Cloth

The Animation of Natural Phenomena Adrien Treuille

Overview

Real Cloth

Properties of Real Cloth

Cloth Simulation

- Properties of Cloth
 - sheet of fabric (4)
 - parameter for stretching (1) (4)
 - parameter for shearing (4)
 - parameter for bending (4)
 - how to set these properties
 - wrinkles and crinkles (4)
 - thickness (4)
 - non-uniform (4)
- Spring-based Simulation
 - mesh of springs (1) (2)
- Energy-based
 - various forms of triangle energy
- Developable Surfaces

Cloth Collisions

- interactions w/ itself (1) (2) (3) (4)
- interactions w/ rigid bodies (1) (3)

• friction (4)

Advanced

- fluid flow affecting cloth (3)
- rendering / texturing of cloth (3)
 tearing (3)

Group 1 Group 2 Group 3 Group 4 New!

Overview

Real Cloth

Properties of Real Cloth

Cloth Simulation

Properties of Cloth

- sheet of fabric (4)
- parameter for stretching (1) (4)
- parameter for shearing (4)
- parameter for bending (4)
- how to set these properties
 - wrinkles and crinkles (4)
 - thickness (4)
 - non-uniform (4)
- Spring-based Simulation
 - mesh of springs (1) (2)
- Energy-based
 - various forms of triangle energy
- Developable Surfaces

Cloth Collisions

- interactions w/ itself (1) (2) (3) (4)
- interactions w/ rigid bodies (1) (3)

• friction (4)

Advanced

- fluid flow affecting cloth (3)
- rendering / texturing of cloth (3)
 tearing (3)

Group 1 Group 2 Group 3 Group 4 New!

What is cloth?

• 2 basic types: woven and knit

- We'll restrict to woven
 - Warp vs. weft

Cloth Animation

Christopher Twigg March 4, 2003

Warp and Weft

source: Wikipedia

Overview

Real Cloth

Properties of Real Cloth

Cloth Simulation

- Properties of Cloth
 - sheet of fabric (4)
 - parameter for stretching (1) (4)
 - parameter for shearing (4)
 - parameter for bending (4)
 - how to set these properties
 - wrinkles and crinkles (4)
 - thickness (4)
 - non-uniform (4)
- Spring-based Simulation
 - mesh of springs (1) (2)
- Energy-based
 - various forms of triangle energy
- Developable Surfaces

Cloth Collisions

- interactions w/ itself (1) (2) (3) (4)
- interactions w/ rigid bodies (1) (3)

• friction (4)

Advanced

- fluid flow affecting cloth (3)
- rendering / texturing of cloth (3)
 tearing (3)

Group 1 Group 2 Group 3 Group 4 New!

Cloth and Fur Energy Functions

Michael Kass

SIGGRAPH 2001 COURSE NOTES

PHYSICALLY BASED MODELING

SE1

Stretch (Continuum Version)

(u,v)

 $\vec{\chi}$

 $E = \frac{1}{2}k \int (S_u^2 + S_v^2) du \, dv$

SIGGRAPH 2001 COURSE NOTES

PHYSICALLY BASED MODELING

SE11

Shear (Continuum Version)

SIGGRAPH 2001 COURSE NOTES

SE12

Bend (Continuum Version)

(u,v)

 $\vec{\chi}$

$$E = \frac{1}{2}k \int (\kappa_u^2 + \kappa_v^2) du \, dv$$

SIGGRAPH 2001 COURSE NOTES

PHYSICALLY BASED MODELING

SE13

Overview

Real Cloth

Properties of Real Cloth

Cloth Simulation

- Properties of Cloth
 - sheet of fabric (4)
 - parameter for stretching (1) (4)
 - parameter for shearing (4)
 - parameter for bending (4)
 - how to set these properties
 - wrinkles and crinkles (4)
 - thickness (4)
 - •non-uniform (4)
- Spring-based Simulation
 - mesh of springs (1) (2)
- Energy-based
 - various forms of triangle energy
- Developable Surfaces

Cloth Collisions

- interactions w/ itself (1) (2) (3) (4)
- interactions w/ rigid bodies (1) (3)

• friction (4)

Advanced

- fluid flow affecting cloth (3)
- rendering / texturing of cloth (3)
 tearing (3)

Group 1 Group 2 Group 3 Group 4 New!

Resitence To...

Stretching Shearing Bending

Basic Model

Warp Srings

Weft Springs

Shear Springs

Bend Springs

Overview

Real Cloth

Properties of Real Cloth

Cloth Simulation

- Properties of Cloth
 - sheet of fabric (4)
 - parameter for stretching (1) (4)
 - parameter for shearing (4)
 - parameter for bending (4)
 - how to set these properties
 - wrinkles and crinkles (4)
 - thickness (4)
 - non-uniform (4)
- Spring-based Simulation
 - mesh of springs (1) (2)
- Energy-based
 - various forms of triangle energy
- Developable Surfaces

Cloth Collisions

- interactions w/ itself (1) (2) (3) (4)
- interactions w/ rigid bodies (1) (3)

• friction (4)

Advanced

- fluid flow affecting cloth (3)
- rendering / texturing of cloth (3)
 tearing (3)

Group 1 Group 2 Group 3 Group 4 New!

