

http://graphics.cs.cmu.edu/courses/15-468

15-468, 15-668, 15-868 Physics-based Rendering Spring 2025, Lecture 14

Course announcements

• PA4 has been posted.

2

Overview of today's lecture

Photon mapping. \bullet

3

Slide credits

Most of these slides were directly adapted from:

• Wojciech Jarosz (Dartmouth).

Today's Menu

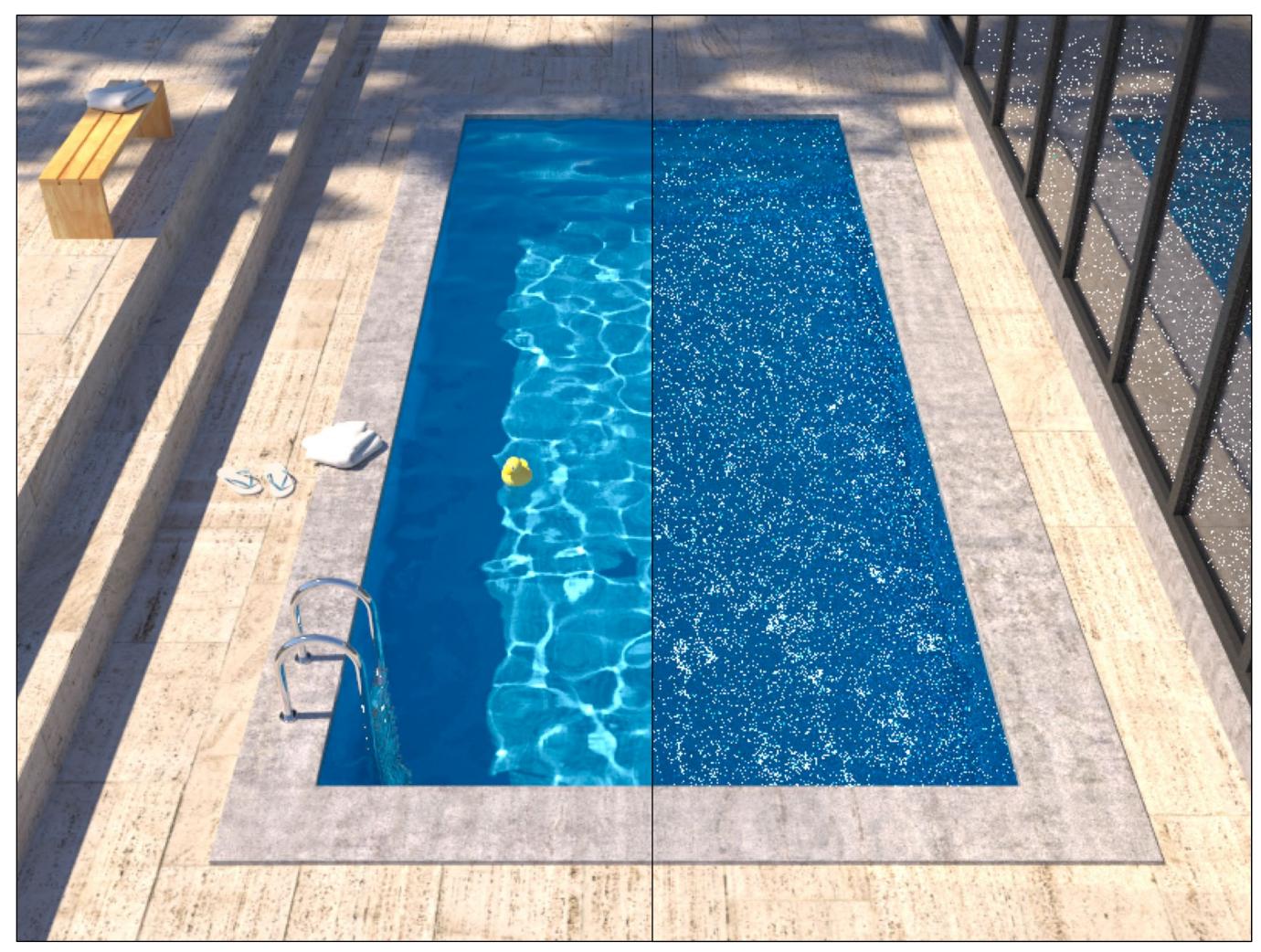
Difficult light paths

