
Symplectic Integration
and

Cosntraints
Adrien Treuille

Symplectic
• Consider the system:

ẋ =
[

0 −1
1 0

]
x

• or equivalently:

x = -y
y = x

• We want to solve x explicitly and y
implicitly:

xi+1 = xi - h⋅y
yi+1 = yi + h⋅x

(explicit)
(implicit)

i

i+1

Long Term Evolution

(h = 1.0)
x = 1.0;
y = 0.0;
while(true):
 print x, y;
 x -= y;
 y += x;

 1.0 0.0
 1.0 1.0
 0.0 1.0
-1.0 0.0
-1.0 -1.0
 0.0 -1.0
 1.0 0.0
 1.0 1.0
 0.0 1.0
-1.0 0.0
-1.0 -1.0
 0.0 -1.0
 1.0 0.0

Long Term Evolution

Symplectic 1.0 Symplectic 0.01

Explicit 0.01 Implicit 0.01

Long Term Evolution

1.0 0.5 0.1 0.01

1.0 1.1 1.9 2.0

Increasing Timestep:

Decreasing Timestep:

Why?
• The symplectic integrator:

xi+1 = xi − hyi

yi+1 = yi + hxi+1

• Can be rewritten:
xi+1 =

[
1 −h
h 1− h2

]
xi

• Which implies:

xi =
[

1 −h
h 1− h2

]i

x0

∣∣∣∣∣

∣∣∣∣∣eig
([

1 −h
h 1− h2

])∣∣∣∣∣

∣∣∣∣∣ = 1

• But:

if h < 2

Symplectic
• This is not general:

• Hamiltonian systems

• Preserves Area

• Why did we learn this?

• Numerical Integration is subtle!

• Small changes can have profound
long-term effects.

Differential Constraints

thanks to Adrew Witkin and Zoran Popivić

SG1

Differential Constraints

Beyond Points and Springs

• You can make just about anything out of point
masses and springs, in principle

• In practice, you can make anything you want
as long as it’s jello

• Constraints will buy us:

– Rigid links instead of goopy springs

– Ways to make interesting contraptions

A bead on a wire

• Desired Behavior:

–The bead can slide freely
along the circle

– It can never come off,
however hard we pull

• Question:

–How does the bead move
under applied forces?

Penalty Constraints

• Why not use a spring to hold the
bead on the wire?

• Problem:

– Weak springs ! goopy
constraints

– Strong springs ! neptune
express!

• A classic stiff system

SG1

Differential Constraints

Beyond Points and Springs

• You can make just about anything out of point
masses and springs, in principle

• In practice, you can make anything you want
as long as it’s jello

• Constraints will buy us:

– Rigid links instead of goopy springs

– Ways to make interesting contraptions

A bead on a wire

• Desired Behavior:

–The bead can slide freely
along the circle

– It can never come off,
however hard we pull

• Question:

–How does the bead move
under applied forces?

Penalty Constraints

• Why not use a spring to hold the
bead on the wire?

• Problem:

– Weak springs ! goopy
constraints

– Strong springs ! neptune
express!

• A classic stiff system

SG1

Differential Constraints

Beyond Points and Springs

• You can make just about anything out of point
masses and springs, in principle

• In practice, you can make anything you want
as long as it’s jello

• Constraints will buy us:

– Rigid links instead of goopy springs

– Ways to make interesting contraptions

A bead on a wire

• Desired Behavior:

–The bead can slide freely
along the circle

– It can never come off,
however hard we pull

• Question:

–How does the bead move
under applied forces?

Penalty Constraints

• Why not use a spring to hold the
bead on the wire?

• Problem:

– Weak springs ! goopy
constraints

– Strong springs ! neptune
express!

• A classic stiff system

SG1

Differential Constraints

Beyond Points and Springs

• You can make just about anything out of point
masses and springs, in principle

• In practice, you can make anything you want
as long as it’s jello

• Constraints will buy us:

– Rigid links instead of goopy springs

– Ways to make interesting contraptions

A bead on a wire

• Desired Behavior:

–The bead can slide freely
along the circle

– It can never come off,
however hard we pull

• Question:

–How does the bead move
under applied forces?

