Partial Differential Equations Adrien Treuille

source: http://talklikeaphysicist.com/

Velocity

- How do we represent velocity...
 - As a function called a vector field.

What is a PDE?

• Ordinary Differential Equation:

 $\dot{\mathbf{q}} = \mathbf{f}(\mathbf{q})$

• Partial Differential Equation:

$$\dot{q}(x,y) = f\left(q, \frac{\partial q}{\partial x}, \frac{\partial q}{\partial y}\right),$$

What is a PDE?

• Ordinary Differential Equation:

 $\dot{\mathbf{q}} = \mathbf{f}(\mathbf{q})$

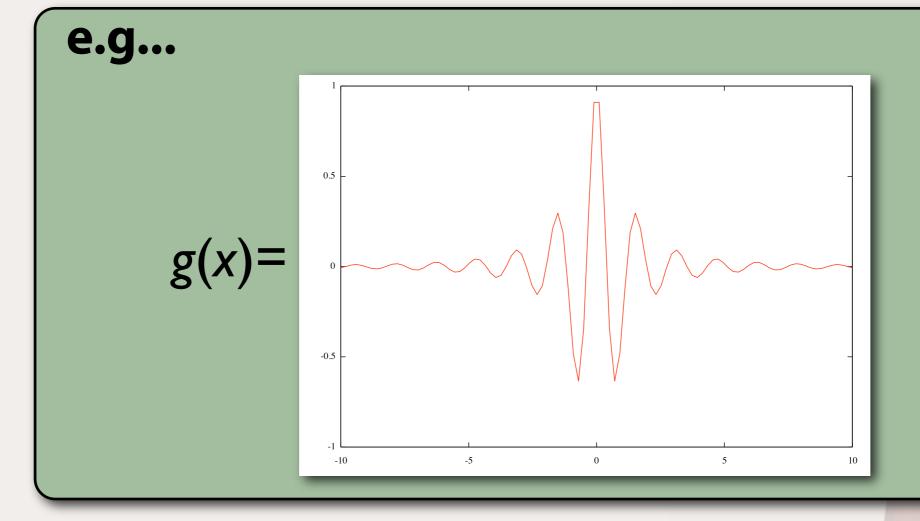
• Partial Differential Equation:

$$\dot{q}(x,y) = f\left(q, \frac{\partial q}{\partial x}, \frac{\partial q}{\partial y}\right),$$

