Rendering for scientific imaging applications

15-468, 15-668, 15-868
Physics-based Rendering
raphics.cs.cmu.edu/courses Spring 2025, Lecture 16



https://graphics.cs.cmu.edu/courses/15-468

Course announcements

We're all done with homework!



Overview of today’s lecture

Rendering continuous refraction.

GRIN optics.

Rendering the refractive radiative transfer equation.
Acousto-optics.

Rendering speckle.

Fluorescence microscopy.



Slide credits

Many of these slides were directly adapted from:

e Adithya Pediredla (CMU).
e Arjun Teh (CMU).
e Chen Bar (Technion).
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Nonlinear Ray Tracing

77(X) . refractive index of the volume at location, X



Nonlinear Ray Tracing



Nonlinear Ray Tracing

Vi=Vi_1+n0i-1Vni—1At




Nonlinear Ray Tracing

min ||%x — x¢[|?



Nonlinear Ray Tracing




Nonlinear Ray Tracing in reverse
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Optimizing Gradient-Index (GRIN) Optics

A

Luneburg Lens GRIN Fiber




Luneburg Lens

n(z) = /2 — ||z

[Luneburg, R. K. 1944]



Luneburg Lens




Luneburg Lens







Luneburg Lens
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Optimizing Gradient-Index (GRIN) Optics



GRIN Fiber

https://en.wikipedia.org/wiki/Optical_fiber



GRIN Fiber

Modal dispersion
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Multiview Display
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unbiased techniques for scientific imaging

experimental experimental
hardware capture photon mapping  unbiased (ours)
camera \,L “ | “‘ '
ultrasonigy il
) «




2

m(solution 2)
1. background on refractive radiative transfer equation 2. direct connections: our solution to unbiased rendering

measurements BDPT (ours)

ed
e
function

3. acceleration techniqgues 4. experiments



1. background on refractive radiative transfer equation



continuous refraction and no scattering

Hamilton’s equations for refractive ray tracing

dv
E — Vxn(x)
dx v

ds ~ n(x)




continuous refraction and no scattering

solved using symplectic integration




scattering and no continuous refraction

radiative transfer equation (RTE)

dL
ds
| Usf (w', w)Ldw'
AT (@',

= 0OqLe — (O-a US)L




scattering and no continuous refraction

solved using Monte Carlo integration




scattering and no continuous refraction

bidirectional path tracing (BDPT):
1.trace a random sensor subpath
2.trace a random emitter subpath

3.join vertices with a straight line




continuous refraction and scattering

bidirectional path tracing (BDPT):

1.trace a random sensor subpath
use refractive ray tracing

2.trace a random emitter subpath




2

m(solution 2)
2. direct connections: our solution to unbiased rendering



direct connections

we have to solve this:
dv — Von(x) dx v
ds XM qs T n(x)

boundary conditions: x;, x¢

boundary value problem (BVP)

we know how to solve this:

C.v_v (%) dx_ %
ds XM ds n(x)

boundary conditions: x;, v;

initial value problem (IVP),
a.k.a. refractive ray tracing



direct connections

error(xf,xl-, Ui) = m‘L}onf — IVP(xi'vi; T)Hz

we have to solve this:
dv — Von(x) dx v
ds XM qs T n(x)

boundary conditions: x;, x¢

boundary value problem (BVP)

we know how to solve this:

C.v_v (%) dx_ %
ds XM ds n(x)

boundary conditions: x;, v;

initial value problem (IVP),
a.k.a. refractive ray tracing



direct connections

we have to solve this:

n}]iin error(xf, X;, vi)

boundary conditions: x;, x¢

boundary value problem (BVP)

we know how to solve this:

C.v_v (%) dx_ %
ds XM ds n(x)

boundary conditions: x;, v;

) C el
error(xf,xl-,vi) = mionf — IVP(x;, v;; T)H initial value problem (IVP),
t a.k.a. refractive ray tracing




direct connections

we have to solve this:

n}]iin error(xf, X;, vi)

boundary conditions: x;, x¢

boundary value problem (BVP)
differentiable

dv
ds

differentiable boundary conditions: x;, v;

initial value problem (IVP),
a.k.a. refractive ray tracing




direct connections




multiple direct connections

total throughput = z throughput(solution)
all solutions
approach 1:
exhaustively enumerate all solutions

.
<‘ 2

m(solution 2)




multiple direct connections

total throughput = z throughput(solution)

all solutions

impractical

approach 2:
unbiased single-sample Monte Carlo

X
d 1. randomly sample initial direction
2. solve BVP

m(solution 2) 3. form estimate

throughput(solution)

total throughput =
otal throughpu probability(solution)

set of initial directions that converge to the solution

Zeltner et al. “Specular manifold sampling for rendering high-frequency caustics and glints”, TOG 2020



3. acceleration techniques




acceleration: sphere tracing

standard ray tracing

ray-mesh .
intersection test "