Penalty Constraints

• Why not use a spring to hold the
bead on the wire?

• Problem:

– Weak springs ! goopy
constraints

– Strong springs ! neptune
express!

• A classic stiff system

SG2

The basic trick (f = mv version)

• 1st order world.

• Legal velocity: tangent to
circle (N·v = 0)

• Project applied force f onto
tangent: f’ = f + fc

• Added normal-direction
force fc: constraint force

• No tug-of-war, no stiffness

N f

fc

f’

f c = -
f !N

N!N
N f " = f + f c

f = ma • Same idea, but…

• Curvature (#) has to match.

• # depends on both a and v:

– the faster you’re going, the
faster you have to turn

• Calculate fc to yield a legal
combination of a and v

• Not as simple!

f

v

#

fc
f’

N

Now for the Algebra …

• Fortunately, there’s a general recipe for
calculating the constraint force

• First, a single constrained particle

• Then, generalize to constrained particle
systems

Representing Constraints

x = r cos $,sin $

I. Implicit:

II. Parametric:

C(x) = x - r = 0

Point-on-circle

SG2

The basic trick (f = mv version)

• 1st order world.

• Legal velocity: tangent to
circle (N·v = 0)

• Project applied force f onto
tangent: f’ = f + fc

• Added normal-direction
force fc: constraint force

• No tug-of-war, no stiffness

N f

fc

f’

f c = -
f !N

N!N
N f " = f + f c

f = ma • Same idea, but…

• Curvature (#) has to match.

• # depends on both a and v:

– the faster you’re going, the
faster you have to turn

• Calculate fc to yield a legal
combination of a and v

• Not as simple!

f

v

#

fc
f’

N

Now for the Algebra …

• Fortunately, there’s a general recipe for
calculating the constraint force

• First, a single constrained particle

• Then, generalize to constrained particle
systems

Representing Constraints

x = r cos $,sin $

I. Implicit:

II. Parametric:

C(x) = x - r = 0

Point-on-circle

SG3

Maintaining Constraints Differentially

• Start with legal position
and velocity.

• Use constraint forces to
ensure legal curvature.

0 legal position

0 legal velocity

0 legal curvature

C

C

C

=

=

=

&

&&

0C =

0C =&&

0C =&

Constraint Gradient

Implicit:

C(x) = x - r = 0

Differentiating C gives
a normal vector.

This is the direction
our constraint force
will point in.

Point-on-circle

C
N

x

!
=
!

C(x) = x - r = 0

Constraint Forces

Constraint force: gradient
vector times a scalar "

Just one unknown to solve
for

Assumption: constraint is
passive—no energy gain or
loss

Point-on-circle

cf N"=

Constraint Force Derivation

Set C = 0, solve for ":¨

Constraint force is "N.2

Notation: ,
C C

N N
x x t

! !
= =
! ! !

&

()

C N x

C N x
t

N x N x

= #

!
= #
!

= # + #

& &

&&

& & &&

cf f
x

m

+
=&&

cf N"=()()C x t

N x N f
m
N N N N

"
#

= $ $
#

& &

SG3

Maintaining Constraints Differentially

• Start with legal position
and velocity.

• Use constraint forces to
ensure legal curvature.

0 legal position

0 legal velocity

0 legal curvature

C

C

C

=

=

=

&

&&

0C =

0C =&&

0C =&

Constraint Gradient

Implicit:

C(x) = x - r = 0

Differentiating C gives
a normal vector.

This is the direction
our constraint force
will point in.

Point-on-circle

C
N

x

!
=
!

C(x) = x - r = 0

Constraint Forces

Constraint force: gradient
vector times a scalar "

Just one unknown to solve
for

Assumption: constraint is
passive—no energy gain or
loss

Point-on-circle

cf N"=

Constraint Force Derivation

Set C = 0, solve for ":¨

Constraint force is "N.2

Notation: ,
C C

N N
x x t

! !
= =
! ! !

&

()

C N x

C N x
t

N x N x

= #

!
= #
!

= # + #

& &

&&

& & &&

cf f
x

m

+
=&&

cf N"=()()C x t

N x N f
m
N N N N

"
#

= $ $
#

& &

SG3

Maintaining Constraints Differentially

• Start with legal position
and velocity.