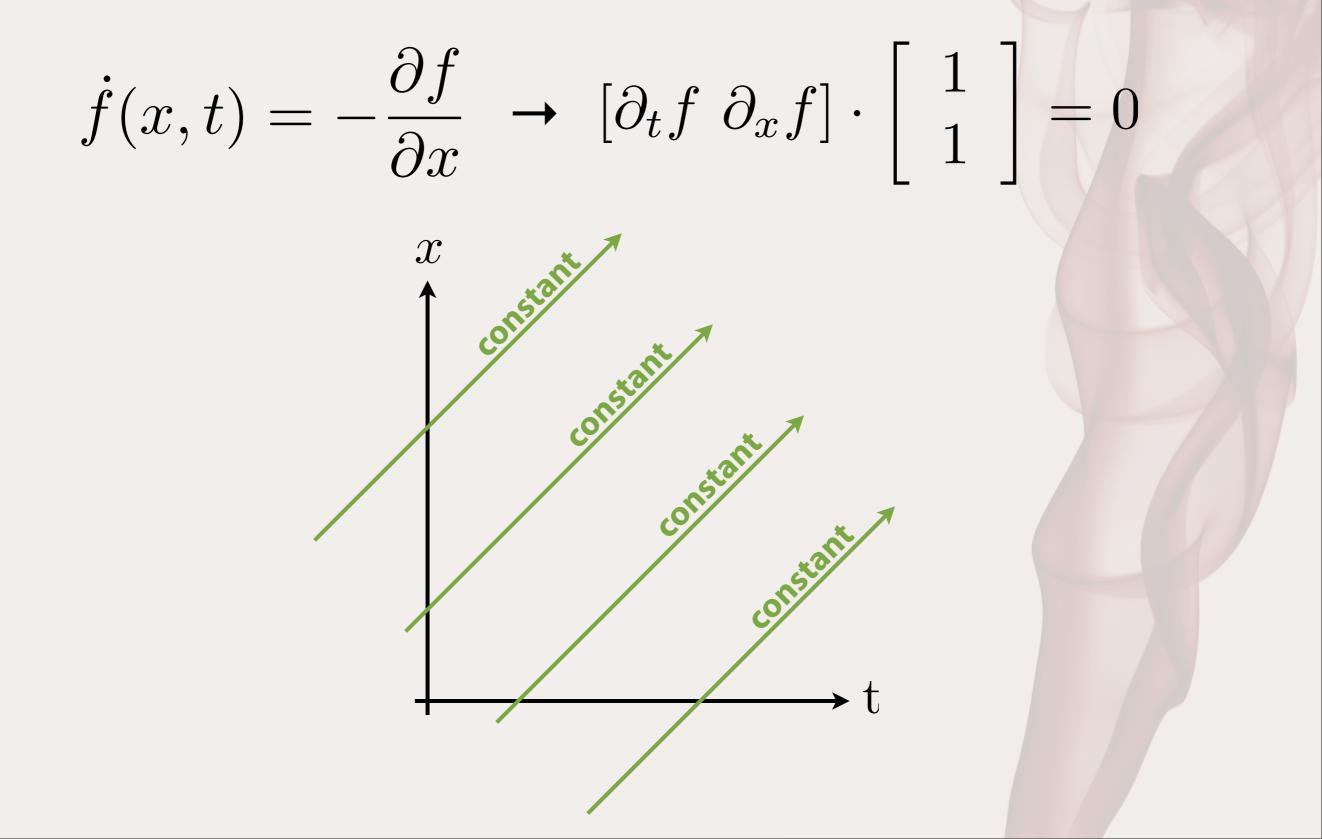
Example

$$\dot{f}(x,t) = -\frac{\partial f}{\partial x}$$

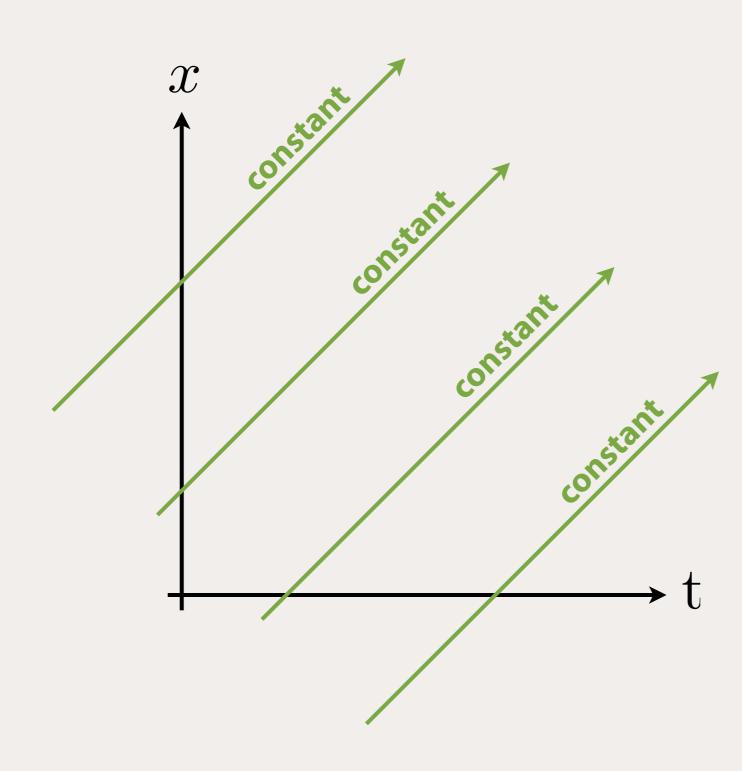
$$f(x,0) = g(x)$$

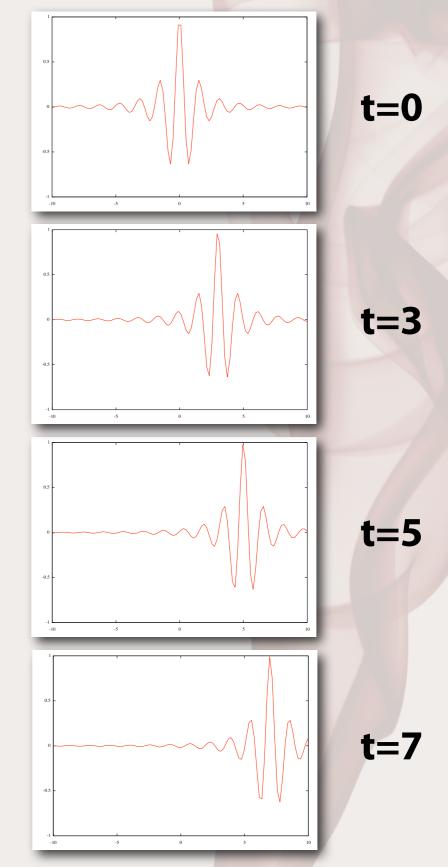


What is the solution?

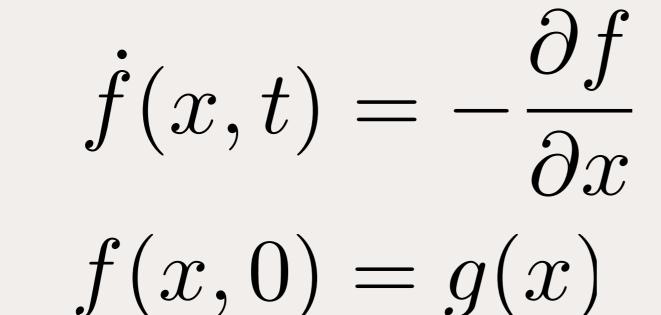


What is the solution?





