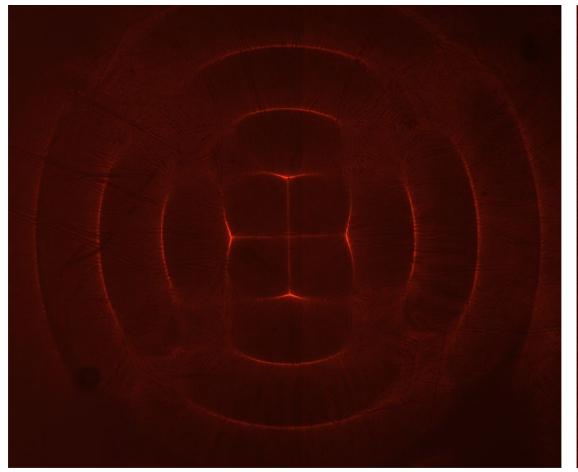
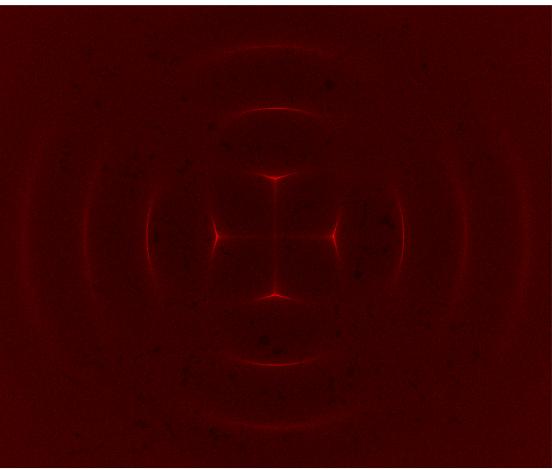
Rendering for scientific imaging applications





15-468, 15-668, 15-868 Physics-based Rendering Spring 2025, Lecture 16

Course announcements

We're all done with homework!

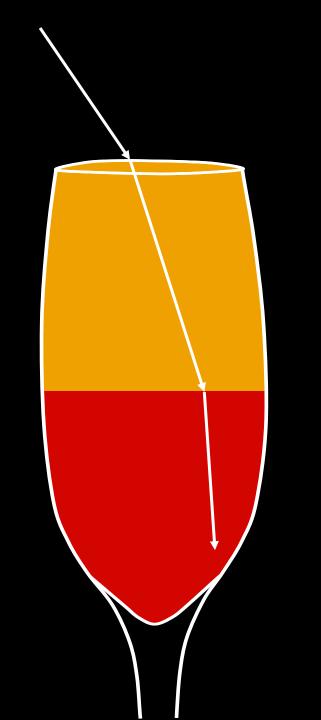
Overview of today's lecture

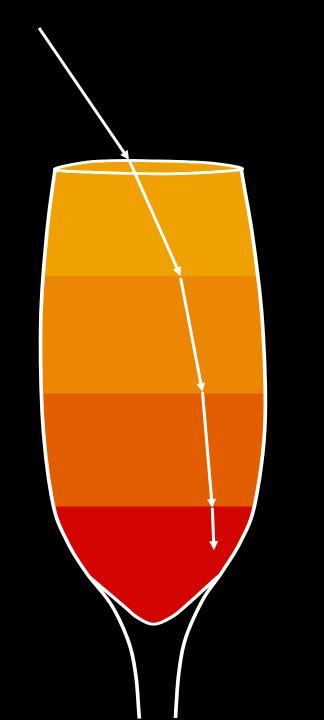
- Rendering continuous refraction.
- GRIN optics.
- Rendering the refractive radiative transfer equation.
- Acousto-optics.
- Rendering speckle.
- Fluorescence microscopy.

Slide credits

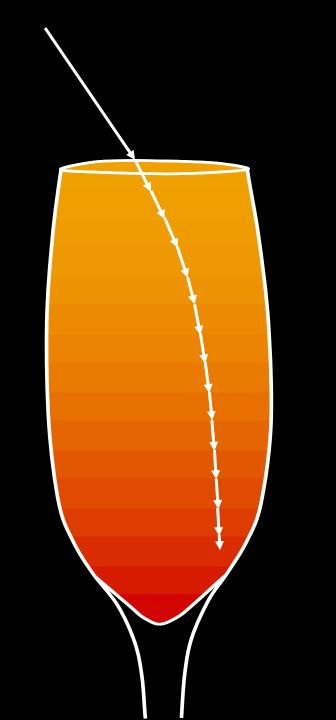
Many of these slides were directly adapted from:

- Adithya Pediredla (CMU).
- Arjun Teh (CMU).
- Chen Bar (Technion).

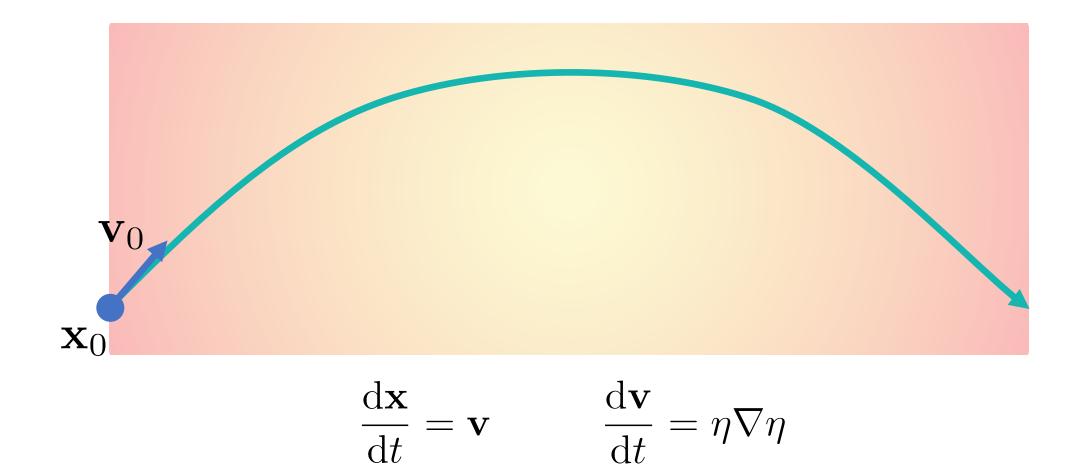


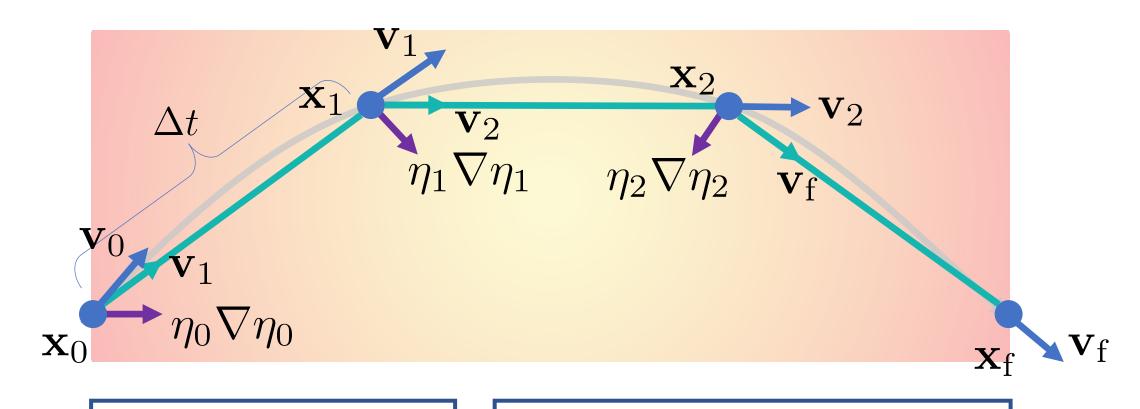






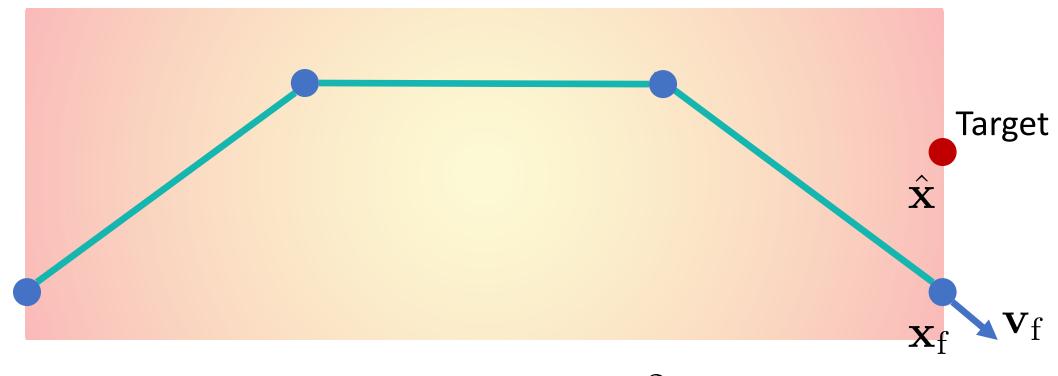
 $\eta(\mathbf{x})$: refractive index of the volume at location, \mathbf{X}



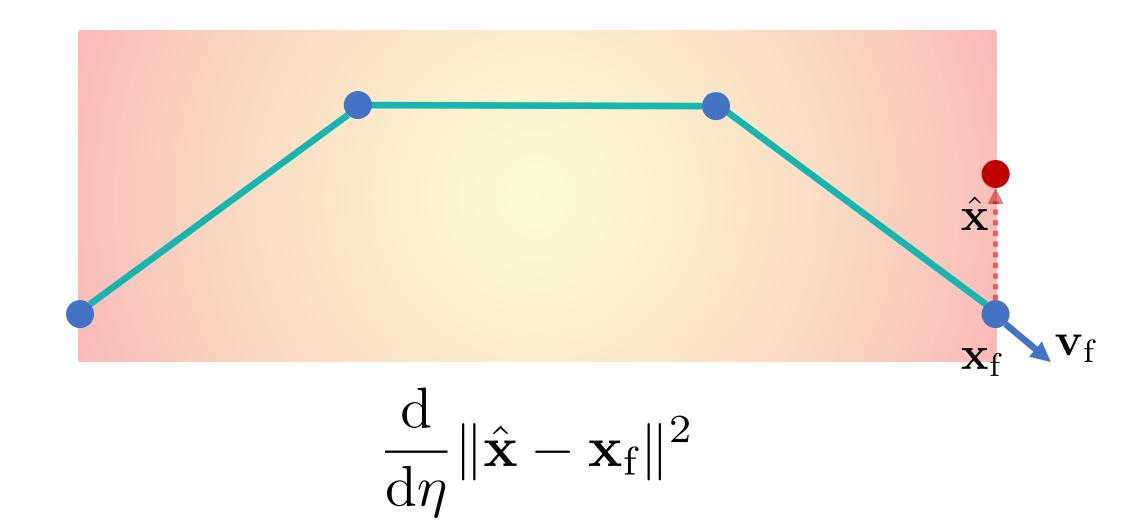


$$\mathbf{x}_i = \mathbf{x}_{i-1} + \mathbf{v}_i \Delta t$$

$$\mathbf{v}_i = \mathbf{v}_{i-1} + \eta_{i-1} \nabla \eta_{i-1} \Delta t$$



$$\min_{\eta} \|\hat{\mathbf{x}} - \mathbf{x}_{\mathrm{f}}\|^2$$



Nonlinear Ray Tracing in reverse

$$\min_{\eta} \sum_{i=1}^{N} \mathcal{F}_{i} \left[\iint_{(\mathbf{x}_{0}, \mathbf{v}_{0}) \in \Omega} C_{i} \left(\mathbf{x} \left(\sigma_{f}; \eta, \mathbf{x}_{0}, \mathbf{v}_{0} \right), \mathbf{v} \left(\sigma_{f}; \eta, \mathbf{x}_{0}, \mathbf{v}_{0} \right) \right) d\mathbf{x}_{0} d\mathbf{v}_{0} \right]
\text{s.t. } \dot{\mathbf{x}} \left(\sigma; \eta, \mathbf{x}_{0}, \mathbf{v}_{0} \right) = \mathbf{v}, \quad \forall \sigma \in [0, \sigma_{f}],
\dot{\mathbf{v}} \left(\sigma; \eta, \mathbf{x}_{0}, \mathbf{v}_{0} \right) = \eta \nabla \eta, \quad \forall \sigma \in [0, \sigma_{f}],
\mathbf{x} \left(0; \eta, \mathbf{x}_{0}, \mathbf{v}_{0} \right) = \mathbf{x}_{0},
\mathbf{v} \left(0; \eta, \mathbf{x}_{0}, \mathbf{v}_{0} \right) = \mathbf{v}_{0},$$

$$(15)$$

$$\dot{\lambda} = -\left(\nabla \eta \left(\nabla \eta\right)^{\top} + \eta \operatorname{Hess}\left(\eta\right)\right) \mu, \qquad \forall \sigma \in \left[0, \sigma_{f}\right] \quad (19)$$

$$\dot{\mu} = -\lambda, \qquad \forall \sigma \in [0, \sigma_f]$$
 (20)

$$\lambda \left(\sigma_f \right) = \frac{\partial C}{\partial \mathbf{x}},\tag{21}$$

$$\mu\left(\sigma_f\right) = \frac{\partial C}{\partial r}.\tag{22}$$

$$\mathbf{x}_{i-1} = \mathbf{x}_i - \mathbf{v}_i \Delta \sigma, \tag{28}$$

$$\mathbf{v}_{i-1} = \mathbf{v}_i - \eta \left(\mathbf{x}_{i-1} \right) \nabla \eta \left(\mathbf{x}_{i-1} \right) \Delta \sigma, \tag{29}$$

$$\lambda_{i-1} = \lambda_i$$

$$+\left(\nabla\eta\left(\mathbf{x}_{i-1}\right)\left(\nabla\eta\left(\mathbf{x}_{i-1}\right)\right)^{\top}+\eta\left(\mathbf{x}_{i-1}\right)\operatorname{Hess}\left(\eta\left(\mathbf{x}_{i-1}\right)\right)\right)\mu_{i}\Delta\sigma,$$

(30)