"’
‘0
‘0
O/i R

refractive ray tracing

switch to
standard tests

does not introduce bias



measurements

BDPT (ours)

photon

4. experiments




continuously refractive media and scattering

real scene

set up

light propagation-




Luneburg lenses

n(x)

https://en.wikipedia.org/wiki/Luneburg_lens



equal to
standard >
lens

rendering
time: 10 mins




comparison with photon mapping

BDPT (ours) photon mapping photon mapping
(default parameters) (optimized parameters)

BDPT is 5x faster than photon mapping rendering time: 10 min




transient rendering (videos)

constant refractive index continuous refractive index










transient rendering

constant refractive index continuous refractive index

Time:1.54 ns

Time:1.54 ns

®




transient rendering

constant refractive index

continuous refractive index

Time:2.50 ns

Time:2.50 ns




virtual ultrasonic waveguides




virtual ultrasonic waveguides

virtual GRIN
waveguide

__, ultrasonic
array

Chamanzar et al. “Ultrasonic sculpting of virtual optical waveguides in tissue”. Nature communications, 2019
Scopelliti et al. “Ultrasonically sculpted virtual relay lens for in situ microimaging”. Light: Science and Applications, 2019

Karimi et al. “In situ 3D reconfigurable ultrasonically sculpted optical beam paths”. Optics express, 2019
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In situ 3D reconfigurable ultrasonically sculpted optical beam paths”. Optics express, 2019



Rendering acousto-optics

setup for ultrasonic
lensing in scattering

real capture our algorithm previous algorithm

[Pediredla et al. Transactions on Graphics 2020]



Ultrasonic light guiding |

- A
camera dar ‘

ultrasonic

.
133 T <48 !
=

nside tissue

High-dimensional, highly-non-linear
design problem:

ultrasound frequency
ultrasound voltage

shape of waveguides
placement of transducers
sensor size

and more...

Guiding performance strongly affected
by different parameter values

Painstaking experiments:

several hours of work to test
one set of parameter values



Optimizing ultrasonic GRIN waveguides

* Hundreds of thousands of virtual experiments.

50 %
Each dot on these

graphs would have
been a real
experiment taking a
PhD student a full
day’s work

waveguide length

ultrasound frequency

light throughput improvement

0%

ultrasound voltage ultrasound voltage

[Pediredla et al., submitted to Nature Communications 2021]



Improved light guiding in human bladder

simulations real data
50 ' .
8.4 MHz — An=7.72x10"
40| /. —20.25 MHz-An=11.99x10* S 20 120
X \ —30.52 MHz - An=14.72x10"* S %
= S 10 ; 110
& . &
S 20| 3 i/l
c | s O 10
g | T
-10 1-10
0 1 i i 4.7
0 target radius (um) 100 optical thickness (HTMFPs)

ideal lens GRIN waveguide

1102 Improved light guiding performance by

|  200% compared to unoptimized waveguides
| * 50% compared to external optics

10*  Simulation predictions verified experimentally

irradiance (a. u.)

[Pediredla et al., submitted to Nature Communications 2021]



Speckle and memory effect

like pattern

what real laser
images look like

what standard
rendered images
look like

speckle: noise-

projected
speckle image

scattering
volume

laser beam




Applications and Related Work

2
0:10.1038/nature 11578
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SimUIating SpECkles In graphics we describe
materials by statistical

inefficient
_ bulk parameters, as
’\-> Specify exact (sub-wavelength) ﬁ? the density of scatterers
position of scatterers

4
solve wave
equations %
SCaf"‘?éed Iy mination
B T , >
views B cons ="
Coherent o
Slow or tiny
Wave equation solvers sical only 10 dig o sty Fatiang
: : : C . Scattering medium is 2D
+ Differential equation F Pra a\\V hin me Sensor is 1D

* Integral equation (e.g.,| Of OD“C Speckle pattern is 1D

69



G Advantad®

2. input IS % or tan Standard intensity MC

Monte Carlo (MC) Simulation of Speckles

Monte Carlo Modeling of Light
Transport in Multi-layered Tissues,
Wang & Jacques, 1992
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Wave Solution v.s. Monte Carlo

scatterers ‘ 2]

scatterers :
Intensity = Egcatterers ”u
Scattered Light

N
PN No nr Speckjes

" Y Memory Effe.,

Intensity

veiws
A
4 2 2 2\
Scattered
Intensity |w|? + + ecece +

t ¢ t
Sample S A o oo T
scatterers | R

MC requires the scatterers density — no need for exact positions
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Speckle Statistics

Speckles Sufficig,

nts tt’Slcs
W\/\/\va N (Mean, Covariance)

]Rn

Intensity Mean = E ararepeiiit

cC1Clo I_I

[

' J Incoherent —
Summation e

1st moment

View; VIEW j

Ss-lllumination . . :
' i ight,,scatt ight,,scatt
eld Covariance = E¢.atterers [u ighty scatterers . light;,scatterers
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2" Moment - Covariance

scatterers Covariance scatterers | scatterers*]

