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Deformations
Spring deformed by Δx:

1 Δx

stress: σ 

force = −E∆x
strain: ε 

Young’s modulus 

Hooke’s Law:

σ = Eε



In 3D...
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Defining Strain
• Strain is invariant to translation.

• Ignore p(x)
• Define in terms of local coordinate 

system transform: ∇p(x).

• Strain is invariant to rotation.
• If [∇p(x)]T ∇p(x) = I,
• Then ε=0

• Natural to define strain as:
• ε = ½([∇p(x)]T ∇p(x) - I)
• 6 DOFs

∇p(x)I

∇p(x)=II

ε =




εxx εxy εxz

εxy εyy εyz

εxz εyz εzz


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Green’s Strain
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Stress

σ = Eε



Stress

source: http://www.efunda.com/formulae/solid_mechanics/mat_mechanics/stress.cfm

Direct Stress:

σxx, σyy, σzz

Direct stresses cause compression.

Shear Stress:
Shear stresses resist compression.

σxy, σyz, σxz
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identity matrix. The two strain measures are εG = 3
2 I and εC = I. Even though the displace-

ments get larger and larger for points further and further away from the origin, the strain is
constant everywhere. The two measures differ but only by a constant scalar factor.

In the second example we consider a rotation of 90 degrees about the z-axis. As a rigid-
body mode, such a displacement field should not generate any strain. We have p(x,y,z) =
[−y,x,z]T and u = [−y− x,x− y,z− z]T . This yields

∇u =




−1 −1 0

1 −1 0
0 0 0



 , εC =




−1 0 0

0 −1 0
0 0 0



 , εG = 0. (4.15)

In this case, only Green’s non linear tensor yields the correct result, its linearization cannot
capture the rotation correctly. This is an important observation we will discuss in Sec-
tion 4.3.

4.1.3 Stress

Now let us turn to the measurement of stress, the force per unit area. As strain, stress is
represented in three dimensions by a symmetric 3 by 3 matrix or tensor

σ =




σxx σxy σxz
σxy σyy σyz
σxz σyz σzz



 (4.16)

with the following interpretation: As we saw before, at a single material point the strain
depends on the direction of measurement. The same is true for the stress. Let n be the
normal vector in the direction of measurement. Then,

df
dA

= σ · n. (4.17)

In other words, to get the force per area f/A with respect to a certain plane with normal
n, the stress tensor is multiplied by n.

4.1.4 Constitutive Laws

A constitutive law relates strain to stress. Hooke’s law is a special case. It states that stress
and strain are linearly related. This holds for so called Hookean materials under small
deformations. In three dimensions, Hooke’s law reads

σ = Eε. (4.18)

Both stress and strain are symmetric tensors so they have only 6 independent coeffi-
cients. The quantity E relating the two can, thus, be expressed by a 6 by 6 dimensional
matrix. For isotropic materials (with equal behavior in all directions), Hooke’s law has the
form

Stress Tensor:



Stress Tensor Interpretation
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Stress measures the force on each face:26
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dx
dy

dz

σxx
σxy
σxz

dyd

σxx
σxy
σxz

dydz

x,y,zd+xx,y,z

-

Figure 4.2: An infinitesimal volumetric element of a deformable body. The blue arrows
show the stress based force acting on the faces perpendicular to the x-axis.





σxx
σyy
σzz
σxy
σyz
σzx




=

E
(1+ν)(1−2ν)





1−ν ν ν 0 0 0
ν 1−ν ν 0 0 0
ν ν 1−ν 0 0 0
0 0 0 1−2ν 0 0
0 0 0 0 1−2ν 0
0 0 0 0 0 1−2ν









εxx
εyy
εzz
εxy
εyz
εzx




,

(4.19)
where the scalar E is Young’s modulus describing the elastic stiffness and the scalar

ν ∈ [0 . . . 1
2) Poisson’s ratio, a material parameter that describes to which amount volume is

conserved within the material.

