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Course announcements

• PA4 due Friday 4/4.

• Final project proposals due Friday 4/4.

• Make sure to read the final project page: http://graphics.cs.cmu.edu/courses/15-
468/final_project.html

2

http://graphics.cs.cmu.edu/courses/15-468/final_project.html
http://graphics.cs.cmu.edu/courses/15-468/final_project.html


Slide credits

Most of these slides were directly adapted from:

• Shuang Zhao (UC Irvine).
• Toshiya Hachisuka (University of Waterloo)
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Today’s Lecture
• Metropolis light transport (MLT)

• A Markov chain Monte Carlo (MCMC) framework
implementing the Metropolis-Hastings method
first proposed by Veach and Guibas in 1997

• Capable of efficiently constructing “difficult” 
transport paths

• Lots of ongoing research along this direction

• MLT is capable of solving both the rendering 
equation (RE) and the radiative transfer 
equation (RTE). We will focus on the former
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Metropolis-Hastings Method

• A Markov-Chain Monte Carlo technique

• Given a non-negative function f, generate a
chain of correlated samples X1, X2, X3, … that
follow a probability density proportional to f

• Main advantage: f does not have to be a PDF 
(i.e., unnormalized)



Metropolis-Hastings Method

• Input
• Non-negative function f
• Probability density g(y → x) suggesting a candidate for 
the next sample value x, given the previous sample value y

• The algorithm: given current sample Xi
1. Sample X’ from g(Xi → X’)

2. Let
3. If

and draw
, set Xi+1 to X’; otherwise, set Xi+1 to Xi

• Start with arbitrary initial state X0

6
• Eventually, samples will be drawn proportionally to f !



The Problem
• We focus on estimating the pixel values of a virtual 

image where intensity I(j) of pixel j is

Image plane
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The Problem
• We focus on estimating the pixel values of a virtual 

image where intensity I(j) of pixel j is

• h(j) varies per pixel and is called the filter function
• f stays identical for all pixels
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Example Filter Functions
• Box Filter

• Gaussian Filter

Image plane
h(j)

Image plane
h(j)
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Estimating Pixel Values

• We have seen that if we can draw N path samples 
according to some density function p, then

• Particularly, if we take , namely
b being the normalization factor, then

with
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Estimating Pixel Values

?

?• How to draw samples from
Metropolis-Hastings method

• Challenges
• How to obtain

Monte Carlo integration
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Metropolis Light Transport (MLT)

• Overview
• Phase 1: initialization (estimating b)

• Draw N’ “seed” paths from some known 
density p0 (e.g., using bidirectional path tracing)

• Set

• Pick a small number (e.g., one) of representatives from
and apply Phase 2 to each of them

• Phase 2: Metropolis
• Starting with a seed path, apply the Metropolis-

Hastings method to generate samples according to f
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Metropolis Phase
• Overview (pseudocode)
Metropolis_Phase(image, xseed):

x = xseed

for i = 1 to N:
y = mutate(x)
a = acceptanceProbability(x → y) 
if rand() < a:

x = y
recordSample(image, x)
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Path Mutations
• The key step of the Metropolis phase

• Given a transport path , we need to define a 
transition probability to allow sampling 
mutated paths based on

• Given this transition density, the acceptance 
probability is then given by
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Desirable Mutation Properties
• High acceptance probability

• should be large with high probability

• Both small and large changes to the path

• Ergodicity (never stuck in some-region of the path space)
• should be non-zero for all with

• Low cost
15



Path Mutation Strategies
• [Veach & Guibas 1997]

• Bidirectional mutation
• Path perturbations
• Lens sub-path mutation

• [Jakob & Marschner 2012]
• Manifold exploration

• [Li et al. 2015]
• Hamiltonian Monte Carlo

…
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Bidirectional Path Mutations
• Basic idea

, pick l, m and replace 
with

• Given a path 
the vertices

• l and m satisfies

Image 
plane

Image 
plane
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Deletion Probability
Image
plane

• l and m are sampled as follows:
• Draw integer kd from some probability mass function pd,1[kd]. 

