Metropolis light transport (a.k.a. Markov chain Monte Carlo rendering)

15-468, 15-668, 15-868 Physics-based Rendering Spring 2025, Lecture 15

1

http://graphics.cs.cmu.edu/courses/15-468

Course announcements

- PA4 due Friday 4/4.
- Final project proposals due Friday 4/4.
- Make sure to read the final project page: <u>http://graphics.cs.cmu.edu/courses/15-468/final_project.html</u>

Slide credits

Most of these slides were directly adapted from:

- Shuang Zhao (UC Irvine).
- Toshiya Hachisuka (University of Waterloo)

Today's Lecture

- Metropolis light transport (MLT)
 - A Markov chain Monte Carlo (MCMC) framework implementing the Metropolis-Hastings method first proposed by Veach and Guibas in 1997
 - Capable of efficiently constructing "difficult" transport paths
 - Lots of ongoing research along this direction
- MLT is capable of solving both the rendering equation (RE) and the radiative transfer equation (RTE). We will focus on the former

Metropolis-Hastings Method

- A Markov-Chain Monte Carlo technique
- Given a non-negative function f, generate a chain of **correlated** samples $X_1, X_2, X_3, ...$ that follow a probability density proportional to f
- Main advantage: *f* does not have to be a PDF (i.e., unnormalized)

Metropolis-Hastings Method

- Input
 - Non-negative function *f*
 - Probability density $g(y \rightarrow x)$ suggesting a candidate for the next sample value *x*, given the previous sample value *y*
- The algorithm: given current sample X_i
 - 1. Sample X' from $g(X_i \rightarrow X')$
 - 2. Let $a = \frac{f(X')}{f(X_i)} \frac{g(X' \to X_i)}{g(X_i \to X')}$ and draw $\xi \sim U(0, 1]$
 - 3. If $\xi \leq a$, set X_{i+1} to X'; otherwise, set X_{i+1} to X_i
- Start with arbitrary initial state X_0
- *Eventually*, samples will be drawn proportionally to *f* !

The Problem

• We focus on estimating the pixel values of a virtual image where intensity *I*^(j) of pixel *j* is

$$I^{(j)} = \int_{\Omega} f^{(j)}(\bar{x}) \,\mathrm{d}\bar{x} = \int_{\Omega} h^{(j)}(\bar{x}) \,f(\bar{x}) \,\mathrm{d}\bar{x}, \text{ where}$$

The Problem

• We focus on estimating the pixel values of a virtual image where intensity *I*^(j) of pixel *j* is

$$I^{(j)} = \int_{\Omega} f^{(j)}(\bar{x}) \,\mathrm{d}\bar{x} = \int_{\Omega} h^{(j)}(\bar{x}) \,f(\bar{x}) \,\mathrm{d}\bar{x}, \text{ where}$$

$$h^{(j)}(\bar{x}) = W_e^{(j)}(\boldsymbol{x}_1 \to \boldsymbol{x}_0)$$
$$f(\bar{x}) = L_e(\boldsymbol{x}_k \to \boldsymbol{x}_{k-1}) \left[\prod_{j=0}^{k-1} G(\boldsymbol{x}_{j+1} \leftrightarrow \boldsymbol{x}_j) \right] \left[\prod_{j=1}^{k-1} f_r(\boldsymbol{x}_{j+1} \to \boldsymbol{x}_j \to \boldsymbol{x}_{j-1}) \right]$$

- *h*^(j) varies per pixel and is called the *filter function*
- *f* stays identical for all pixels

Example Filter Functions

• Box Filter

Estimating Pixel Values

$$I^{(j)} = \int_{\Omega} h^{(j)}(\bar{x}) f(\bar{x}) \,\mathrm{d}\bar{x}$$

• We have seen that if we can draw *N* path samples $\bar{x}_1, \ldots, \bar{x}_N$ according to some density function *p*, then

$$I^{(j)} = \mathbb{E}\left[\frac{1}{N}\sum_{i=1}^{N}\frac{h^{(j)}(\bar{x}_{i})f(\bar{x}_{i})}{p(\bar{x}_{i})}\right]$$

- Particularly, if we take $p \propto f$, namely $p(\bar{x}) = f(\bar{x})/b$ with *b* being the normalization factor, then

$$I^{(j)} = \mathbb{E}\left[\frac{1}{N}\sum_{i=1}^{N} b h^{(j)}(\bar{x}_i)\right]$$