$$\mu_{i-1} = \mu_i + \lambda_{i-1} \Delta \sigma. \tag{31}$$

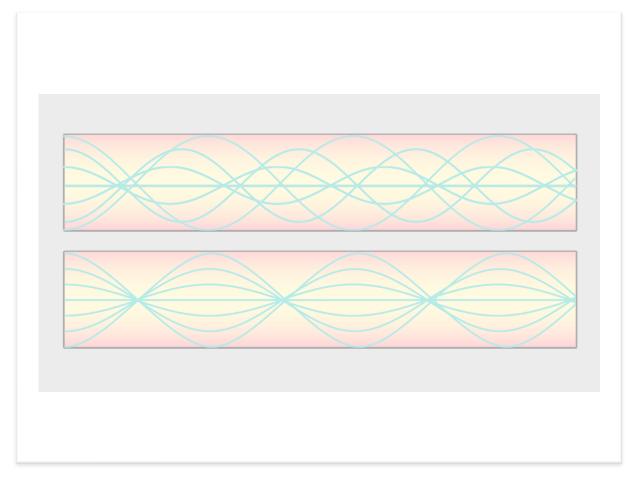
 $\eta \nabla \eta$

 $\eta \nabla \eta$

 $\eta \vee \eta$

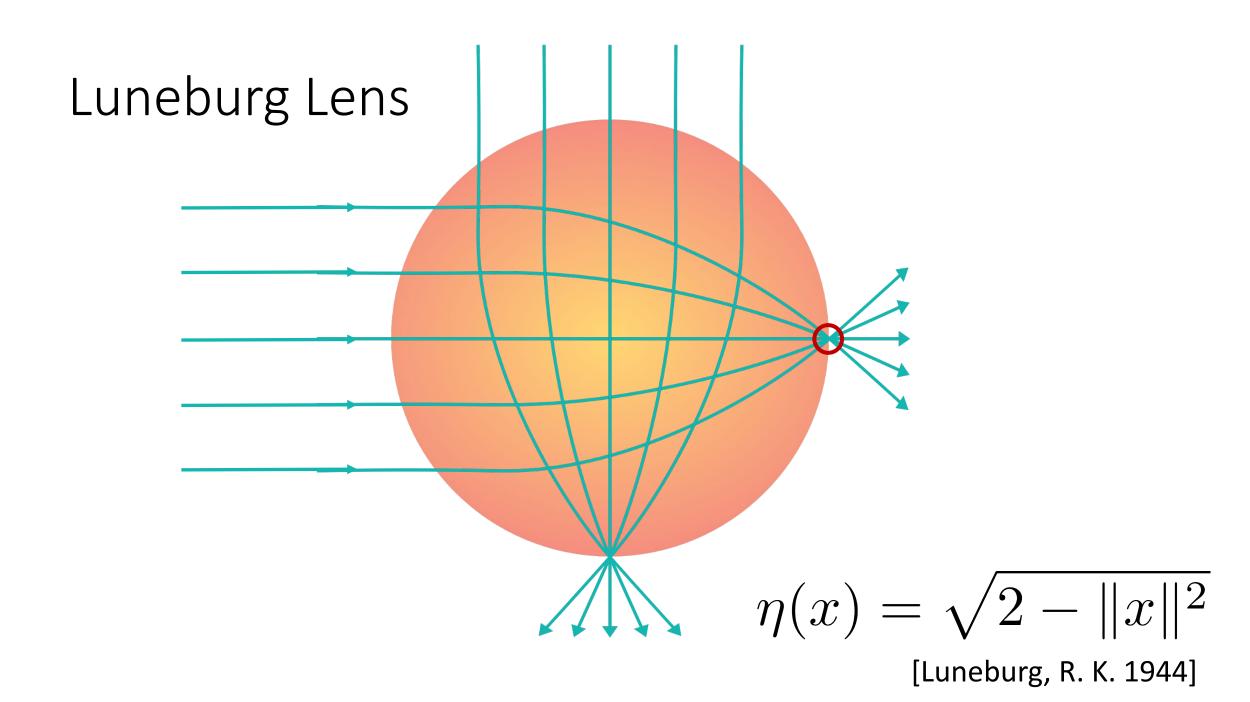
 $\eta \vee \eta$

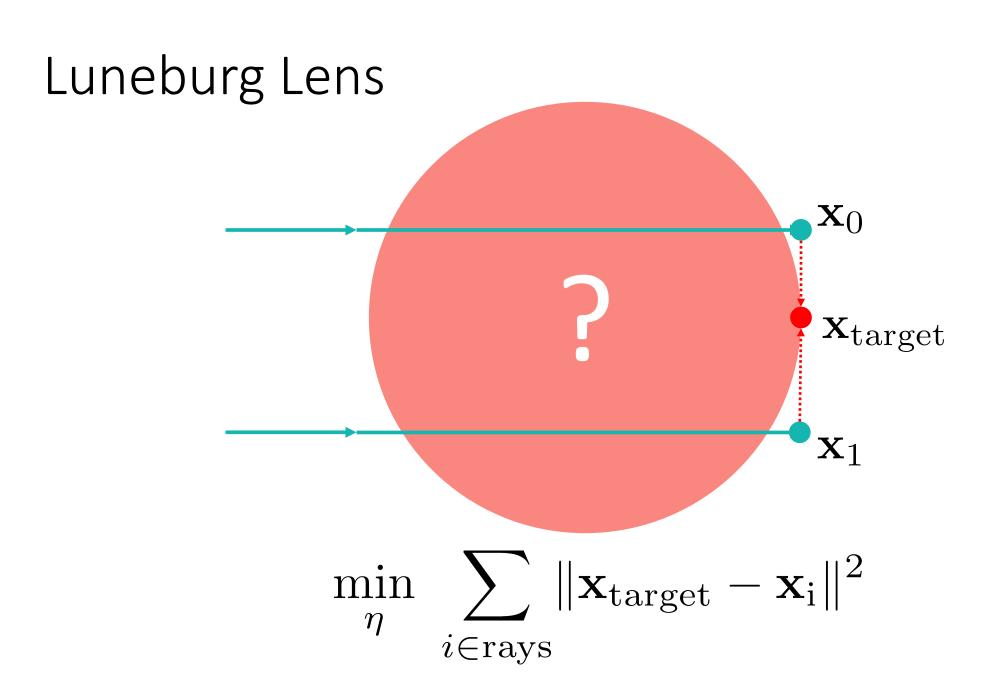
Optimizing Gradient-Index (GRIN) Optics



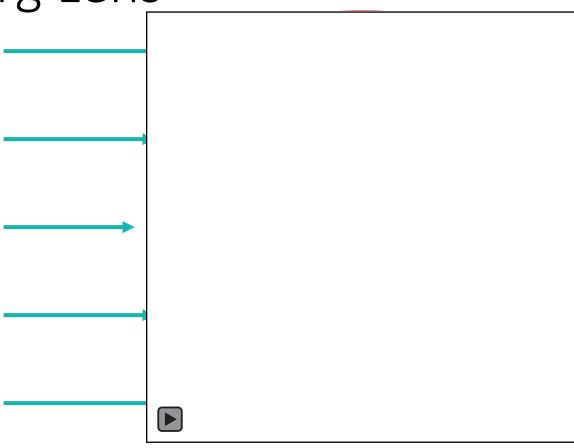
Luneburg Lens

GRIN Fiber

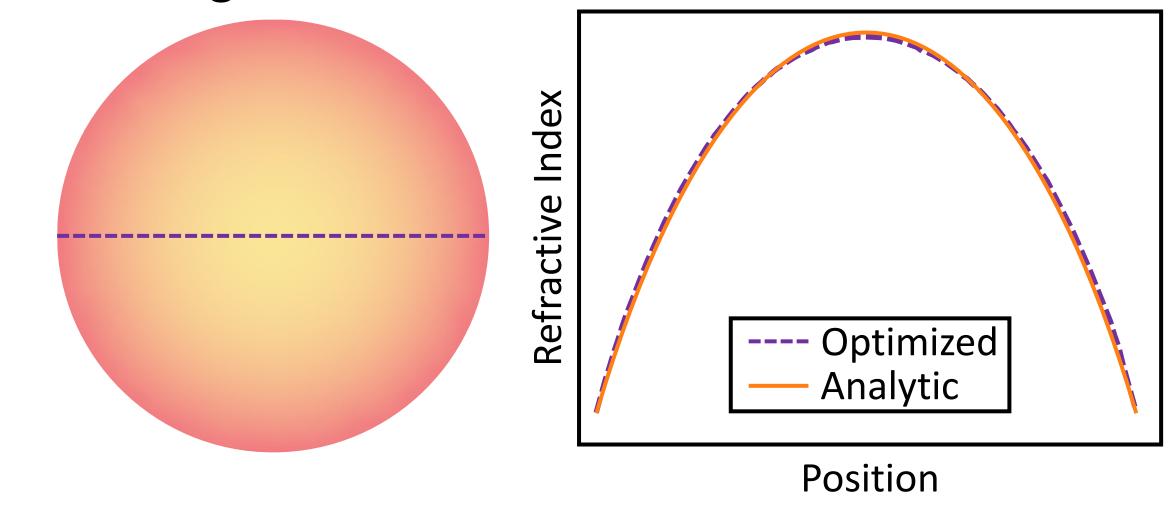




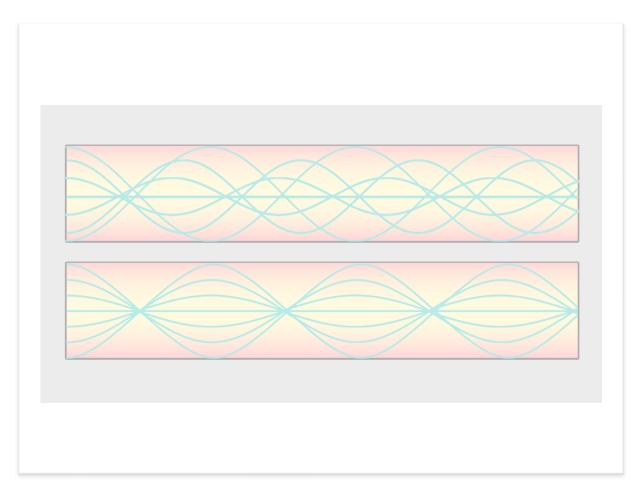
Luneburg Lens



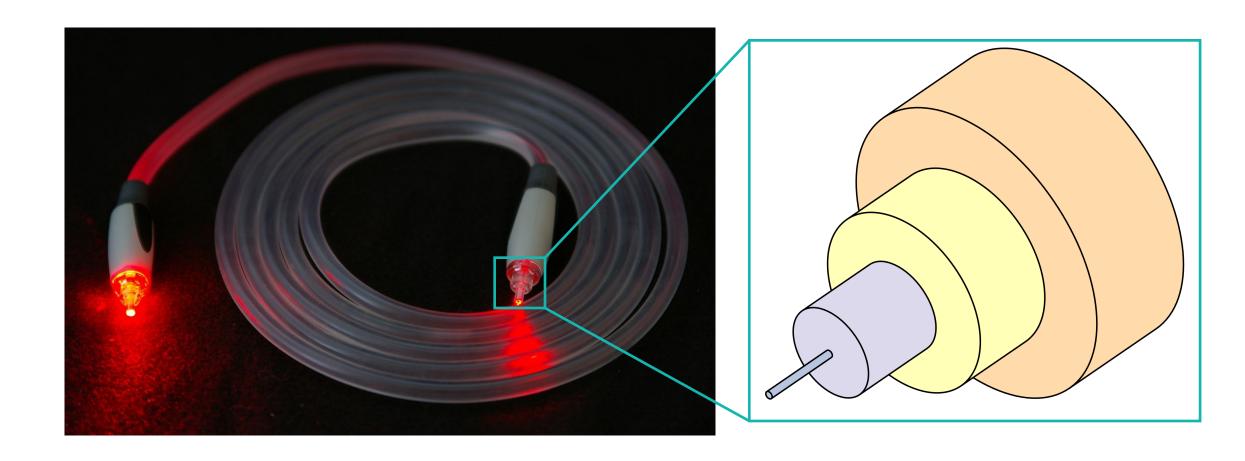
Luneburg Lens



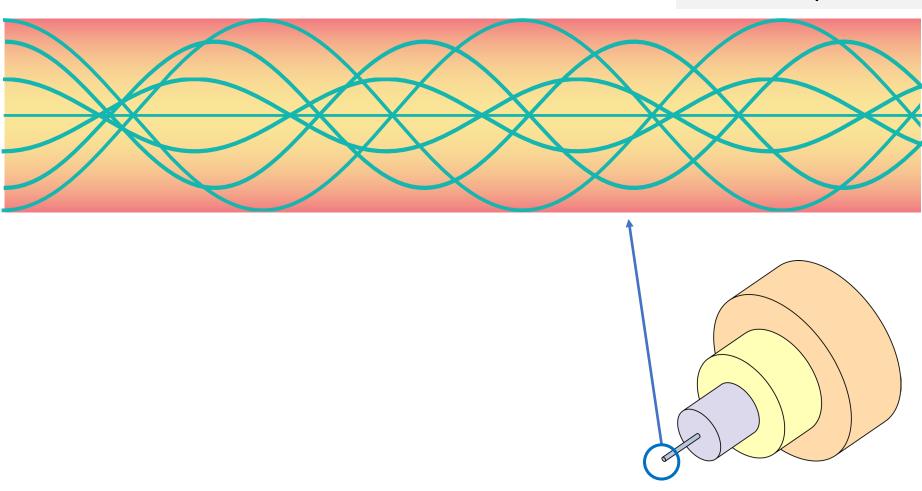
Optimizing Gradient-Index (GRIN) Optics



GRIN Fiber

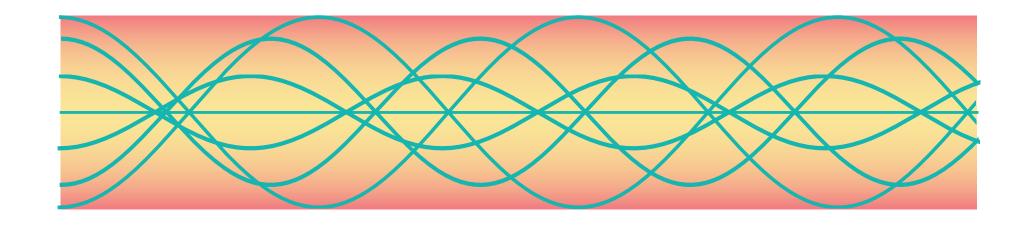


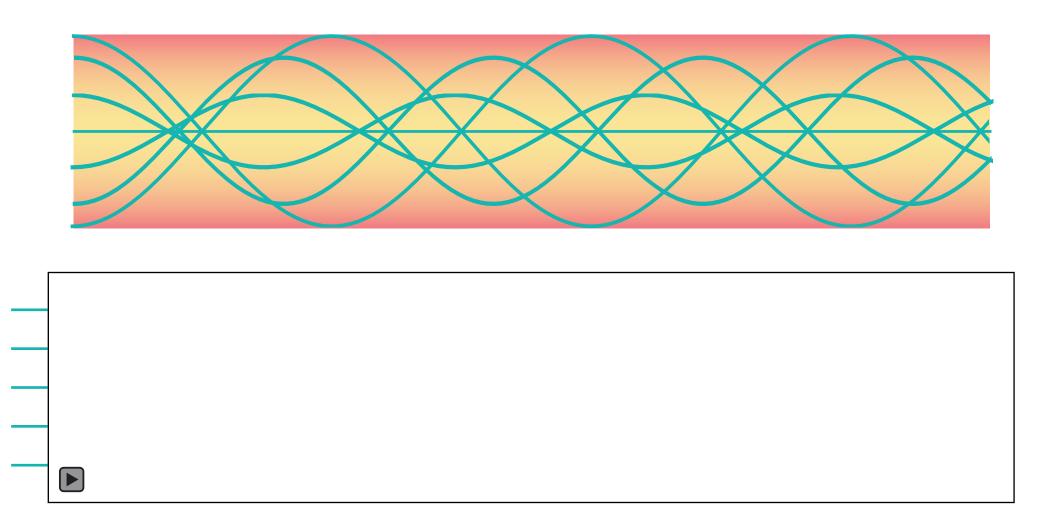
Modal dispersion

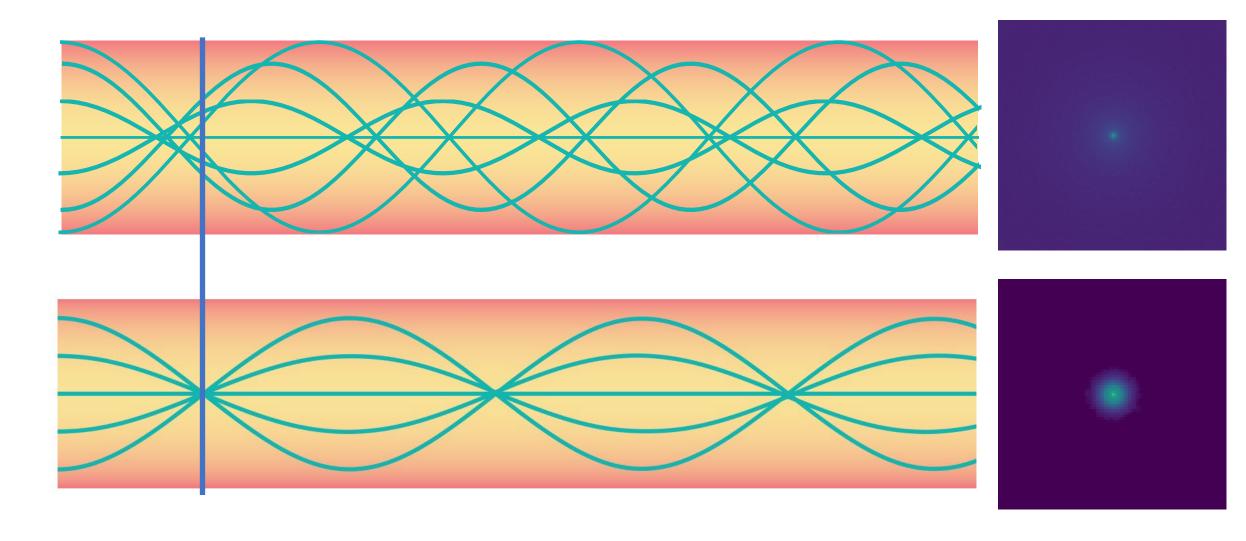


Modal dispersion

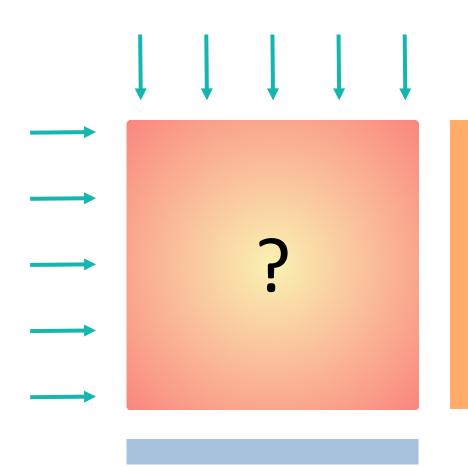


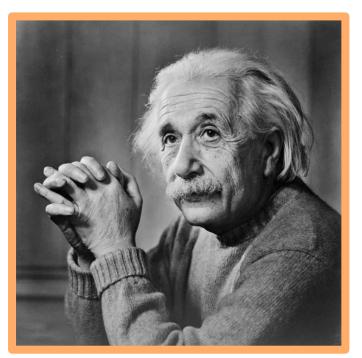






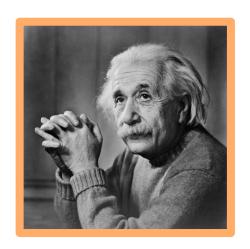
Multiview Display



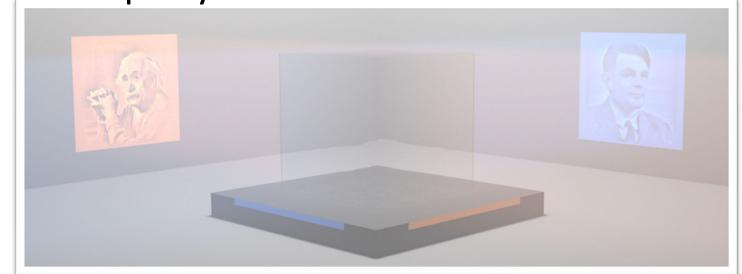


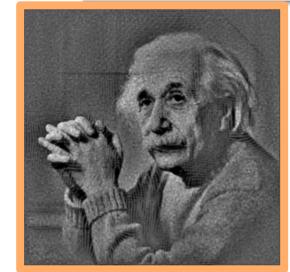


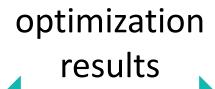
Multiview Display

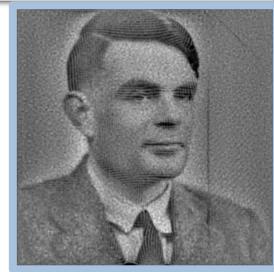


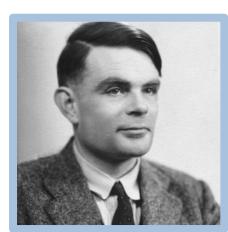
Target











Target

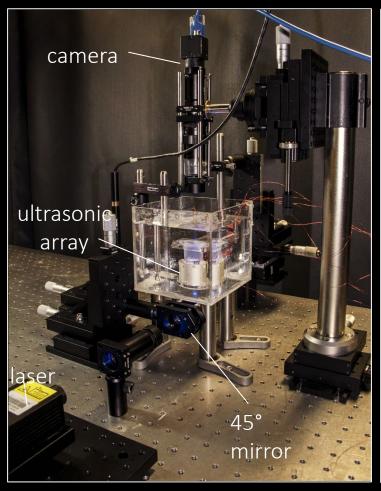
unbiased techniques for scientific imaging

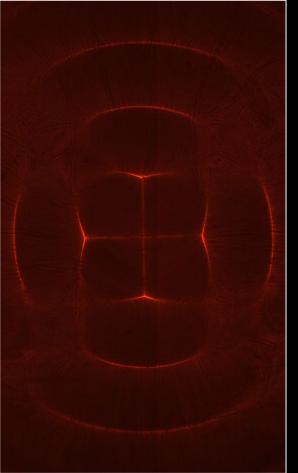
experimental hardware

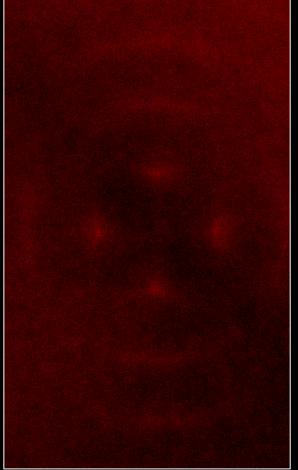
experimental capture

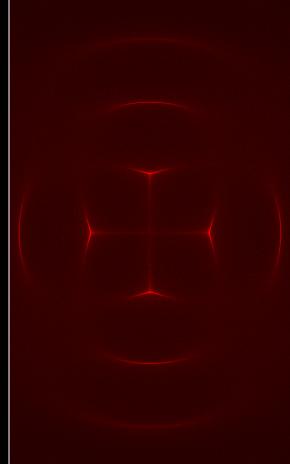
photon mapping

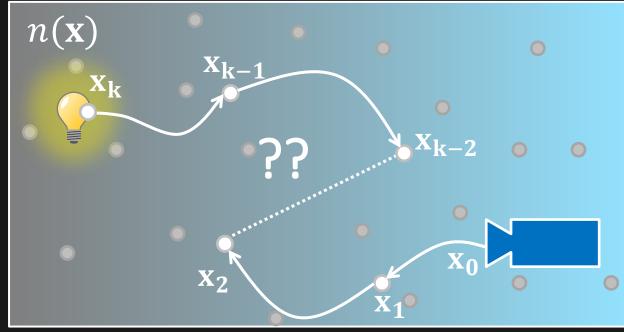
unbiased (ours)