This number captures the length of deleted sub-path (i.e., m - l)

• Draw l from another probability mass function pd,2[l | kd] to 
avoid low acceptance probability and set m to l + kd
(more on this at the end of today’s lecture)

• The joint probability pd for drawing (l, m) is
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Addition Probability
Image
plane

• The deleted sub-path is then replaced by adding l’ and
m’ vertices on each side. To determine l’ and m’:

• Draw integer ka from pa[ka]. This integer determines the new
sub-path length (i.e., ka = l’ + m’ + 1)

• Draw l’ uniformly from {0, 1, …, ka - 1} and set m’ to ka - 1 - l’

• Let pa[l’, m’] denote the joint probability for drawing (l’, m’)

• After obtaining l’ and m’, the two corresponding sub-
paths are generated via local path sampling, yielding
the new path

19
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Parameter Values
• Veach [1997] proposed the following parameters:

• Deletion parameters
• pd,1[1] = 0.25, pd,1[2] = 0.5, pd,1[k] = 2-k for k > 2 

(before normalization)
• pd,2[l | kd] to be discussed later

• Addition parameters (given kd)
• pa,1[kd] = 0.5, pa,1[kd ± 1] = 0.15, pa,1[kd ± j] = 0.2(2-j) for j > 2

(before normalization)



Evaluating Transition Probability

• The probability for transitioning from to is

Image
plane

Image 
plane
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Bidirectional Mutation: Example

Image 
plane

• Original path:
• Mutation parameters:

• l = 1, m = 2 (deletion); l’ = 1, m’ = 0 (addition)

• Mutated path:
• The probability to accept equals

where
22



Bidirectional Mutation: Example

• , where

• Recall that does not involve 
captured by the filter function h(j)

as it is

Image 
plane
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Bidirectional Mutation: Example

• can be generated from in two ways

• Thus,

Image 
plane

Image 
plane
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Bidirectional Mutation: Example

• , where

• To obtain from using bidirectional path mutation, 
we need l = 1, m = 3 and l’ = m’ = 0. Thus,

Image 
plane
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Path Perturbations
• “Smaller” mutations
• Useful for finding “nearby” paths with high 

contribution
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Path Perturbations
• Basic idea: choosing a sub-path and moving 

the vertices slightly

• Three types of perturbations
• Lens
• Caustic
• Multi-chain



Path Perturbation: Lens
• Replace sub-paths (x0, …, xm) of the form ES*D(D|L)
• Randomly move the endpoint x0 on the image plane to z0

• Trace a ray through z0 to form the new sub-path

Image 
plane

Specular 
surface

“Diffuse” 
surface

“Diffuse” surface

Center of 
projection
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Path Perturbation: Lens
• To draw z0:

• First, sample a distance R using

• Then, uniformly sample z0 from the circle 
which is center at x0 and has radius R

• The mutation is immediately rejected if
ray tracing through z0 fails to generate a new sub-path 
with exactly the same form (i.e., ES*D(D|L))

• Otherwise, the acceptance probability is evaluated in a
way similar to the bidirectional mutation case
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Path Perturbation: Caustic
• Replace sub-paths (x0, …, xm) of the form EDS*(D|L)
• Slightly modify the direction xm → xm-1 (at random)
• Trace a ray from xm with this new direction to form the 

new sub-path

Image 
plane

Specular 
interface

“Diffuse” surface

Center of 
projection
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• Replace sub-paths of the form ES+DS+D(D|L)
• Lens perturbation is applied for ES+D
• The direction of the DS+ edge in the original sub-path is

perturbed
• The new direction is then used to complete the DS+D(D|L) 

segment of the new sub-path (using ray tracing)

Path Perturbation: Multi-Chain

“Diffuse” surface

Specular 
interface

Image 
plane

“Diffuse” 
surface
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Lens Sub-Path Mutation
• Used to stratify samples over the image plane

• Each pixel should get enough sample paths

• Replace lens sub-paths of the form ES*(D|L)
• Similar to lens perturbation, but draw z0 from a different 

density

Specular 
surface

Image
plane

“Diffuse” 
surface

Center of
projection
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Selecting Between Mutation Types

• Path mutations strategies introduced so far:
• Bidirectional mutation
• Lens, caustic, multi-chain perturbations
• Lens sub-path mutation

• Choose one randomly in each iteration

• Or, make mutation selection part of sampling!