The Solution



If...

$$f(x,t) = g(x)$$

Simplified wave propogation.

Numerical Solutions

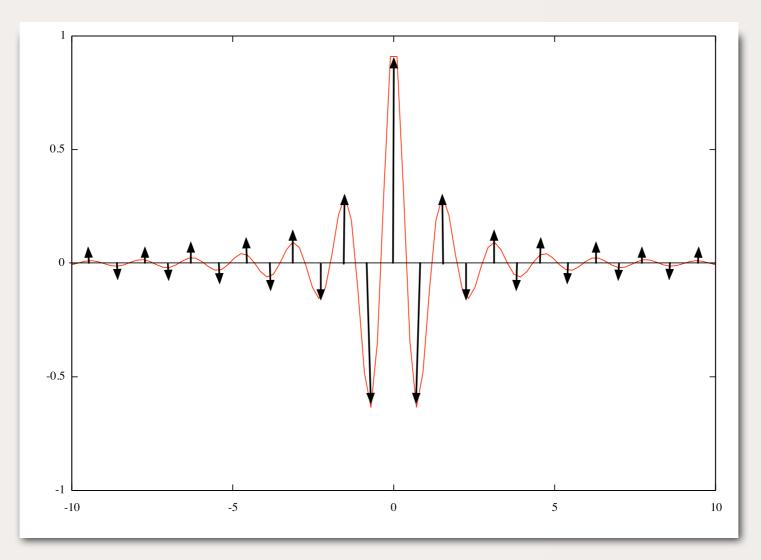
• How can we solve this numerically?

$$\dot{f}(x,t) = -\frac{\partial f}{\partial x}$$

- Answer:
 - First discretize in space.
 - Then discretize in time.