= Escatterers [uviewi Uview;

4 I 4

Scattered
Field
u

M \!/ N

Sample R ‘ o . o o .
scatterers . K .
. 73




Cross —illumination statistics

scatterers Scatterers Scatterers

» sample sample

Memory Effect:
tilting illumination results in highly correlated shifted speckles

Next: Cross lllumination Covariance
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Cross —illumination statistics

scatterers light,,scatterers lightz,scatterers*]

Vler

— Covariance, = Egcatterers [u
1al shift =

iift

vV V\

|

’ = 0 g
Scattered ¥ ° . ’j@;‘ | 9 ]
uiizlgtz / ) ) 'QU V\/W\/

t t

0 °  § R
SEI[E ) . : . oo .
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Monte Carlo Rendering 101

Image = | f(path)

paths ZThroughput that acts on
each path, depends on
the scattering material

volumetric density
(extinction coefficient) | g

scattealer ibedo | a

phase function |Pg

view 76



Covariance Rendering

ight, Covariance = fu(patm) - u*(path,)

path,,path, .
| u=ul e’ phase
light,

Need to consider products of pairs of paths

Each path contributes a complex number u

phase « Length ( path)

path. :
Iight11 > view, A phase « Length ( path, ) - Length ( path, )
path, :

View;, view, light, > view, .



light,

path, :
light, = view,

view,

Covariance Rendering

view,

Image = f f(path)

paths

path, = path,
2

Same complex contribution
u(path,) = u(path,)

1
A phase = 0 Real

o r

path, :u(path) - u*(path) = f (path)
light, = view,
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Covariance rendering

Covariance = fu(path1) - u*(path,)

path,,path, .
u=ul e’ phase
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Covariance rendering

“ghtzl Covariance

- | u(patn,)- u(patny

path,,path,
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Covariance rendering

“ghtzl Covariance

- | u(patn,)- u(patny

path,,path,
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Covariance rendering
Iightzl Covariance = fu(path1) - u*(path,)

path,,path,
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Covariance rendering
Iightzl Covariance = fu(path1) - u*(path,)

path,,path,
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Covariance rendering
Iightzl Covariance = fu(path1) - u*(path,)

path,,path,
Im
A
O
© @
Integral
e . — Re
O
O
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Covariance rendering

”ghtZI Covariance = fu(path1)-u*(path2)

path,,path,
A
© © Real
o) O— Re
O
O
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Covariance rendering

“ghtzl Covariance

- | u(patn,)- u(patny

path,,path,
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Covariance rendering

“ghtzl Covariance

- | u(patn,)- u(patny

path,,path,

87



Covariance rendering

“ghtzl Covariance

- | u(patn,)- u(patny

path,,path,
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Covariance rendering

“ghtzl Covariance

- | u(patn,)- u(patny

path,,path,

Integral

Re
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d
rnance rendering

ce =
u(path
1) ° u*
path,

path,,path,
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Validation: Wave Equation Covariances v.s. MC

; llghtl = (° hghtl = (° hghtl =0° ClaSSiCaI ME
2 light, = 0° light, = 4° light, = 20° holds fo,
r elative/y
_ S
g Setup mall angles
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takes days ¢
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> view j change in
. .
Several &
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minutes ‘g’
= | new types
explored

correlations
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Phase Function
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based on diffusion
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Summary

Efficient MC Rendering

Problem: Path-integral formulation

Coherent Scattering for speckle covariance

Speckle & & 3« WEL. Covariance =J u(path,) - u*(path,)
Image ", N 1V '
’ path,,path,

Speckle
Covariance

Memory Effect Evaluation

1

= =

Coherent
Laser Scattering

08¢

06

04r

Potentially improve

imaging applications that 002 003 004 005
9 g cg

rely on speckle statistics
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Speckle-based fluorescence microscopy

autocorrelation B
fluorescent and phase
particles retrieval >
scattering microscope captured scattering-
sample objective image \ free image

Performance strongly depends on:
speckle statistics

* Image priors

e tissue parameters

[Pls: Gkioulekas, Levin]



Better algorithms for fluorescence microscopy

groundtruth input image prior algorithm our algorithm
- IJ . \_' 3
;
\ '
-
{« .
) pu o ¢ ' \-— = # -
- - ‘.), - ‘; -"%‘ 4 -
O -
e
o ,

[Alterman et al. Transactions on Graphics 2021]



Acquisition of scattering materials

Use differentiable speckle rendering to recover material parameters from speckle images

acquisition camera

material samples
* records speckle
correlations

motorized sample mount

8 degrees of freedom

rotating illuminator

high-power coherent

monochromatic laser
two laser beams

at 4° separation

Optical fiber = = =
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