• Use constraint forces to
ensure legal curvature.

0 legal position

0 legal velocity

0 legal curvature

C

C

C

=

=

=

&

&&

0C =

0C =&&

0C =&

Constraint Gradient

Implicit:

C(x) = x - r = 0

Differentiating C gives
a normal vector.

This is the direction
our constraint force
will point in.

Point-on-circle

C
N

x

!
=
!

C(x) = x - r = 0

Constraint Forces

Constraint force: gradient
vector times a scalar "

Just one unknown to solve
for

Assumption: constraint is
passive—no energy gain or
loss

Point-on-circle

cf N"=

Constraint Force Derivation

Set C = 0, solve for ":¨

Constraint force is "N.2

Notation: ,
C C

N N
x x t

! !
= =
! ! !

&

()

C N x

C N x
t

N x N x

= #

!
= #
!

= # + #

& &

&&

& & &&

cf f
x

m

+
=&&

cf N"=()()C x t

N x N f
m
N N N N

"
#

= $ $
#

& &

SG3

Maintaining Constraints Differentially

• Start with legal position
and velocity.

• Use constraint forces to
ensure legal curvature.

0 legal position

0 legal velocity

0 legal curvature

C

C

C

=

=

=

&

&&

0C =

0C =&&

0C =&

Constraint Gradient

Implicit:

C(x) = x - r = 0

Differentiating C gives
a normal vector.

This is the direction
our constraint force
will point in.

Point-on-circle

C
N

x

!
=
!

C(x) = x - r = 0

Constraint Forces

Constraint force: gradient
vector times a scalar "

Just one unknown to solve
for

Assumption: constraint is
passive—no energy gain or
loss

Point-on-circle

cf N"=

Constraint Force Derivation

Set C = 0, solve for ":¨

Constraint force is "N.2

Notation: ,
C C

N N
x x t

! !
= =
! ! !

&

()

C N x

C N x
t

N x N x

= #

!
= #
!

= # + #

& &

&&

& & &&

cf f
x

m

+
=&&

cf N"=()()C x t

N x N f
m
N N N N

"
#

= $ $
#

& &

SG4

Example: Point-on-circle

Write down the constraint
equation.

Take the derivatives.

Substitute into generic
template, simplify.

C = x - r

N =
!C

!x
 = x

x

N =
!2C

!x!t
 = 1

x
 x -

x"x
x"x

x

= -m
N"x

N"N
 -

N"f

N"N
 = m

()x"x 2

x"x
 - m()x"x - x"f 1

x

Drift and Feedback

• In principle, clamping at zero is enough

• Two problems:

– Constraints might not be met initially

– Numerical errors can accumulate

• A feedback term handles both problems:

C = - $C - %C, instead of

C = 0

C

$ and % are magic constants.

Tinkertoys

• Now we know how to simulate a bead on a wire.

• Next: a constrained particle system.

–E.g. constrain particle/particle distance to make
rigid links.

• Same idea, but…

Constrained particle systems

• Particle system: a point in state space.

• Multiple constraints:

– each is a function Ci(x1,x2,…)

– Legal state: Ci= 0, & i.

– Simultaneous projection.

– Constraint force: linear combination of
constraint gradients.

• Matrix equation.

SG4

Example: Point-on-circle

Write down the constraint
equation.

Take the derivatives.

Substitute into generic
template, simplify.

C = x - r

N =
!C

!x
 = x

x

N =
!2C

!x!t
 = 1

x
 x -

x"x
x"x

x

= -m
N"x

N"N
 -

N"f

N"N
 = m

()x"x 2

x"x
 - m()x"x - x"f 1

x

Drift and Feedback

• In principle, clamping at zero is enough

• Two problems:

– Constraints might not be met initially

– Numerical errors can accumulate

• A feedback term handles both problems:

C = - $C - %C, instead of

C = 0

C

$ and % are magic constants.

Tinkertoys

• Now we know how to simulate a bead on a wire.

• Next: a constrained particle system.

–E.g. constrain particle/particle distance to make
rigid links.

• Same idea, but…

Constrained particle systems

• Particle system: a point in state space.

• Multiple constraints:

– each is a function Ci(x1,x2,…)

– Legal state: Ci= 0, & i.