Estimating Pixel Values

$$I^{(j)} = \mathbb{E}\left[\frac{1}{N}\sum_{i=1}^{N} b h^{(j)}(\bar{x}_i)\right]$$

- Challenges
 - How to obtain $b = \int_{\Omega} f(\bar{x}) d\bar{x}$? Monte Carlo integration
 - How to draw samples from $p(\bar{x}) = f(\bar{x})/b$? Metropolis-Hastings method

$$I^{(j)} = \mathbb{E}\left[\frac{1}{N}\sum_{i=1}^{N} b h^{(j)}(\bar{x}_i)\right]$$

Metropolis Light Transport (MLT)

- Overview
 - Phase 1: initialization (estimating b)
 - Draw *N*' "seed" paths $\bar{x}_1^{\text{seed}}, \ldots, \bar{x}_{N'}^{\text{seed}}$ from some known density p_0 (e.g., using bidirectional path tracing)

• Set
$$\langle b \rangle = \frac{1}{N'} \sum_{i=1}^{N'} \frac{f(\bar{x}_i^{\text{seed}})}{p_0(\bar{x}_i^{\text{seed}})}$$

• Pick a small number (e.g., one) of representatives from $\bar{x}_1^{
m seed},\ldots,\bar{x}_{N'}^{
m seed}$ and apply Phase 2 to each of them

Phase 2: Metropolis

• Starting with a seed path, apply the Metropolis-Hastings method to generate samples according to *f*

Metropolis Phase

Overview (pseudocode)

```
Metropolis_Phase(image, x<sup>seed</sup>):
    x = x<sup>seed</sup>
    for i = 1 to N:
        y = mutate(x)
        a = acceptanceProbability(x → y)
        if rand() < a:
            x = y
        recordSample(image, x)</pre>
```

Path Mutations

- The key step of the Metropolis phase
- Given a transport path \bar{x} , we need to define a transition probability $g(\bar{x} \rightarrow \bar{y})$ to allow sampling mutated paths \bar{y} based on \bar{x}
 - Given this transition density, the acceptance probability is then given by

$$a(\bar{x} \to \bar{y}) = \min\left\{1, \ \frac{f(\bar{y})}{f(\bar{x})} \frac{g(\bar{y} \to \bar{x})}{g(\bar{x} \to \bar{y})}\right\}$$

Desirable Mutation Properties

- High acceptance probability
 - $a(\bar{x} \rightarrow \bar{y})$ should be large with high probability
- Both small and large changes to the path
- Ergodicity (never stuck in some-region of the path space)
 - $g(\bar{x} \to \bar{y})$ should be non-zero for all $\bar{x}, \ \bar{y}$ with $f(\bar{x}) > 0, \ f(\bar{y}) > 0$
- Low cost

Path Mutation Strategies

- [Veach & Guibas 1997]
 - Bidirectional mutation
 - Path perturbations
 - Lens sub-path mutation
- [Jakob & Marschner 2012]
 - Manifold exploration
- [Li et al. 2015]
 - Hamiltonian Monte Carlo

- - -

Bidirectional Path Mutations

- Basic idea
 - Given a path $\bar{x} = (x_0, \dots, x_k)$, pick *l*, *m* and replace the vertices x_{l+1}, \dots, x_{m-1} with z_1, \dots, z_{k_n-1}

• *I* and *m* satisfies $-1 \le l < m \le k+1$

Deletion Probability

- *I* and *m* are sampled as follows:
 - Draw integer k_d from some probability mass function $p_{d,1}[k_d]$. This number captures the length of deleted sub-path (i.e., m - I)
 - Draw / from another probability mass function p_{d,2}[/ | k_d] to avoid low acceptance probability and set m to I + k_d (more on this at the end of today's lecture)
 - The joint probability p_d for drawing (*I*, *m*) is $p_d[l,m] = p_{d,1}[m-l] p_{d,2}[l \mid m-l]$

Addition Probability

- The deleted sub-path is then replaced by adding *l*' and *m*' vertices on each side. To determine *l*' and *m*':
 - Draw integer k_a from $p_a[k_a]$. This integer determines the new sub-path length (i.e., $k_a = l' + m' + 1$)
 - Draw *I*' uniformly from $\{0, 1, ..., k_a 1\}$ and set *m*' to $k_a 1 I'$
 - Let $p_a[l', m']$ denote the joint probability for drawing (l', m')
- After obtaining *I*' and *m*', the two corresponding subpaths are generated via local path sampling, yielding the new path $\bar{y} = (x_0, \dots, x_l, z_1, \dots, z_{k_a-1}, x_m, \dots, x_k)$

