Symplectic Integration and
 Cosntraints

Adrien Treuille

Symplectic

- Consider the system:

$$
\dot{\mathrm{x}}=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right] \mathbf{x}
$$

- or equivalently:

$$
\begin{aligned}
& \dot{\mathrm{x}}=-\mathrm{y} \\
& \dot{\mathbf{y}}=\mathrm{x}
\end{aligned}
$$

- We want to solve x explicitly and y implicitly:

$$
\begin{array}{ll}
\mathbf{x}_{\mathbf{i + 1}}=\mathbf{x}_{\mathbf{i}}-\mathbf{h} \cdot \mathbf{y}_{\mathbf{i}} & \text { (explicit) } \\
\mathbf{y}_{\mathbf{i + 1}}=\mathbf{y}_{\mathbf{i}}+\mathbf{h} \cdot \mathbf{x}_{i+1} & \text { (implicit) }
\end{array}
$$

Long Term Evolution

$$
\begin{aligned}
& (h=1.0) \\
& x=1.0 ; \\
& \mathrm{y}=0.0 ; \\
& \text { while(true): } \\
& \quad \begin{array}{l}
\text { print } x, y ; \\
x-=y ; \\
y+=x ;
\end{array}
\end{aligned}
$$

$$
\begin{array}{rr}
1.0 & 0.0 \\
1.0 & 1.0 \\
0.0 & 1.0 \\
-1.0 & 0.0 \\
-1.0 & -1.0 \\
0.0 & -1.0 \\
1.0 & 0.0 \\
1.0 & 1.0 \\
0.0 & 1.0 \\
-1.0 & 0.0 \\
-1.0 & -1.0 \\
0.0 & -1.0 \\
1.0 & 0.0
\end{array}
$$

Long Term Evolution

Symplectic 1.0

Explicit 0.01

Symplectic 0.01

Implicit 0.01

Long Term Evolution

Decreasing Timestep:

0.1

Increasing Timestep:

Why?

- The symplectic integrator:

$$
\begin{aligned}
x_{i+1} & =x_{i}-h y_{i} \\
y_{i+1} & =y_{i}+h x_{i+1}
\end{aligned}
$$

- Can be rewritten:

$$
\mathbf{x}_{i+1}=\left[\begin{array}{cc}
1 & -h \\
h & 1-h^{2}
\end{array}\right] \mathbf{x}_{i}
$$

- Which implies:

$$
\mathbf{x}_{i}=\left[\begin{array}{cc}
1 & -h \\
h & 1-h^{2}
\end{array}\right]^{i} \mathbf{x}_{0}
$$

- But:

$$
\left\|\operatorname{eig}\left(\left[\begin{array}{cc}
1 & -h \\
h & 1-h^{2}
\end{array}\right]\right)\right\|=1 \quad \text { if } h<2
$$

Symplectic

- This is not general:
- Hamiltonian systems
- Preserves Area
- Why did we learn this?
- Numerical Integration is subtle!
- Small changes can have profound long-term effects.

Differential Constraints

thanks to Adrew Witkin and Zoran Popivić

Differential Constraints

Beyond Points and Springs

- You can make just about anything out of point masses and springs, in principle

A bead on a wire

- Desired Behavior:
- The bead can slide freely along the circle
- It can never come off, however hard we pull
- Question:
- How does the bead move under applied forces?

Penalty Constraints

- Why not use a spring to hold the bead on the wire?
- Problem:
- Weak springs \Rightarrow goopy constraints
- Strong springs \Rightarrow neptune express!
- A classic stiff system

Now for the Algebra ...

- Fortunately, there's a general recipe for calculating the constraint force
- First, a single constrained particle
- Then, generalize to constrained particle systems

Representing Constraints

I. Implicit:

$$
\mathrm{C}(\mathbf{x})=|\mathbf{x}|-\mathrm{r}=0
$$

Maintaining Constraints Differentially

- Start with legal position and velocity.
- Use constraint forces to ensure legal curvature.

$$
\begin{array}{ll}
C=0 & \text { legal position } \\
\mathbb{C}=0 & \text { legal velocity } \\
\mathbb{C}=0 & \text { legal curvature }
\end{array}
$$

Constraint Gradient

$$
\begin{aligned}
& \text { Implicit: } \\
& \mathrm{C}(\mathbf{x})=|\mathbf{x}|-\mathrm{r}=0
\end{aligned}
$$

Differentiating C gives a normal vector.
This is the direction our constraint force will point in.