Refinements
• Direct lighting

• It is more efficient to estimate direct illumination 
with standard methods (e.g., area & BSDF sampling 
combined using MIS) and apply MLT only for indirect 
illumination

• Importance sampling for mutation probabilities
• For increasing the average acceptance probability
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Improving Acceptance Rates
• Recall:

• Observation: given a path
,

partially evaluated without constructing

and
can be

• can be fully evaluated
• can be partially evaluated
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Improving Acceptance Rates

Unknown Known

• Set the unknown term to one and get a weight wl,m for 
each mutation

Image
plane

• Let ka = m - l - 1, then
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Improving Acceptance Rates

• Given a path , we can evaluate the 
weights for several possible mutation strategies and 
use these weights to sample one

• Can be used to obtain pd,2 for bidirectional mutations
• Given kd, simply make
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Results

BDPT
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Results

BDPT

MLT
(equal-time)
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ch
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]

39



Monte Carlo (MC) rendering



Markov chain Monte Carlo (MCMC) rendering



Markov chain Monte Carlo (MCMC) rendering

Accepted



Markov chain Monte Carlo (MCMC) rendering

Rejected



Efficiency of MCMC rendering



Efficiency of MCMC rendering



Efficiency of MCMC rendering



Efficiency of MCMC rendering



Efficiency of MCMC rendering



MCMC rendering MC rendering



State spaces for MCMC rendering

Describes how a path is mathematically defined



Path space

Path is a sequence of surface points
[Veach & Guibas 1997]

𝐱𝐱1

𝐱𝐱2

𝐱𝐱3
𝐱𝐱4



Mutation in path space

Changes surface points directly



Mutation in path space

Changes surface points directly



Primary sample space

Path is a sequence of numbers

𝐮𝐮1,𝐮𝐮2,𝐮𝐮3,𝐮𝐮40,1 𝑁𝑁

[Kelemen et al. 2002]



Primary sample space

Path is a sequence of numbers
mapped to a sequence of surface points



Primary sample space

Path is a sequence of numbers
mapped to a sequence of surface points

Path sampler



Mutation in primary sample space

Changes surface points indirectly
by changing corresponding numbers



Existing mutation techniques

[Hachisuka et al. 2014]

Path space Primary sample space

[Veach & Guibas 1997] [Kelemen et al. 2002]

[Kaplanyan et al. 2014] [Li et al. 2015][Jacob & Marschner 2012]