Parameter Values

- Veach [1997] proposed the following parameters:
- Deletion parameters
 - $p_{d,1}[1] = 0.25$, $p_{d,1}[2] = 0.5$, $p_{d,1}[k] = 2^{-k}$ for k > 2 (before normalization)
 - $p_{d,2}[I \mid k_d]$ to be discussed later
- Addition parameters (given k_d)
 - $p_{a,1}[k_d] = 0.5$, $p_{a,1}[k_d \pm 1] = 0.15$, $p_{a,1}[k_d \pm j] = 0.2(2^{-j})$ for j > 2 (before normalization)

Evaluating Transition Probability

• The probability for transitioning from \bar{x} to \bar{y} is $g(\bar{x} \to \bar{y}) = p_{d}[l,m] \sum_{l'=0}^{k_{a}-1} p_{a}[l', k_{a} - 1 - l'] p((\boldsymbol{z}_{1}, \dots, \boldsymbol{z}_{l'})) p((\boldsymbol{z}_{k_{a}-1}, \dots, \boldsymbol{z}_{l'+1}))$ $= p_{d}[l,m] \sum_{l'=0}^{k_{a}-1} p_{a}[l', k_{a} - 1 - l'] \left(\prod_{i=1}^{l'} p_{A}(\boldsymbol{z}_{i})\right) \left(\prod_{i=k_{a}-1}^{l'+1} p_{A}(\boldsymbol{z}_{i})\right)$

- Original path: $\bar{x} = (x_0, x_1, x_2, x_3)$
- Mutation parameters:

• *I* = 1, *m* = 2 (deletion); *I*' = 1, *m*' = 0 (addition)

- Mutated path: $\bar{y} = (x_0, x_1, z_1, x_2, x_3)$
- The probability to accept \bar{y} equals

$$a(\bar{x} \to \bar{y}) = \min\left\{1, \ \frac{f(\bar{y})}{f(\bar{x})} \frac{g(\bar{y} \to \bar{x})}{g(\bar{x} \to \bar{y})}\right\} = \min\left\{1, \ \frac{q(\bar{y} \to \bar{x})}{q(\bar{x} \to \bar{y})}\right\},$$

where $q(\bar{u} \to \bar{v}) := g(\bar{u} \to \bar{v})/f(\bar{v})$

•
$$q(\bar{x} \to \bar{y}) := g(\bar{x} \to \bar{y})/f(\bar{y})$$
, where
 $f(\bar{y}) = G(\boldsymbol{x}_0 \leftrightarrow \boldsymbol{x}_1) f_s(\boldsymbol{z}_1 \to \boldsymbol{x}_1 \to \boldsymbol{x}_0) G(\boldsymbol{x}_1 \leftrightarrow \boldsymbol{z}_1) f_s(\boldsymbol{x}_2 \to \boldsymbol{z}_1 \to \boldsymbol{x}_1)$
 $G(\boldsymbol{z}_1 \leftrightarrow \boldsymbol{x}_2) f_s(\boldsymbol{x}_3 \to \boldsymbol{x}_2 \to \boldsymbol{z}_1) G(\boldsymbol{x}_2 \leftrightarrow \boldsymbol{x}_3) L_e(\boldsymbol{x}_3 \to \boldsymbol{x}_2)$

• Recall that $f(\bar{y})$ does not involve $W_e(x_1 \rightarrow x_0)$ as it is captured by the filter function $h^{(j)}$

• \bar{y} can be generated from \bar{x} in two ways

• Thus,

$$\begin{split} g(\bar{x} \to \bar{y}) &= p_{\rm d}[1, 2] \big(p_{\rm a}[1, 0] \, p_A(\boldsymbol{z}_1 \mid \boldsymbol{x}_1) + p_{\rm a}[0, 1] \, p_A(\boldsymbol{z}_1 \mid \boldsymbol{x}_2) \big) \\ &= p_{\rm d}[1, 2] \big(p_{\rm a}[1, 0] \, p_{\sigma^{\perp}}(\boldsymbol{x}_1 \to \boldsymbol{z}_1) \, G(\boldsymbol{x}_1 \leftrightarrow \boldsymbol{z}_1) + \\ &\quad p_{\rm a}[0, 1] \, p_{\sigma^{\perp}}(\boldsymbol{x}_2 \to \boldsymbol{z}_1) \, G(\boldsymbol{x}_2 \leftrightarrow \boldsymbol{z}_1) \big) \end{split}$$