– Simultaneous projection.

– Constraint force: linear combination of
constraint gradients.

• Matrix equation.

SG5

Compact Particle System Notation

q: 3n-long state vector.

Q: 3n-long force vector.

M: 3n x 3n diagonal mass
matrix.

W: M-inverse (element- wise
reciprocal)

q = x1,x2, ,xn

Q = f1,f2, ,fn

M =

m1

m1

m1

mn

mn

mn

 W = M-1

 q = WQ

Particle System Constraint Equations

 C = C1,C2, ,Cm

! = !1,!2, ,!m

J =
"C

"q

J =
"2C

"q"t

 q = W Q + JT!

Matrix equation for !

Constrained Acceleration

More Notation

Derivation: just like bead-on-wire.

 JWJT ! = -Jq - JW Q

How do you implement all this?

• We have a global matrix equation.

• We want to build models on the fly, just like
masses and springs.

• Approach:

– Each constraint adds its own piece to
the equation.

Matrix Block
Structure

C

x i

x j

J

• Each constraint
contributes one or more
blocks to the matrix.

• Sparsity: many empty
blocks.

• Modularity: let each
constraint compute its
own blocks.

• Constraint and particle
indices determine block
locations.

"C

"x i

"C

"x j

SG5

Compact Particle System Notation

q: 3n-long state vector.

Q: 3n-long force vector.

M: 3n x 3n diagonal mass
matrix.

W: M-inverse (element- wise
reciprocal)

q = x1,x2, ,xn

Q = f1,f2, ,fn

M =

m1

m1

m1

mn

mn

mn

 W = M-1

 q = WQ

Particle System Constraint Equations

 C = C1,C2, ,Cm

! = !1,!2, ,!m

J =
"C

"q

J =
"2C

"q"t

 q = W Q + JT!

Matrix equation for !

Constrained Acceleration

More Notation

Derivation: just like bead-on-wire.

 JWJT ! = -Jq - JW Q

How do you implement all this?

• We have a global matrix equation.

• We want to build models on the fly, just like
masses and springs.

• Approach:

– Each constraint adds its own piece to
the equation.

Matrix Block
Structure

C

x i

x j

J

• Each constraint
contributes one or more
blocks to the matrix.

• Sparsity: many empty
blocks.

• Modularity: let each
constraint compute its
own blocks.

• Constraint and particle
indices determine block
locations.

"C

"x i

"C

"x j

Solving for the Constraint Force

Bead on a Wire General Case

Force Must be a Linear Combination
of Constraint Graidntes

Bead on a Wire General Case

Final Solution for the λ Multipliers

Bead on a Wire General Case

SG5

Compact Particle System Notation

q: 3n-long state vector.

Q: 3n-long force vector.

M: 3n x 3n diagonal mass
matrix.

W: M-inverse (element- wise
reciprocal)

q = x1,x2, ,xn

Q = f1,f2, ,fn

M =

m1

m1

m1

mn

mn

mn

 W = M-1

 q = WQ

Particle System Constraint Equations

 C = C1,C2, ,Cm

! = !1,!2, ,!m

J =
"C

"q

J =
"2C

"q"t

 q = W Q + JT!

Matrix equation for !

Constrained Acceleration

More Notation

Derivation: just like bead-on-wire.

 JWJT ! = -Jq - JW Q

How do you implement all this?

• We have a global matrix equation.

• We want to build models on the fly, just like
masses and springs.

• Approach:

– Each constraint adds its own piece to
the equation.

Matrix Block
Structure

C

x i

x j

J

• Each constraint
contributes one or more
blocks to the matrix.

• Sparsity: many empty
blocks.

• Modularity: let each
constraint compute its
own blocks.

• Constraint and particle
indices determine block
locations.

"C

"x i

"C

"x j

SG4

Example: Point-on-circle

Write down the constraint
equation.

Take the derivatives.

Substitute into generic
template, simplify.