Discretization

SIGGRAPH 2001 COURSE NOTES

PHYSICALLY BASED MODELING

SE14

Triangle Energy

First, compute the affine transformation *T* that maps: $T: a \rightarrow c'$ $b \rightarrow b'$

$$c \rightarrow c'$$

SIGGRAPH 2001 COURSE NOTES

SE15

Triangle Stretch Energy

Now compute the stretch energy.

 $S_u = \|T(\hat{u})\| - 1$ $E_{\text{stretch}} = \frac{1}{2}k(S_u^2 + S_v^2)A$

SIGGRAPH 2001 COURSE NOTES

SE16

Triangle Shear Energy

Next compute the shear energy.

 $\theta = \cos^{-1}(T(\hat{u}) \bullet T(\hat{v}))$

$$E_{\text{shear}} = \frac{1}{2}k\theta^2 A$$

SIGGRAPH 2001 COURSE NOTES

SIGGRAPH 2001 COURSE NOTES

PHYSICALLY BASED MODELING

SE18

A Note About Energy

Baraff, Witkin [1998] (5)

- Damping forces turn out to be important both for realism and numerical stability
- Damping forces should
 - Act in direction of corresponding elastic force
- Be proportional to the velocity in that direction Hence, we derive (this should look familiar)

Overview

Real Cloth

Properties of Real Cloth

Cloth Simulation

- Properties of Cloth
 - sheet of fabric (4)
 - parameter for stretching (1) (4)
 - parameter for shearing (4)
 - parameter for bending (4)
 - how to set these properties
 - wrinkles and crinkles (4)
 - thickness (4)
 - non-uniform (4)
- Spring-based Simulation
 - mesh of springs (1) (2)
- Energy-based
 - various forms of triangle energy
- Developable Surfaces

Cloth Collisions

- interactions w/ itself (1) (2) (3) (4)
- interactions w/ rigid bodies (1) (3)

• friction (4)

Advanced

- fluid flow affecting cloth (3)
- rendering / texturing of cloth (3)
 tearing (3)

Group 1 Group 2 Group 3 Group 4 New!

Parameters

- Given stretch, shear, and bending constants...
- How would you make a wrinkly t-shirt, thick cloth, or non-uniform cloth?

Creating Clothes

How could we create the 3D model the clothes for a character?

Non-flat Cloth

Non-flat cloth is strange stuff: A baseball with no seams? Wrinkles give strength? Clothing cut out of a volume? Convexities that pop?

Even 4 Triangles are over-constrained: 16 rest angles, 8 rest lengths.24 constraints on 15 dofs.Must be consistent!

SIGGRAPH 2001 COURSE NOTES

SE10

Rest Mesh Options

Model in 3D

- Clothing already on characters.
- Can directly craft desired 3D shape.
- Annotate warp/weft directions.
- Clothing probably will not locally flatten.

Model in 2D

- Must put clothing on characters
- Hire a tailor to get the pattern right.
- Sew parts together.
- Clothing guaranteed to flatten locally.
- Greater realism.

Overview

Real Cloth

Properties of Real Cloth

Cloth Simulation

- Properties of Cloth
 - sheet of fabric (4)
 - parameter for stretching (1) (4)
 - parameter for shearing (4)
 - parameter for bending (4)
 - how to set these properties
 - wrinkles and crinkles (4)
 - thickness (4)
 - non-uniform (4)
- Spring-based Simulation
 - mesh of springs (1) (2)
- Energy-based
 - various forms of triangle energy
- Developable Surfaces

Cloth Collisions

- interactions w/ itself (1) (2) (3) (4)
- interactions w/ rigid bodies (1) (3)

• friction (4)

Advanced

- fluid flow affecting cloth (3)
- rendering / texturing of cloth (3)
 tearing (3)

Group 1 Group 2 Group 3 Group 4 New!

Springs vs. Constraints

Before Simulation

Only Springs

Stretch Constraints

Stretch+Shear Constraints

Source: Xavier Provot Deformation Constraints in a Mass-Spring Model to Describe Rigid Cloth Behavior

Avoiding stiffness (2)

- Popular for interactive applications
- Justification
 - Biphasic spring model

Cloth Animation Christopher Twigg March 4, 2003

Developable Surfaces

Animating Developable Surfaces using Nonconforming Elements

Elliot English & Robert Bridson University of British Columbia

Developable Surfaces

Figure 2: Schematic of nonconforming variables, located at midpoints of edges between triangles. While continuous at these points, the surface may be discontinuous along the rest of each edge.

Animating Developable Surfaces using Nonconforming Elements

Elliot English*Robert Bridson[†]University of British ColumbiaUniversity of British Columbia

Developable Surfaces

Animating Developable Surfaces using Nonconforming Elements

Elliot English & Robert Bridson University of British Columbia

Question

- Cloth and Hair..
- How can we detect collisions?
 - Data structures?
 - Algorithms?
- How do we handle collisions?

Course Evaluations