- $q(\bar{y} \to \bar{x}) := g(\bar{y} \to \bar{x})/f(\bar{x})$, where $f(\bar{x}) = G(\mathbf{x}_0 \leftrightarrow \mathbf{x}_1) f_s(\mathbf{x}_2 \to \mathbf{x}_1 \to \mathbf{x}_0) G(\mathbf{x}_1 \leftrightarrow \mathbf{x}_2) f_s(\mathbf{x}_3 \to \mathbf{x}_2 \to \mathbf{x}_1)$ $G(\mathbf{x}_2 \leftrightarrow \mathbf{x}_3) L_e(\mathbf{x}_3 \to \mathbf{x}_2)$
- To obtain \bar{x} from \bar{y} using bidirectional path mutation, we need I = 1, m = 3 and I' = m' = 0. Thus, $g(\bar{y} \rightarrow \bar{x}) = p_d[1, 3] p_a[0, 0]$

Path Perturbations

- "Smaller" mutations
- Useful for finding "nearby" paths with high contribution

Path Perturbations

- Basic idea: choosing a sub-path and moving the vertices slightly
- Three types of perturbations
 - Lens
 - Caustic
 - Multi-chain

Path Perturbation: Lens

- Replace sub-paths $(x_0, ..., x_m)$ of the form ES*D(D|L)
- Randomly move the endpoint x_0 on the image plane to z_0
- Trace a ray through **z**₀ to form the new sub-path

Path Perturbation: Lens

- To draw z_0 :
 - First, sample a distance *R* using $R = r_2 \exp(-\log(r_2/r_1)\xi)$ where $\xi \sim U(0, 1)$
 - Then, uniformly sample **z**₀ from the circle which is center at **x**₀ and has radius *R*

- The mutation is immediately rejected if ray tracing through z₀ fails to generate a new sub-path with exactly the same form (i.e., ES*D(D|L))
- Otherwise, the acceptance probability is evaluated in a way similar to the bidirectional mutation case

Path Perturbation: Caustic

- Replace sub-paths $(x_0, ..., x_m)$ of the form EDS*(D|L)
- Slightly modify the direction $x_m \rightarrow x_{m-1}$ (at random)
- Trace a ray from x_m with this new direction to form the new sub-path

Path Perturbation: Multi-Chain

- Replace sub-paths of the form ES⁺DS⁺D(D|L)
- Lens perturbation is applied for ES⁺D
- The direction of the DS⁺ edge in the original sub-path is perturbed
- The new direction is then used to complete the DS⁺D(D|L) segment of the new sub-path (using ray tracing)

Lens Sub-Path Mutation

- Used to stratify samples over the image plane
 - Each pixel should get enough sample paths
- Replace lens sub-paths of the form ES*(D|L)
 - Similar to lens perturbation, but draw z₀ from a different density

Selecting Between Mutation Types

- Path mutations strategies introduced so far:
 - Bidirectional mutation
 - Lens, caustic, multi-chain perturbations
 - Lens sub-path mutation
- Choose one randomly in each iteration
- Or, make mutation selection part of sampling!

Refinements

- Direct lighting
 - It is more efficient to estimate direct illumination with standard methods (e.g., area & BSDF sampling combined using MIS) and apply MLT only for indirect illumination
- Importance sampling for mutation probabilities
 - For increasing the average acceptance probability $a(\bar{x} \rightarrow \bar{y})$

Improving Acceptance Rates

• Recall:

$$a(\bar{x} \to \bar{y}) = \min\left\{1, \ \frac{q(\bar{y} \to \bar{x})}{q(\bar{x} \to \bar{y})}\right\}, \text{ where } q(\bar{u} \to \bar{v}) := \frac{g(\bar{u} \to \bar{v})}{f(\bar{v})}$$

- Observation: given a path $\bar{x} = (x_0, \dots, x_k)$ and $-1 \le l < m \le k+1$, $q(\bar{y} \to \bar{x}) = g(\bar{y} \to \bar{x})/f(\bar{x})$ can be partially evaluated without constructing \bar{y}
- $f(\bar{x})$ can be fully evaluated
- $g(\bar{y} \rightarrow \bar{x})$ can be partially evaluated