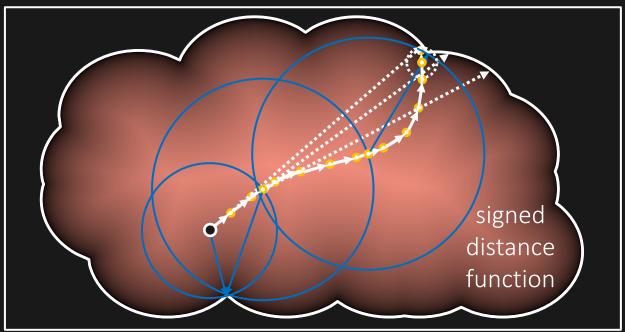




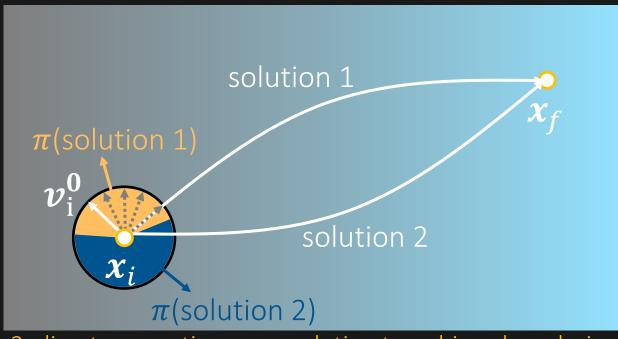




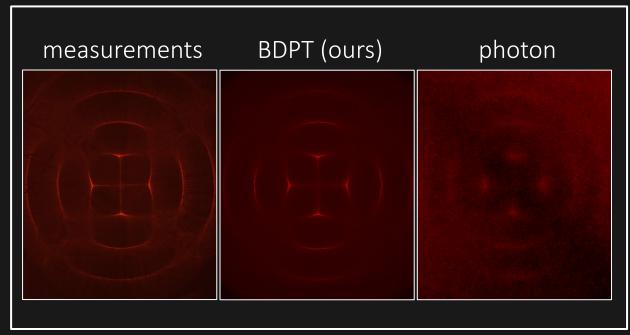
1. background on refractive radiative transfer equation



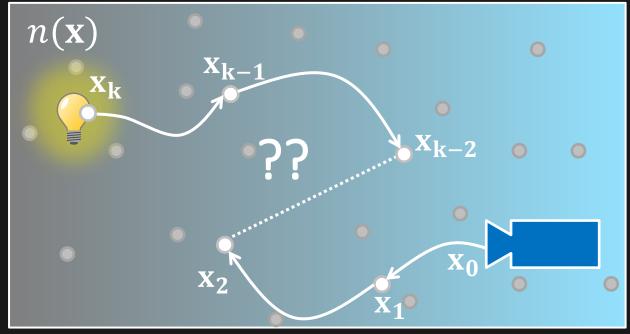
3. acceleration techniques



2. direct connections: our solution to unbiased rendering

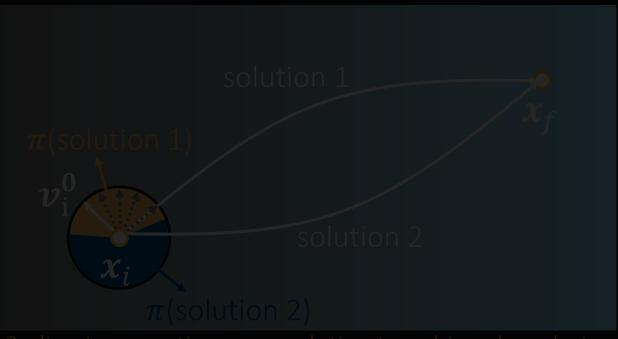


4. experiments



1. background on refractive radiative transfer equation

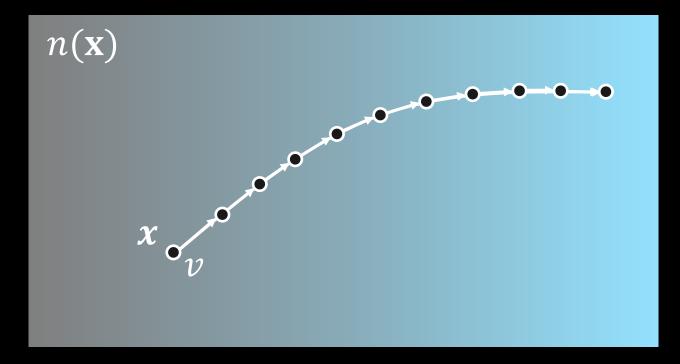
3. acceleration techniques



direct connections: our solution to unbiased rendering

4. experiments

continuous refraction and no scattering

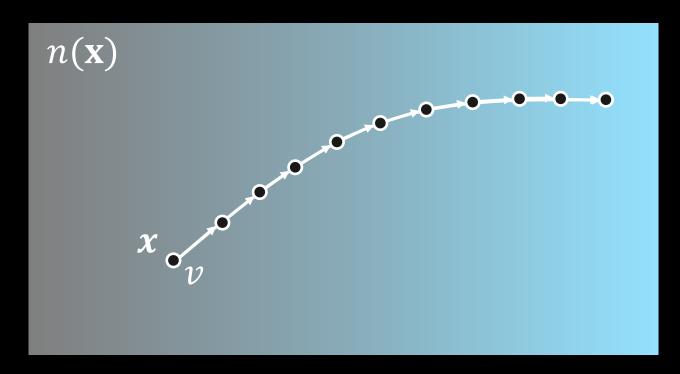


Hamilton's equations for refractive ray tracing

$$\frac{\mathrm{d}\boldsymbol{v}}{\mathrm{d}s} = \nabla_{\boldsymbol{x}} n(\boldsymbol{x})$$

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}s} = \frac{\boldsymbol{v}}{n(\boldsymbol{x})}$$

continuous refraction and no scattering



Hamilton's equations for refractive ray tracing

solved using symplectic integration
$$\frac{dx}{dx} = \frac{v}{n(x)}$$

$$\frac{dx}{ds} = \frac{v}{n(x)}$$

scattering and no continuous refraction



radiative transfer equation (RTE)

$$\frac{dL}{ds} = \sigma_a L_e - (\sigma_a + \sigma_s) L$$

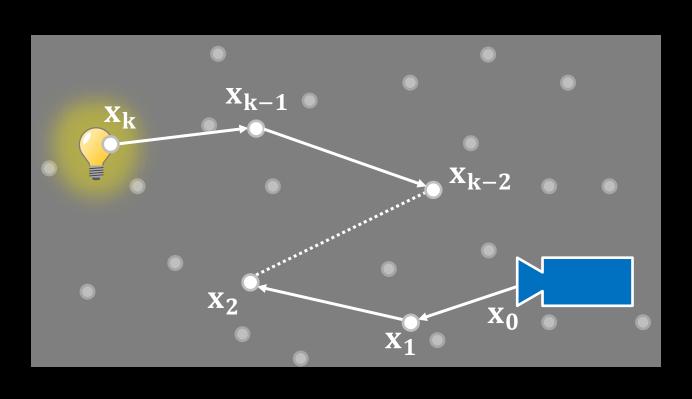
$$+ \frac{\sigma_s}{4\pi} \int f_s(\omega', \omega) L d\omega'$$

scattering and no continuous refraction



radiative transfer equation (RTE) $\frac{dL}{dL} = \int_{-\infty}^{\infty} \int_{-\infty}$

scattering and no continuous refraction



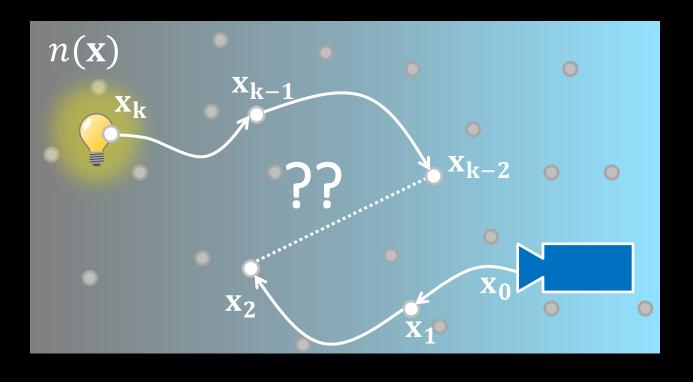
bidirectional path tracing (BDPT):

1.trace a random sensor subpath

2.trace a random emitter subpath

3.join vertices with a straight line

continuous refraction and scattering

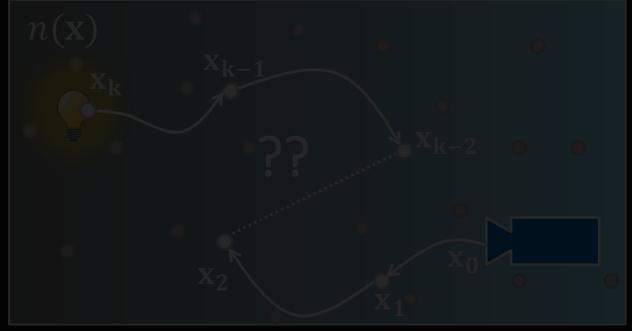


bidirectional path tracing (BDPT):

1.trace a random sensor subpath use refractive ray tracing

2.trace a random emitter subpath

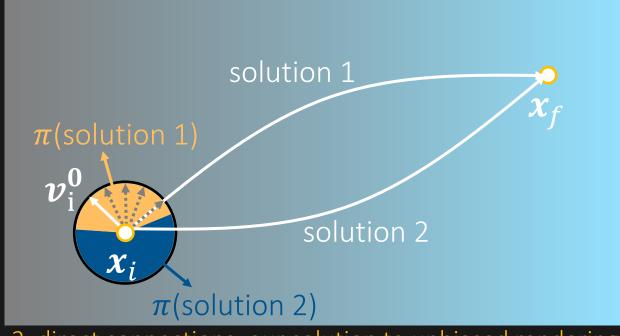
3.join vertices with a straight line curve



1. background on refractive radiative transfer equation



3. acceleration techniques



2. direct connections: our solution to unbiased rendering

4. experiments

we have to solve this:

$$\frac{\mathrm{d}\boldsymbol{v}}{\mathrm{d}s} = \nabla_x n(\boldsymbol{x}), \quad \frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}s} = \frac{\boldsymbol{v}}{n(\boldsymbol{x})}$$

boundary conditions: x_i, x_f

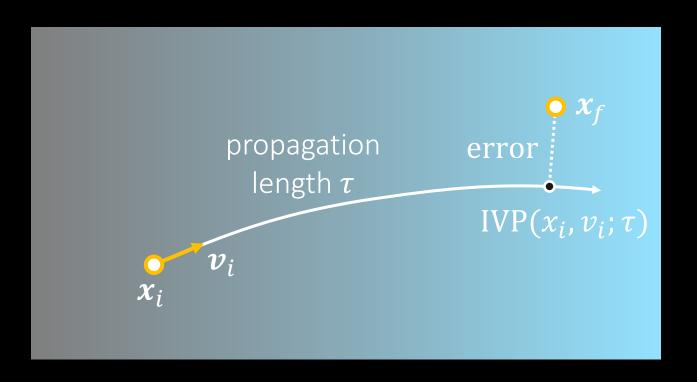
boundary value problem (BVP)

we know how to solve this:

$$\frac{\mathrm{d}\boldsymbol{v}}{\mathrm{d}s} = \nabla_x n(\boldsymbol{x}), \quad \frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}s} = \frac{\boldsymbol{v}}{n(\boldsymbol{x})}$$

boundary conditions: x_i, v_i

initial value problem (IVP), a.k.a. refractive ray tracing



$$\operatorname{error}(x_f, x_i, v_i) \equiv \min_{\tau} ||x_f - \operatorname{IVP}(x_i, v_i; \tau)||^2$$

we have to solve this:

$$\frac{\mathrm{d}\boldsymbol{v}}{\mathrm{d}s} = \nabla_x n(\boldsymbol{x}), \quad \frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}s} = \frac{\boldsymbol{v}}{n(\boldsymbol{x})}$$

boundary conditions: x_i, x_f

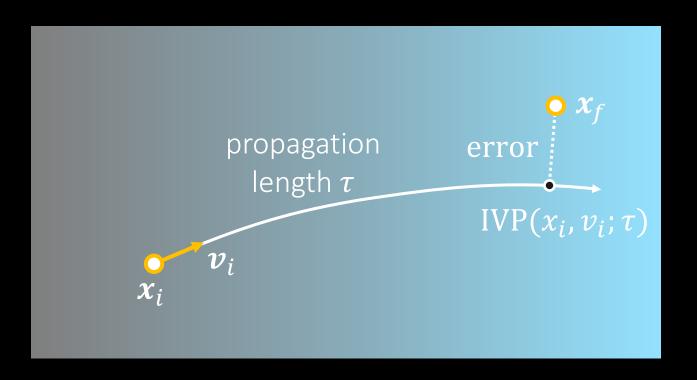
boundary value problem (BVP)

we know how to solve this:

$$\frac{\mathrm{d}\boldsymbol{v}}{\mathrm{d}s} = \nabla_x n(\boldsymbol{x}), \quad \frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}s} = \frac{\boldsymbol{v}}{n(\boldsymbol{x})}$$

boundary conditions: $\boldsymbol{x_i}$, $\boldsymbol{v_i}$

initial value problem (IVP), a.k.a. refractive ray tracing



$$\operatorname{error}(x_f, x_i, v_i) \equiv \min_{\tau} ||x_f - \operatorname{IVP}(x_i, v_i; \tau)||^2$$

we have to solve this:

$$\min_{v_i} \operatorname{error}(x_f, x_i, v_i)$$

boundary conditions: x_i, x_f

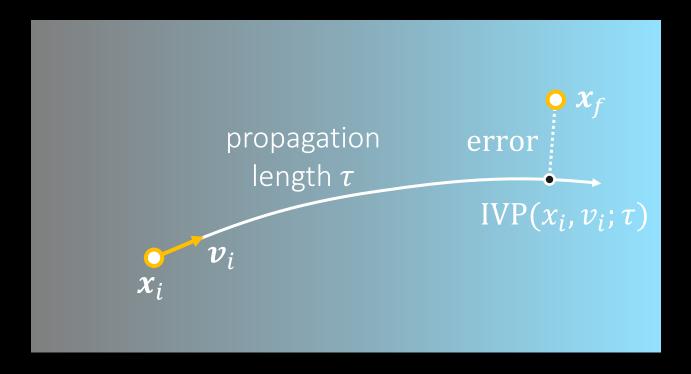
boundary value problem (BVP)

we know how to solve this:

$$\frac{\mathrm{d}\boldsymbol{v}}{\mathrm{d}s} = \nabla_x n(\boldsymbol{x}), \quad \frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}s} = \frac{\boldsymbol{v}}{n(\boldsymbol{x})}$$

boundary conditions: $\boldsymbol{x_i}$, $\boldsymbol{v_i}$

initial value problem (IVP), a.k.a. refractive ray tracing



differentiable

$$\operatorname{error}(x_f, x_i, v_i) \equiv \min_{\tau} ||x_f - \operatorname{IVP}(x_i, v_i; \tau)||^2$$

we have to solve this:

$$\min_{v_i} \operatorname{error}(x_f, x_i, v_i)$$

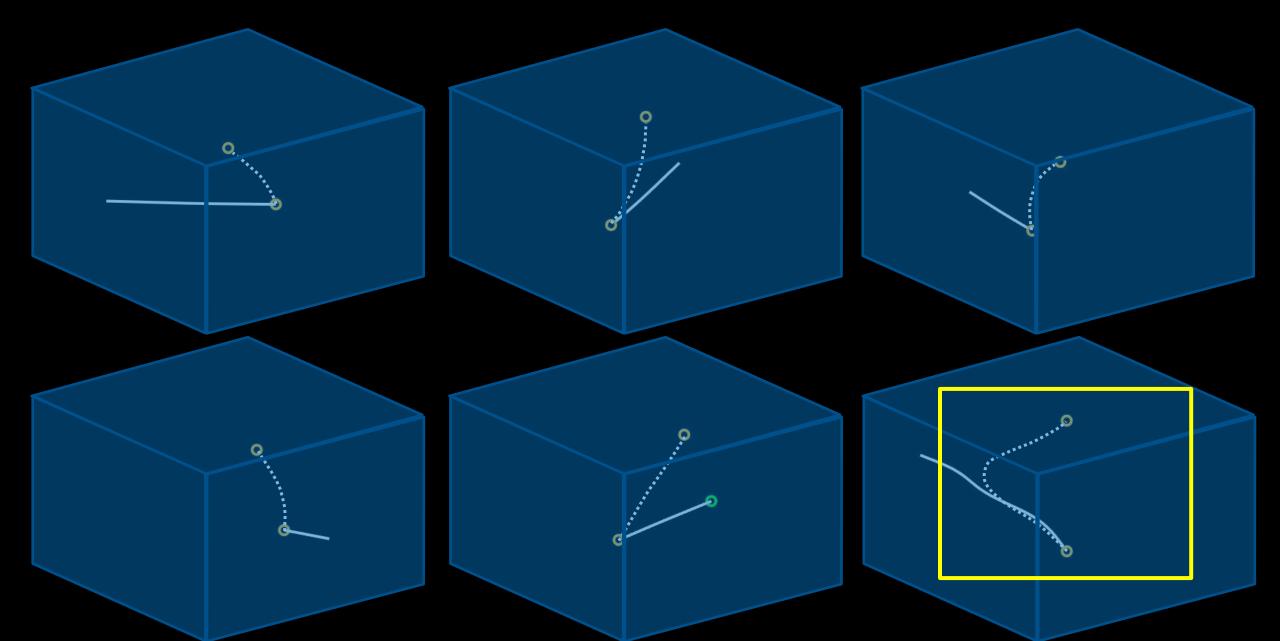
boundary conditions: x_i, x_f

boundary value problem (BVP) differentiable

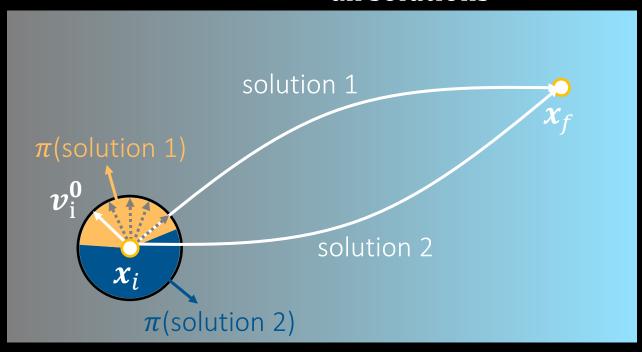
$$\frac{\mathrm{d}\boldsymbol{v}}{\mathrm{d}s} = \nabla_x n(\boldsymbol{x}), \quad \frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}s} = \frac{\boldsymbol{v}}{n(\boldsymbol{x})}$$

boundary conditions: $\boldsymbol{x_i}$, $\boldsymbol{v_i}$

initial value problem (IVP), a.k.a. refractive ray tracing

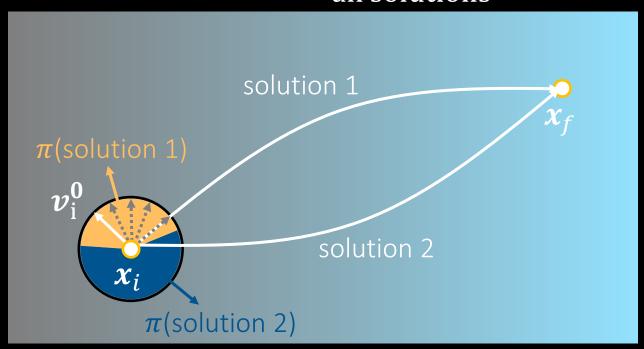


multiple direct connections



approach 1: exhaustively enumerate all solutions

multiple direct connections



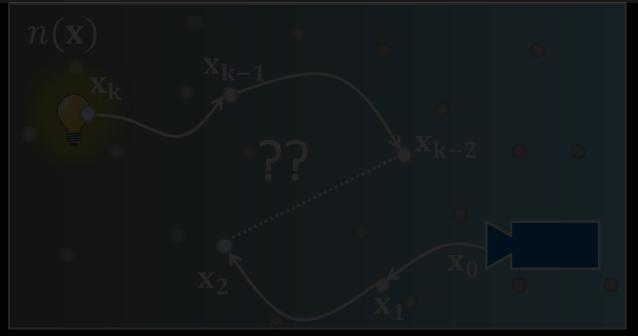
approach 1: impractical exhaustively enumerate all solutions