4.1.5 Equation of Motion

The concepts we saw so far can be used to simulate a dynamic elastic object. First, we
apply Newton’s second law of motion f = mp̈ to the infinitesimal volumetric element dV
at location x of the object (see Fig. 4.2). Since the mass of an infinitesimal element is not
defined, both sides of the equation of motion are divided by the volume dx · dy · dz of the
element. This turns mass [kg] into density [kg/m3] and forces [N] into body forces [N/m3].
We get

ρp̈ = f(x), (4.20)

where ρ is the density and f(x) the body force acting on the element at location x. This
force is the sum of external forces (e.g. gravity or collision forces) and internal forces (due
to deformation). The next step is to compute the internal elastic force at the center of the
element due to the stress. To get this force, we are going to sum up the forces that act on
each of the six faces of the infinitesimal element. Let us first look at the faces perpendicular
to the x-axis. The center of the face with normal [−1,0,0]T is located at [x,y,z]T and the
one with face normal [1,0,0]T at position [x+dx,y,z]T . According to Eqn. (4.17) the forces
per unit area acting on these faces are

−




σxx
σxy
σxz





x,y,z

and




σxx
σxy
σxz





x+dx,y,z

(4.21)
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Young’s Modulus

σ = Eε
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Voigt Notation

{σ} = [σxx,σyy,σzz,σxy,σyz,σxz]
T ∈ R6

ε =




εxx εxy εxz

εxy εyy εyz

εxz εyz εzz





{ε} = [εxx, εyy, εzz, εxy, εyz, εxz]
T ∈ R6St
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with the following interpretation: As we saw before, at a single material point the strain
depends on the direction of measurement. The same is true for the stress. Let n be the
normal vector in the direction of measurement. Then,

df
dA

= σ · n. (4.17)

In other words, to get the force per area f/A with respect to a certain plane with normal
n, the stress tensor is multiplied by n.

4.1.4 Constitutive Laws

A constitutive law relates strain to stress. Hooke’s law is a special case. It states that stress
and strain are linearly related. This holds for so called Hookean materials under small
deformations. In three dimensions, Hooke’s law reads

σ = Eε. (4.18)

Both stress and strain are symmetric tensors so they have only 6 independent coeffi-
cients. The quantity E relating the two can, thus, be expressed by a 6 by 6 dimensional
matrix. For isotropic materials (with equal behavior in all directions), Hooke’s law has the
form



Isotropic Materials
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Figure 4.2: An infinitesimal volumetric element of a deformable body. The blue arrows
show the stress based force acting on the faces perpendicular to the x-axis.
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where the scalar E is Young’s modulus describing the elastic stiffness and the scalar
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4.1.5 Equation of Motion
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where ρ is the density and f(x) the body force acting on the element at location x. This
force is the sum of external forces (e.g. gravity or collision forces) and internal forces (due
to deformation). The next step is to compute the internal elastic force at the center of the
element due to the stress. To get this force, we are going to sum up the forces that act on
each of the six faces of the infinitesimal element. Let us first look at the faces perpendicular
to the x-axis. The center of the face with normal [−1,0,0]T is located at [x,y,z]T and the
one with face normal [1,0,0]T at position [x+dx,y,z]T . According to Eqn. (4.17) the forces
per unit area acting on these faces are
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and
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{σ} = E{ε} E ∈ R6×6

υ ∈
[
0,

1
2

)
Poisson’s Ratio

How much volume is conserved.

E
Elastic Stiffness

How strongly the material resists deformation.
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Discretization

source:  Bridson, R., Teran, J., Molino, N. and Fedkiw, R., "Adaptive Physics Based Tetrahedral Mesh Generation Using Level Sets", 
Engineering with Computers 21, 2-18 (2005).
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Fortunately there is another way to arrive at solutions that can be written down explicitly.
Just restrict the possible solutions to a certain class of continuous vector fields that can be
described by a finite number of values. From such a restriction it follows that in the general
case, a solution computed in this way will only be an approximation of the true solution.
Ideally the restricted solution is the one within the restricted class of vector fields that is
closest to the true solution.

This is the core idea of the Finite Element Method (FEM). First, the domain is di-
vided into a finite set of (polygonal) elements of finite size which cover the entire domain
without overlaps. Within each element, the vector field is described by an analytical for-
mula that depends on the positions of the vertices belonging to the element. More general
parametrizations are possible but we will work with vertex positions only.

4.2.1 Constant Strain Tetrahedral Meshes

To keep things simple, we use tetrahedra as finite elements and represent the domain, i.e.
the volume of the deformable body by a tetrahedral mesh. Within each tetrahedron, we
use the simplest possible deformation field, a linear mapping. A constant deformation field
within the element would be even simpler but a constant mapping would yield zero strain,
and would therefore not be practical to simulate deformable bodies.