Improving Acceptance Rates

• Set the unknown term to one and get a weight $w_{l,m}$ for each mutation

$$w_{l,m}(\bar{x}) = \frac{\sum_{l'=0}^{k_{a}-1} p((\boldsymbol{x}_{l+1}, \dots, \boldsymbol{x}_{l+l'})) p((\boldsymbol{x}_{m-1}, \dots, \boldsymbol{x}_{l+l'+1}))}{f(\bar{x})}$$
Improving Acceptance Rates

$$w_{l,m}(\bar{x}) = \frac{\sum_{l'=0}^{k_{a}-1} p((\boldsymbol{x}_{l+1}, \dots, \boldsymbol{x}_{l+l'})) p((\boldsymbol{x}_{m-1}, \dots, \boldsymbol{x}_{l+l'+1}))}{f(\bar{x})}$$

- Given a path $\bar{x} = (x_0, \dots, x_k)$, we can evaluate the weights for several possible mutation strategies and use these weights to sample one
- Can be used to obtain $p_{d,2}$ for bidirectional mutations
 - Given $k_{\rm d}$, simply make $p_{{
 m d},2}[l\mid k_{
 m d}]\propto w_{l,l+k_{
 m d}}(ar{x})$

Results

MLT (equal-time)

Results

(equal-time)

Monte Carlo (MC) rendering

Markov chain Monte Carlo (MCMC) rendering

Markov chain Monte Carlo (MCMC) rendering

Markov chain Monte Carlo (MCMC) rendering

MCMC rendering

MC rendering

Describes how a *path* is mathematically defined

Mutation in path space

Changes surface points directly

Mutation in path space

Changes surface points directly

Primary sample space

[Kelemen et al. 2002]

Path is a sequence of *numbers*

Primary sample space

Path is a sequence of *numbers* mapped to a sequence of *surface points*

Primary sample space

Path is a sequence of *numbers* mapped to a sequence of *surface points*

Mutation in primary sample space

Changes surface points *indirectly* by changing corresponding numbers

Existing mutation techniques

Path space

[Veach & Guibas 1997]

[Jacob & Marschner 2012] [Kaplanyan et al. 2014]

+ local exploration- global exploration

Primary sample space

[Kelemen et al. 2002]

[Hachisuka et al. 2014] [Li et al. 2015]
- local exploration
+ global exploration

- *F* is the inverse cumulative distribution function (CDF)
- Obtaining F^{-1} (CDF) is straightforward because it is needed in the derivation of the inverse CDF
- Example: GGX distribution

Handling non-invertibility

- Handling the case of F^{-1} does not exist
 - e.g., perfect reflectors, layered material
- Use of a mapping in *lower dimensional subspace* to define invertible mapping

Fusing mutations

- With an *inverse path sampler*, we can fuse mutations in **path space** and **primary sample space**
- Our *state* is defined in **primary sample space**

Fusing mutations

Primary sample space mutations

Current state

Next state

Current state

Current state

Primary sample space mutation

Primary sample space mutation

Reference

Path space (MLT)

TO ASSAULT: TO

Path space (MLT) Error: 0.2520

Contraction and the second

1.0

Primary sample space (Multiplexed MLT)

Primary sample space (Multiplexed MLT) Error: 1.1056

1.0

Primary sample space (Multiplexed MLT)

Primary sample space (Multiplexed MLT) Error: 0.3658

0.0

Path space (MLT)

Path space (MLT) Error: 1.3433

Fused 4

Fused Error: 0.6442

Reference

1 the

. . .

Multiplexed MLT

Multiplexed MLT

MLT

Multiplexed MLT

Fused

MLT

MLT

Multiplexed MLT

GRADIENTS ARE AWESOME

GRADIENTS IN RENDERING

Differentiable rendering is a hot topic:

[Gkioulekas et al. 2013, 2016], [Khungurn et al. 2015], [Zhao et al. 2016], [Che et al. 2018], [Li et al. 2018], [Tsai et al. 2019], [Loubet et al. 2019], [Zhang et al. 2019, 2020], [Nimier-David et al. 2019, 2020]...