C = x - r

N =
!C

!x
 = x

x

N =
!2C

!x!t
 = 1

x
 x -

x"x
x"x

x

= -m
N"x

N"N
 -

N"f

N"N
 = m

()x"x 2

x"x
 - m()x"x - x"f 1

x

Drift and Feedback

• In principle, clamping at zero is enough

• Two problems:

– Constraints might not be met initially

– Numerical errors can accumulate

• A feedback term handles both problems:

C = - $C - %C, instead of

C = 0

C

$ and % are magic constants.

Tinkertoys

• Now we know how to simulate a bead on a wire.

• Next: a constrained particle system.

–E.g. constrain particle/particle distance to make
rigid links.

• Same idea, but…

Constrained particle systems

• Particle system: a point in state space.

• Multiple constraints:

– each is a function Ci(x1,x2,…)

– Legal state: Ci= 0, & i.

– Simultaneous projection.

– Constraint force: linear combination of
constraint gradients.

• Matrix equation.

SG5

Compact Particle System Notation

q: 3n-long state vector.

Q: 3n-long force vector.

M: 3n x 3n diagonal mass
matrix.

W: M-inverse (element- wise
reciprocal)

q = x1,x2, ,xn

Q = f1,f2, ,fn

M =

m1

m1

m1

mn

mn

mn

 W = M-1

 q = WQ

Particle System Constraint Equations

 C = C1,C2, ,Cm

! = !1,!2, ,!m

J =
"C

"q

J =
"2C

"q"t

 q = W Q + JT!

Matrix equation for !

Constrained Acceleration

More Notation

Derivation: just like bead-on-wire.

 JWJT ! = -Jq - JW Q

How do you implement all this?

• We have a global matrix equation.

• We want to build models on the fly, just like
masses and springs.

• Approach:

– Each constraint adds its own piece to
the equation.

Matrix Block
Structure

C

x i

x j

J

• Each constraint
contributes one or more
blocks to the matrix.

• Sparsity: many empty
blocks.

• Modularity: let each
constraint compute its
own blocks.

• Constraint and particle
indices determine block
locations.

"C

"x i

"C

"x j

SG5

Compact Particle System Notation

q: 3n-long state vector.

Q: 3n-long force vector.

M: 3n x 3n diagonal mass
matrix.

W: M-inverse (element- wise
reciprocal)

q = x1,x2, ,xn

Q = f1,f2, ,fn

M =

m1

m1

m1

mn

mn

mn

 W = M-1

 q = WQ

Particle System Constraint Equations

 C = C1,C2, ,Cm

! = !1,!2, ,!m

J =
"C

"q

J =
"2C

"q"t

 q = W Q + JT!

Matrix equation for !

Constrained Acceleration

More Notation

Derivation: just like bead-on-wire.

 JWJT ! = -Jq - JW Q

How do you implement all this?

• We have a global matrix equation.

• We want to build models on the fly, just like
masses and springs.

• Approach:

– Each constraint adds its own piece to
the equation.

Matrix Block
Structure

C

x i

x j

J

• Each constraint
contributes one or more
blocks to the matrix.

• Sparsity: many empty
blocks.

• Modularity: let each
constraint compute its
own blocks.

• Constraint and particle
indices determine block
locations.