Let x0,x1,x2,x3 be the the corners of the tetrahedron in the undeformed rest state and
p0,p1,p2,p3 the same corners in the deformed state. We now have to find a linear vector
field p(x) that maps points within the tetrahedron in the rest state to the points within the de-
formed tetrahedron. Pure translation does not generate any elastic forces so we can assume
that x0 = 0 and p0 = 0 without loss of generality. In the general case you have to replace xi
with xi−x0 and pi with pi−p0 in the following formulas. Let us describe a point inside the
undeformed tetrahedron by a weighted sum of the corner positions, i.e.

x = x1b1 +x2b2 +x3b3 = [x1,x2,x3]b. (4.25)

The transformed position p(x) will be a weighted sum of the deformed corner positions
using the same weights:

p(x) = p1b1 +p2b2 +p3b3 = [p1,p2,p3]b. (4.26)

Solving Eq. (4.25) for b and substituting into Eq. (4.26) yields

p(x) = [p1,p2,p3] [x1,x2,x3]−1 x = Px (4.27)

This is a linear mapping with P a 3× 3 matrix. The part X̄ = [x1,x2,x3]−1 is constant
throughout the simulation and can be pre-computed. Because p(x) is linear, we have

∇p = P and ∇u = P− I (4.28)

independent of the position x within the tetrahedron. This means we will end up with
constant strain and stress inside the tetrahedron. Using Green’s stress tensor we have

ε =
1
2
(∇u+[∇u]T +[∇u]T ∇u) (4.29)
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Simulation Loop

source: http://www.emeraldinsight.com/fig/1740200102032.png
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vided into a finite set of (polygonal) elements of finite size which cover the entire domain
without overlaps. Within each element, the vector field is described by an analytical for-
mula that depends on the positions of the vertices belonging to the element. More general
parametrizations are possible but we will work with vertex positions only.

4.2.1 Constant Strain Tetrahedral Meshes

To keep things simple, we use tetrahedra as finite elements and represent the domain, i.e.
the volume of the deformable body by a tetrahedral mesh. Within each tetrahedron, we
use the simplest possible deformation field, a linear mapping. A constant deformation field
within the element would be even simpler but a constant mapping would yield zero strain,
and would therefore not be practical to simulate deformable bodies.

Let x0,x1,x2,x3 be the the corners of the tetrahedron in the undeformed rest state and
p0,p1,p2,p3 the same corners in the deformed state. We now have to find a linear vector
field p(x) that maps points within the tetrahedron in the rest state to the points within the de-
formed tetrahedron. Pure translation does not generate any elastic forces so we can assume
that x0 = 0 and p0 = 0 without loss of generality. In the general case you have to replace xi
with xi−x0 and pi with pi−p0 in the following formulas. Let us describe a point inside the
undeformed tetrahedron by a weighted sum of the corner positions, i.e.

x = x1b1 +x2b2 +x3b3 = [x1,x2,x3]b. (4.25)

The transformed position p(x) will be a weighted sum of the deformed corner positions
using the same weights:

p(x) = p1b1 +p2b2 +p3b3 = [p1,p2,p3]b. (4.26)

Solving Eq. (4.25) for b and substituting into Eq. (4.26) yields

p(x) = [p1,p2,p3] [x1,x2,x3]−1 x = Px (4.27)

This is a linear mapping with P a 3× 3 matrix. The part X̄ = [x1,x2,x3]−1 is constant
throughout the simulation and can be pre-computed. Because p(x) is linear, we have

∇p = P and ∇u = P− I (4.28)

independent of the position x within the tetrahedron. This means we will end up with
constant strain and stress inside the tetrahedron. Using Green’s stress tensor we have

ε =
1
2
(∇u+[∇u]T +[∇u]T ∇u) (4.29)

σ = Eε
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identity matrix. The two strain measures are εG = 3
2 I and εC = I. Even though the displace-

ments get larger and larger for points further and further away from the origin, the strain is
constant everywhere. The two measures differ but only by a constant scalar factor.

In the second example we consider a rotation of 90 degrees about the z-axis. As a rigid-
body mode, such a displacement field should not generate any strain. We have p(x,y,z) =
[−y,x,z]T and u = [−y− x,x− y,z− z]T . This yields

∇u =




−1 −1 0

1 −1 0
0 0 0



 , εC =




−1 0 0

0 −1 0
0 0 0



 , εG = 0. (4.15)

In this case, only Green’s non linear tensor yields the correct result, its linearization cannot
capture the rotation correctly. This is an important observation we will discuss in Sec-
tion 4.3.