Constraint Forces

Constraint force: gradient vector times a scalar λ
Just one unknown to solve for
Assumption: constraint is passive-no energy gain or loss

Constraint Force Derivation

$$
\begin{array}{ll}
C(x(t)) \\
\mathbb{C}=N \cdot x \\
\mathbb{E}=\frac{\partial}{\partial t}(N \cdot x)
\end{array} \quad\left(\begin{array}{l}
f_{c}=\lambda N \\
m
\end{array}\right.
$$

$$
=N \cdot x+N \cdot x
$$

Set $\ddot{\mathbf{C}}=\mathbf{0}$, solve for λ :
$\lambda=-m \frac{N \cdot x}{N \cdot N}-\frac{N \cdot f}{N \cdot N}$
Notation: $N=\frac{\partial C}{\partial x}, N=\frac{\partial^{2} C}{\partial x \partial t}$
Constraint force is $\lambda \mathbf{N}$.

Example: Point-on-circle

$$
\begin{array}{l|l}
\mathrm{C}=|\mathbf{x}|-\mathrm{r} & \stackrel{y}{l} \\
& \partial \mathrm{C}
\end{array} \begin{aligned}
& \text { Write down the constraint } \\
& \text { equation. }
\end{aligned}
$$

Take the derivatives.

$$
\mathbf{N}=\frac{\partial^{2} \mathrm{C}}{\partial \mathbf{x} \partial \mathrm{t}}=\frac{1}{|\mathbf{x}|}\left[\dot{\mathbf{x}}-\frac{\mathbf{x} \cdot \dot{\mathbf{x}}}{\mathbf{x} \cdot \mathbf{x}} \mathbf{x}\right]
$$

Substitute into generic template, simplify.

$$
\lambda=-\mathrm{m} \frac{\mathbf{N} \cdot \mathbf{x}}{\mathbf{N} \cdot \mathbf{N}}-\frac{\mathbf{N} \cdot \mathbf{f}}{\mathbf{N} \cdot \mathbf{N}}=\left[\mathrm{m} \frac{(\mathbf{x} \cdot \dot{\mathbf{x}})^{2}}{\mathbf{x} \cdot \mathbf{x}}-\mathrm{m}(\dot{\mathbf{x}} \cdot \mathbf{x})-\mathbf{x} \cdot \mathbf{f}\right] \frac{1}{|\mathbf{x}|}
$$

Tinkertoys

- Now we know how to simulate a bead on a wire.
- Next: a constrained particle system.
- E.g. constrain particle/particle distance to make rigid links.
- Same idea, but...

Compact Particle System Notation

$$
\ddot{\mathbf{q}}=\mathbf{W Q}
$$

$\mathrm{q}: \quad 3 n-l o n g$ state vector.
Q: 3n-long force vector.
M: 3n $\times 3 n$ diagonal mass matrix.

W: M-inverse (element- wise reciprocal)

$$
\begin{aligned}
& \mathbf{C}=\left[\mathrm{C}_{1}, \mathrm{C}_{2},\right. \\
& \lambda\left., \mathrm{C}_{\mathrm{m}}\right] \\
& \lambda=\left[\lambda_{1}, \lambda_{2},\right. \\
&\left., \lambda_{\mathrm{m}}\right] \\
& \mathrm{J}=\frac{\partial \mathbf{C}}{\partial \mathbf{q}} \\
& \mathbf{J}=\frac{\partial^{2} \mathbf{C}}{\partial \mathbf{q} \partial \mathrm{t}}
\end{aligned}
$$

$$
\begin{aligned}
& \ddot{x}=\frac{1}{m}(f+\hat{f}) \\
& c(x)=x \cdot x-1=0 \\
& \dot{C}(x)=2 x \cdot \dot{x}=0 \\
& \ddot{C}(x)=2 \cdot x \cdot x+\dot{x} \cdot \dot{x}) \\
& \dot{x} \cdot x+x \cdot\left(\frac{1}{n}(f+\hat{f})=0\right. \\
& \left.x \cdot f=-m k \dot{x}-x_{i}^{2}\right)=0
\end{aligned}
$$