+ local exploration - local exploration
+ global exploration- global exploration



Path sampler

𝐮𝐮1,𝐮𝐮2,𝐮𝐮3,𝐮𝐮4 𝐱𝐱1, 𝐱𝐱2, 𝐱𝐱3, 𝐱𝐱4

𝐱𝐱1

𝐱𝐱2

𝐱𝐱3
𝐱𝐱4



Path sampler

𝐱𝐱1, 𝐱𝐱2, 𝐱𝐱3, 𝐱𝐱4

𝐱𝐱1 = 𝐹𝐹1 𝐮𝐮1

𝐮𝐮1,𝐮𝐮2,𝐮𝐮3,𝐮𝐮4



Path sampler

𝐮𝐮1,𝐮𝐮2,𝐮𝐮3,𝐮𝐮4 𝐱𝐱1, 𝐱𝐱2, 𝐱𝐱3, 𝐱𝐱4

𝐱𝐱2 = 𝐹𝐹2 𝐮𝐮2



Path sampler

𝐮𝐮1,𝐮𝐮2,𝐮𝐮3,𝐮𝐮4 𝐱𝐱1, 𝐱𝐱2, 𝐱𝐱3, 𝐱𝐱4

𝐱𝐱3 = 𝐹𝐹3 𝐮𝐮3



Path sampler

𝐮𝐮1,𝐮𝐮2,𝐮𝐮3,𝐮𝐮4 𝐱𝐱1, 𝐱𝐱2, 𝐱𝐱3, 𝐱𝐱4

𝐱𝐱4 = 𝐹𝐹4 𝐮𝐮4



Path sampler

𝐮𝐮1,𝐮𝐮2,𝐮𝐮3,𝐮𝐮4 𝐱𝐱1, 𝐱𝐱2, 𝐱𝐱3, 𝐱𝐱4

𝐱𝐱1

𝐱𝐱2

𝐱𝐱3
𝐱𝐱4



Path sampler

𝐮𝐮1,𝐮𝐮2,𝐮𝐮3,𝐮𝐮4 𝐱𝐱1, 𝐱𝐱2, 𝐱𝐱3, 𝐱𝐱4

𝐱𝐱1

𝐱𝐱2

𝐱𝐱3
𝐱𝐱4



Inverse path sampler

𝐱𝐱1, 𝐱𝐱2, 𝐱𝐱3, 𝐱𝐱4

𝐱𝐱1

𝐱𝐱2

𝐱𝐱3
𝐱𝐱4



Inverse path sampler

𝐮𝐮1,𝐮𝐮2,𝐮𝐮3,𝐮𝐮4𝐱𝐱1, 𝐱𝐱2, 𝐱𝐱3, 𝐱𝐱4

𝐱𝐱1

𝐱𝐱2

𝐱𝐱3
𝐱𝐱4



Inverse path sampler

𝐮𝐮1,𝐮𝐮2,𝐮𝐮3,𝐮𝐮4𝐱𝐱1, 𝐱𝐱2, 𝐱𝐱3, 𝐱𝐱4

𝐮𝐮1 = 𝐹𝐹1−1 𝐱𝐱1
𝐱𝐱1



Inverse path sampler

𝐮𝐮1,𝐮𝐮2,𝐮𝐮3,𝐮𝐮4𝐱𝐱1, 𝐱𝐱2, 𝐱𝐱3, 𝐱𝐱4

𝐮𝐮2 = 𝐹𝐹2−1 𝐱𝐱2

𝐱𝐱2



Inverse path sampler

𝐮𝐮1,𝐮𝐮2,𝐮𝐮3,𝐮𝐮4𝐱𝐱1, 𝐱𝐱2, 𝐱𝐱3, 𝐱𝐱4

𝐮𝐮3 = 𝐹𝐹3−1 𝐱𝐱3
𝐱𝐱3



Inverse path sampler

𝐮𝐮1,𝐮𝐮2,𝐮𝐮3,𝐮𝐮4𝐱𝐱1, 𝐱𝐱2, 𝐱𝐱3, 𝐱𝐱4

𝐮𝐮4 = 𝐹𝐹4−1 𝐱𝐱4𝐱𝐱4



Inverse path sampler

•𝐹𝐹 is the inverse cumulative distribution function (CDF)

• Obtaining 𝑭𝑭−𝟏𝟏 (CDF) is straightforward because it is 
needed in the derivation of the inverse CDF

• Example: GGX distribution

𝜽𝜽 = tan−1
𝛼𝛼 𝑢𝑢1
1 − 𝑢𝑢1

,𝝓𝝓 = 2𝜋𝜋𝑢𝑢2𝑢𝑢1 =
tan2 𝜽𝜽

𝛼𝛼2 + tan2 𝜽𝜽
,𝑢𝑢2 =

𝝓𝝓
2𝜋𝜋

𝜃𝜃
𝜙𝜙



Handling non-invertibility

• Handling the case of 𝐹𝐹−1 does not exist

• e.g., perfect reflectors, layered material

• Use of a mapping in lower dimensional subspace to 
define invertible mapping



Fusing mutations

• With an inverse path sampler, we can fuse mutations
in path space and primary sample space

• Our state is defined in primary sample space



Fusing mutations



Primary sample space mutations

Primary sample space
mutation

Current state Next state



Path space mutations

Current state

Map to
path space



Path space mutations

Current state

Map to
path space



Path space mutations

Path space
mutation



Path space mutations

Path space
mutation



Path space mutations

Path space
mutation



Path space mutations

Path space
mutation



Path space mutations

Map to
Primary sample space

with inverse path sampler

Next state



Primary sample space mutation

Path space mutation



Primary sample space mutation

Path space mutation





Path space (MLT)



Path space (MLT)
Error: 0.2520

1.00.0



Primary sample space (Multiplexed MLT)



Primary sample space (Multiplexed MLT)
Error: 1.1056

1.00.0



Fused



Fused
Error: 0.3537

1.00.0





Primary sample space (Multiplexed MLT)



Primary sample space (Multiplexed MLT)
Error: 0.3658

0.80.0



Path space (MLT)



Path space (MLT)
Error: 1.3433

0.80.0



Fused



Fused
Error: 0.6442

0.80.0





Multiplexed MLT

MLT

Fused



Multiplexed MLT

MLT

Ours



Multiplexed MLT

MLT

Ours

Multiplexed MLT

MLT

Fused



Multiplexed MLT

MLT

Ours



GRADIENTS ARE AWESOME
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Deep learning Inverse problems

params
scene

Image processing Physics simulation



GRADIENTS IN RENDERING

Differentiable rendering is a hot topic:
• [Gkioulekas et al. 2013, 2016], [Khungurn et al. 2015], [Zhao et al. 2016], [Che et al. 