approach 2: unbiased single-sample Monte Carlo

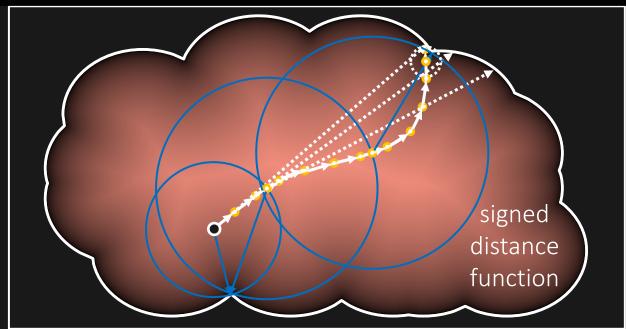
- 1. randomly sample initial direction
- 2. solve BVP
- 3. form estimate

total throughput \approx throughput(solution) probability(solution)

set of initial directions that converge to the solution



1. background on refractive radiative transfer equation



3. acceleration techniques

direct connections: our solution to unbiased rendering

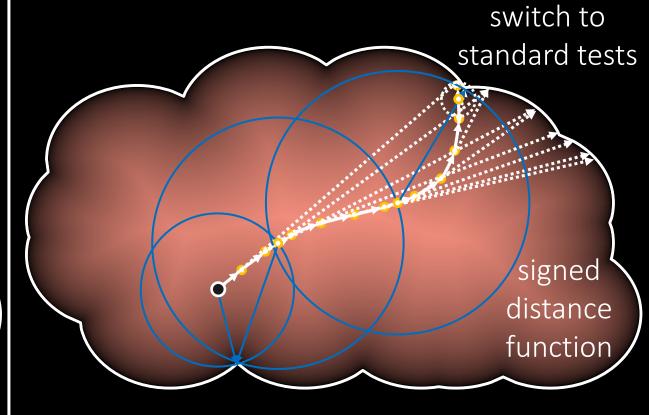
4. experiments

acceleration: sphere tracing

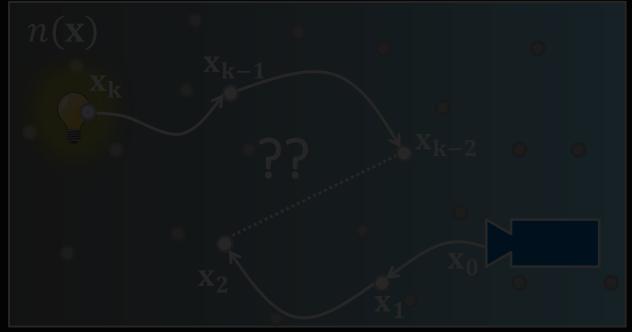
standard ray tracing

ray-mesh intersection test

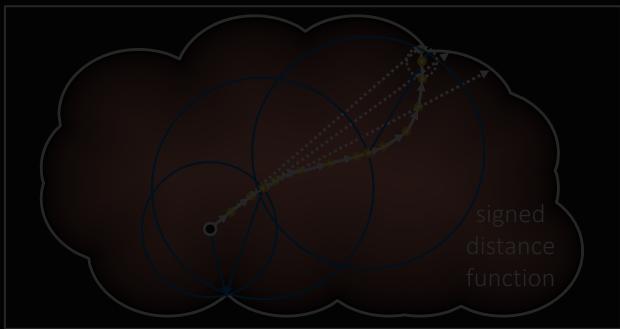
refractive ray tracing



does not introduce bias

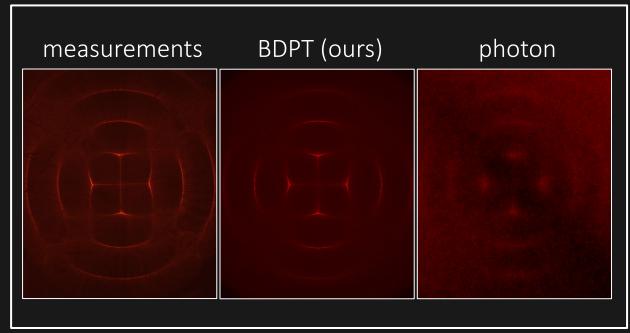


1. background on refractive radiative transfer equation



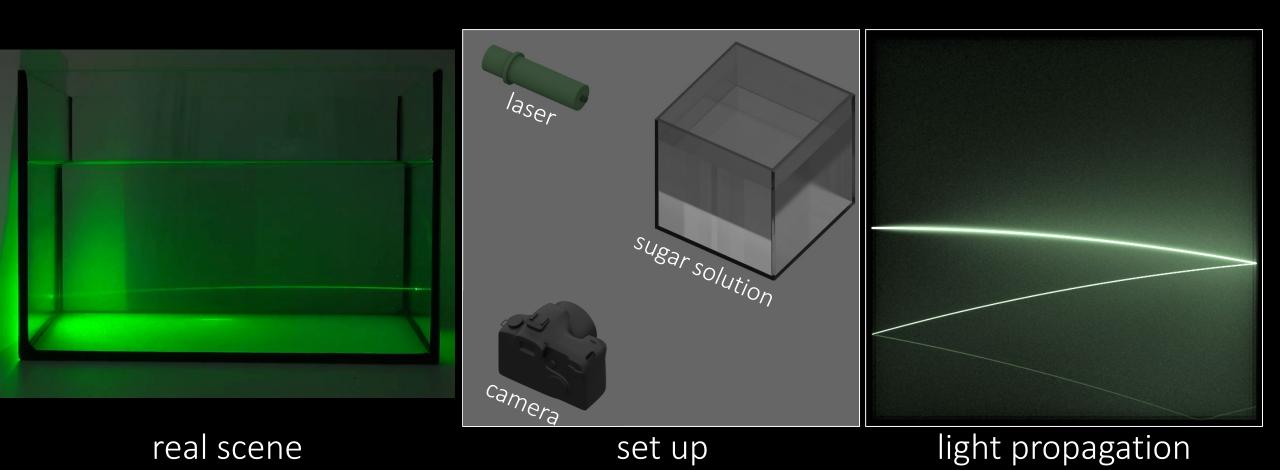
3. acceleration techniques

direct connections: our solution to unbiased rendering

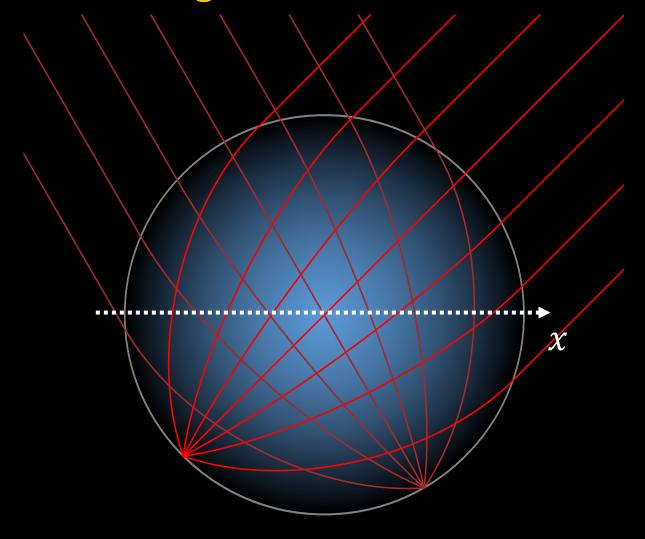


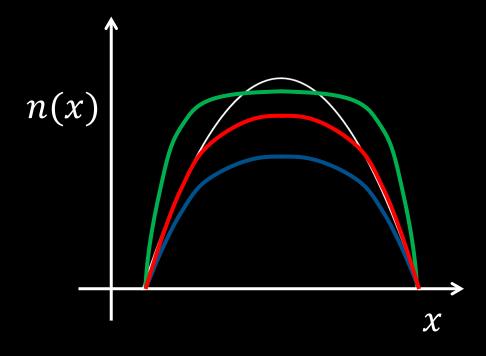
4. experiments

continuously refractive media and scattering

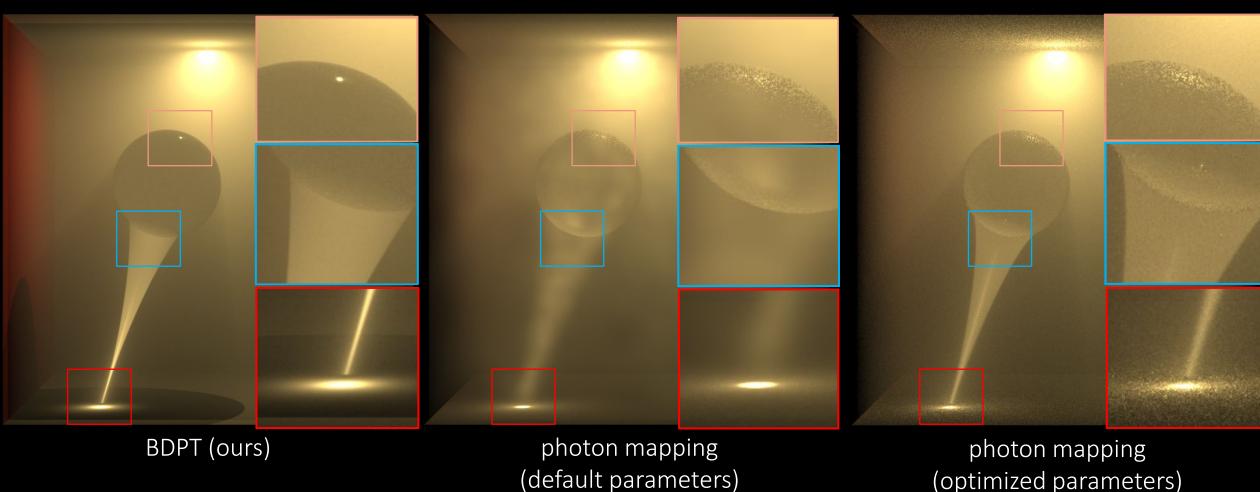


Luneburg lenses





comparison with photon mapping

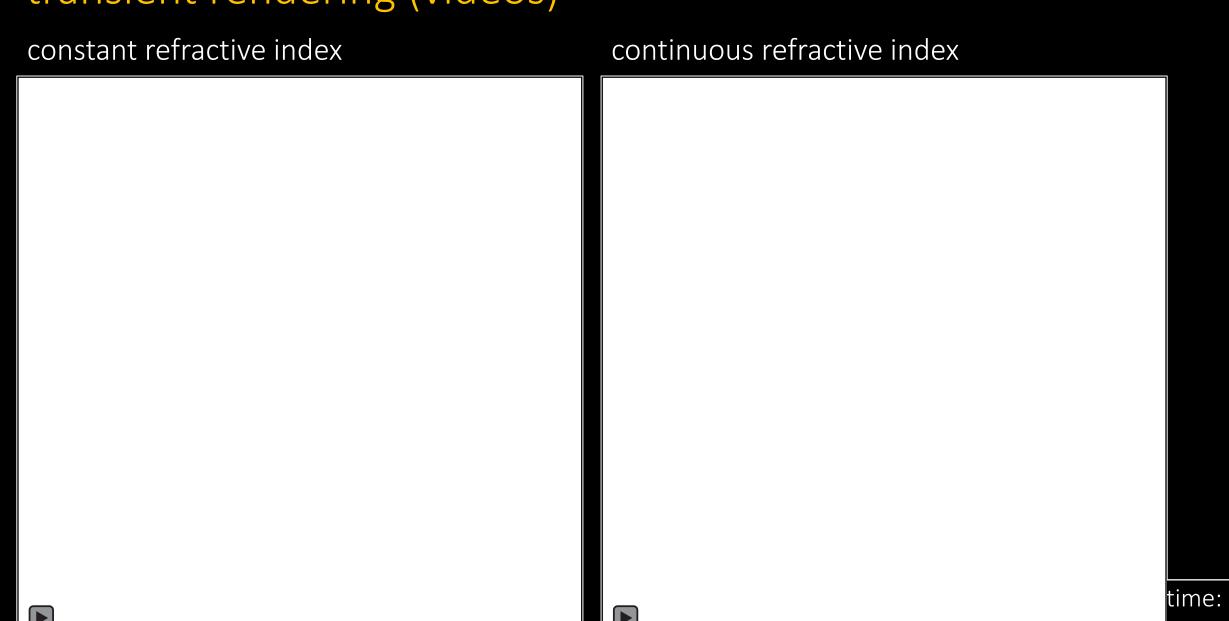


BDPT is 5x faster than photon mapping

(optimized parameters)

rendering time: 10 min

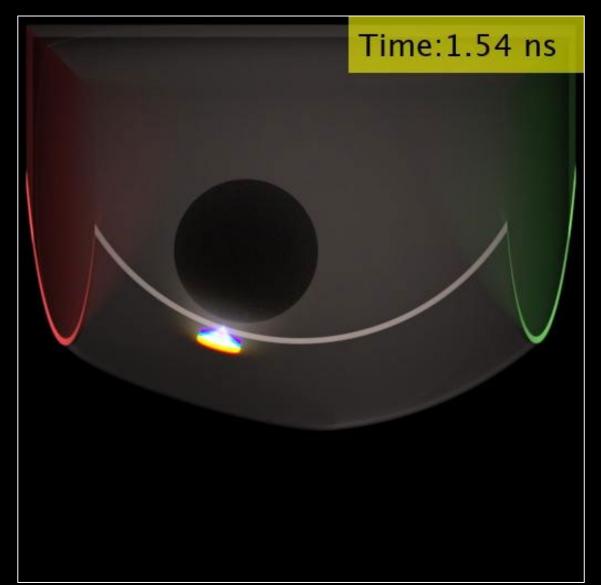
transient rendering (videos)



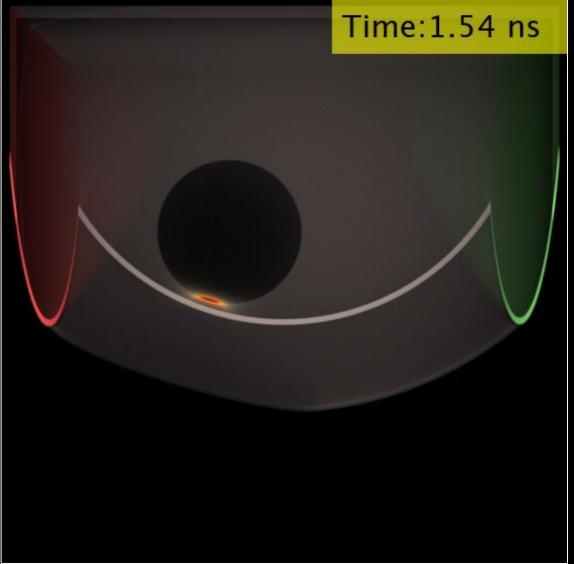
urs

transient rendering

constant refractive index

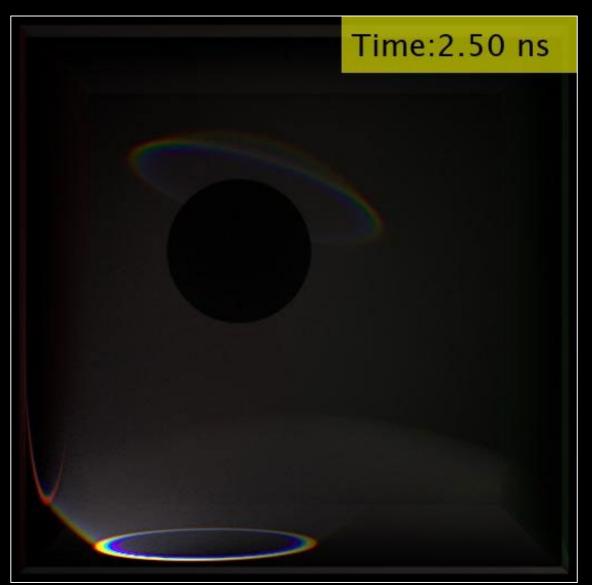


continuous refractive index

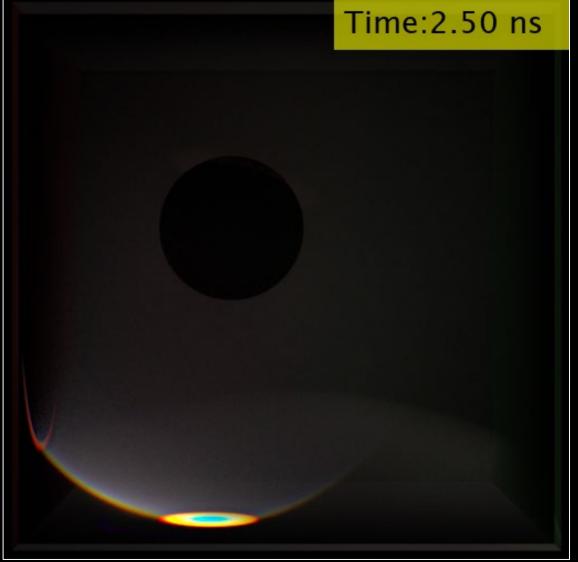


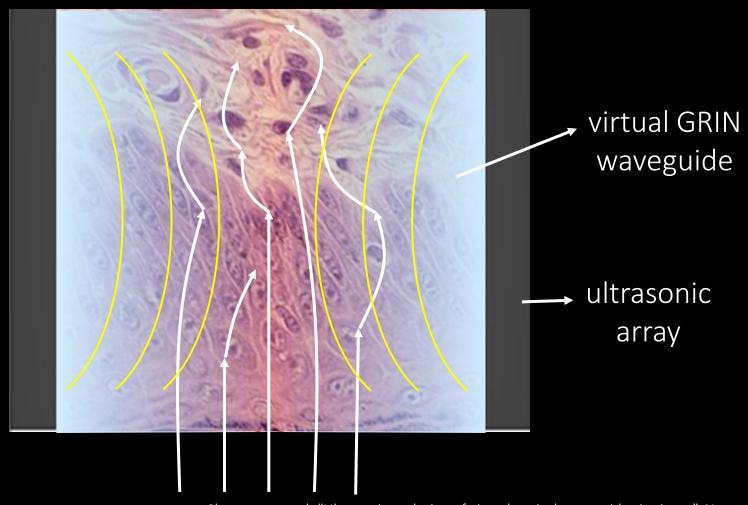
transient rendering

constant refractive index

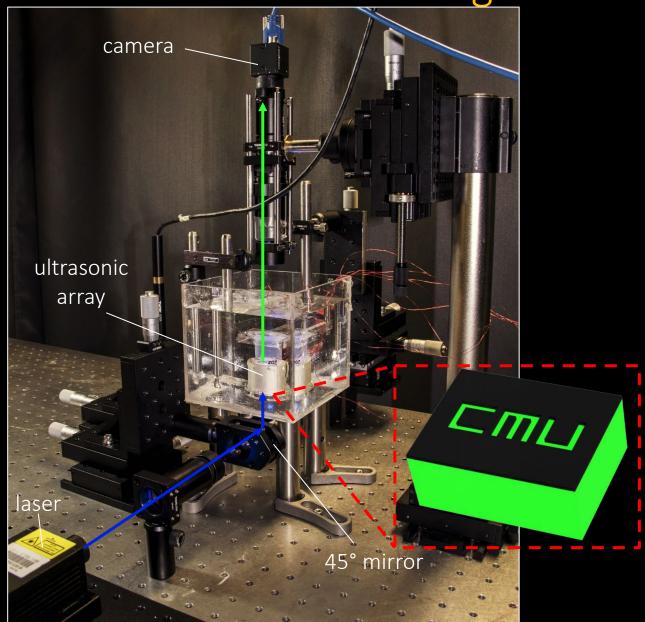


continuous refractive index

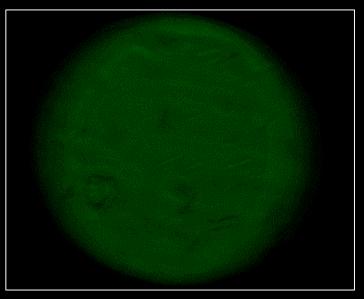




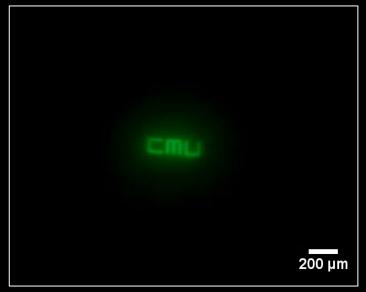
Chamanzar et al. "Ultrasonic sculpting of virtual optical waveguides in tissue". Nature communications, 2019 Scopelliti et al. "Ultrasonically sculpted virtual relay lens for in situ microimaging". Light: Science and Applications, 2019 Karimi et al. "In situ 3D reconfigurable ultrasonically sculpted optical beam paths". Optics express, 2019