Discretize in Space

• Turn our PDE into an ODE...



f becomes a "discrete function of space"... space between spikes = Δx

Discretize in Space

• Now that we have a discrete function:

 $\dot{f}_i = -\frac{\partial f}{\partial x}$

$$\dot{f}_i = -\left(\frac{f_{i+1} - f_i}{\Delta x}\right)$$

Forward Differencing

$$\dot{f}_i = -\left(\frac{f_i - f_{i-1}}{\Delta x}\right)$$

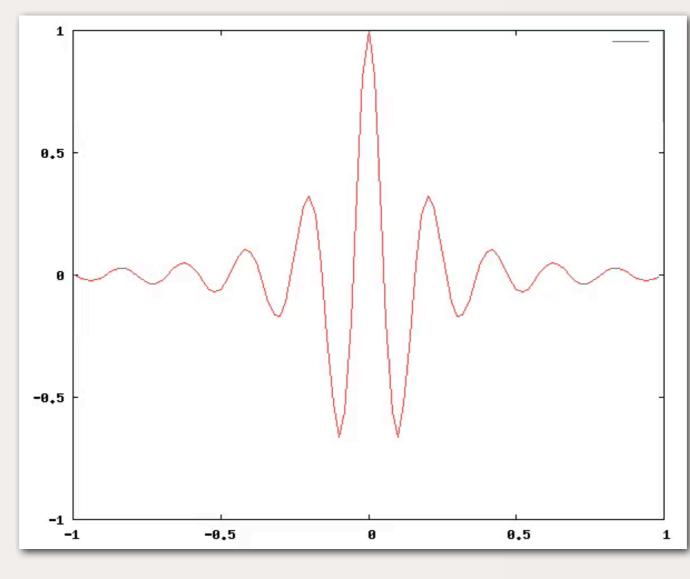
Backward Differencing

$$\dot{f}_i = -\left(\frac{f_{i+1} - f_{i-1}}{2\Delta x}\right)$$

Central Differencing

Euler's method backward differencing:

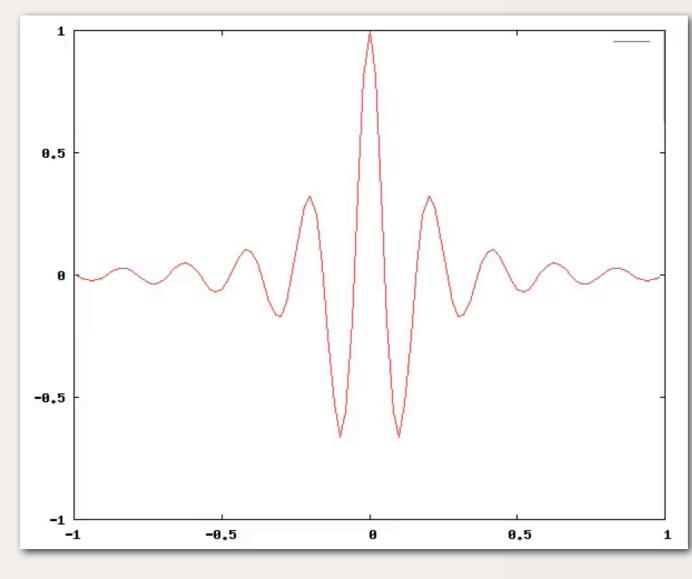
$$f_i^{t+1} = f_i^t - \Delta t \left(\frac{f_i - f_{i-1}}{\Delta x}\right)$$



Δt = 0.01

Euler's method backward differencing:

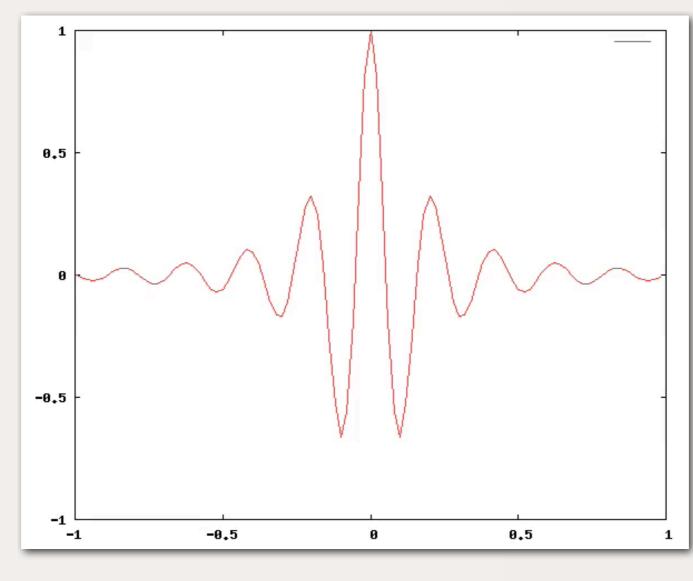
$$f_i^{t+1} = f_i^t - \Delta t \left(\frac{f_i - f_{i-1}}{\Delta x}\right)$$



 $\Delta t = 0.1$

Euler's method backward differencing:

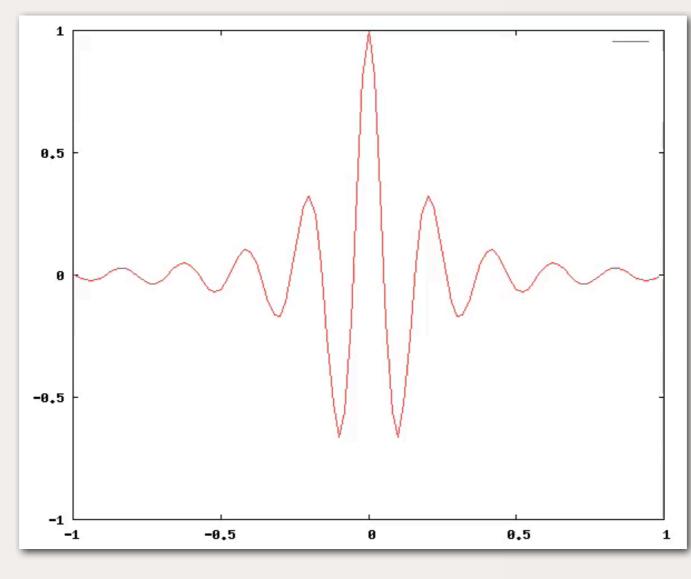
$$f_i^{t+1} = f_i^t - \Delta t \left(\frac{f_i - f_{i-1}}{\Delta x}\right)$$



Δt = 1.0

Euler's method backward differencing:

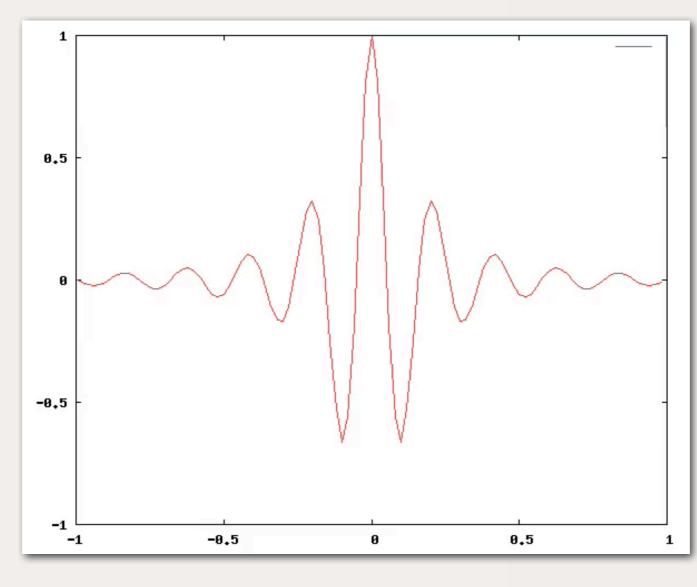
$$f_i^{t+1} = f_i^t - \Delta t \left(\frac{f_i - f_{i-1}}{\Delta x}\right)$$



