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Solving Linear Systems
• Want to solve system of the form:

• A is symmetric:

• A is positive-definite:

Ax = b

AT = A

xT Ax > 0 ∀x



Interface

// Matrix class the solver will accept
class implicitMatrix
{
 public:
  virtual void matVecMult(double x[], double b[]) = 0;
};

// Solve Ax = b for a symmetric, positive definite matrix A
double ConjGrad(int n, implicitMatrix *A, double x[], double b[], 

double epsilon,	 // how low should we go?
int    *steps);



Implicit Matrix

• matVecMult: a method that performs 
matrix multiplication

• x: the input vector

• b: the output vector

// Matrix class the solver will accept
class implicitMatrix
{
 public:
  virtual void matVecMult(double x[], double b[]) = 0;
};



Implicit Matrix

• n: number of dimensions

• implicitMatrix: matrix instance

• x: the output vector

• b: the input vector

• epsilon: how low should we go? (1.0-5)

• steps: inputs the max steps and outputs the actual steps

// Solve Ax = b for a symmetric
// positive definite matrix A
double ConjGrad(int n, implicitMatrix *A,
double x[], double b[],
double epsilon,
int    *steps);



Example 1
[

2 0
0 1

]
x =

[
1
1

]

linear-solver-example@CMU-274306$ ./solve1
Solved in 1 steps with error 0.000000.
A1 * [0.500000 1.000000]^T = [1.000000 1.000000]^T.



Example 2

[
2 1
1 1

]
x =

[
3
4

]



Example 2



Why implicitMatrix?

vs

O(n)

O(n2)



Example 3
[
−1 1

1 1

]
x =

[
3
4

]

Not positive definite!

[1 0]
[
−1 1

1 1

] [
1
0

]
= −1



Example 3
• What if A is not symmetric or not 

positive-definite?

• Then solve the normal equations:

Ax = b

AT Ax = AT b
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Real Hair: Curly



Real Hair: Straight



Real Hair

• Typical human head has 150k-200k 
individual strands.

• Dynamics not well understood.

• Subject still open to debate.

Figure 1.1: Left, close view of a hair fiber (root upwards) showing the cuticle
covered by overlapping scales. Right, bending and twisting instabilities observed
when compressing a small wisp.

Deformations of a hair strand involve rotations that are not infinitely small and
so can only be described by nonlinear equations [AP07]. Physical effects arising
from these nonlinearities include instabilities called buckling. For example, when
a thin hair wisp is held between two hands that are brought closer to each other
(see Figure 1.1, right), it reacts by bending in a direction perpendicular to the
applied compression. If the hands are brought even closer, a second instability
occurs and the wisp suddenly starts to coil (the bending deformation is converted
into twist).

1.3 Oriented Strands: a versatile dynamic primitive

The simulation of strand like primitives modeled as dynamics of serial branched
multi-body chain, albeit a potential reduced coordinate formulation, gives rise to
stiff and highly non-linear differential equations. We introduce a recursive, linear
time and fully implicit method to solve the stiff dynamical problem arising from
such a multi-body system. We augment the merits of the proposed scheme by
means of analytical constraints and an elaborate collision response model. We
finally discuss a versatile simulation system based on the strand primitive for
character dynamics and visual effects. We demonstrate dynamics of ears, braid,
long/curly hair and foliage.
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Control Mesh

A Practical Model for Hair Mutual Interactions
Johnny T. Chang, Jingyi Jin, Yizhou Yu.
ACM SIGGRAPH Symp. on Computer Animation. pp. 73-80, 2002. 



Control Mesh

ha_guide_hair.avi
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Recall...













Disadvantages

• Torsional Rigidity

• Non-stretching of the strands





 Implicit integrator adds stability
Loss of angular momentum
 ‘Good’ Jacobian (filter)  very important

k = ∞

n+1

 implicit integration?