$\ddot{Q}=W(Q+\hat{Q})$
$C(q)=0$
$\bar{C}=\frac{a c}{\partial q} q=J \bar{q}$
$\ddot{C}=\vec{\sigma} \dot{q}+J \ddot{q}$
$J \dot{J}+J w(Q+\hat{Q})=0$
$J W \hat{Q}=-J \dot{q}-J W Q$

General Case

Force Must be a Linear Combination of Constraint Graidntes
$T=\frac{1}{2} M \dot{X} \cdot \dot{X}$

$$
T=\frac{1}{2} \dot{q}^{T M} \dot{q}
$$

$$
\dot{I}=M \dot{X} \cdot \ddot{X}=0
$$

$$
T=\dot{q}^{\top} M \ddot{q}=0
$$

$$
=\dot{Q}^{\top} M W Q
$$

$$
=\dot{q} \cdot \hat{Q}=0
$$

$$
\Rightarrow \hat{Q}=J^{\top} \lambda
$$

Bead on a Wire

General Case

Final Solution for the $\boldsymbol{\lambda}$ Multipliers

$$
\begin{aligned}
& \lambda x \cdot x=-m x \cdot \dot{x}-x \cdot f \\
& \lambda=\frac{-m \dot{x} \cdot \dot{x}-x \cdot f}{x \cdot x}
\end{aligned}
$$

Bead on a Wire
$\lambda=\left(J W J^{-1}\right)^{-1}(-J x-J W Q)$

General Case

Particle System Constraint Equations

Matrix equation for λ

$$
\left.\mathbf{J W J J}^{\top}\right\rangle=-\mathbf{J} \dot{\mathbf{j}}-\mathbf{J} \mathbf{J W Q}
$$

Constrained Acceleration

$$
\dot{q}=\mathbf{W}\left[\mathbf{Q}+J^{\top} \lambda\right]
$$

More Notation

$$
\begin{aligned}
\mathrm{C} & =\left[\begin{array}{ll}
\mathrm{C}_{1}, \mathrm{C}_{2}, & \left., \mathrm{C}_{\mathrm{m}}\right] \\
\lambda & =\left[\begin{array}{ll}
\lambda_{1}, \lambda_{2}, & , \lambda_{\mathrm{m}}
\end{array}\right] \\
\mathrm{J} & =\frac{\partial \mathbf{C}}{\partial \mathbf{q}} \\
\mathrm{J} & =\frac{\partial^{2} \mathbf{C}}{\partial \mathbf{q} \partial \mathrm{t}}
\end{array}\right.
\end{aligned}
$$

Derivation: just like bead-on-wire.

Drift and Feedback

- In principle, clamping C at zero is enough
- Two problems:
- Constraints might not be met initially
- Numerical errors can accumulate
- A feedback term handles both problems:

$$
\begin{aligned}
& \mathrm{C}=-\alpha \mathrm{C}-\beta \mathrm{C}, \text { instead of } \\
& \mathrm{C}=0
\end{aligned}
$$

How do you implement all this?

- We have a global matrix equation.
- We want to build models on the fly, just like masses and springs.
- Approach:
- Each constraint adds its own piece to the equation.

Matrix Block Structure

- Each constraint contributes one or more blocks to the matrix.
- Sparsity: many empty blocks.
- Modularity: let each constraint compute its own blocks.
- Constraint and particle indices determine block locations.

Global and Local

Constraint

Constraint Structure

Each constraint must know how to compute these

Distance Constraint

$$
\mathbf{C}=\left|\mathbf{x}_{1}-\mathbf{x}_{2}\right|-\mathbf{r}
$$

Constrained Particle Systems

Clear Force
Accumulators
1

Return to solver

Modified Deriv Eval Loop

FTF|...F

Apply forces

Added Step

CCCI ... []

Compute and apply
Constraint Forces

Constraint Force Eval

- After computing ordinary forces:
- Loop over constraints, assemble global matrices and vectors.
- Call matrix solver to get λ, multiply by J^{T} to get constraint force.
- Add constraint force to particle force accumulators.

Impress your Friends

- The requirement that constraints not add or remove energy is called the Principle of Virtual Work.
- The λ 's are called Lagrange Multipliers.
- The derivative matrix, J, is called the Jacobian Matrix.

Question

- How could you simulate hair?
- What are the salient properties of hair you're trying to simulate?