Δt = **2.0**

Euler's method forward differencing:

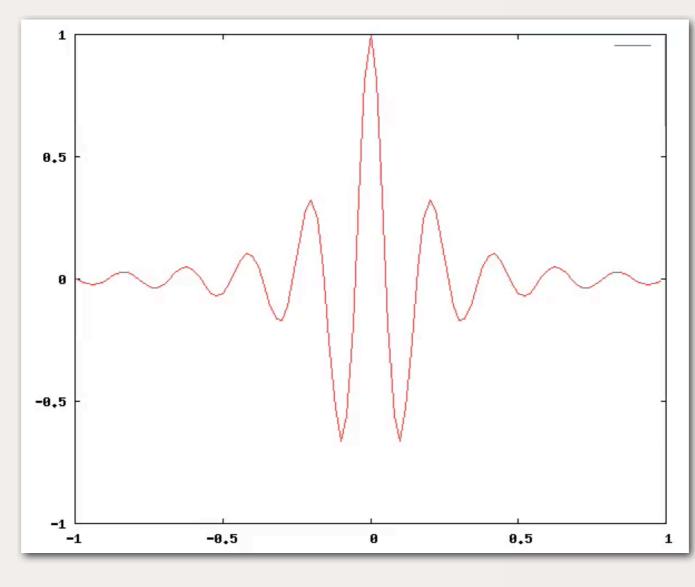
$$f_i^{t+1} = f_i^t - \Delta t \left(\frac{f_{i+1} - f_i}{\Delta x} \right)$$



Δt = **2.0**

Euler's method forward differencing:

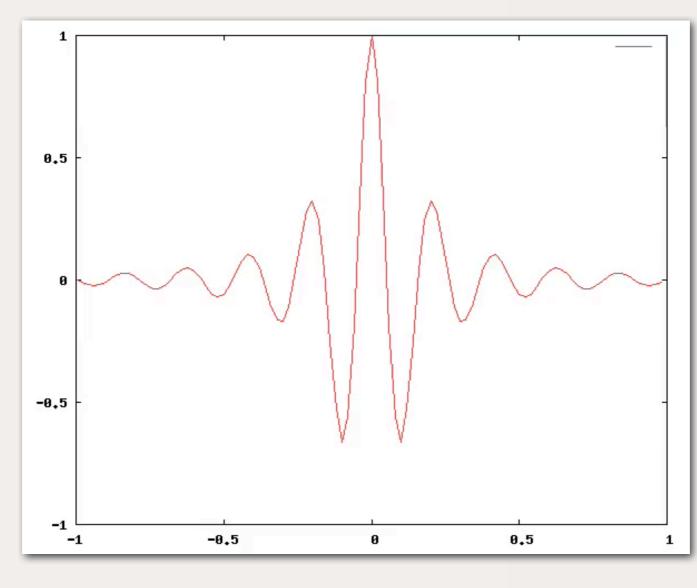
$$f_i^{t+1} = f_i^t - \Delta t \left(\frac{f_{i+1} - f_i}{\Delta x} \right)$$



Δt = **1.0**

Euler's method forward differencing:

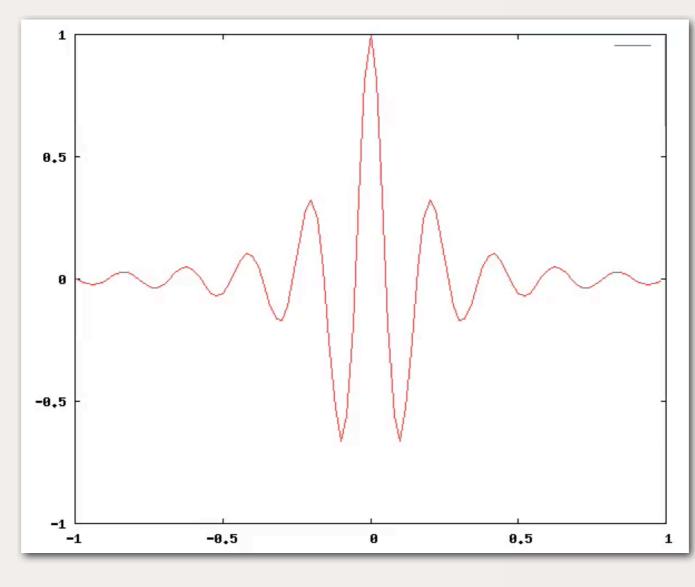
$$f_i^{t+1} = f_i^t - \Delta t \left(\frac{f_{i+1} - f_i}{\Delta x}\right)$$



