Crowds and Flocks

Adrien Treuille

What this is about...

not human / animal motion.

• ...but group motion paths.

- Flocking • Crowds Applications Current Challenges
- Question

 Flocking • Crowds Applications Current Challenges Question

Honda Video

Real Flocking and Schooling

- No upper bound on size:
 - 17 mile schools of Herring with millions of fish.
 - => Localized reasoning.
- Collision Avoiance
- Centering
 - Protection from predators.
 - Social Advantages
 - Better search.

Boid Model - I

Craig Reynolds 1987

Simple local rules lead to compelling flocking behavior.

Boid Model - II

Boid Particle:

• Forces:

• Dynamical forces:

Ordered set of "flocking forces"

Source: Reynolds. 1987

Boid Model - III

Separation

Steer to avoid crowding local flockmates

Alignment

Steer towards the average heading of local flockmates

Cohesion

Steer to move toward the average position of local flockmates

Obstacle Avoidance

Move towads the gradient of obstacles.

Boid Model - IV How to combine forces?

• Force ordering scheme.

Making of Honda Video

- Flocking
 Crowds
 Applications
- Applications
- Current Challenges
- Question

Crowds

Crowds

Source: http://massivesoftware.com/

Properties of Real Crowds

- Goal Directed
- Obstacle / Collision Avoidance
- Striping

Lane Formation

Steering Forces $\mathbf{f}(\mathbf{v}) = k(\mathbf{\hat{v}} - \mathbf{v})$

Where does $\hat{\mathbf{V}}$ come from?

Potential

Potential

Pedestrian Avoidance

$$f(\mathbf{x}_a, \mathbf{x}_b) = e^{\frac{\mathbf{x}_a - \mathbf{x}_b}{B}} \left(\lambda + (1 - \lambda) \frac{1 + \cos(\phi_{a,b})}{2}\right)$$

Crowds

Source: http://massivesoftware.com/

 Flocking • Crowds Applications Current Challenges Question

Emergency Planning

Urban Design

Architecture Visualization

 Flocking • Crowds Applications Current Challenges Question

Current Challenges

- High density crowds.
- Motion paths aren't enough.
 - Talk with other people.
 - Tie their shoes.
- Connection with human motion model.
- Computational Advantage of Crowd Cohesion

 Flocking • Crowds Applications Current Challenges Question

Question

- What are the relevant properties of fluids?
- How can these be simulated?
- What phenomena does your algorithm capture, what doesn't it?