Well, how do we preserve 
length then?

 use non-linear correction 

k Is infinity!



non-linear post correction
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non-linear post correction



non-linear post correction

 Post solve correction
 Successive relaxation until 

convergence
 Guaranteed length preservation

 Cheap simulation of kinfinity



non-linear post correction

 How to implement?
 Cloth simulation literatures

 Provot 1995 (position only)
 Bridson 2002 (impulse)

 Hair-specific relaxation possible



Predictor-corrector scheme

 Implicit Filter (Predictor)

 Sharpener (Corrector)

 Implicit Filter (Predictor)



1.First pass-implicit integration 

 First implicit solve to get 
new velocity



2.First pass-implicit integration 

Advance position with the 
predicted mid-step velocity



3.Non-linear Correction 

Apply non-linear corrector 
to get position (length) right



4.Impulse

Change velocity due to 
length preservation
Velocity may be out of sync 
after impulse



5.Second implicit integration

 Filters out velocity field
 Velocity field in sync again
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Featherstone Algorithm
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Rigid Links

• Fewer degrees of freedom.

• Torsional forces.

• Difficult Implementation.

• Constraints Difficult.
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Super Helicesother interesting approaches to handle strand-strand interactions include wisp level
interactions [PCP01b, BKCN03b], layers [LK01b] and strips [CJY02b].

We demonstrate the effectiveness of the proposed Oriented Strand methodology,
through impressive results in production of Madagascar and Shrek The Third at
PDI/DreamWorks, in Section 5.1.

1.4 Super-Helices: a compact model for thin geometry

Figure 1.5: Left, a Super-Helix. Middle and right, dynamic simulation of natural
hair of various types: wavy, curly, straight. These hairstyles were animated using
N = 5 helical elements per guide strand.

The Super-Helix model is a novel mechanical model for hair, dedicated to the ac-
curate simulation of hair dynamics. In the spirit of work by Marschner et al. in the
field of hair rendering [MJC+03a], we rely on the structural and mechanical fea-
tures of real hair to achieve realism. This leads us to use Kirchhoff equations for
dynamic rods. These equations are integrated in time thanks to a new deformable
model that we call Super-Helices: A hair strand is modeled as a C1 continuous,
piecewise helical1 rod, with an oval to circular cross section. We use the degrees
of freedom of this inextensible rod model as generalized coordinates, and derive
the equations of motion by Lagrangian mechanics. As our validations show, the
resulting model accurately captures the nonlinear behavior of hair in motion, while
ensuring both efficiency and robustness of the simulation.

This work was published at SIGGRAPH in 2006 [BAC+06], and results from a
collaboration with Basile Audoly, researcher in mechanics at Universite Pierre et
Marie Curie, Paris 6, France.

1A helix is a curve with constant curvatures and twist. Note that this definition includes straight
lines (zero curvatures and twist), so Super-Helices can be used for representing any kind of hair.
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Super Helices

we found that slight variations of (κn
i (s))i with s allow for more realistic hair

styles. Finally, we choose for the dissipation energy D in equation (1.24d) a simple
heuristic model for capturing visco-elastic effects in hair strands, the coefficient γ
being the internal friction coefficient.

All the terms needed in equation (1.23) have been given in equations (1.24). By
plugging the latter into the former, one arrives at explicit equations of motion
for the generalized coordinate q(t). Although straightforward in principle, this
calculation is involved3. It can nevertheless be worked out easily using a symbolic
calculation language such as Mathematica [Wol99]: the first step is to implement
the reconstruction of Super-Helices as given in Appendix 1.4.3; the second step
is to work out the right-hand sides of equations (1.24), using symbolic integration
whenever necessary; the final step is to plug everything back into equation (1.23).
This leads to the equation of motion of a Super-Helix:

M[s,q] · q̈+K · (q−qn) = A[t,q, q̇]+
∫ L

0
JiQ[s,q, t] · Fi(s, t)ds. (1.25)

In this equation, the bracket notation is used to emphasize that all functions are
given by explicit formula in terms of their arguments.