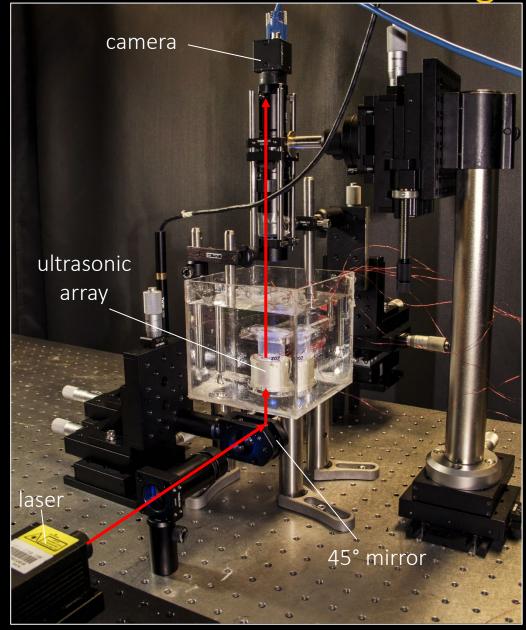


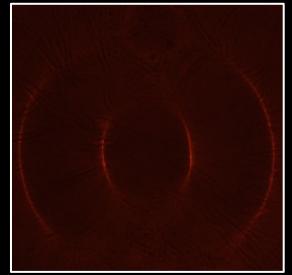
no waveguide

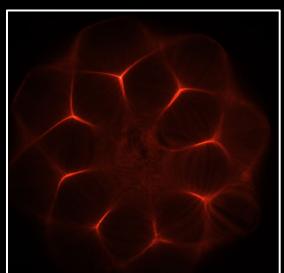


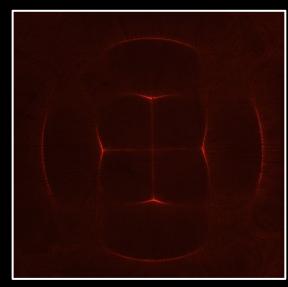
virtual waveguide

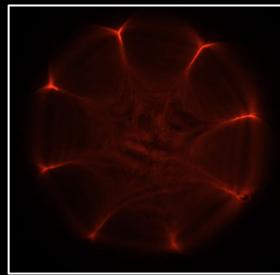








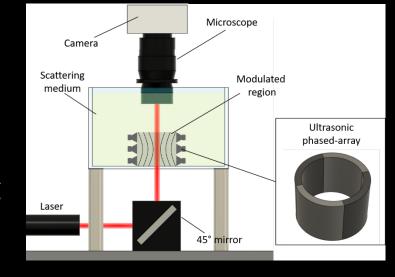




Karimi et al. "In situ 3D reconfigurable ultrasonically sculpted optical beam paths". Optics express, 2019

Rendering acousto-optics

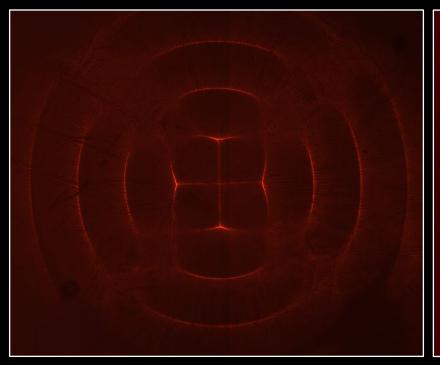
setup for ultrasonic lensing in scattering

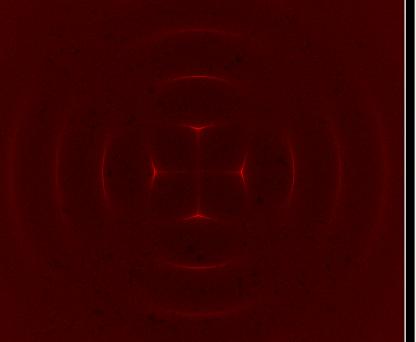


real capture

our algorithm

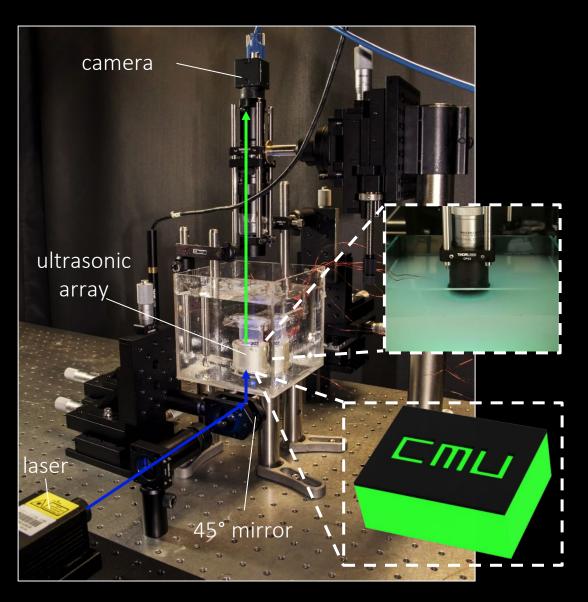
previous algorithm





[Pediredla et al. Transactions on Graphics 2020]

Ultrasonic light guiding inside tissue



High-dimensional, highly-non-linear design problem:

- ultrasound frequency
- ultrasound voltage
- shape of waveguides
- placement of transducers
- sensor size
- and more...

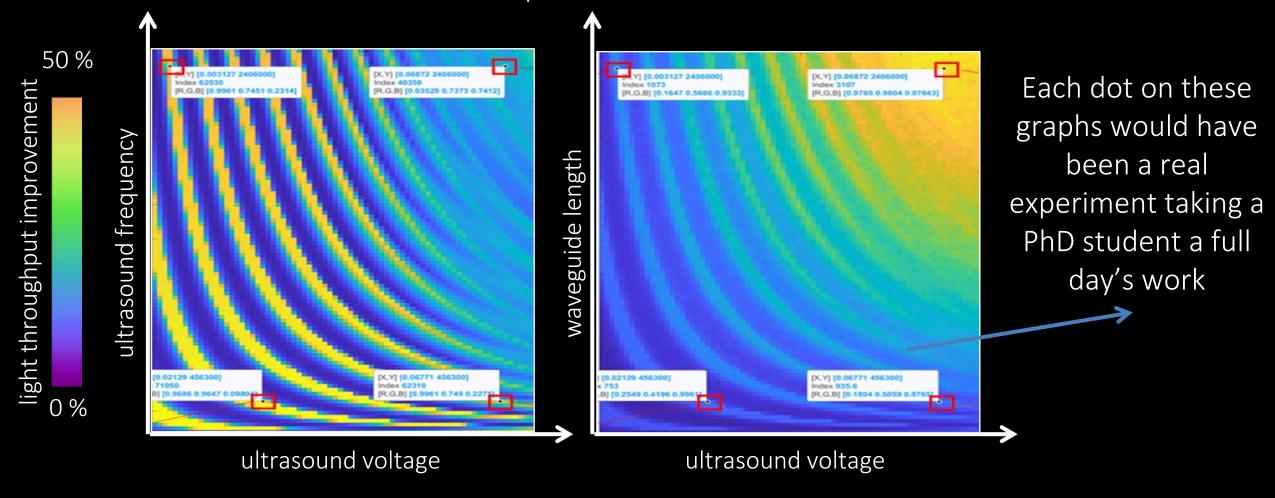
Guiding performance strongly affected by different parameter values

Painstaking experiments:

 several hours of work to test one set of parameter values

Optimizing ultrasonic GRIN waveguides

Hundreds of thousands of virtual experiments.



Improved light guiding in human bladder

real data

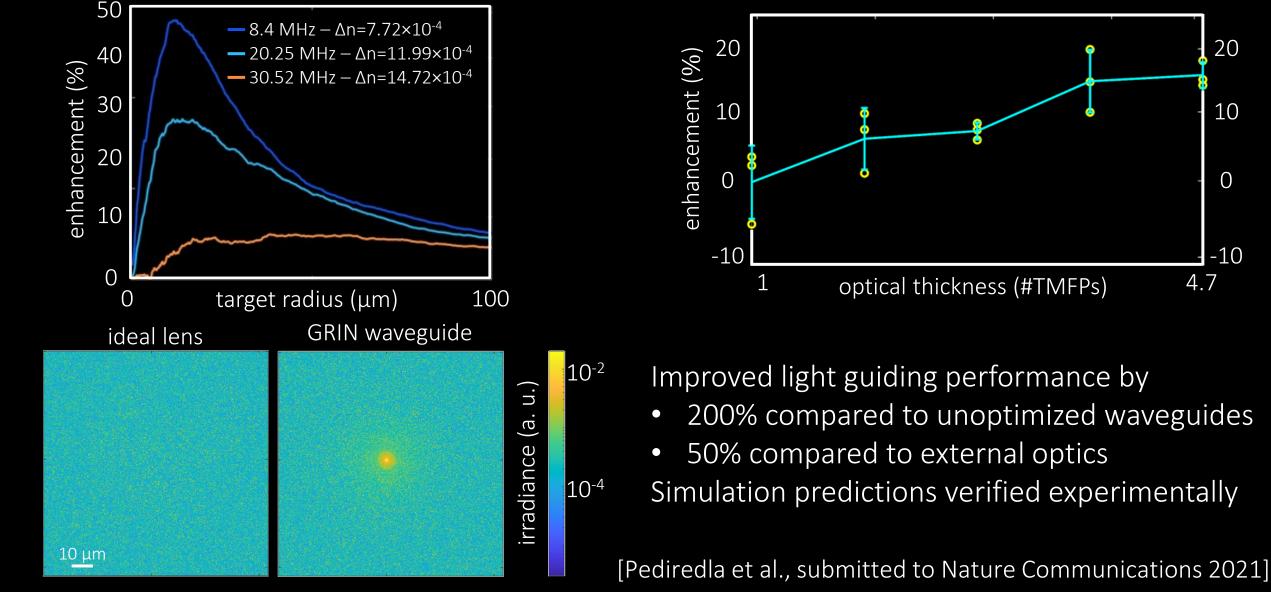
20

10

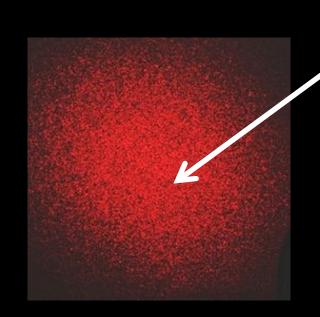
-10

4.7

simulations

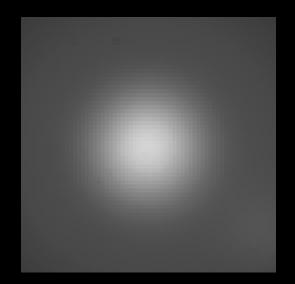


Speckle and memory effect

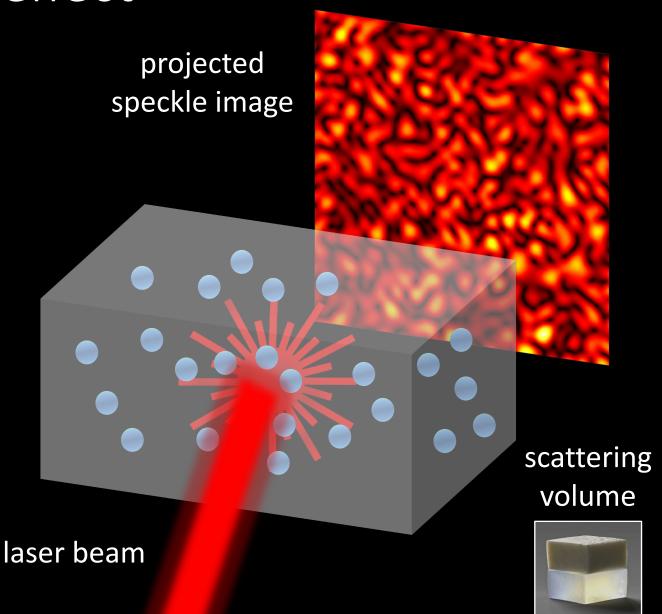


speckle: noiselike pattern

what real laser images look like



what standard rendered images look like



SCIENTIFIC REPORTS

OPEN Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media

scattering media

IENTI

Single-sh

Translation correlations in anisotropical

Benjamin Judkewitz^{1,2*†}, Roarke Horstmeyer^{2†}, Ivo M. Vellekoop³, Ioannis N. Pa

ion distance within which this effect holds (that plete mea

ARTICLES

PUBLISHED ONLINE: 31 AUGUST 2014 | DOI: 10.1038/NPHOTON.2014.189

Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations

Ori Katz^{1,2}*, Pierre Heidmann¹, Mathias Fink¹ and Sylvain Gigan^{1,2}

Optical imaging through and inside complex samples is a difficult challenge with important applications in many fields. The fundamental problem is that inhomogeneous samples such as biological tissue randomly scatter and diffuse light, ungamental problem is that inflomogeneous samples such as biological ussue randomy scatter and unruse light, attered light, captured with a standard camera, encodes sufficient

Scattering Object Camera image medium that d formation rferon tself (I = O * Sreconstruction

LOOKING THROUGH WALLS AND AROUND CORNEL

Department of Physics, Bar-Ilan University, Ramat-Gan, Israel

With the advent of radar half a century ago, detection visually opaque barriers, such as dense cloud cover, berandomness in size and position of water droplets which n British Admiralty. Some of the earliest theoretical studies were carried out by Cyril Domb while seconded to the were to form later on the basis of his very first published

fields of study down to this day, and, indeed, over the la been an enormous upsurge of interest in the propagat waves in highly random media [2-53]. Here, we const rich reservoir of new knowledge may be applied to imaging through highly random, multiply scattering med

perfectly correct low-order aberrations using using but require the presence of a bright point-source 'guide star' or a high initial image contrast⁶. Recent exciting advances in controlled wavefront shaping² have allowed focusing and imaging through highly scattering samples⁸⁻²⁶. However, these techniques either require initial access to both sides of the scattering medium⁸⁻¹⁵, the presence of a guide-star or a known object16-19, or a long acquisition sequence that involves the projection of a large number of optical patterns^{20–26}. A recent breakthrough approach reported by plant of all has removed the requirement for a guide-star or a

A schematic of the experi medium, as well as a numerical example, are pre-An object is hidden at a distance u behind a highly scattering medium of thickness L. The object is illuminated by a spatially incoherent, narrowband source, and a high-resolution camera that is placed at a distance ν on the other side of the medium records the pattern of the scattered light that has diffused through the scattering medium. Although the raw recorded camera image is a low-contrast, random and seemingly information-less image (Fig. 1b), its autocorrelation (Fig. 1c) is essentially identical to the object's autocorrehad been imaged by an aberration-free diffraction-

nature

photonics

invasive imaging through opaque scattering

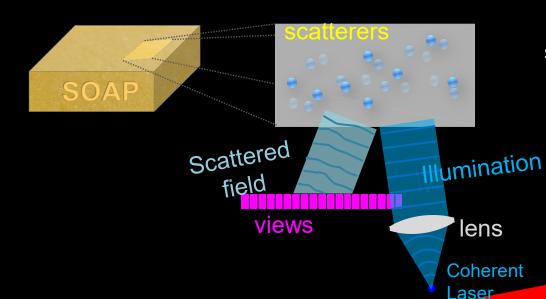
correlation resolution enhancement of fluorescence imaging

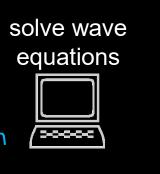
Simulating speckles

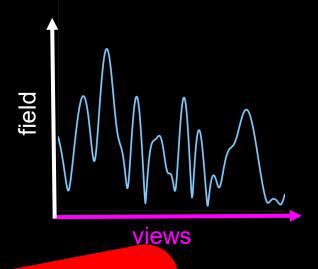
inefficient

Specify exact (sub-wavelength) position of scatterers

In graphics we describe materials by **statistical** bulk parameters, as the **density** of scatterers







Wave equation solvers

- Differential equation F
- Integral equation (e.g.,

Slow
Practical only for tiny
or optically thin media

For simplicity: Flatland Scattering medium is 2D

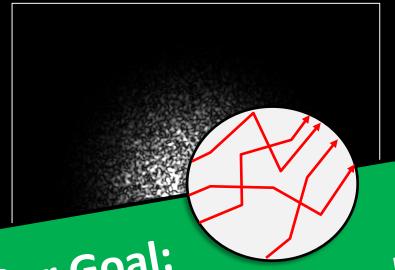
Sensor is **1D**

Speckle pattern is **1D**

Monte Carlo (MC) Simulation of Speckles

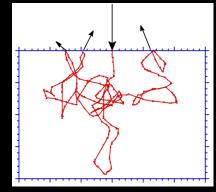
MC Advantage:

1. Fast
2. input is scatterer
density rather than
exact scatterer
locations



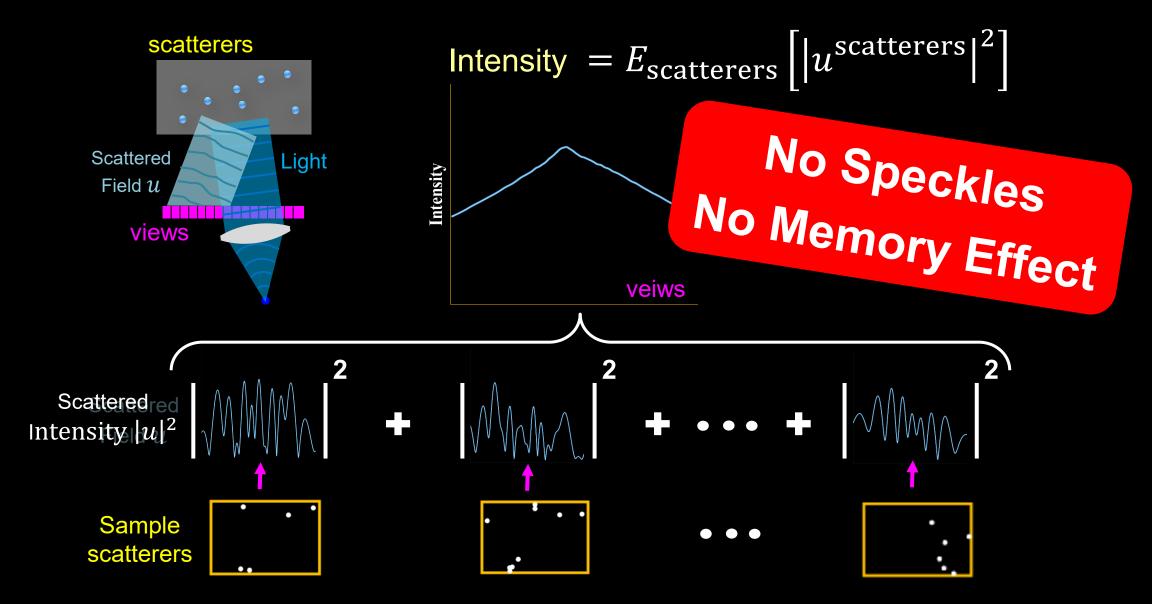
Our Goal:
Extend efficient MC tools
to evaluate speckles and
their coherent statistics

Standard intensity MC

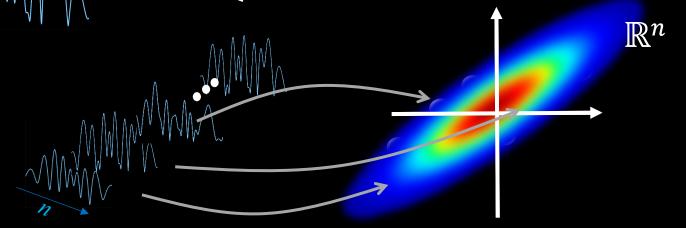


Monte Carlo Modeling of Light Transport in Multi-layered Tissues, Wang & Jacques, 1992

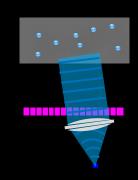
Wave Solution v.s. Monte Carlo



Speckle Statistics



Intensity Mean = $E_{\text{scatterers}} \left[\left| \frac{|u|^{\text{scatterers}}}{|u|^{2}} \right|^{2} \right] \rightarrow \text{Incoherent}$ Summation

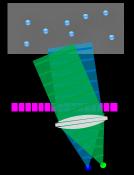


Cross-Illumination Field Covariance = $E_{scatterers}$

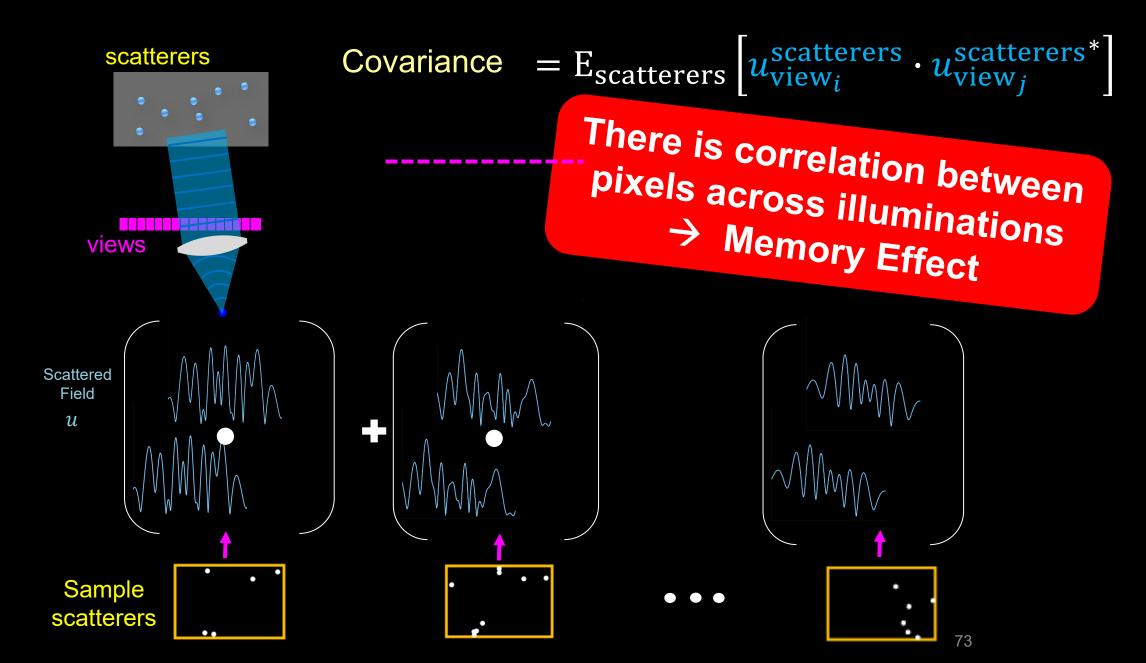
1st moment

 $u_{\mathrm{view}_i}^{\mathrm{light_1,scatterers}}$

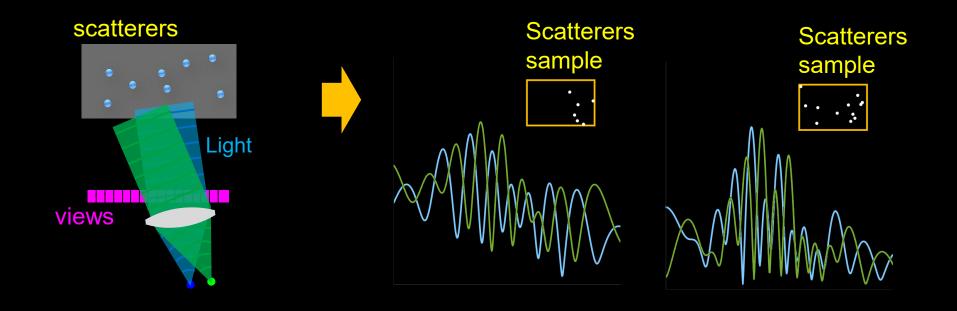
• $u_{{
m view}_{\it j}}^{{
m light}_2, {
m scatterers}^*}$



2nd Moment - Covariance



Cross –illumination statistics

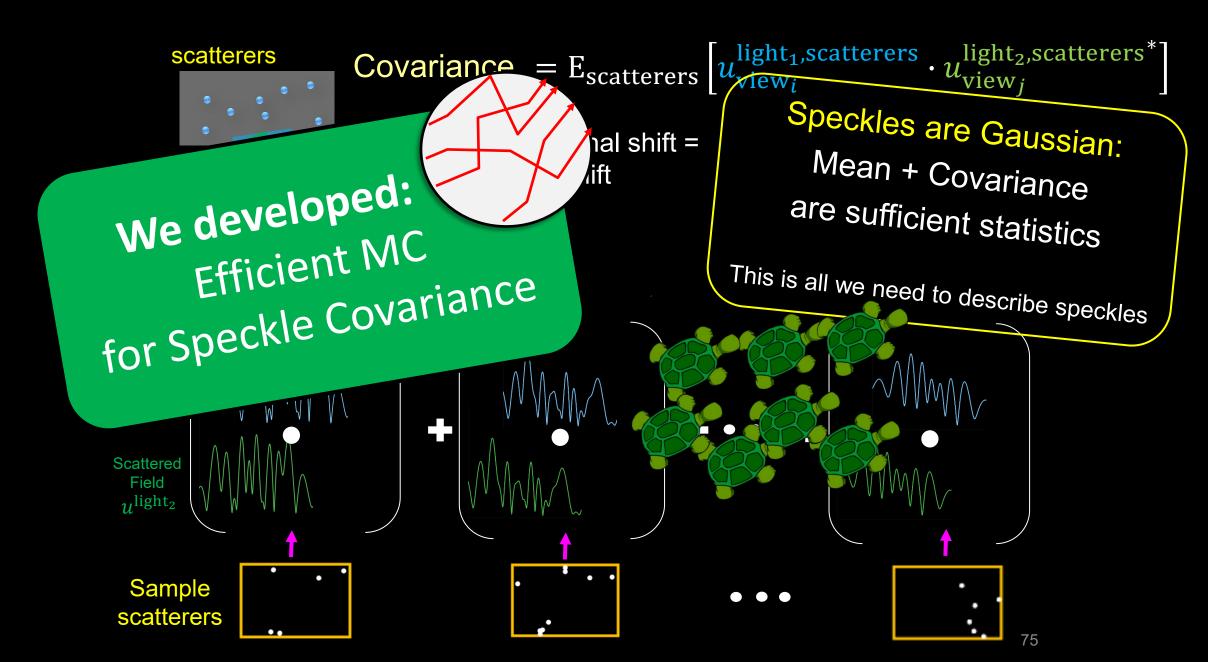


Memory Effect:

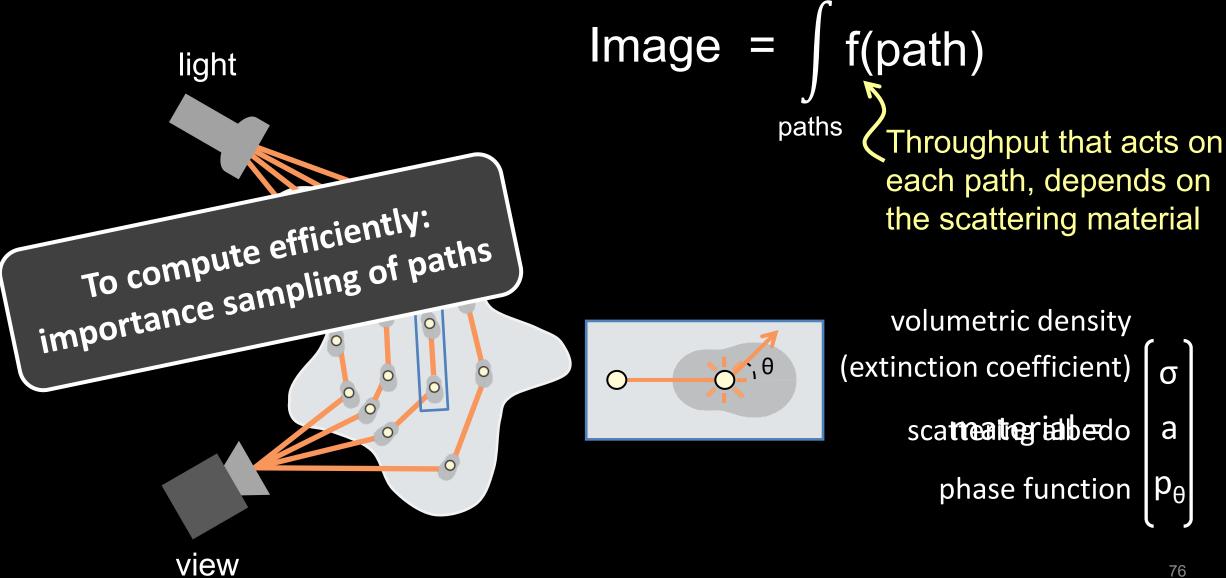
tilting illumination results in highly correlated shifted speckles