 $\Delta t = 0.1$

Euler's method forward differencing:

$$f_i^{t+1} = f_i^t - \Delta t \left(\frac{f_{i+1} - f_i}{\Delta x} \right)$$



 $\Delta t = 0.01$

In short.

$$\dot{f}(x,t) = -\frac{\partial f}{\partial x}$$

dt=	0.01	0.1	1.0	2.0
Backward	Diffusive	Diffusive	Perfect?	Crap.
Forward	Crap.	Crap.	Crap.	Crap.

Why?

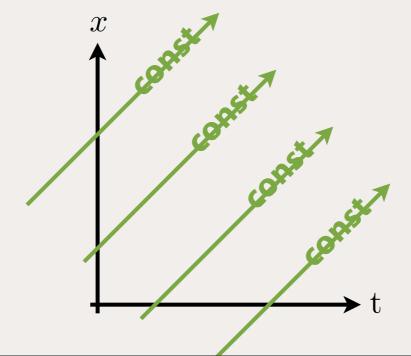
Can we do better?

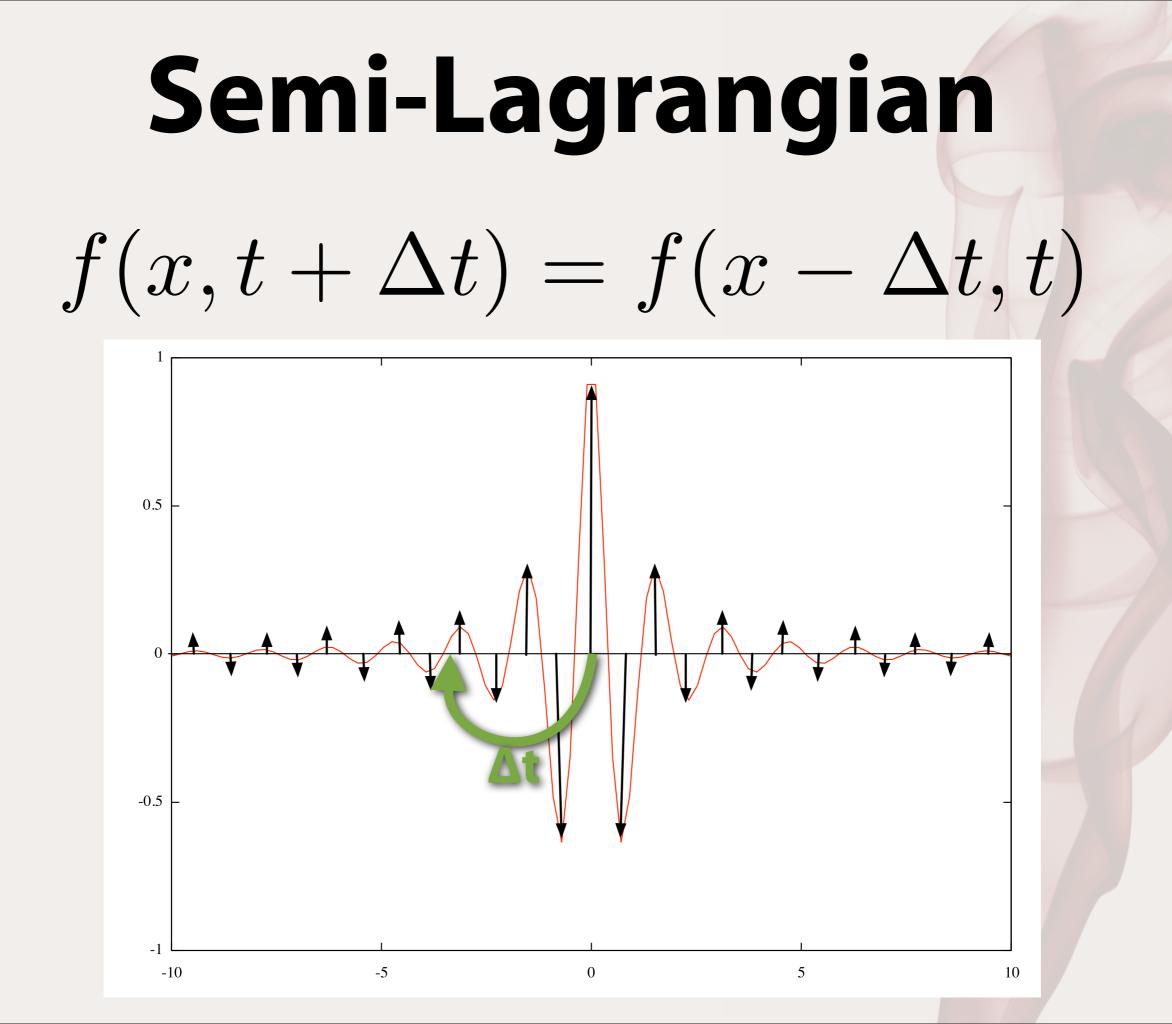
• Recall...