In equation (1.25), the inertia matrix M is a dense square matrix of size 3N,
which depends nonlinearly on q. The stiffness matrix K has the same size, is
diagonal, and is filled with the bending and torsional stiffnesses of the rod. The
vector qn defines the rest position in generalized coordinates, and is filled with
the natural twist or curvature κn

i of the rod over element labelled Q. Finally,
the vector A collects all remaining terms, including air drag and visco-elastic
dissipation, which are independent of q̈ and may depend nonlinearly on q and q̇.

Time discretization

The equation of motion (1.25) is discrete in space but continuous in time. For
its time integration, we used a classical Newton semi-implicit scheme with fixed
time step. Both the terms q̈ and q in the left-hand side are implicited. Every
time step involves the solution of a linear system of size 3N. The matrix of this
linear system is square and dense, like M, and is different at every time step: a

3The elements of M, for instance, read MiQ,i′Q′ = 1
2

∫∫
JiQ(s,q) ·Ji′Q′(s′,q)dsds′ where J is the

gradient of rSH(s,q) with respect to q.
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1.4.1 The Dynamics of Super-Helices

Figure 1.6: Left, geometry of Super-Helix. Right, animating Super-Helices with
different natural curvatures and twist: a) straight, b) wavy, c) curly, d) strongly
curly. In this example, each Super-Helix is composed of 10 helical elements.

We shall first present the model that we used to animate individual hair strands
(guide strands). This model has a tunable number of degrees of freedom. It is
built upon the Cosserat and Kirchhoff theories of rods. In mechanical engineering
literature, a rod is defined as an elastic material that is effectively one dimensional:
its length is much larger than the size of its cross section.

Kinematics

We consider an inextensible rod of length L. Let s ∈ [0,L] be the curvilinear
abscissa along the rod. The centerline, r(s, t), is the curve passing through the
center of mass of every cross section. This curve describes the shape of the rod at
a particular time t but it does not tell how much the rod twists around its centerline.
In order to keep track of twist, the Cosserat model introduces a material frame
ni(s, t) at every point of the centerline2. By material, we mean that the frame
‘flows’ along with the surrounding material upon deformation. By convention, n0
is the tangent to the centerline:

r′(s, t) = n0(s, t), (1.20a)
2By convention, lowercase Latin indices such as i are used for all spatial directions and run

over i = 0,1,2 while Greek indices such as α are for spatial directions restricted to the plane of
the cross section, α = 1,2.
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Super Helices

Figure 1.8: Fitting γ for a vertical oscillatory motion of a disciplined, curly hair
clump. Left, comparison between the real (top) and virtual (bottom) experiments.
Right, the span !A of the hair clump for real data is compared to the simulations
for different values of γ . In this case, γ = 1.10−10 kg · m3 · s−1 gives qualitatively
similar results.

natural hair. We used the technique presented previously to fit the parameters of
the Super Helix from the real manipulated hair clump. As shown in Figure 1.9,
left, our Super-Helix model adequately captures the typical nonlinear behavior
of hair (buckling, bending-twisting instabilities), as well as the nervousness of
curly hair when submitted to high speed motion (see Figure 1.8, left). Figure 1.9,
right, shows the fast motion of a large hair, which is realistically simulated using
3 interacting Super-Helices. All these experiments also allowed us to check the
stability of the simulation, even for high speed motion.

Finally, Figure 1.10 demonstrates that our model convincingly captures the com-
plex effects occurring in a full head of hair submitted to a high speed shaking
motion.
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Rendering

associated with the numerical integration of the Kirchhoff equa-
tions, which are numerically very stiff. They propose an attempt
for removing this stiffness. It brings a very significant improvement
over previous methods but we found that it was still insufficient
for hair animation purposes: there remain quite strong constraints
on the time steps compatible with numerical stability of the algo-
rithm. For instance, simulation of a 10 cm long naturally straight
hair strand using the algorithm given in [Hou et al. 1998] remained
unstable even with 200 nodes and a time step as low as 10−5 s. The
stiffness problems in nodal methods have been analyzed in depth
by [Baraff and Witkin 1992] who promoted the use of Lagrangian
deformable models (sometimes called ‘global models’ as opposed
to nodal ones). This is indeed the approach we used above to de-
rive the Super-Helix model, in the same spirit as [Witkin and Welch
1990; Baraff and Witkin 1992; Qin and Terzopoulos 1996].