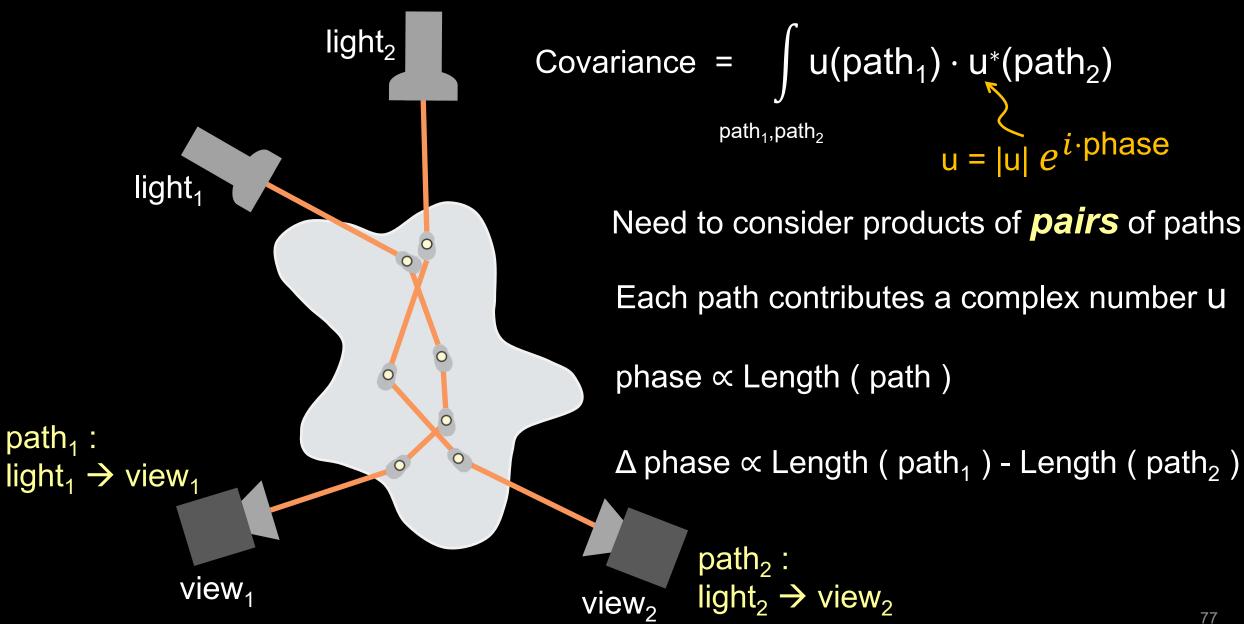
Next: Cross Illumination Covariance

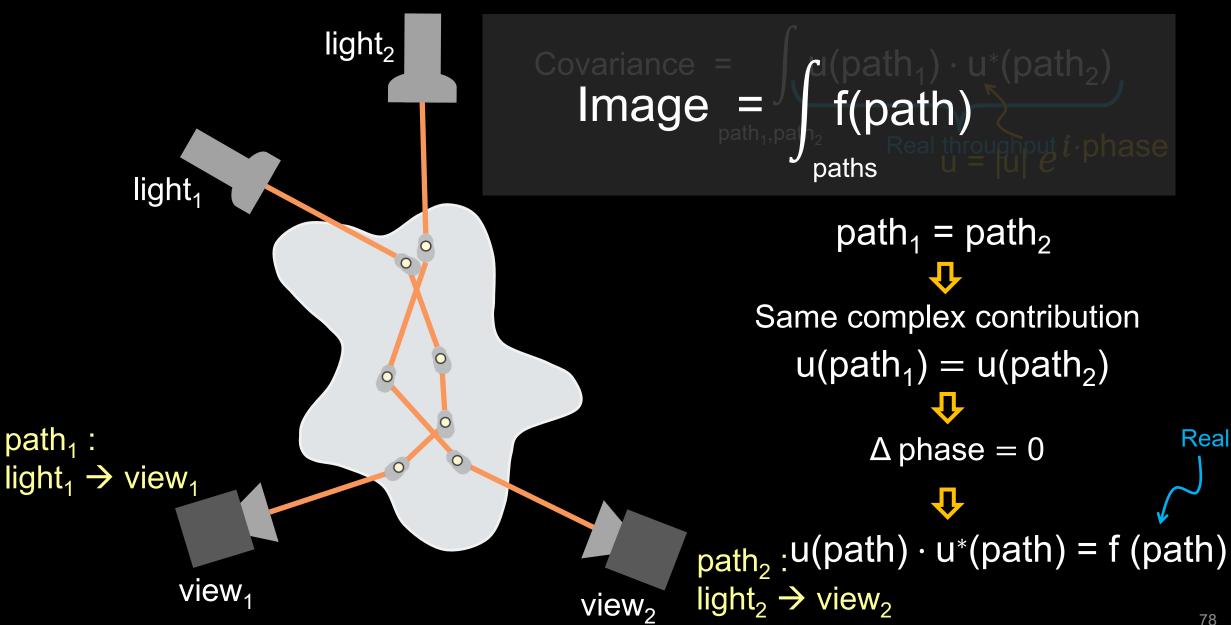
Cross –illumination statistics

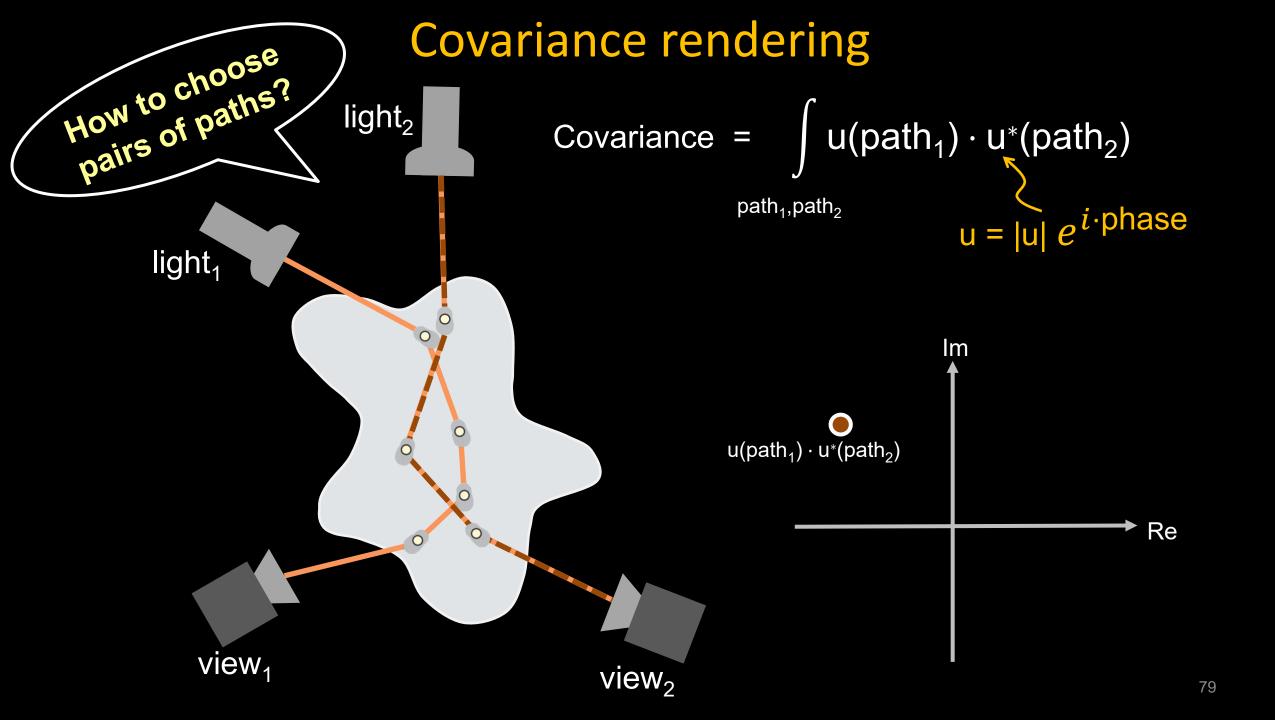


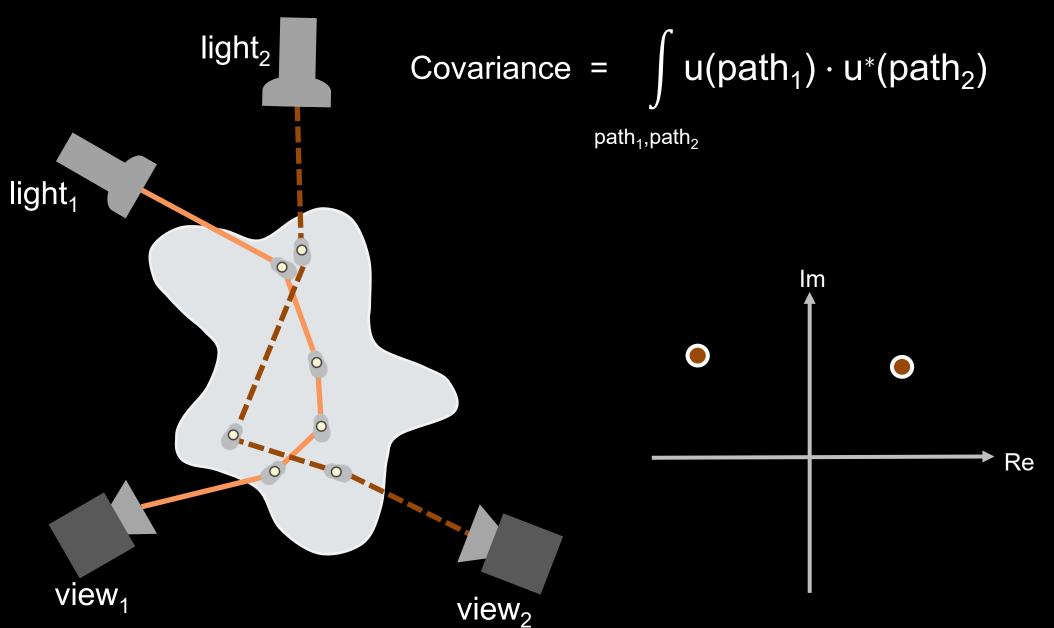
Monte Carlo Rendering 101

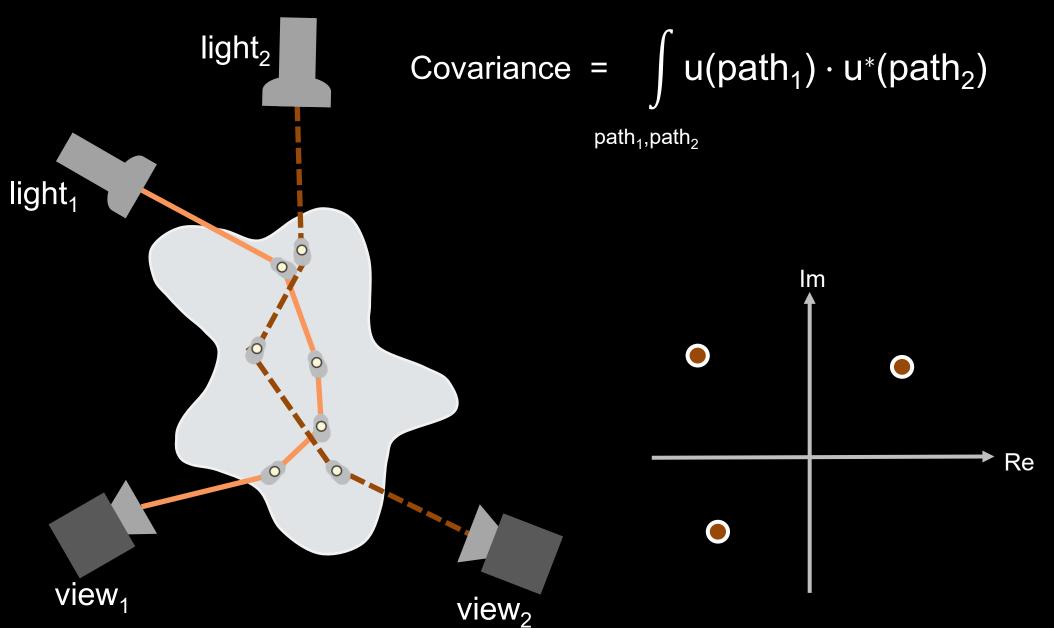


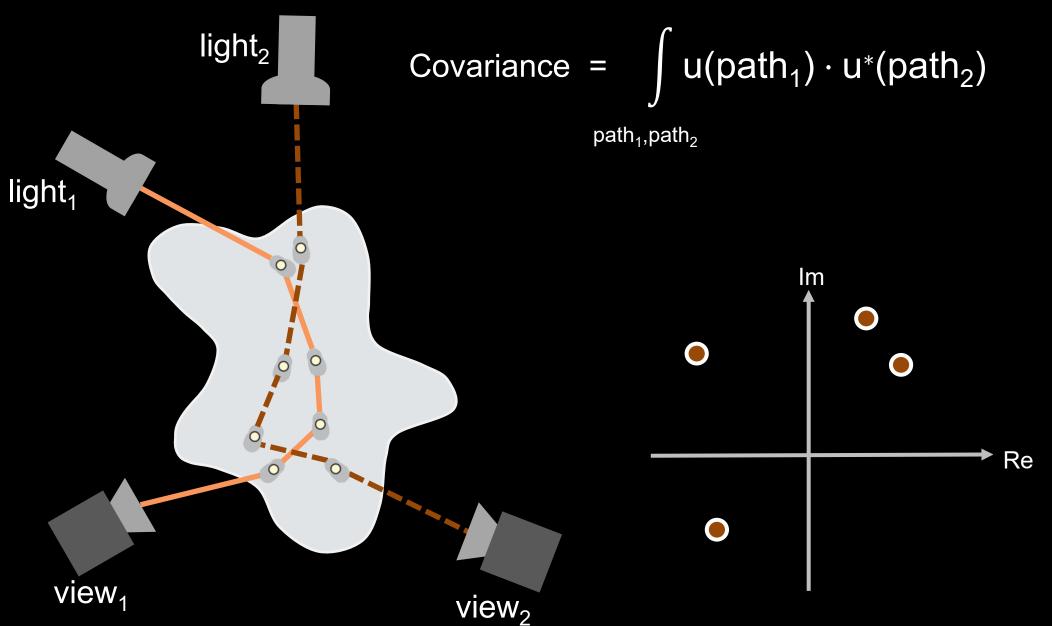


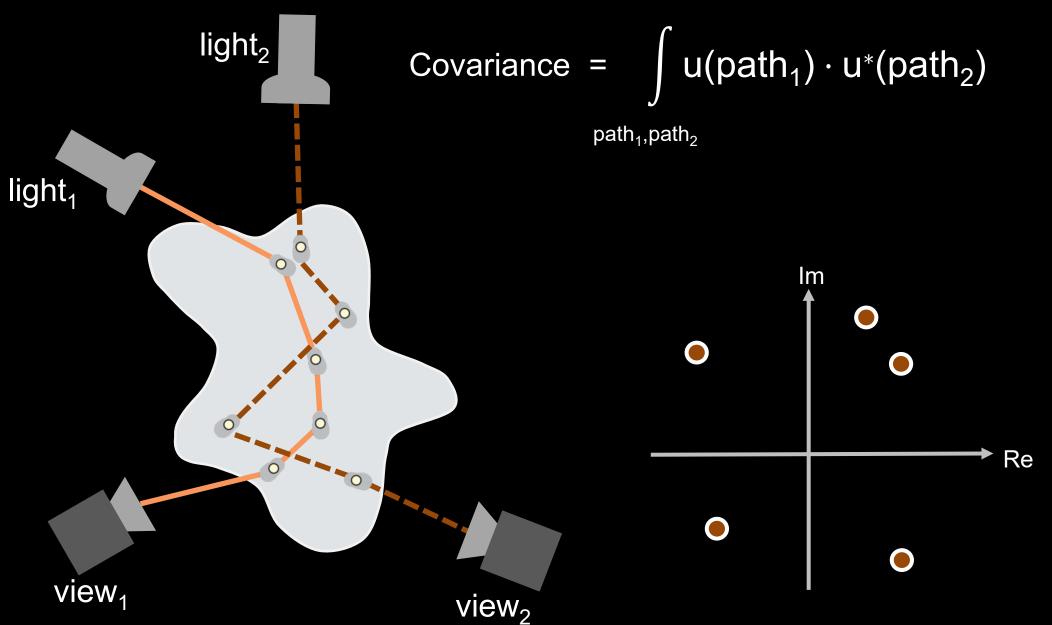


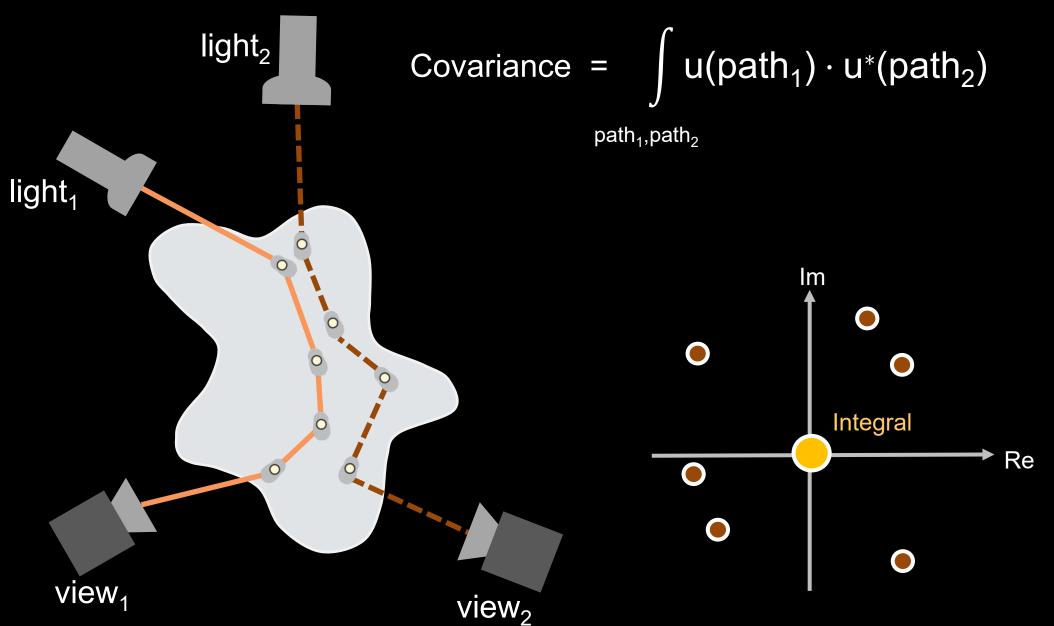


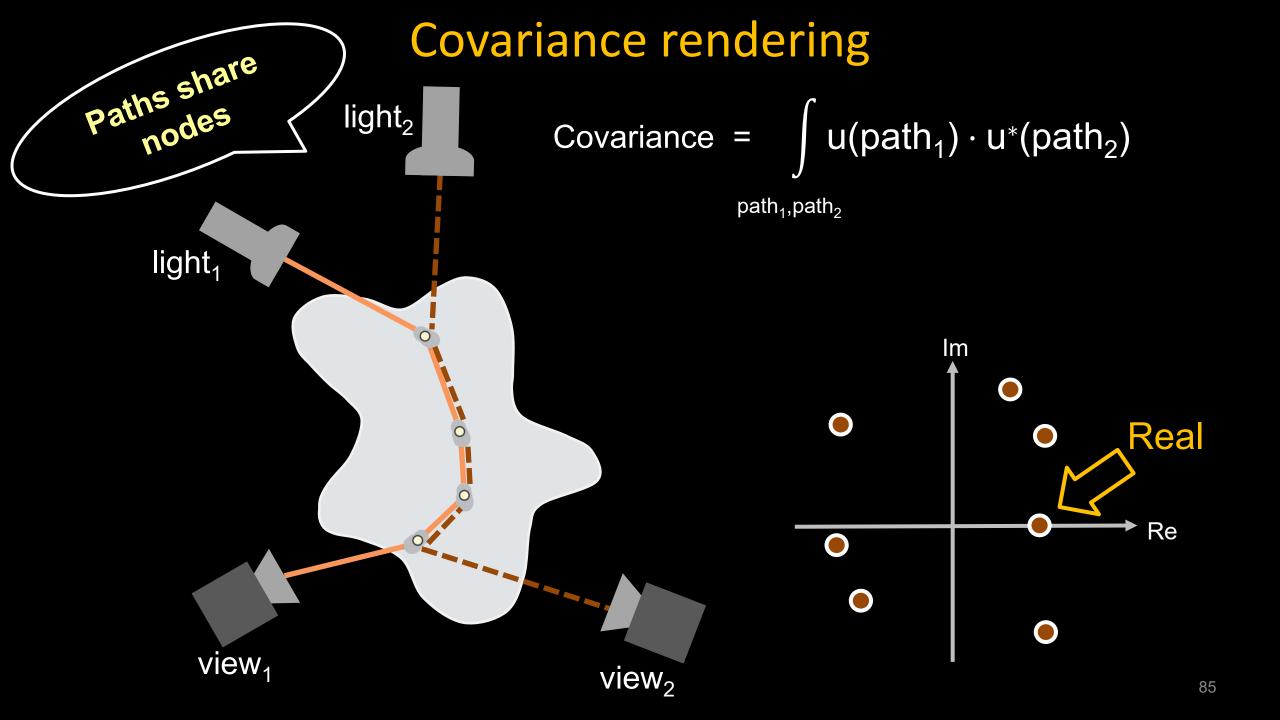


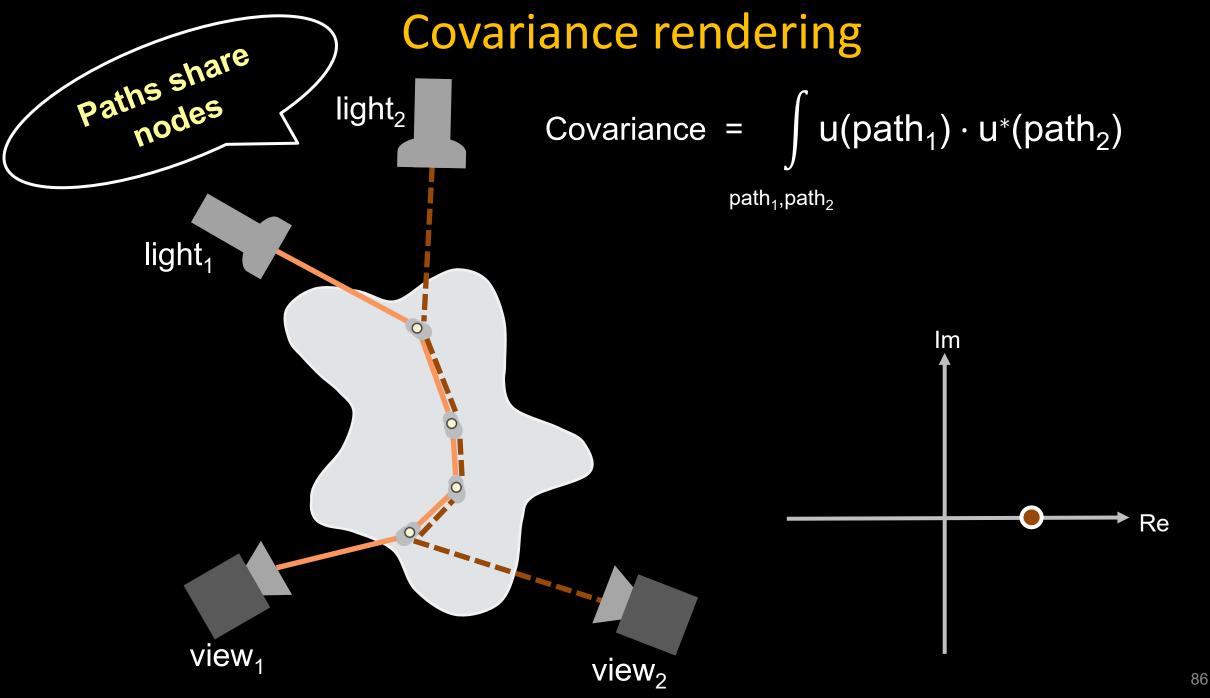


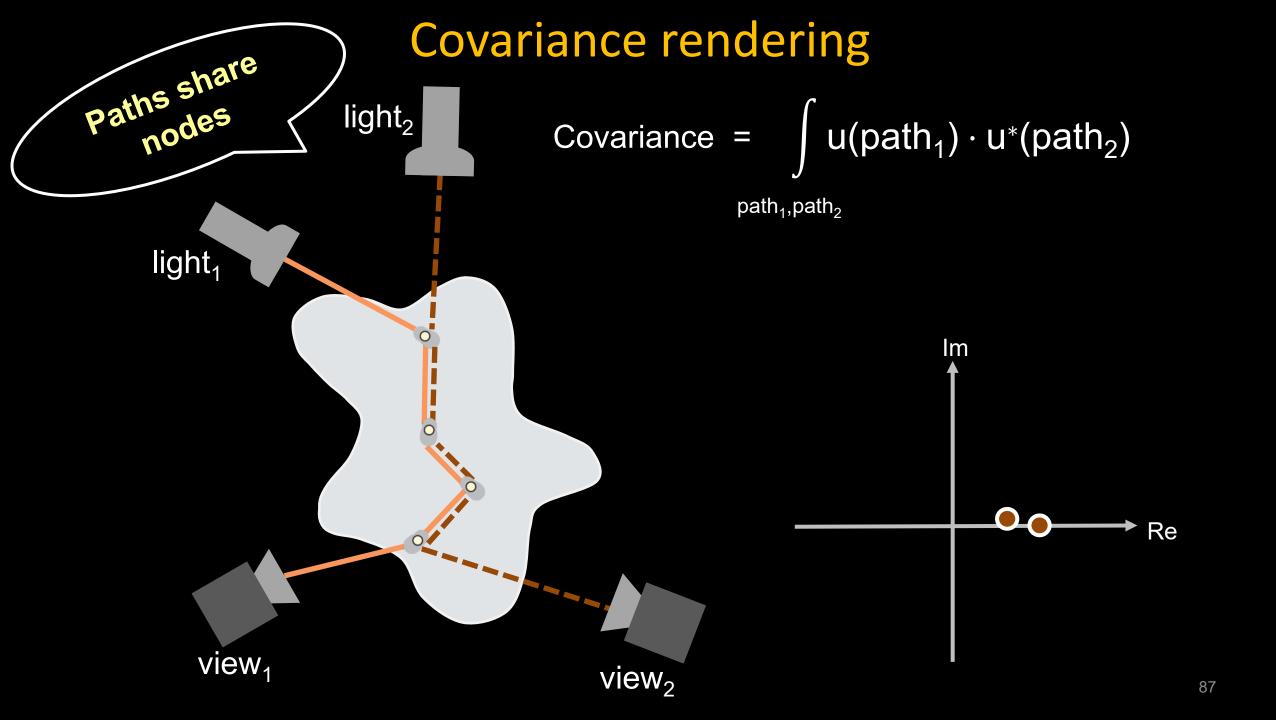


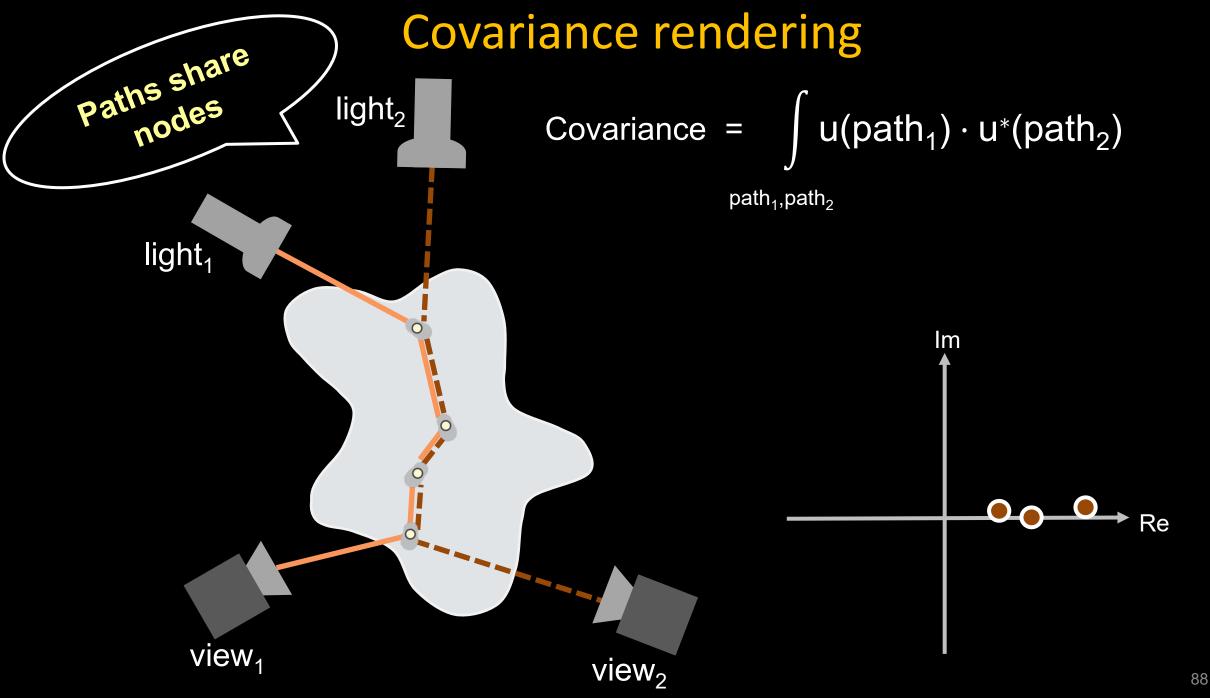


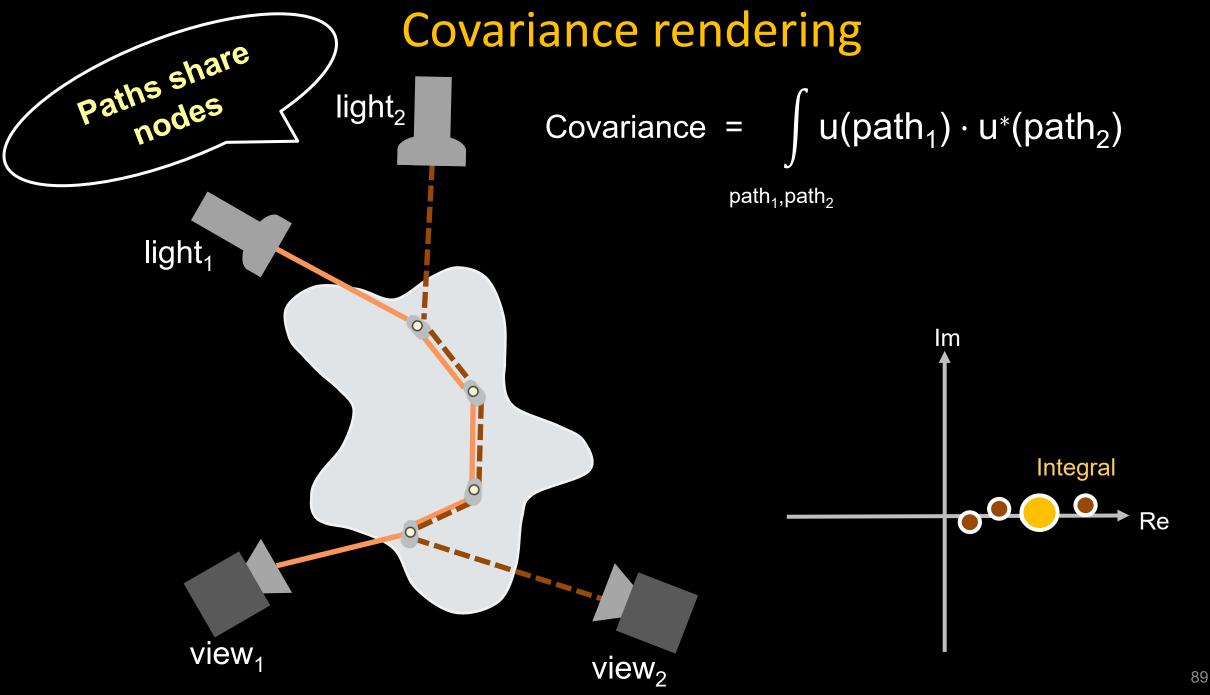


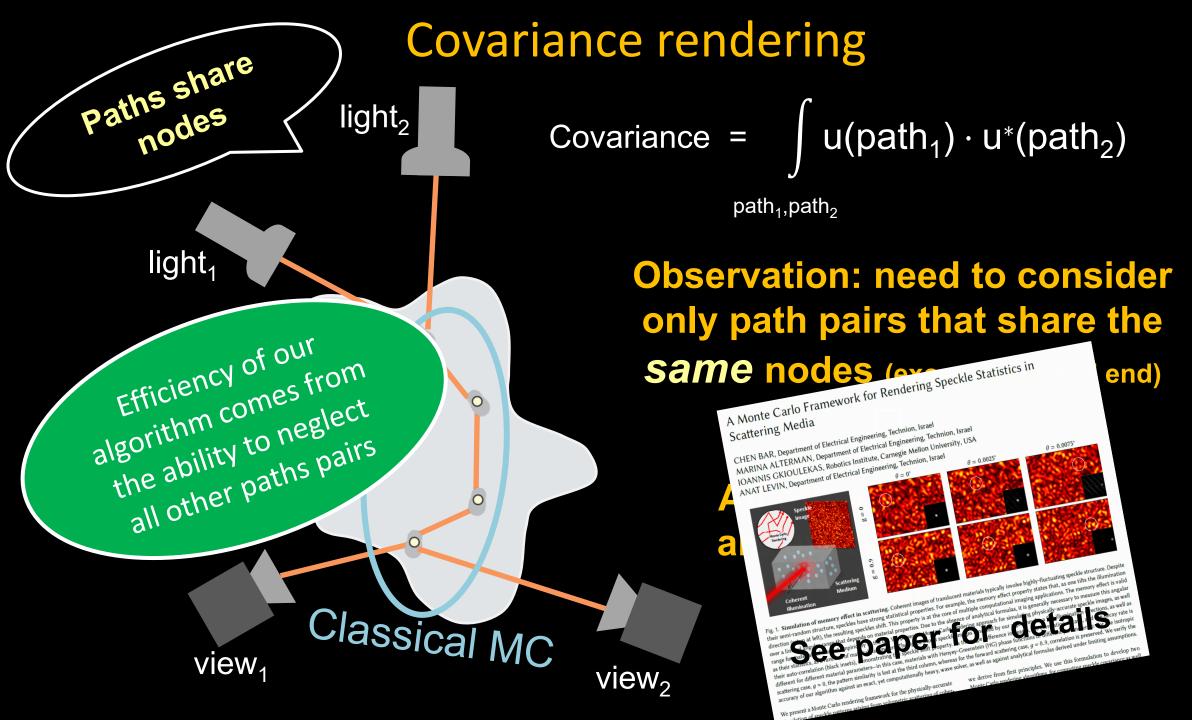




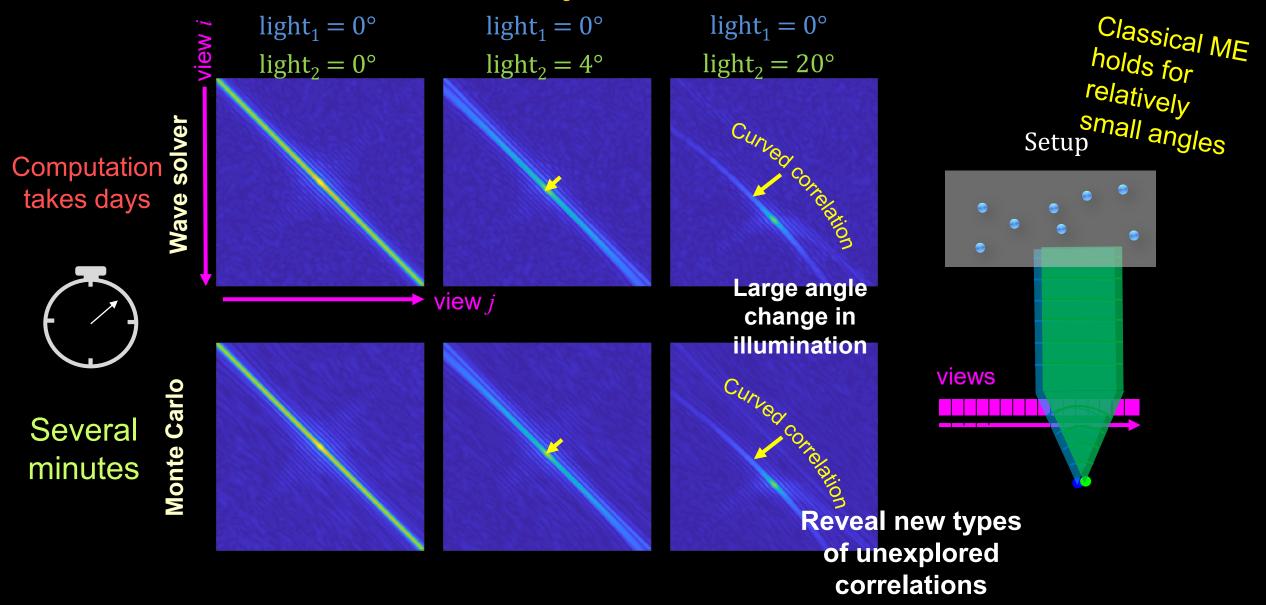








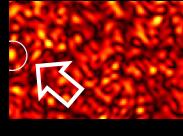
Validation: Wave Equation Covariances v.s. MC

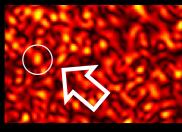


Rendering Speckles

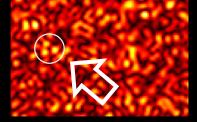
$$\theta = 0.0025^{\circ}$$

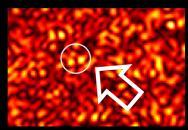
 θ

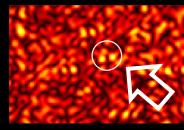




holds for





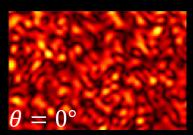


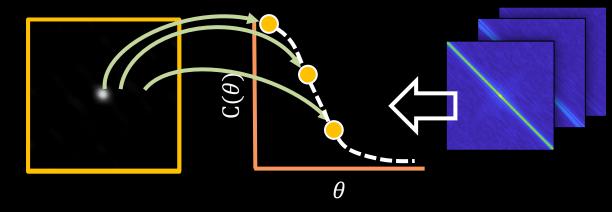