2018], [Li et al. 2018], [Tsai et al. 2019], [Loubet et al. 2019], [Zhang et al. 2019, 
2020], [Nimier-David et al. 2019, 2020]…
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GRADIENTS IN RENDERING

Differentiable rendering is a hot topic:
• [Gkioulekas et al. 2013, 2016], [Khungurn et al. 2015], [Zhao et al. 2016], [Che et al. 

2018], [Li et al. 2018], [Tsai et al. 2019], [Loubet et al. 2019], [Zhang et al. 2019, 
2020], [Nimier-David et al. 2019, 2020]…
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Mainly used for 
inverse problem: 

rendering params

We focus on
forward rendering: 

renderingparams
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Optimization:
- Stochastic Gradient Descent (SGD)

MCMC sampling:
- Langevin Monte Carlo (LMC)









OUTLINE
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Introduction to 
Langevin Monte Carlo (LMC)

Optimization-inspired 
acceleration 

Ensuring unbiasedness Gradient caching



110H2MC [Li et al. 2015] Ours5 mins






RJMLT [Bitterli et al. 2017] Ours10 mins






SAMPLING IN RENDERING
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Primary sample space

Light path
construction

𝐼𝐼 = ∫ 𝑓𝑓 𝑥𝑥 𝑑𝑑𝑥𝑥

𝑥𝑥 ∈ 0, 1 𝑁𝑁 

𝑥𝑥 

• Estimated with Monte Carlo
• Requires 𝑥𝑥 ∼ 𝑓𝑓 for efficiency 

Use ∇𝑓𝑓 to improve sampling



SGD OVERVIEW

𝑥𝑥1
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Optimization problem: 
max
𝒙𝒙

𝑓𝑓 𝒙𝒙

Stochastic gradient descent/ascent:
𝒙𝒙𝑡𝑡 = 𝒙𝒙𝑡𝑡−1 + 𝑠𝑠t−1∇𝑓𝑓(𝒙𝒙𝑡𝑡−1) ∇𝑓𝑓 𝑥𝑥2

𝑥𝑥3

𝑥𝑥4
𝑥𝑥5

scalar step size



Sampling problem: 
               𝒙𝒙𝑡𝑡∼ 𝑓𝑓

Kelemen [2002]:
𝒙𝒙𝑡𝑡 = 𝒙𝒙𝑡𝑡−1 + 𝑁𝑁(0,𝜎𝜎2𝑰𝑰)

Apply Metropolis Hastings to accept/reject

KELEMEN 2002
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Gaussian noise






LMC OVERVIEW

115

Sampling problem: 
               𝒙𝒙𝑡𝑡∼ 𝑓𝑓

Langevin MC:

𝒙𝒙𝑡𝑡 = 𝒙𝒙𝑡𝑡−1 + 𝑠𝑠𝑡𝑡−1∇𝑓𝑓 𝒙𝒙𝑡𝑡−1 +
1
𝑠𝑠𝑡𝑡−1

𝑁𝑁(0,𝜎𝜎2𝑰𝑰)

Apply Metropolis Hastings to accept/reject

Paul Langevin






LMC OVERVIEW

𝑥𝑥1
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∇𝑓𝑓
𝑥𝑥2

Metropolis 
Hastings ∇𝑓𝑓

𝑥𝑥3

Sampling problem: 
               𝒙𝒙𝑡𝑡∼ 𝑓𝑓

Langevin MC:

𝒙𝒙𝑡𝑡 = 𝒙𝒙𝑡𝑡−1 + 𝑠𝑠𝑡𝑡−1∇𝑓𝑓 𝒙𝒙𝑡𝑡−1 +
1
𝑠𝑠𝑡𝑡−1

𝑁𝑁(0,𝜎𝜎2𝑰𝑰)

Apply Metropolis Hastings to accept/reject



SGD VS. LMC
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Optimization:
max
𝒙𝒙

𝑓𝑓 𝒙𝒙
SGD:

𝒙𝒙𝑡𝑡 = 𝒙𝒙𝑡𝑡−1 + 𝑠𝑠𝑡𝑡−1∇𝑓𝑓(𝒙𝒙𝑡𝑡−1) 

Sampling:
 𝒙𝒙𝑡𝑡∼ 𝑓𝑓

LMC:

𝒙𝒙𝑡𝑡 = 𝒙𝒙𝑡𝑡−1 + 𝑠𝑠𝑡𝑡−1∇𝑓𝑓 𝒙𝒙𝑡𝑡−1 +
1
𝑠𝑠𝑡𝑡−1

𝑁𝑁(0,𝜎𝜎2𝑰𝑰)



Kelemen 2002
MSE: 0.2954
Original LMC
MSE: 0.2465



119vertex 2
vertex 1

Path contrib.

zero contrib.

zero contrib.

Inspired by [Li et al. 2015]

RING CAUSTICS



RING CAUSTICS
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Sampling problem: 𝒙𝒙𝑡𝑡∼ 𝑓𝑓

Langevin MC:

𝒙𝒙𝑡𝑡 = 𝒙𝒙𝑡𝑡−1 + 𝑠𝑠𝑡𝑡−1∇𝑓𝑓 𝒙𝒙𝑡𝑡−1 +
1
𝑠𝑠𝑡𝑡−1

𝑁𝑁(0,𝜎𝜎2𝑰𝑰)

𝑥𝑥𝑡𝑡−1

Gradient vanishes on flat surface

∇𝑓𝑓

reject

reject

reject

reject

accept

accept
accept

accept

acceptaccept

preconditioning matrix

Inspired by optimization:
𝒙𝒙𝑡𝑡 = 𝒙𝒙𝑡𝑡−1 + 𝑲𝑲𝒕𝒕−𝟏𝟏∇𝑓𝑓 𝒙𝒙𝑡𝑡−1 + 𝑲𝑲𝒕𝒕−𝟏𝟏

−1 𝑁𝑁(0,𝜎𝜎2𝑰𝑰)

❌ Slow exploration
❌ Isotropic noise 

✅ Fast exploration
✅ Adapt to local geometry



SELECTING THE PRECONDITIONING MATRIX

Exact Hessian of 𝑓𝑓 [Li et al. 2015]
❌ requires 2nd-order gradients
❌ full matrix 
❌ expensive matrix operations
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𝒙𝒙𝑡𝑡 = 𝒙𝒙𝑡𝑡−1 + 𝑲𝑲𝒕𝒕−𝟏𝟏∇𝑓𝑓 𝒙𝒙𝑡𝑡−1 + 𝑲𝑲𝒕𝒕−𝟏𝟏
−1 𝑁𝑁(0,𝜎𝜎2𝑰𝑰)

quasi-Newton methods: Adam, BFGS, …

Approximate Hessian of 𝑓𝑓 (ours)
✅ reuses 1st-order gradients
✅ diagonal matrix 
✅ efficient scalar operations

preconditioning matrix



LMC + ADAM
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Adam preconditioning matrix 𝑲𝑲𝑡𝑡 is a function of all previous gradients

𝑥𝑥1

𝑲𝑲1 depends on 
∇f 𝒙𝒙1

𝑥𝑥2
𝑥𝑥3

𝑲𝑲2 depends on 
∇f 𝒙𝒙2 , ∇f 𝒙𝒙1
𝑲𝑲3 depends on 

∇f 𝒙𝒙3 , ∇f 𝒙𝒙2 , ∇f 𝒙𝒙1𝑲𝑲𝟏𝟏

𝑲𝑲𝟐𝟐

𝑲𝑲𝟑𝟑



More accurate 
but expensive

FULL VS. DIAGONAL PRECONDITIONING

123

𝒙𝒙𝑡𝑡 = 𝒙𝒙𝑡𝑡−1 + 𝑲𝑲𝑡𝑡−1∇𝑓𝑓 𝒙𝒙𝑡𝑡−1 + 𝑲𝑲𝑡𝑡−1
−1 𝑁𝑁(0,𝜎𝜎2𝑰𝑰)

𝒙𝒙𝑡𝑡 = 𝒙𝒙𝑡𝑡−1 + 𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝(𝑲𝑲𝑡𝑡−1)∇𝑓𝑓 𝒙𝒙𝑡𝑡−1 + 𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝(𝑲𝑲𝑡𝑡−1)−1 𝑁𝑁(0,𝜎𝜎2𝑰𝑰)

Less accurate 
but fast

• Matrix-vector multiplication with gradient
• Matrix inversion for sampling

Better at equal time!