We list a few key features of the Super-Helix model which con-
tribute to realistic, stable and efficient hair simulations. All space
integrations in the equations of motion are performed symbolically
off-line, leading to a quick and accurate evaluation of the coeffi-
cients in the equation of motion at every time step. The inextensibil-
ity constraint, enforced by equations (1a–1b), is incorporated into
the reconstruction process. As a result, the generalized coordinates
are free of any constraint and the stiff constraint of inextensibility
has been effectively removed from the equations. Moreover, the
method offers a well-controlled space discretization based on La-
grangian mechanics, leading to stable simulations even for small N.
For N → ∞, the Kirchhoff equations are recovered, making the sim-
ulations very accurate. By tuning the parameter N, one can freely
choose the best compromise between accuracy and efficiency, de-
pending on the complexity of hair motion and on the allowed com-
putational time. We are aware of another Lagrangian model4 used
in computer graphics that provides an adjustable number of de-
grees of freedom, namely the Dynamic NURBS model [Qin and
Terzopoulos 1996], studied in the 1D case by [Nocent and Remion
2001]. Finally, external forces can have an arbitrary spatial depen-
dence and do not have to be applied at specific points such as nodes,
thereby facilitating the combination with the interaction model.

4 Application and validation

In this section, our Super-Helix model is used to animate
sparse guide strands that define global hair motion, in a simi-
lar way to [Daldegan et al. 1993; Chang et al. 2002]. A new
scheme is first proposed for convincingly modelling a hair as-
sembly from this sparse set of guide strands. Then, we pro-
vide a validation of our physical model against a series of ex-
periments on real hair, and demonstrate that the Super-Helix
model accurately simulates the motion of hair. Images and
videos showing our set of results are available at http://www-
evasion.imag.fr/Publications/2006/BACQLL06/.

4.1 Modelling a hair assembly

Sparse set of guide hair strands: Realistically animating hair
from only a few hundreds of simulated strands is made possible by
the local coherence of hair motion. As in previous approaches, the
present model aims at mimicking the collective behavior of hair by
setting up adequate interaction forces between the simulated strands
(Super-Helices) and by adding extra strands at the rendering stage.

4In this model, geometric parameters, defined by the NURBS control
points and the associated weights, are used as generalized coordinates in
the Lagrangian formalism. In contrast, we opt here for mechanically-based
generalized coordinates: they are the values of the material curvatures and
twist, which are the canonical unknowns of the Kirchhoff equations.

In the following, we briefly explain how hair interactions are han-
dled, and propose a unified scheme for generating the hair geometry
from the set of sparse guide strands.

Hair interactions: Simulating a full head of hair requires an ef-
ficient and accurate scheme for handling hair-hair and hair-body
collisions. Detection is efficiently processed by exploiting tempo-
ral coherence, as in [Raghupathi et al. 2003]: we avoid the quadratic
cost of computing proximity of guide strands by keeping track of
pairs of closest points over time. As in [Choe et al. 2005], contacts
between hair volumes are handled by dissipative penalty forces.

Generating the rendered hair geometry: To be able to han-
dle both smooth and clumpy hairstyles, we avoid choosing between
continuum and wisp-based representations for hair. Many real
hairstyles display an intermediate behavior with hair strands being
more evenly spaced near the scalp than near the tips. Our solution
is based on a semi-interpolating scheme to generate non-simulated
hair strands from the guide strands (see Figure 4, and the video):
we range from full interpolation to generate the extra hair strands
near the scalp to no interpolation within a hair wisp near the tips.
The separation strongly depends on the level of curliness: straight
hair requires more interpolation than curly and clumpy hair. Note
that for smooth, interpolated hair, we avoid interpolation between
two guide strands having close roots but distant tips by adding a
criterion on the distance between tips, see Figure 4, (d).