f(x,t) = g(x-t)

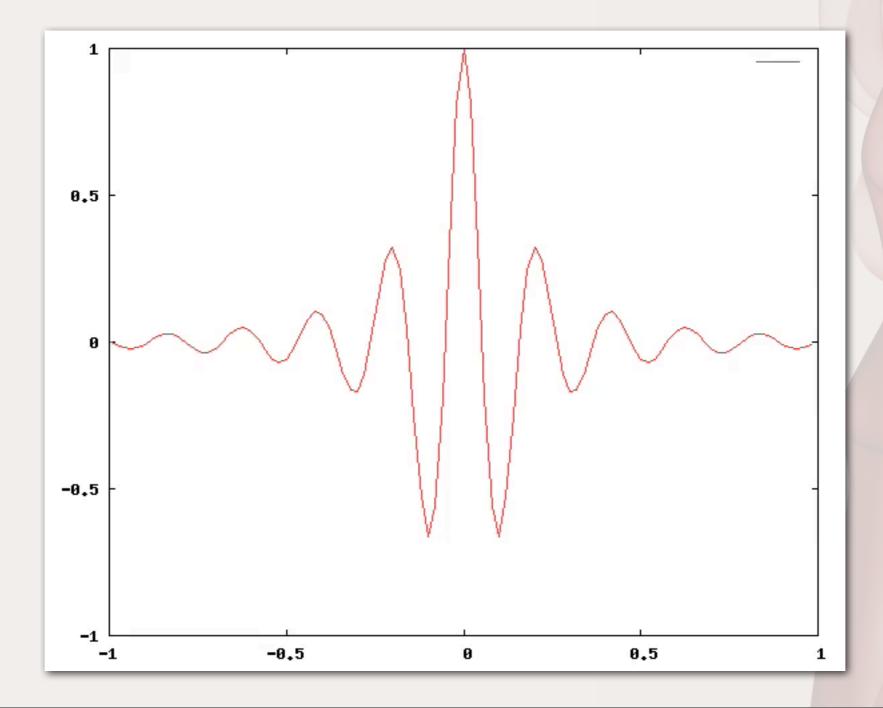
Information propagates "to the right"

 $f(x, t + \Delta t) = f(x - \Delta t, t)$





Semi-Lagrangian $f(x, t + \Delta t) = f(x - \Delta t, t)$



Question

How could you make a PDE that rotates...

