Particle-based Liquids

Adrien Treuille

Reference: MATTHIAS MÜLLER, DAVID CHARYPAR AND MARKUS GROSS. Particle-Based Fluid Simulation for Interactive Applications. Eurographics/SIGGRAPH Symposium on Computer Animation (2003).

Adminstrative

- Will update the syllabus.
- Questions about project 2..?

A New Perspective

• Continuous Fields:

 $\rho(x, y, z)$

(Eulerian)

• Particles?

(Lagrangian)

Smoothed Particle Hydrodynamics

struct particle {
double mass;
double position[3];
double velocity[3];

compute physical quantities at these points: p,ρ

what about in between?

sum of kernel function to define everywhere else

Kernel Functions

- Properties:
 - Symmetric:

- $W(\mathbf{x}) = W(-\mathbf{x})$
- Finite Support:
- Flat at center:
- Normalized:

 $W(\mathbf{x}) = 0 \;\forall ||x|| > h$ $\nabla W(0) = 0$ $\int W(\mathbf{x}) d\mathbf{x} = 1$

Kernel Function Examples

Interpolation

For a physical quantity A:

What About Derivatives?

Function:

 $A_{S}(\mathbf{r}) = \sum_{i} m_{j} \frac{A_{j}}{\rho_{i}} W(\mathbf{r} - \mathbf{r}_{j}, h),$

Gradient: $\nabla A_{S}(\mathbf{r}) = \sum_{j} m_{j} \frac{A_{j}}{\rho_{j}} \nabla W(\mathbf{r} - \mathbf{r}_{j}, h)$

Laplacian:

 $\nabla^2 A_S(\mathbf{r}) = \sum_i m_j \frac{A_j}{\rho_i} \nabla^2 W(\mathbf{r} - \mathbf{r}_j, h).$

But we're going to play tricks. ;-)

SPH Liquids

 $-\nabla p + \rho \mathbf{g} + \mu \nabla^2 \mathbf{v},$

SPH Liquids

Treat it like a ordinary particle system with forces:

 $-\nabla p + \rho g + \mu \nabla^2$

- Fluid Steps:
 - Advection
 - Projection (Pressure)
 - Diffusion
 - External Forces

Advection

Pressure

For One Particle:

$$p_j = \kappa(\rho_j - \overline{\rho})$$

pressure force = $-\nabla p(\mathbf{r})$

Spatial Pressure Evaluation:

$$-\nabla p(\mathbf{r}) = \sum_{j} m_{j} \frac{p_{j}}{\rho_{j}} \nabla W(\mathbf{r} - \mathbf{r}_{j}, h)$$

But wait... is this symmetric?

$\mathbf{f}_{\mathsf{A}} = -\mathbf{p}_{\mathsf{A}}\nabla W(\mathbf{0})$

Pressure Symmetry p_A **p**_B Pc $-\nabla p(\mathbf{r}) = \sum p_j \nabla W(\mathbf{r} - \mathbf{r}_j)$ $\mathbf{f}_{A} = -\mathbf{p}_{A}\nabla W(\mathbf{0}) - \mathbf{p}_{B}\nabla W(-\mathbf{d}_{1}) - \mathbf{p}_{C}\nabla W(-\mathbf{d}_{1}-\mathbf{d}_{2})$ $\mathbf{f}_{\mathsf{B}} = -\mathbf{p}_{\mathsf{A}}\nabla W(\mathbf{d}_{1}) - \mathbf{p}_{\mathsf{B}}\nabla W(\mathbf{0}) - \mathbf{p}_{\mathsf{C}}\nabla W(-\mathbf{d}_{2})$ $\mathbf{f}_{C} = -\mathbf{p}_{A}\nabla W(\mathbf{d}_{1} + \mathbf{d}_{2}) - \mathbf{p}_{B}\nabla W(\mathbf{d}_{2}) - \mathbf{p}_{C}\nabla W(\mathbf{0})$

- $f_A = \frac{1}{2}(p_A + p_B)g_1$
- $f_B = -\frac{1}{2}(p_A + p_B)g_1 + \frac{1}{2}(p_B + p_C)g_2$
- $f_{c} = -\frac{1}{2}(p_{B}+p_{c})g_{2}$

 $\mathbf{g}_1 = -\nabla W(-\mathbf{d}_1) \quad \mathbf{g}_2 = -\nabla W(-\mathbf{d}_2)$

Viscosity

$$\mathbf{f}_i^{\text{viscosity}} = \mu \nabla^2 \mathbf{v}(\mathbf{r}_a) = \mu \sum_j m_j \frac{\mathbf{v}_j}{\rho_j} \nabla^2 W(\mathbf{r}_i - \mathbf{r}_j, h).$$

Symmetrization:

$$\mathbf{f}_{i}^{\text{viscosity}} = \mu \sum_{j} m_{j} \frac{\mathbf{v}_{j} - \mathbf{v}_{i}}{\mathbf{\rho}_{j}} \nabla^{2} W(\mathbf{r}_{i} - \mathbf{r}_{j}, h).$$

Spring that pulls the particle towards the velocity of it's neighbors.

External Forces

Collisions

Simulation

- Fluid Steps:
 - Advection
 - Projection (Pressure)
 - Diffusion
 - External Forces

A standard particle system:

$$\begin{cases} \dot{\mathbf{x}} = \mathbf{v} \\ \dot{\mathbf{v}} = -\nabla p + \rho \mathbf{g} + \mu \nabla^2 \mathbf{v}, \end{cases}$$

Use your favorite integrator!

Rendering

Examples

Examples

Comparison

Remarks

- Grid-based (Eulerian)
 - good surfaces
 - bad splashes
 - stable

- Particle-based (Lagrangian)
 - bumpy surfaces
 - good splashes
 - efficient

Hybrid Methods

Question

- How do you represent a rigid body?
- Collisions...
 - What kinds are there?
 - Detection?
 - Simulation?

• What about thin objects?

• Constraints?