Photon Mapping

Henrik Wann Jensen

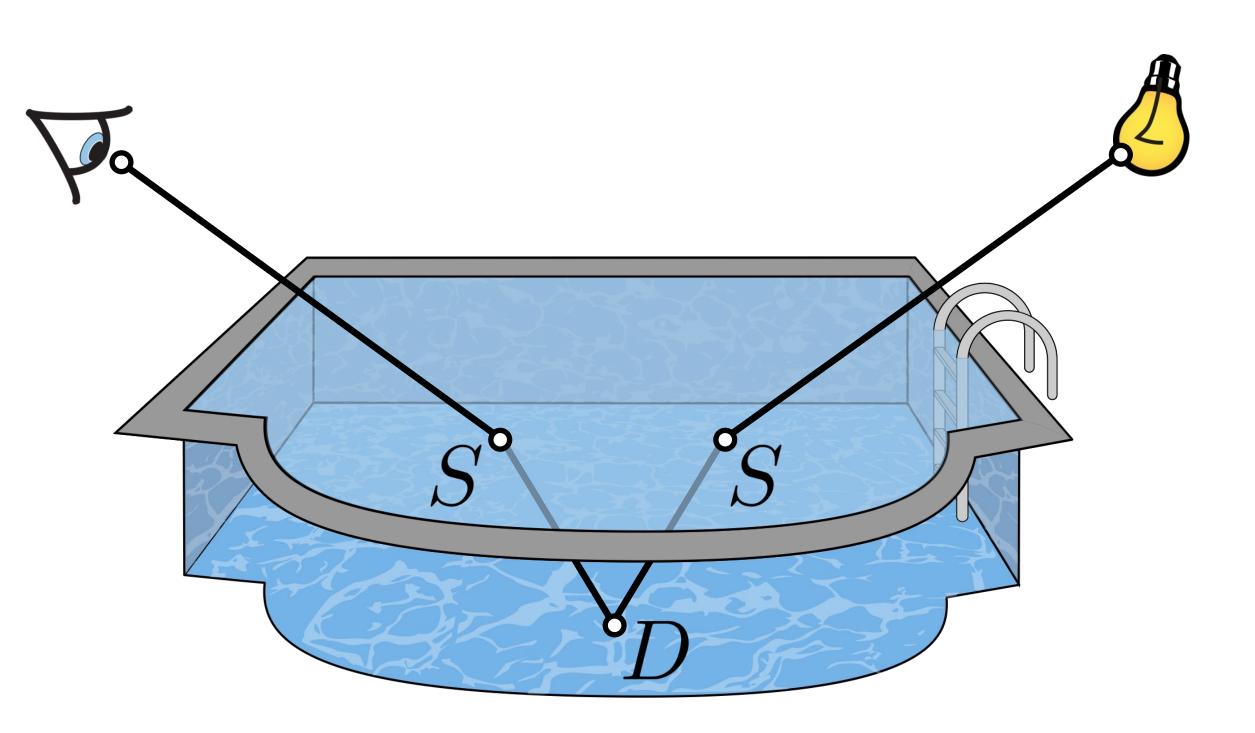
New York Control of the State o

Reference



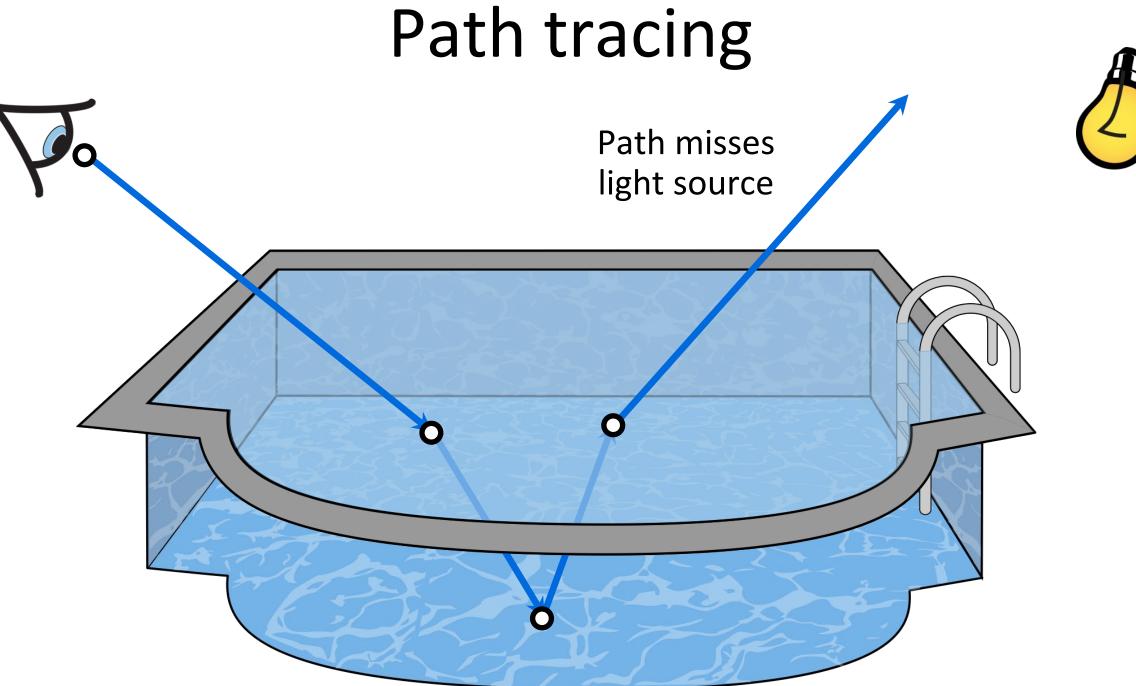
Bidirectional PT

Images courtesy of J. Křivánek

