot{p}_{a}^{-}-\dot{p}_{b}^{-}\right)\right)
$$

Computing j

$$
\widehat{n} \bullet\left(\dot{p}_{a}^{+}-\dot{p}_{b}^{+}\right)=-\varepsilon\left(\hat{n} \bullet\left(\dot{p}_{a}^{-}-\dot{p}_{b}^{-}\right)\right) \longrightarrow c j+b=d
$$

Outline

Detect Collisions

Compute Collision Type

- Depending on Collision Type... - Apply Impulse Force
- Compute Resting Contact Forces

Problem

- Positions OK
- Velocities OK
- Accelerations NOT OK

Resting Contact

$$
\widehat{n} \cdot \dot{p}_{a}=0
$$

Resting Contact

force
(alters acceleration)

Resting Contact Forces

Example

Solution Outline

- Similar to constraints before, we will compute constraint forces.
- Except...
- There will be inequalities.
- There will be quadratic terms.

Conditions on the Constraint Force

To avoid inter-penetration, the force strength f must prevent the vertex p_{a} from accelerating downwards. If B is fixed, this is written as

$$
\hat{n} \bullet \ddot{p}_{a} \geq 0
$$

Computing f

$$
\widehat{n} \bullet \ddot{p}_{a} \geq 0 \longrightarrow a f+b \geq 0
$$

Conditions on the Constraint Force

To prevent the constraint force from holding bodies together, the force must be repulsive:

$$
f \geq 0
$$

Does the above, along with

$$
\hat{n} \bullet \ddot{p}_{a} \geq 0 \longrightarrow a f+b \geq 0
$$

sufficiently constrain f ?

3rd Constraint

- We require that the force at a contact point become zero if the bodies begin to separate.

Path of Brick

Wind Force

Workless Constraint Force

Conditions on the Constraint Force

To make f be workless, we use the condition

$$
f \cdot(a f+b)=0
$$

The full set of conditions is

$$
\begin{aligned}
a f+b & \geq 0 \\
f & \geq 0 \\
f \cdot(a f+b) & =0
\end{aligned}
$$

Multiple Contact Points

Conditions on f_{1}

Non-penetration:

$$
a_{11} f_{1}+a_{12} f_{2}+b_{1} \geq 0
$$

Repulsive:

$$
f_{1} \geq 0
$$

Workless:

$$
f_{1} \cdot\left(a_{11} f_{1}+a_{12} f_{2}+b_{1}\right)=0
$$

Quadratic Program for f_{1} and f_{2}

Non-penetration:
Repulsive:

$$
\begin{aligned}
& a_{11} f_{1}+a_{12} f_{2}+b_{1} \geq 0 \\
& a_{21} f_{1}+a_{22} f_{2}+b_{2} \geq 0
\end{aligned}
$$

$$
f_{1} \geq 0
$$

$$
f_{2} \geq 0
$$

Workless:

$$
\begin{aligned}
& f_{1} \cdot\left(a_{11} f_{1}+a_{12} f_{2}+b_{1}\right)=0 \\
& f_{2} \cdot\left(a_{21} f_{1}+a_{22} f_{2}+b_{2}\right)=0
\end{aligned}
$$

In the Notes - Constraint Forces

Derivations of the non-penetration constraints for contacting polyhedra.

Derivations and code for computing the $a_{i j}$ and b_{i} coefficients.

Code for computing and applying the constraint forces $f_{i} \widehat{n}_{i}$.

Example

Example

Question

- What type of discrete geometric representation should we use for a deformable object?
- What sort of forces apply to deformable objects, i.e. in what ways do they resist deformation?
- How can we compute these forces?