Figure 4: Semi-interpolating scheme for generating the final hair
geometry: hair a) is smoothly interpolated, b) is interpolated near
the roots but clumpy near the tips, c) forms disjoint locks (no inter-
polation); d) interpolation across the right shoulder is prevented by
the criterion on the maximal distance between the tips.

In our animations, the final hair geometry was rendered using the
model of Marschner et al. [2003] for accurately shading a hair
strand, together with the algorithm of Bertails et al. [2005a] for
casting self-shadows inside hair.

4.2 Choosing the parameters of the model

In our model, each Super-Helix stands for an individual hair strand
placed into a set of neighboring hair strands, called hair clump,
which is assumed to deform continuously. To simulate the motion
of a given sample of hair, which can either be a hair wisp or a full
head of hair, we first deduce the physical and geometric parame-
ters of each Super-Helix from the structural and physical properties
of the hair strands composing the clump. Then, we adjust friction
parameters of the model according to the damping observed in real
motion of the clump. Finally, interactions are set up between the
Super-Helices to account for contacts occurring between the differ-
ent animated hair groups. In this section, we explain how we set all
the parameters of the Super-Helix model using simple experiments
performed on real hair.

Interpolation Extrapolation

associated with the numerical integration of the Kirchhoff equa-
tions, which are numerically very stiff. They propose an attempt
for removing this stiffness. It brings a very significant improvement
over previous methods but we found that it was still insufficient
for hair animation purposes: there remain quite strong constraints
on the time steps compatible with numerical stability of the algo-
rithm. For instance, simulation of a 10 cm long naturally straight
hair strand using the algorithm given in [Hou et al. 1998] remained
unstable even with 200 nodes and a time step as low as 10−5 s. The
stiffness problems in nodal methods have been analyzed in depth
by [Baraff and Witkin 1992] who promoted the use of Lagrangian
deformable models (sometimes called ‘global models’ as opposed
to nodal ones). This is indeed the approach we used above to de-
rive the Super-Helix model, in the same spirit as [Witkin and Welch
1990; Baraff and Witkin 1992; Qin and Terzopoulos 1996].

We list a few key features of the Super-Helix model which con-
tribute to realistic, stable and efficient hair simulations. All space
integrations in the equations of motion are performed symbolically
off-line, leading to a quick and accurate evaluation of the coeffi-
cients in the equation of motion at every time step. The inextensibil-
ity constraint, enforced by equations (1a–1b), is incorporated into
the reconstruction process. As a result, the generalized coordinates
are free of any constraint and the stiff constraint of inextensibility
has been effectively removed from the equations. Moreover, the
method offers a well-controlled space discretization based on La-
grangian mechanics, leading to stable simulations even for small N.
For N → ∞, the Kirchhoff equations are recovered, making the sim-
ulations very accurate. By tuning the parameter N, one can freely
choose the best compromise between accuracy and efficiency, de-
pending on the complexity of hair motion and on the allowed com-
putational time. We are aware of another Lagrangian model4 used
in computer graphics that provides an adjustable number of de-
grees of freedom, namely the Dynamic NURBS model [Qin and
Terzopoulos 1996], studied in the 1D case by [Nocent and Remion
2001]. Finally, external forces can have an arbitrary spatial depen-
dence and do not have to be applied at specific points such as nodes,
thereby facilitating the combination with the interaction model.

4 Application and validation

In this section, our Super-Helix model is used to animate
sparse guide strands that define global hair motion, in a simi-
lar way to [Daldegan et al. 1993; Chang et al. 2002]. A new
scheme is first proposed for convincingly modelling a hair as-
sembly from this sparse set of guide strands. Then, we pro-
vide a validation of our physical model against a series of ex-
periments on real hair, and demonstrate that the Super-Helix
model accurately simulates the motion of hair. Images and
videos showing our set of results are available at http://www-
evasion.imag.fr/Publications/2006/BACQLL06/.