4.1.3 Stress

Now let us turn to the measurement of stress, the force per unit area. As strain, stress is
represented in three dimensions by a symmetric 3 by 3 matrix or tensor

σ =




σxx σxy σxz
σxy σyy σyz
σxz σyz σzz



 (4.16)

with the following interpretation: As we saw before, at a single material point the strain
depends on the direction of measurement. The same is true for the stress. Let n be the
normal vector in the direction of measurement. Then,

df
dA

= σ · n. (4.17)

In other words, to get the force per area f/A with respect to a certain plane with normal
n, the stress tensor is multiplied by n.

4.1.4 Constitutive Laws

A constitutive law relates strain to stress. Hooke’s law is a special case. It states that stress
and strain are linearly related. This holds for so called Hookean materials under small
deformations. In three dimensions, Hooke’s law reads

σ = Eε. (4.18)

Both stress and strain are symmetric tensors so they have only 6 independent coeffi-
cients. The quantity E relating the two can, thus, be expressed by a 6 by 6 dimensional
matrix. For isotropic materials (with equal behavior in all directions), Hooke’s law has the
form
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and with the assumption of a Hookean material the stress is

σ = Eε (4.30)

with E defined in Eq. (4.19). Multiplying the stress tensor by a normal vector yields the
elastic force per area so for face (0,1,2) of the tetrahedron the force is

f0,1,2 = σ · n0,1,2 · A0,1,2 = σ [(p1−p0)× (p2−p0)] (4.31)

Finally, we distribute this force evenly among the vertices 0,1 and 2 and do the same for all
faces. Equations (4.27) through (4.31) yield a recipe for computing the forces f0, . . . f3 acting
on the vertices of a tetrahedron based on the deformed positions p0, . . .p3. As you can see,
the whole process is quite simple. It is just a step-by-step of process of computing quantities
based on previous ones. Also, we could easily replace Hooke’s law by any non-linear stress-
strain relationship without increasing the complexity of the computation significantly. The
resulting forces - position relationship computed this way is highly non-linear. A simple
simulation algorithm using explicit Euler integration could look like this

// initialization
(1) forall vertices i
(2) pi = xi
(3) initialize vi and mi
(4) endfor
(5) forall tetrahedra i = (i0, i1, i2, i3)
(6) X̄i = [xi1−xi0 ,xi2−xi0 ,xi3−xi0 ]−1

(7) endfor
// simulation loop
(8) loop
(9) froall vertices i
(10) fi = fg + fcoll

i
(11) endfor
(12) forall tetrahedra i = (i0, i1, i2, i3)
(13) P = [pi1−pi0 ,pi2−pi0 ,pi3−pi0 ] · X̄i
(14) ∇u = P− I
(15) ε = 1

2(∇u+[∇u]T +[∇u]T ∇u)
(16) σ = Eε
(17) forall faces j = ( j0, j1, j2) of tetrahedron i
(18) fface = σ [(p j1−p j0)× (p j2−p j0)]
(19) f j0 ← f j0 + 1

3 fface
(20) f j1 ← f j1 + 1

3 fface
(21) f j1 ← f j1 + 1

3 fface
(22) endfor
(23) endfor
(24) forall vertices i
(25) vi ← vi +∆t fi/mi
(26) pi ← pi +∆t vi
(27) endfor
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• Compute Strain:

• Convert to Stress:

• Compute Face Forces:

• Distribute to vertices.
• Integrate eqns of motion (e.g. 4th order RK).

p0

p1

p2

p3

f0,1,2



Examples



Question



Question
• How could we reduce the cost of 

simulation for a very finely discretized 
surface?

• Are there cheap ways of getting 
volumetric behavior without a full 
tetrahedralization?

• How can collision constraints be 
integrated?

• How to simulate plasticity?



Solutions
• bounding volume tree w/ tetrahedra at leaves

• simulate parent nodes instead of leaves (if stresses are 
close)

• simulate on a simplified mesh (make details into bump 
maps)

• adaptive tetrahedralization based on force magnitudes

• come up with tetrahedralization that best captures the 
simulation based on precomputed simulations

• springs connected to a “skeleton”

• plasticity based on sparse springs connecting the surface 
mesh to itself