MSE: 0.0779
Original LMC
MSE: 0.2465
LMC + Adam, full
MSE: 0.0807
LMC + Adam, diagonal
MSE: 0.0779
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Bias problem

Unfortunately, naïvely combining 
LMC + Adam causes Bias!



𝒙𝒙𝑡𝑡1 = 𝒙𝒙𝑡𝑡1−1 + 𝑲𝑲t1−1∇𝑓𝑓 𝒙𝒙𝑡𝑡1−1 + 𝑲𝑲𝑡𝑡1−1
−1 𝑁𝑁(0,𝜎𝜎2𝑰𝑰)

𝒙𝒙𝑡𝑡2 = 𝒙𝒙𝑡𝑡2−1 + 𝑲𝑲t2−1∇𝑓𝑓 𝒙𝒙𝑡𝑡2−1 + 𝑲𝑲𝑡𝑡2−1
−1 𝑁𝑁(0,𝜎𝜎2𝑰𝑰)

𝒙𝒙𝑡𝑡3 = 𝒙𝒙𝑡𝑡3−1 + 𝑲𝑲t3−1∇𝑓𝑓 𝒙𝒙𝑡𝑡3−1 + 𝑲𝑲𝑡𝑡3−1
−1 𝑁𝑁(0,𝜎𝜎2𝑰𝑰)

WHY BIASED?
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same point
different 

preconditioning matrices

Unbiasedness requires asymptotic time homogeneity:
Preconditioning matrix 𝑲𝑲𝒕𝒕 → constant, when 𝑡𝑡 → ∞ 

Adam violates asymptotic time homogeneity:



SOLUTION 1: DIMINISHING ADAPTATION
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𝑲𝑲𝑡𝑡
′ = 𝑲𝑲𝑡𝑡 /|𝑡𝑡 + 𝑰𝑰

Unbiasedness requires asymptotic time homogeneity:
Preconditioning matrix 𝑲𝑲𝒕𝒕 → constant, when 𝑡𝑡 → ∞ 

Small t Large t

𝑲𝑲𝑡𝑡 /|𝑡𝑡 dominates 𝑲𝑲𝑡𝑡 /|𝑡𝑡 vanishes
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LMC + Adam, diagonalLMC + Adam, diagonal 
(w/ diminishing adaptation)



DRAWBACKS OF DIMINISHING ADAPTATION

• Gradual loss of adaptation 
– Problematic for complex scenes

• No gradient reuse
– Need to re-calculate gradients
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New path

𝑲𝑲𝑡𝑡
′ = 𝑲𝑲𝑡𝑡 /|𝑡𝑡 + 𝑰𝑰



SOLUTION 2: CACHE-DRIVEN ADAPTATION

130

• Stage 1
- use Adam
- cache gradients

• Stage 2
– freeze cache
– use cached gradients

𝑲𝑲𝑡𝑡 = cacheQuery(𝑥𝑥𝑡𝑡)

𝑥𝑥𝑡𝑡

Unbiasedness requires asymptotic time homogeneity:
Preconditioning matrix 𝑲𝑲𝒕𝒕 → constant, when 𝑡𝑡 → ∞ 



Kelemen 2002
MSE: 0.2954
LMC
MSE: 0.2465
LMC + Adam, diagonal
MSE: 0.0807

Biased!

Diminishing adaptation
MSE: 0.0608

Unbiased

Cache-driven adaptation
MSE: 0.0459



COMPARISONS WITH PRIOR WORK
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133H2MC [Li et al. 2015] Ours7 mins






134MMLT [Hachisuka et al. 2014] Ours20 mins






135RJMLT [Bitterli et al. 2017] Ours10 mins






10 min
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LIMITATIONS AND FUTURE WORK

• require gradients
        becoming common in modern renderers

• global exploration
        potentially use gradient cache for this purpose 
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TAKE-HOME MESSAGE
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Introduction to 
Langevin Monte Carlo (LMC)

Optimization-inspired 
acceleration 

Ensuring unbiasedness Gradient caching
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