4.1 Modelling a hair assembly

Sparse set of guide hair strands: Realistically animating hair
from only a few hundreds of simulated strands is made possible by
the local coherence of hair motion. As in previous approaches, the
present model aims at mimicking the collective behavior of hair by
setting up adequate interaction forces between the simulated strands
(Super-Helices) and by adding extra strands at the rendering stage.

4In this model, geometric parameters, defined by the NURBS control
points and the associated weights, are used as generalized coordinates in
the Lagrangian formalism. In contrast, we opt here for mechanically-based
generalized coordinates: they are the values of the material curvatures and
twist, which are the canonical unknowns of the Kirchhoff equations.

In the following, we briefly explain how hair interactions are han-
dled, and propose a unified scheme for generating the hair geometry
from the set of sparse guide strands.

Hair interactions: Simulating a full head of hair requires an ef-
ficient and accurate scheme for handling hair-hair and hair-body
collisions. Detection is efficiently processed by exploiting tempo-
ral coherence, as in [Raghupathi et al. 2003]: we avoid the quadratic
cost of computing proximity of guide strands by keeping track of
pairs of closest points over time. As in [Choe et al. 2005], contacts
between hair volumes are handled by dissipative penalty forces.

Generating the rendered hair geometry: To be able to han-
dle both smooth and clumpy hairstyles, we avoid choosing between
continuum and wisp-based representations for hair. Many real
hairstyles display an intermediate behavior with hair strands being
more evenly spaced near the scalp than near the tips. Our solution
is based on a semi-interpolating scheme to generate non-simulated
hair strands from the guide strands (see Figure 4, and the video):
we range from full interpolation to generate the extra hair strands
near the scalp to no interpolation within a hair wisp near the tips.
The separation strongly depends on the level of curliness: straight
hair requires more interpolation than curly and clumpy hair. Note
that for smooth, interpolated hair, we avoid interpolation between
two guide strands having close roots but distant tips by adding a
criterion on the distance between tips, see Figure 4, (d).

Figure 4: Semi-interpolating scheme for generating the final hair
geometry: hair a) is smoothly interpolated, b) is interpolated near
the roots but clumpy near the tips, c) forms disjoint locks (no inter-
polation); d) interpolation across the right shoulder is prevented by
the criterion on the maximal distance between the tips.

In our animations, the final hair geometry was rendered using the
model of Marschner et al. [2003] for accurately shading a hair
strand, together with the algorithm of Bertails et al. [2005a] for
casting self-shadows inside hair.

4.2 Choosing the parameters of the model

In our model, each Super-Helix stands for an individual hair strand
placed into a set of neighboring hair strands, called hair clump,
which is assumed to deform continuously. To simulate the motion
of a given sample of hair, which can either be a hair wisp or a full
head of hair, we first deduce the physical and geometric parame-
ters of each Super-Helix from the structural and physical properties
of the hair strands composing the clump. Then, we adjust friction
parameters of the model according to the damping observed in real
motion of the clump. Finally, interactions are set up between the
Super-Helices to account for contacts occurring between the differ-
ent animated hair groups. In this section, we explain how we set all
the parameters of the Super-Helix model using simple experiments
performed on real hair.



We decided to start with the mass-spring system since we had a working code from
the in-house cloth simulator. There we started by adapting the existing particle-
based simulator to hair.

mass-spring structure for hair

Figure 5.18: Mass spring structure for hair simulation

In our simulator, each hair would be represented by a number of nodes, each node
representing the (lumped) mass of certain portion of hair. In practice, each CV
of guide hairs (created at the grooming stage) was used as the mass node. Such
nodes are connected by two types of springs - linear and angular springs. Linear
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• Jee Lee



Conclusion

Video

http://developer.nvidia.com/object/siggraph-2008-hair-video.html
http://developer.nvidia.com/object/siggraph-2008-hair-video.html
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Question
• What are the salient parts of cloth that 

we want to simulate?

• How could we simulate cloth?

• What are the difficulties / problems with 
your approach?