GRADIENTS IN RENDERING

rendering

params

We focus on forward rendering:

OUTLINE

Introduction to Langevin Monte Carlo (LMC) Optimization-inspired acceleration

Ensuring unbiasedness

Gradient caching

SAMPLING IN RENDERING

 $I = \int f(x) dx$

- Estimated with Monte Carlo
- Requires $x \sim f$ for efficiency

Use ∇f to improve sampling

Primary sample space $x \in [0, 1]^N$

SGD OVERVIEW

Optimization problem: $\max_{x} f(x)$

Stochastic gradient descent/ascent: $x_t = x_{t-1} + s_{t-1} \nabla f(x_{t-1})$ scalar step size

KELEMEN 2002

Apply Metropolis Hastings to accept/reject

LMC OVERVIEW

Sampling problem:

$$x_t \sim f$$

Langevin MC:
 $x_t = x_{t-1} + s_{t-1} \nabla f(x_{t-1}) + \frac{1}{s_{t-1}} N(0, \sigma^2 I)$

Apply Metropolis Hastings to accept/reject

Paul Langevin

LMC OVERVIEW

Sampling problem: $x_t \sim f$ Langevin MC: $x_t = x_{t-1} + s_{t-1} \nabla f(x_{t-1}) + \frac{1}{s_{t-1}} N(0, \sigma^2 I)$

Apply Metropolis Hastings to accept/reject

SGD VS. LMC

Optimization:

$$\max_{\boldsymbol{x}} f(\boldsymbol{x})$$
SGD:

$$\boldsymbol{x}_t = \boldsymbol{x}_{t-1} + \boldsymbol{s}_{t-1} \nabla f(\boldsymbol{x}_{t-1})$$

Sampling:

$$x_{t} \sim f$$
MC:

$$x_{t} = x_{t-1} + s_{t-1} \nabla f(x_{t-1}) + \frac{1}{s_{t-1}} N(0, \sigma^{2}I)$$

Original LMC MSE: 0.2465

RING CAUSTICS

RING CAUSTICS

SELECTING THE PRECONDITIONING MATRIX

Exact **Hessian** of f [Li et al. 2015]

- X requires **2nd-order** gradients
- 🗙 full matrix
- × expensive matrix operations

Approximate **Hessian** of f (ours)

- ✓ reuses 1st-order gradients
- 🗹 diagonal matrix
- efficient scalar operations

quasi-Newton methods: Adam, BFGS, ...

LMC + ADAM

Adam preconditioning matrix K_t is a function of **all** previous gradients

$\frac{\mathbf{K}_{\mathbf{x}}}{\nabla f(\mathbf{x}_{\mathbf{y}})(\mathbf{x}_{\mathbf{y}})(\mathbf{x}_{\mathbf{y}})(\mathbf{x}_{\mathbf{y}})(\mathbf{x}_{\mathbf{y}})}$

FULL VS. DIAGONAL PRECONDITIONING

LMC + Adam, diagonal MSE: 0.0779

Bias problem

Unfortunately, naïvely combining LMC + Adam causes Bias!

0.25

03

0.45

WHY BIASED?

Unbiasedness requires **asymptotic time homogeneity**: Preconditioning matrix $K_t \rightarrow \text{constant}$, when $t \rightarrow \infty$

Adam violates asymptotic time homogeneity:

SOLUTION 1: DIMINISHING ADAPTATION

Unbiasedness requires **asymptotic time homogeneity**: Preconditioning matrix $K_t \rightarrow \text{constant}$, when $t \rightarrow \infty$

$$K_t' = K_t / t + I$$

LMC + Adam, diagonal (w/ diminishing adaptation)

0.25

DRAWBACKS OF DIMINISHING ADAPTATION

New path

- Gradual loss of adaptation
 - Problematic for complex scenes
- No gradient reuse
 - Need to re-calculate gradients

SOLUTION 2: CACHE-DRIVEN ADAPTATION

Unbiasedness requires **asymptotic time homogeneity**: Preconditioning matrix $K_t \rightarrow \text{constant}$, when $t \rightarrow \infty$

Cache-driven adaptation MSE: 0.0459

COMPARISONS WITH PRIOR WORK

10 min

MEMLT [Jakob 2012]

H2MC [Li 2015]

Ours

Reference

RJMLT [Bitterli 2017]

MEMLT [Jakob 2012]

H2MC [Li 2015]

MMLT [Hachisuka 2014]

Ours

Reference

RJMLT [Bitterli 2017]

LIMITATIONS AND FUTURE WORK

require gradients

becoming common in modern renderers

global exploration

potentially use gradient cache for this purpose

TAKE-HOME MESSAGE

Introduction to Langevin Monte Carlo (LMC) Optimization-inspired acceleration

Ensuring unbiasedness

Gradient caching