Rigid Body Collisions treuille@cs.cmu.edu

Rigid Body Dynamics

Collision and Contact

David Baraff

SIGGRAPH 2001 COURSE NOTES

SH1

PHYSICALLY BASED MODELING

Outline

- Detect Collisions
- Compute Collision Type
- Depending on Collision Type...
 - Apply Impulse Force
 - Compute Resting Contact Forces

Outline

- Detect Collisions
- Compute Collision Type
- Depending on Collision Type...
 - Apply Impulse Force
 - Compute Resting Contact Forces

Problem

• Positions NOT OK

Collision Detection

Assume we have some spatial collision detection algorithm.

(This can be solved in less than O(n²) time.)

Simulations with Collisions

Simulations with Collisions

 $\mathbf{Y}(t_0 + \Delta t)$ $\mathbf{Y}(t_0)$

Simulations with Collisions

Backing up to the Collision Time

 $\mathbf{Y}(t_c)$

Outline

- Detect Collisions
- Compute Collision Type
- Depending on Collision Type...
 - Apply Impulse Force
 - Compute Resting Contact Forces

Geometric Contact

contact. (c) Contact geometry.

source: http://www.cs.ubc.ca/~van/cpsc526/Vjan2003/projects/gao/index.html

Vertex-Face
Edge-Edge

Physical Contact

Impulse Collision ("bounce") Resting Contact

Physical Contact

 $p_a(t) = contact point on body A$ $p_b(t) = contact point on body B$

 $p_a(t_0) = p_b(t_0)$ but in general $\dot{p}_a(t_0) \neq \dot{p}_b(t_0)$

Physical Contact

$(\dot{p}_a(t_0) - \dot{p}_b(t_0)) \cdot n < 0$ Impulse collision.

$(\dot{p}_a(t_0) - \dot{p}_b(t_0)) \cdot n = 0$ Resting contact.

 $(\dot{p}_a(t_0) - \dot{p}_b(t_0)) \cdot n > 0$ No collision.

Outline

- Detect Collisions
- Compute Collision Type
- Depending on Collision Type...
 - Apply Impulse Force
 - Compute Resting Contact Forces

Problem

- Positions OK
- Velocities NOT OK

Colliding Contact

<u>Video</u>

A Very Hard Collision

A Rigid Body Collision

$$f_{imp} = \infty$$

 $\Delta t = 0$

Δv remains constant!

Colliding Contact

Mathematically...

Computing Impulses

Coefficient of Restitution

$$\widehat{n} \bullet \dot{p}_a^+ = -\varepsilon (\widehat{n} \bullet \dot{p}_a^-)$$

Computing j $v_a^+(t_0) = v_a^-(t_0) + \frac{j\hat{n}(t_0)}{M}$ $\omega_{a}^{+}(t_{0}) = \omega_{a}^{-}(t_{0}) + I_{a}^{-1}(r_{a} \times j\hat{n}(t_{0}))$ $\dot{p}_{a}^{+}(t_{0}) = v_{a}^{+}(t_{0}) + \omega_{a}^{+}(t_{0}) \times r_{a}$ $\dot{p}_{a}^{+}(t_{0}) = aj + b$

<u>22</u>

Computing *j*

$$\hat{n} \bullet (\dot{p}_a^+ - \dot{p}_b^+) = -\varepsilon \left(\hat{n} \bullet (\dot{p}_a^- - \dot{p}_b^-) \right)$$

<u>23</u>

Computing *j*

$$\hat{n} \bullet (\dot{p}_a^+ - \dot{p}_b^+) = -\varepsilon \left(\hat{n} \bullet (\dot{p}_a^- - \dot{p}_b^-) \right) \longrightarrow cj + b = d$$

<u>2</u>4

Outline

- Detect Collisions
- Compute Collision Type
- Depending on Collision Type...
 - Apply Impulse Force
 - Compute Resting Contact Forces

Problem

- Positions OK
- Velocities OK
- Accelerations NOT OK

Resting Contact

Example

Solution Outline

- Similar to constraints before, we will compute constraint forces.
- Except...
 - There will be inequalities.
 - There will be quadratic terms.

Conditions on the Constraint Force

To avoid inter-penetration, the force strength f must prevent the vertex p_a from accelerating downwards. If B is fixed, this is written as

$$\hat{n} \bullet \ddot{p}_a \ge 0$$

Conditions on the Constraint Force

To prevent the constraint force from holding bodies together, the force must be repulsive:

Does the above, along with

$$\hat{n} \bullet \ddot{p}_a \ge 0 \quad \longrightarrow \quad af + b \ge 0$$

sufficiently constrain *f*?

3rd Constraint

• We require that the force at a contact point become zero if the bodies begin to separate.

Workless Constraint Force

Either

$$af + b = 0$$
$$f \ge 0$$

or

$$af + b > 0$$
$$f = 0$$

Conditions on the Constraint Force

To make f be workless, we use the condition

$$f \cdot (af + b) = 0$$

The full set of conditions is

$$af + b \ge 0$$
$$f \ge 0$$
$$f \cdot (af + b) = 0$$

Multiple Contact Points

Conditions on f_1

Non-penetration:

 $a_{11}f_1 + a_{12}f_2 + b_1 \ge 0$

Repulsive:

$$f_1 \ge 0$$

Workless:

 $f_1 \cdot (a_{11}f_1 + a_{12}f_2 + b_1) = 0$

Quadratic Program for f_1 and f_2

Non-penetration:

 $a_{11}f_1 + a_{12}f_2 + b_1 \ge 0$ $a_{21}f_1 + a_{22}f_2 + b_2 \ge 0$

Repulsive:

Workless:

 $f_1 \cdot (a_{11}f_1 + a_{12}f_2 + b_1) = 0$ $f_2 \cdot (a_{21}f_1 + a_{22}f_2 + b_2) = 0$

In the Notes – Constraint Forces

Derivations of the non-penetration constraints for contacting polyhedra.

Derivations and code for computing the a_{ij} and b_i coefficients.

Code for computing and applying the constraint forces $f_i \hat{n}_i$.

Example

Example

- What type of discrete geometric representation should we use for a deformable object?
- What sort of forces apply to deformable objects, i.e. in what ways do they resist deformation?
- How can we compute these forces?