The Animation of Natural Phenomena

Instructor: Adrien Treuille

Office Hours: After Class &

By Appointment

Telephone: (206) 409-8246

E-mail: treuille@cs.cmu.edu

Questions

- What is your name?
 - Tell us about yourself.
- Experience...
 - OpenGL?
 - C++
 - Math?
- Why did you sign up for this class?
 - What do you hope to learn?

What is Physics-Based Animation?

What is Physics-Based Animation?

What is Physics-Based Animation?

[Baraf 1996]

Data Structures

Mathematical Techniques

Algorithms

Overview The Class

- Will explore various phenomena...
- Questions you should ask:
 - What should we simulate?
 - How do you simulate it?
 - Interactively?
 - How can we break it?
 - How can we control it?
 - How can we couple it with other objects?
 - How do we measure success?

Particles

Data Structures

DiffEQ

Constraints

Hair (1D)

Cloth(2D)

Crowds

Fluids

Incompressible Fluids

Free-surface Fluids

Particle Fluids

Rigid Bodies

[Guendelman 2003]

Rigid Bodies

[Guendelman 2003]

Collisions and Stacking

Deformable Objects

[Barbić and James 2008]

Deformable Objects

Animating Water Bottle Recycling Rates

Doug James Cornell University

[James 2008]

Deformable Object Collisions

Humans

Performance Capture

Data-Driven Motion

[Lui and Popović et al 2002]

Physical Simulation

Advanced

[Fattal and Lischinski et al 2003]

Optimization

[11119 and James 20

Control

Model Reduction

Objectives

Goals

- Learn Techniques
- Fun Coding
- Quick Problem Solving
- Presentation Skills

Methods

- Weekly Lectures
- Paper Presentations
- Projects
- Questions

Logistics

Topic B Topic C Topic D Topic A Topic E Class n Class n+2Class n+1**Paper Presentation Paper Presentation Paper Presentation** Lecture Lecture Lecture Question Question Question

http://graphics.cs.cmu.edu/courses/15-869-F08/

Grading

Do not take this class for a grade!

- 24% Project 1: Particles (due 10/1)
- 24% Project 2: Fluids (due 10/22)
- 36% Final Project (due 12/3)
- 16% Class Presentation / Participation

Logistics

Anonymous Feedback:

http://www.cmu.edu/blackboard/

Lab:

WeH 5336

/afs/cs.cmu.edu/project/weh5336/SetupAndrewAccount

Use Caps: hbovik@ANDREW.CMU.EDU

Disk Space:

/afs/cs.cmu.edu/academic/class/15869-f08-users

10GB per user

Questions

- What everyday things are we missing here?
 - These could be final projects!
- How can we measure success?
 - How do we measure "success" for chaotic systems can cannot be recreated?
 - Can we come up with an objective notion of "visual correctness?"

Homework 1

Read:

Differential Equation Basics

Andrew Witkin and David Baraff (on the website)