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Symplectic

e Consider the system:

X —

1

e or equivalently:

X=-y
y= x

e We want to solve x explicitly and y
implicitly:
Xi+1 =Xi - h-y;

vis1=Yi+ h-X
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(explicit)
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print x, y;
X -=Y,
=X,

while(true):
y +




Long Term Evolution
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Long Term Evolution

Decreasing Timestep:
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Why?
e The symplectic integrator:
Tiv1 = T —hy;
Yit1 = Yi+hxip

e Can be rewritten:
1 —h

Xi+1 — h 1 — h2

e Which implies:

1 - 1
h 1—h%

X; —

e But:

X0

1 —h
' h 1-h*
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Symplectic

e Thisis not general:
¢ Hamiltonian systems
® Preserves Area
e Why did we learn this?
e Numerical Integration is subtle!

e Small changes can have profound
long-term effects.




Differential Constraints

thanks to Adrew Witkin and Zoran Popivic




Differential Constraints




Beyond Points and Springs

* You can make just about anything out of point
masses and springs, in principle




A bead on a wire

e Desired Behavior:

— The bead can slide freely
along the circle

— It can never come off,
however hard we pull

e Question:

— How does the bead move
under applied forces?




Penalty Constraints

* Why not use a spring to hold the
bead on the wire?

e Problem:

— Weak springs = goopy
constraints

— Strong springs = neptune
express!

o A classic stiff system




Now for the Algebra ...

Fortunately, there’s a general recipe for
calculating the constraint force

First, a single constrained particle

Then, generalize to constrained particle
systems




Representing Constraints

I. Implicit:
Cx)=[x|-r=0




Maintaining Constraints Differentially

e Start with legal position
and velocity.

e Use constraint forces to
ensure legal curvature.

C =0 legal position

¢ =0 legal velocity

& =0 legal curvature




Constraint Gradient

-circle

Implicit.
Cx)=|x|-r=0

Differentiating C gives
a normal vector.

This is the direction
our constraint force
will point in.




Constraint Forces

Constraint force: gradient
vector times a scalar A

Just one unknown to solve
for

Assumption: constraint is
passive —no energy gain or

. loss
-circle




Constraint Force Derivation
f = AN

Set C = 0, solve for A:
N-k N-f
N-N N-N
20 Constraint force is AN.

A=-m

: oC
Notation: N =—,1‘£? =
0x 0x0t




Example: Point-on-circle

Write down the constraint
equation.

Take the derivatives.

Substitute into generic

_ / template, simplify.

[ (ex)
XX

-m(x-x) -xf




Tinkertoys

 Now we know how to simulate a bead on a wire.

 Next: a constrained particle system.

— E.g. constrain particle/particle distance to make
rigid links.

e Same idea, but...




Compact Particle System Notation

q=WQ

3n-long state vector.
: 3n-long force vector.

: 3n X 3n diagonal mass
matrix.

: M-inverse (element- wise
reciprocal)




- Solving for the Constraint Force -
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General Case

Bead on a Wire



Force Must be a Linear Combination
of Constraint Graidntes

| Bead on aWire General Case



Final Solution for the A Multipliers
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Particle System Constraint Equations

Matrix equation for A
[JW JTP\. — _Jq _ [JW}Q More Notation

Constrained Acceleration

q=WQ + J\|

Derivation: just like bead-on-wire.




Drift and Feedback

 In principle, clamping C at zero is enough

e Two problems:

— Constraints might not be met initially

— Numerical errors can accumulate

A feedback term handles both problems:

C =- aC - ISC, instead of
C=0

o and p are magic constants.




How do you implement all this?

* We have a global matrix equation.

* We want to build models on the fly, just like
masses and springs.

 Approach:

— Each constraint adds its own piece to
the equation.




Matrix Block
Structure

Each constraint
contributes one or more
blocks to the matrix.

Sparsity: many empty
blocks.

Modularity: let each
constraint compute its
own blocks.

Constraint and particle
indices determine block
locations.




Global and Local




Constraint Structure

Each constraint 20 20
must know how — :
to compute these g @ 0X| 0x, W 0X 10t 0X,ot

I
X
; Distance Constraint
" C = ‘Xl - Xz‘ - I
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Constrained Particle Systems
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Constraint Force Eval
 After computing ordinary forces:

— Loop over constraints, assemble
global matrices and vectors.

— Call matrix solver to get A, multiply
by J' to get constraint force.

— Add constraint force to particle
force accumulators.




Impress your Friends

The requirement that constraints not add or
remove energy is called the Principle of

Virtual Work.
The \’s are called Lagrange Multipliers.

The derivative matrix, J, is called the
Jacobian Matrix.




Question

e How could you simulate hair?

e What are the salient properties of hair
you're trying to simulate?




