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Particle Dynamics

from Zoran Popovic




Overview

One lousy particle
Particle systems
Forces: gravity, springs

Implementation




Newtonian particle

e Differential equations: f=ma
* Forces depend on:

e Position, velocity, time




Second order equations

Has 2™ derivatives

U Add a new variable v to get
/ (LIZ‘ , T ) a pair of coupled 15 order equations

™m




Phase space

Concatenate x and v to make a 6-vector:
position in phase space

Velocity on Phase space:

Another 6-vector

1 A vanilla 1%%-order differential equation




Particle structure

| +— position
+«——— velocity

<—— force accumulator
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Solver interface
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Particle systems




Solver interface

time

get/setState oetDim

derivEval




Differential equation solver

v

Jim

T
v

Euler method: x(z+h) = x(¢) + h- &)

X, =X +VI-T

l

V., =V, +Vt U

Gets very unstable for large Vt

Higher order solvers perform better: (e.g. Runge-Kutta)




derivEval loop

1. Clear forces

— Loop over particles, zero force accumulators

2. Calculate forces

— Sum all forces into accumulators

3. (Gather

— Loop over particles, copying v and {/m into destination array




Forces

Constant (gravity)

Position/time dependent (force fields)
Velocity-dependent (drag)

N-ary (springs)




Force structures

Force objects are black boxes that point to the particles they
influence, and add in their contribution into the force
accumulator.

Global force calculation:

e Loop, invoking force objects




Particle systems with forces




Gravity

Force law:
f =mG

grav




Viscous drag

Force law:
f, =-k, v

drag drag

p->f -= F->k * p->v




Damped spring

Force law:

Vv Vx E
‘VX‘ ‘VX‘

k,([VX|-1) + &,

r = rest length




derivEval Loop

X
Vv
f
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e N Apply forces

Clear force accumulators ,
/ to particles

Return [v.f/m,...]
to solver




Solver interface

ime

get/setState oetDim

derivEval




Differential equation solver

oy

Euler method: T




Bouncing oft the walls

 Add-on for a particle simulator

 For now, just simple point-plane
collisions




Normal and tangential components

V, =(N-V)N
V. =V -V,




Collision Detection

(X-P)-N < ¢ Within e of the wall
N-V <0 Heading in




Collision Response

before




Summary

Physics of a particle system

Various forces acting on a particle

Combining particles into a particle system
Euler method for solving differential equations




Implicit Integration

pavia baraii;

P s X A R
ANIMATION STUDIOS




“Give me Stability
or
Give me Death™

— Baratf’s other motto



stability is all stability is all stability is alli

* [f your step size is too big, your sitmulation
blows up. It isn’t pretty.

* Sometimes you have to make the step size so
small that you never get anyplace.

* Nasty cases: cloth, constrained systems.



stability is all stability is all stability is alli

* [f your step size is too big, your sitmulation
blows up. It isn’t pretty.

* Sometimes you have to make the step size so
small that you never get anyplace.

* Nasty cases: cloth, constrained systems.
* Solutions:
—Now: use explosion-resistant methods.

—[ater: reformulate the problem.



A very simple equation

A 1-D particle governed by x = —kx where k is
a stiffness constant.




<7 M I N S S /F\J\
s —— .

Euler’'s method has a speed Iimit

h > 2/k: explode!

h > 1/k: oscillate.



Stiff Equations

* In more complex systems, step size 1s limited
by the largest k. One stiff spring can screw it
up for everyone else.

* Systems that have some big £’s mixed in are
called stiff systems.




A Stiff Energy Landscape




Example: particle-on-line

* A particle P in the plane.

* |nteractive “dragging”

force [f, . f,].

* A penalty force [0,—ky]
tries to keep P on the x-
axis.




Example: particle-on-line

* A particle P in the plane.

* |nteractive “dragging”

force [f, . f,].

* A penalty force [0,—ky]
tries to keep P on the x-
axis.

* Suppose you want P to stay within a miniscule ¢ of the
x-axis when you try to pull it off with a huge force f ...

» How big does k have to be? How small must /i be?



Really big k. Really small h.




Really big k. Really small h.

Answer: h has to be so small that P will
never move more than & per step.

Result: Your sitmulation grinds to a halt.




Explicit Integration




siicit Integrati




(Explicit) Euler Method

x(ty + ) = x(ty) + hx(1)



Implicit Euler Method

x(ty + ) = x(1y) + hx(ty + Ar)



Implicit Integration

\



Implicit Integration




Implicit Euler

o



One Step: Implicit vs. Explicit

Correct Solution: x(h) = ek
|

1 +hk
Explicit Euler Step: x(h)=1-hk

Implicit Euler Step: x(h) =




Large Systems

7)

—X(1)=X(1) = f(X()

AX (1) = hX(1g + Af) = £ (X(z, + Ar))
= 11 f(X(1) + AX(t))



(Linearized) Implicit Integration

X(1) = f(X(1))

AX = h f(X, + AX)

( of
AX h\f(XO) (ax) |




Single-Step Implicit Euler Method

AX h(f(XO)+ Y ax
\ Iy

e
(I—haX(X(tO))

Vo

AX = hX(t())

nxn Sparse matrix



i Solving LargeiSystems i

1L

v

o Watiix Structure reilects [orce coupling:
(Z)threntry exasts it /= depends on Xj

- o' Conjugate gradienba 200d first CHOICE

i h
III
# L

e [sthis a lot of work:



Questions

e Consider the system:

e What would happen if you solved x;
explicitly and x; implicitly?



Reading for Next Monday

e Read Implicit Methods for Differential
Equations

e (on the website)