Exact ME extent is different for different materials.

Classical ME

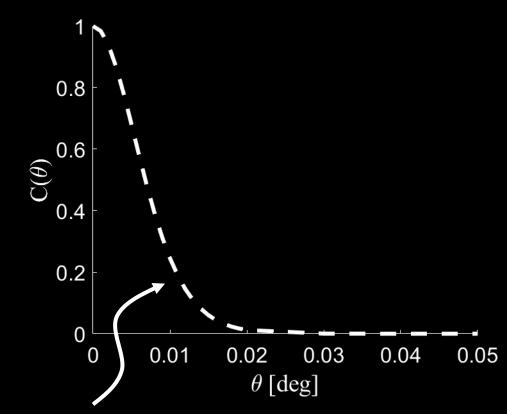
relatively small

Computing ME extent as a function of θ :

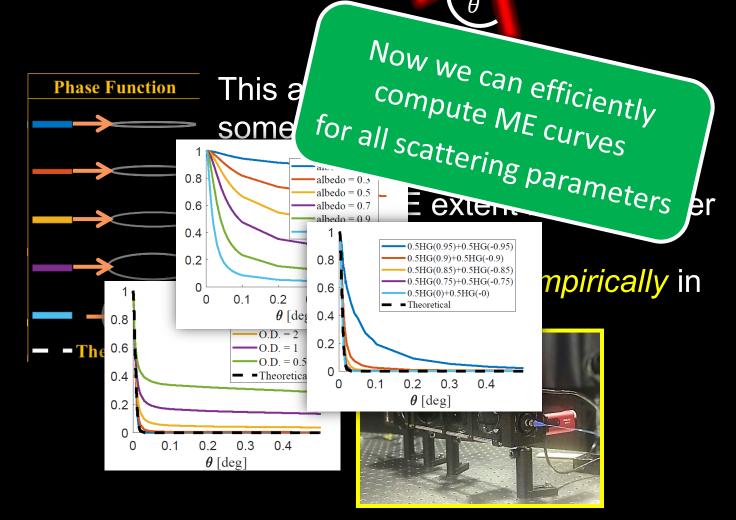




Evaluating the Memory Effect

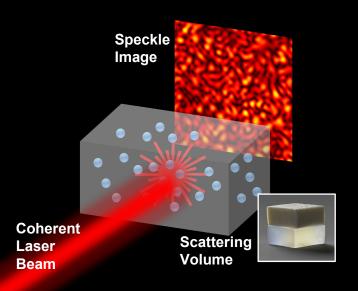


Analytical solution based on diffusion approximation

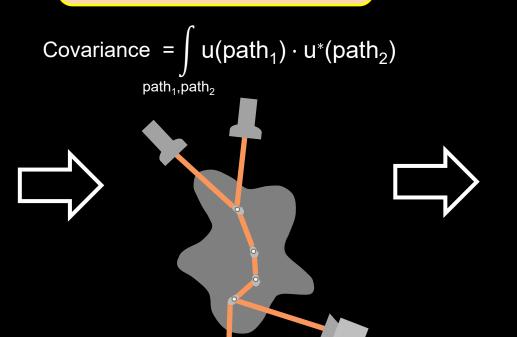


Summary

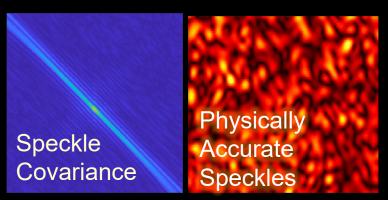
Problem: Coherent Scattering



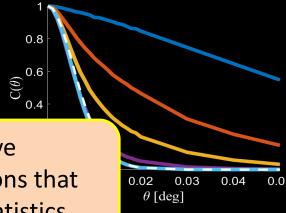
Path-integral formulation for speckle covariance



Efficient MC Rendering

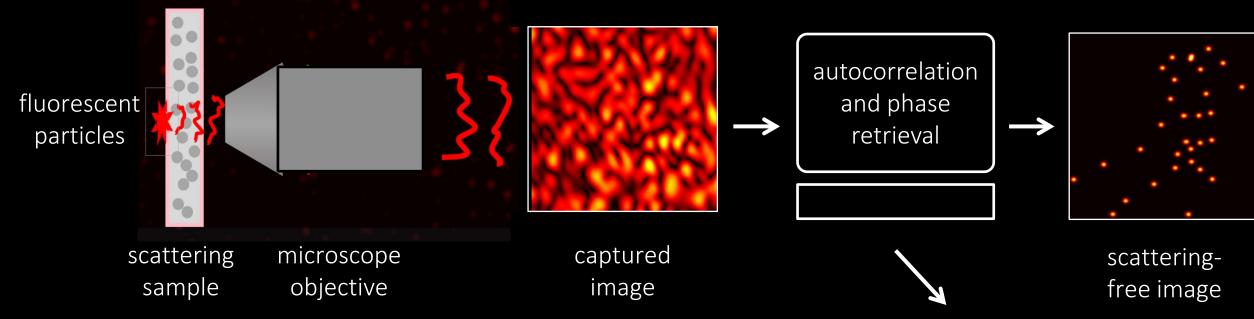


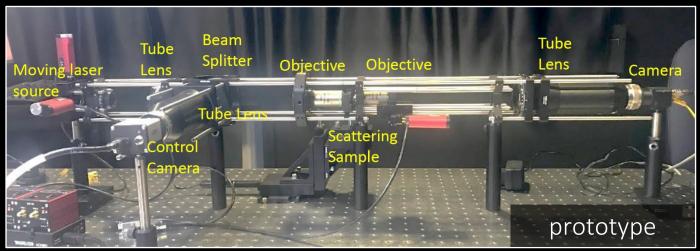
Memory Effect Evaluation



Potentially improve imaging applications that rely on speckle statistics

Speckle-based fluorescence microscopy



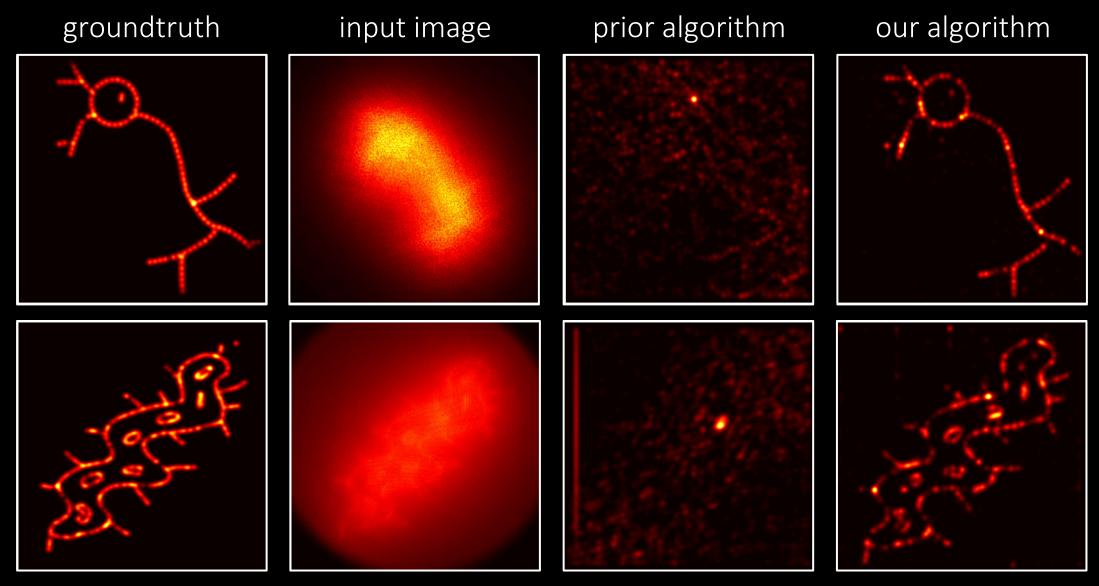


Performance strongly depends on:

- speckle statistics
- image priors
- tissue parameters

[PIs: Gkioulekas, Levin]

Better algorithms for fluorescence microscopy



[Alterman et al. Transactions on Graphics 2021]

Acquisition of scattering materials

Use differentiable speckle rendering to recover material parameters from speckle images

