
Project 1: Particle System
The Animation of Natural Phenomena

Adrien Treuille - Carnegie Mellon University
Due 10/06

Overview:

In this project you will implement a particle system with constraints. You must implement 
at least the required features. You must also record a video artifact of your system in 
action. The class will vote on the best artifacts, and the top three winners will receive 
extra credit. Additionally, you may implement some of the listed extensions (or invent 
your own!) for extra credit.

Skeleton Code:

You have been provided with some skeleton code which you may use to jump-start your 
coding. Basically, the only thing the code does is move three particles around randomly, 
and draw some (nominal) constraints and spring between them. This code does little 
more than implement basic window management and graphics, but this stuff is very 
annoying to do alone.

Required Features:

Your code implement the following features:

• A generalized force structure. This is described in the slides. (If youʼre using the 
skeleton code, you should replace delete_this_dummy_spring with a std::vector 
of forces.) You must implement two subclass forces:

• GravityForce. Acts like gravity.
• SpringForce. A damped spring between two particle. Skeleton rendering code is 

already provided.
• A generalized constraint structure. This is also described in the slides. (If youʼre 

using the skeleton code, you should replace delete_this_dummy_rod and 
delete_this_dummy_wire with a std::vector of forces.) You must implement at 
least the following two subclasses:

• RodConstraint. Constrains two particles to be a fixed distance apart. (Rendering 
code included in the skeleton.)

• C(x1, y1, x2, y2) = (x1 - x2)2 + (y1 - y2)2 - r2

• CircularWireConstraint. Constrains a particle to be a fixed distance from some 
point:

• C(x, y) = (x - xc)2 + (y - yc)2 - r2

• Mouse interaction. When the user clicks and drags the mouse, a spring force should 
be applied between the mouse position and the given particle to make your system 
interactive.

http://graphics.cs.cmu.edu/courses/15-869-F08/proj/01/TinkerToy-skeleton.zip
http://graphics.cs.cmu.edu/courses/15-869-F08/proj/01/TinkerToy-skeleton.zip


• Several Numerical Integration Schemes (Simulators). The integration scheme 
should be selectable at runtime with keystrokes or some other interaction paradigm. 
You will find this easiest if you implement a pluggable integration architecture as 
described in the slides. The minimum integration schemes are:

• Euler
• Runge-Kutta 2 and
• Runge-Kutta 4

Optional Features:

You demo must be able to turn each of these features on and off individually so they 
can be verified.

• ★ Verlet Integrator. See here.
• ★ Leapfrog Integrator. Evaluates position and velocity at different times. See here 

for more details.
• ★ Symplectic Integrator. As described in class. Compute the positions explicitly and 

velocities implicitly. (No need for a solver.)
• ★ ★ Collisions with the Walls. Particles should bounce off the walls and floor. 
• ★ ★ Collisions with other Particles. Particles bounce off each other.
• ★ ★ ★ Angular Springs. Pulls a triplet of particles so that their subtending angle 

approaches some rest angle.
• ★ ★ ★ ★ Angular Constraints. Like angular springs, but the angle is actually 

constrained.
• ★ ★ ★ ★ 3D. Implement and render this algorithm in 3D.
• ★ ★ ★ ★ 2D Cloth. Create a rectangular network of particles with appropriate 

springs holding it together. Which spring configurations work best, which donʼt work?
• ★ ★ ★ ★ ★ Implicit Integration. As described in class and in the slides.
• ★ ★ ★ ★ ★ 3D Cloth.
• ★ ★ ★ ★ ★ ★ 3D Cloth with collisions.
• ★ ★ ★ ★ ★ ★ Hair with collisions. How can this be implemented? What about 

collisions?

Deliverables:

• Code. At midnight on the due date, you must submit zip file or tarball of the code that 
builds on the instructional Linux system. The code may be mailed to me directly you 
can e-mail link to code residing in your /afs/cs.cmu.edu/academic/class/15869-
f08-users directory.

http://en.wikipedia.org/wiki/Verlet_integration
http://en.wikipedia.org/wiki/Verlet_integration
http://www.physics.drexel.edu/students/courses/Comp_Phys/Integrators/leapfrog/
http://www.physics.drexel.edu/students/courses/Comp_Phys/Integrators/leapfrog/


• Demo. After the due date, if you like, you may schedule a meeting with me to demo 
your project to show of any special features.

• Artifact. You must submit a video of your system in action. Videos can be 
implemented in several ways. Usually the starting point is to dump frames (by hitting 
ʻdʼ in the skeleton implementation). These frames can be coalesced into a movie using 
several software packages (ImageMagick and ffmpeg on Linux, Quicktime Pro on 
Mac, and VirtualDub on Windows). Alternatively, you can use one of the new screen 
capture programs that are all the rage these days.


