

DiffEQ Integration

Differential Equation Basics

Andrew Witkin

SIGGRAPH 2001 COURSE NOTES

SB1

PHYSICALLY BASED MODELING

A Canonical Differential Equation

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, t)$$

- $\mathbf{x}(t)$: a moving point.
- f(x,t): x's velocity.

Vector Field

The differential equation $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, t)$ defines a vector field over x.

Integral Curves

Initial Value Problems

Given the starting point, follow the integral curve.

Euler's Method

- Simplest numerical solution method
- Discrete time steps
- Bigger steps, bigger errors.

 $\mathbf{x}(t + \Delta t) = \mathbf{x}(t) + \Delta t \, \mathbf{f}(\mathbf{x}, t)$

Two Problems

Accuracy
 Instability

Consider the equation:

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \mathbf{x}$$

What do the integral curves look like?

Problem I: Inaccuracy

Error turns x(t) from a circle into the spiral of your choice.

Problem 2: Instability

• Consider the following system:

 $\dot{x} = -x$ x(0) = 1

Problem 2: Instsability

To Neptune!

Accuracy of Euler Method $\dot{x} = f(x)$

Consider Taylor Expansion about x(t)...

Therefore, Euler's method has error O(h²)... it is *first order*.

How can we get to O(h³) error?

The Midpoint Method

• Also known as second order Runge-Kutte:

$$k_{1} = h(f(x_{0}, t_{0}))$$

$$k_{2} = hf(x_{0} + \frac{k_{1}}{2}, t_{0} + \frac{h}{2})$$

$$x(t_{0} + h) = x_{0} + k_{2} + O(h^{3})$$

The Midpoint Method

a. Compute an Euler step $\Delta \mathbf{x} = \Delta t \, \mathbf{f}(\mathbf{x}, t)$ b. Evaluate f at the midpoint $\mathbf{f}_{mid} = \mathbf{f}\left(\frac{\mathbf{x} + \Delta \mathbf{x}}{2}, \frac{t + \Delta t}{2}\right)$

c. Take a step using the midpoint value

 $\mathbf{x}(t + \Delta t) = \mathbf{x}(t) + \Delta t \,\mathbf{f}_{\text{mid}}$

q-Stage Runge-Kutta

General Form:

$$x(t_0 + h) = x_0 + h \sum_{i=1}^{q} w_i k_i$$

where:

$$k_i = f\left(x_0 + h\sum_{j=1}^{i-1}\beta_{ij}k_j\right)$$

Find the constant that ensure accuracty O(hⁿ).

4th-Order Runge-Kutta

 $k_1 = hf(x_0, t_0)$

$$k_{2} = hf(x_{0} + \frac{k_{1}}{2}, t_{0} + \frac{h}{2})$$
$$k_{3} = hf(x_{0} + \frac{k_{2}}{2}, t_{0} + \frac{h}{2})$$

 $k_4 = hf(x_0 + k_3, t_0 + h)$

$$x(t_0 + h) = x_0 + \frac{1}{6}k_1 + \frac{1}{3}k_2 + \frac{1}{3}k_3 + \frac{1}{6}k_4 + O(h^5)$$

Why so popular?

Order vs. Stages

More methods...

- Euler's method is 1st Order.
- The midpoint method is 2nd Order.
- Just the tip of the iceberg. See *Numerical Recipes* for more.
- Helpful hints:
 - *Don't* use Euler's method (you will anyway.)
 - *Do* use adaptive step size.

Modular Implementation

- Generic operations:
 - Get dim(x)
 - Get/set x and t
 - Deriv Eval at current (x,t)
- Write solvers in terms of these.
 - Re-usable solver code.
 - Simplifies model implementation.

Solver Interface

A Code Fragment

```
void eulerStep(Sys sys, float h) {
  float t = getTime(sys);
  vector<float> x0, deltaX;
```

```
t = getTime(sys);
x0 = getState(sys);
deltaX = derivEval(sys,x0, t);
setState(sys, x0 + h*deltaX, t+h);
```