"C

"x i

"C

"x j

SG6

Global and Local

C

 ! fc

x

v

f
m

x

v

f
m

Constraint

Global Stuff

J J&

C&

Constraint Structure

x

v

f

m

x

v

f
m

p2

p1

C = x1 - x2 - r

"C

"x1

,
"C

"x2

"2C

"x1"t
,
"2C

"x2"t

 C C

Distance Constraint

Each constraint
must know how
to compute these

Constrained Particle Systems

x

v

f

m

x

v

f

m

…

x

v

f

m

particles n time forces nforces

… FFF F F

consts nconsts

CCCCC …

Added Stuff

Modified Deriv Eval Loop

… FFF F F

Clear Force
Accumulators

Apply forces

x

v

f

m

x

v

f

m

…

x

v

f

m

x

v

f
m

x

v

f
m

…

x

v

f
m

Return to solver

1

2

4
CCCCC …

Compute and apply
Constraint Forces

3

Added Step

SG6

Global and Local

C

 ! fc

x

v

f
m

x

v

f
m

Constraint

Global Stuff

J J&

C&

Constraint Structure

x

v

f

m

x

v

f
m

p2

p1

C = x1 - x2 - r

"C

"x1

,
"C

"x2

"2C

"x1"t
,
"2C

"x2"t

 C C

Distance Constraint

Each constraint
must know how
to compute these

Constrained Particle Systems

x

v

f

m

x

v

f

m

…

x

v

f

m

particles n time forces nforces

… FFF F F

consts nconsts

CCCCC …

Added Stuff

Modified Deriv Eval Loop

… FFF F F

Clear Force
Accumulators

Apply forces

x

v

f

m

x

v

f

m

…

x

v

f

m

x

v

f
m

x

v

f
m

…

x

v

f
m

Return to solver

1

2

4
CCCCC …

Compute and apply
Constraint Forces

3

Added Step

SG6

Global and Local

C

 ! fc

x

v

f
m

x

v

f
m

Constraint

Global Stuff

J J&

C&

Constraint Structure

x

v

f

m

x

v

f
m

p2

p1

C = x1 - x2 - r

"C

"x1

,
"C

"x2

"2C

"x1"t
,
"2C

"x2"t

 C C

Distance Constraint

Each constraint
must know how
to compute these

Constrained Particle Systems

x

v

f

m

x

v

f

m

…

x

v

f

m

particles n time forces nforces

… FFF F F

consts nconsts

CCCCC …

Added Stuff

Modified Deriv Eval Loop

… FFF F F

Clear Force
Accumulators

Apply forces

x

v

f

m

x

v

f

m

…

x

v

f

m

x

v

f
m

x

v

f
m

…

x

v

f
m

Return to solver

1

2

4
CCCCC …

Compute and apply
Constraint Forces

3

Added Step

SG6

Global and Local

C

 ! fc

x

v

f
m

x

v

f
m

Constraint

Global Stuff

J J&

C&

Constraint Structure

x

v

f

m

x

v

f
m

p2

p1

C = x1 - x2 - r

"C

"x1

,
"C

"x2

"2C

"x1"t
,
"2C

"x2"t

 C C

Distance Constraint

Each constraint
must know how
to compute these

Constrained Particle Systems

x

v

f

m

x

v

f

m

…

x

v

f

m

particles n time forces nforces

… FFF F F

consts nconsts

CCCCC …

Added Stuff

Modified Deriv Eval Loop

… FFF F F

Clear Force
Accumulators

Apply forces

x

v

f

m

x

v

f

m

…

x

v

f

m

x

v

f
m

x

v

f
m

…

x

v

f
m

Return to solver

1

2

4
CCCCC …

Compute and apply
Constraint Forces

3

Added Step

SG7

Constraint Force Eval

• After computing ordinary forces:

– Loop over constraints, assemble

global matrices and vectors.

– Call matrix solver to get !, multiply

by to get constraint force.

– Add constraint force to particle

force accumulators.

JT

Impress your Friends

• The requirement that constraints not add or

remove energy is called the Principle of

Virtual Work.

• The !’s are called Lagrange Multipliers.

• The derivative matrix, J, is called the

Jacobian Matrix.

A whole other way to do it.

x = r cos ",sin "

I. Implicit:

II. Parametric:

C(x) = x - r = 0

Point-on-circle

"

x

Parametric Constraints

x = r cos ",sin "

Point-on-circle

"

x

• Constraint is always
met exactly.

• One DOF: ".

• Solve for ."

Parametric:

SG7

Constraint Force Eval

• After computing ordinary forces:

– Loop over constraints, assemble

global matrices and vectors.

– Call matrix solver to get !, multiply

by to get constraint force.

– Add constraint force to particle

force accumulators.

JT

Impress your Friends

• The requirement that constraints not add or

remove energy is called the Principle of

Virtual Work.

• The !’s are called Lagrange Multipliers.

• The derivative matrix, J, is called the

Jacobian Matrix.

A whole other way to do it.

x = r cos ",sin "

I. Implicit:

II. Parametric:

C(x) = x - r = 0

Point-on-circle

"

x

Parametric Constraints

x = r cos ",sin "

Point-on-circle

"

x

• Constraint is always
met exactly.

• One DOF: ".

• Solve for ."

Parametric:

Question
• How could you simulate hair?

• What are the salient properties of hair
you’re trying to simulate?