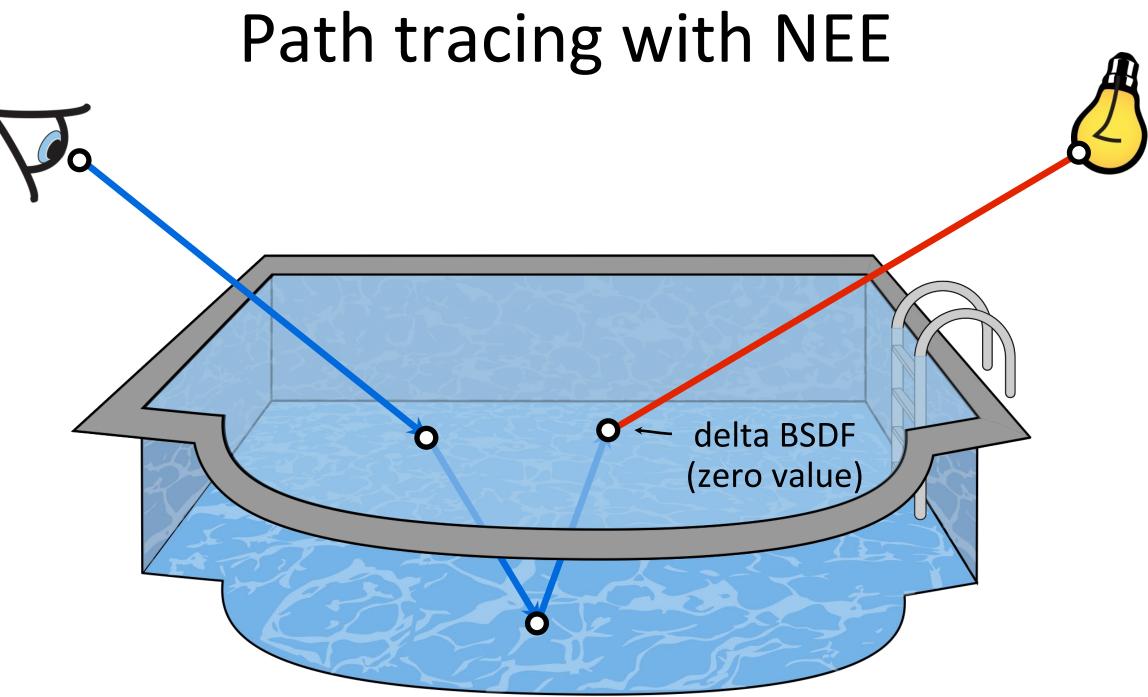


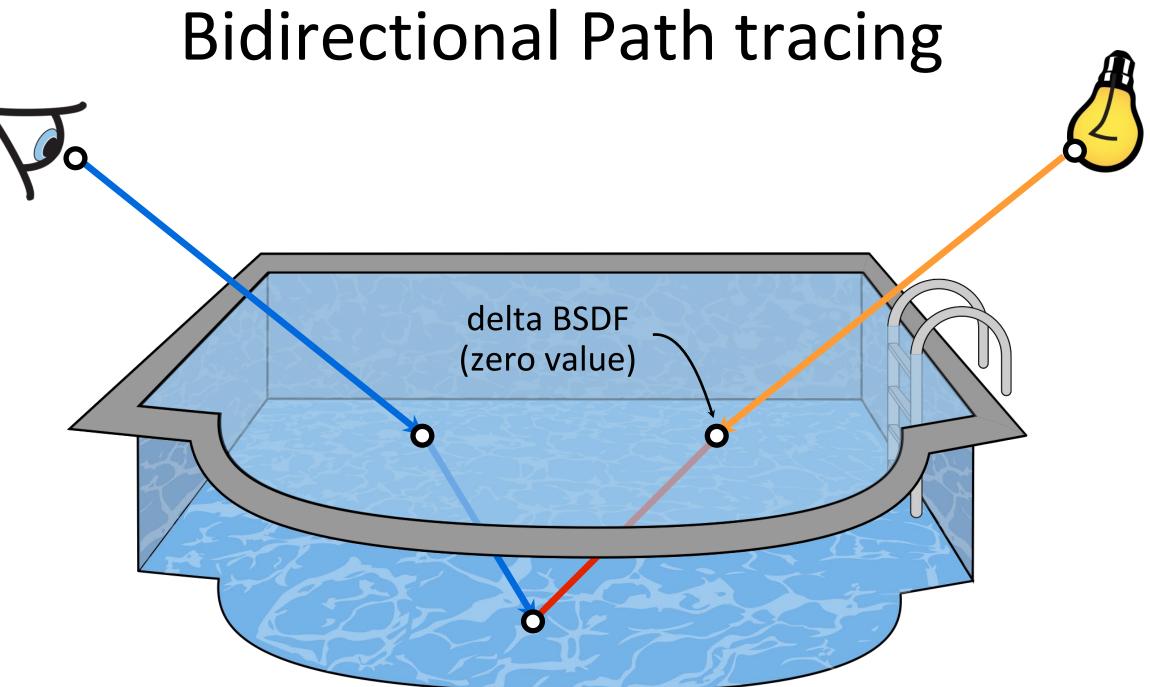
LSDSE paths are difficult for unbiased techniques

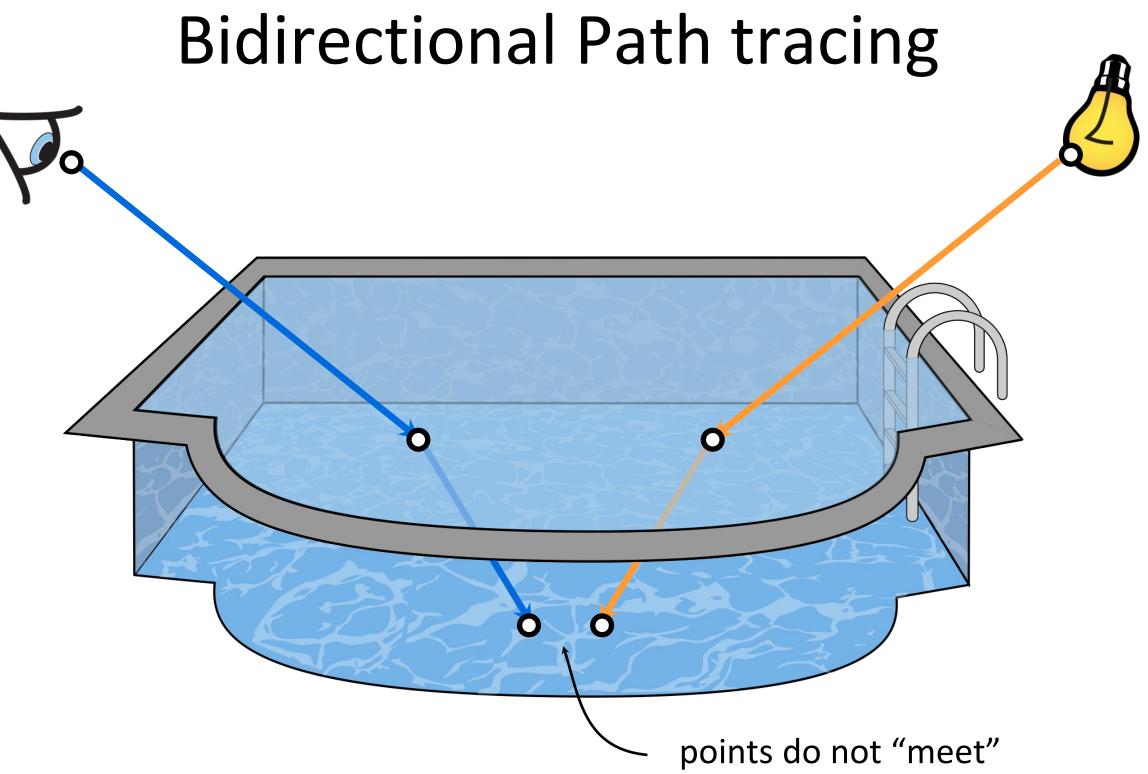
11



12

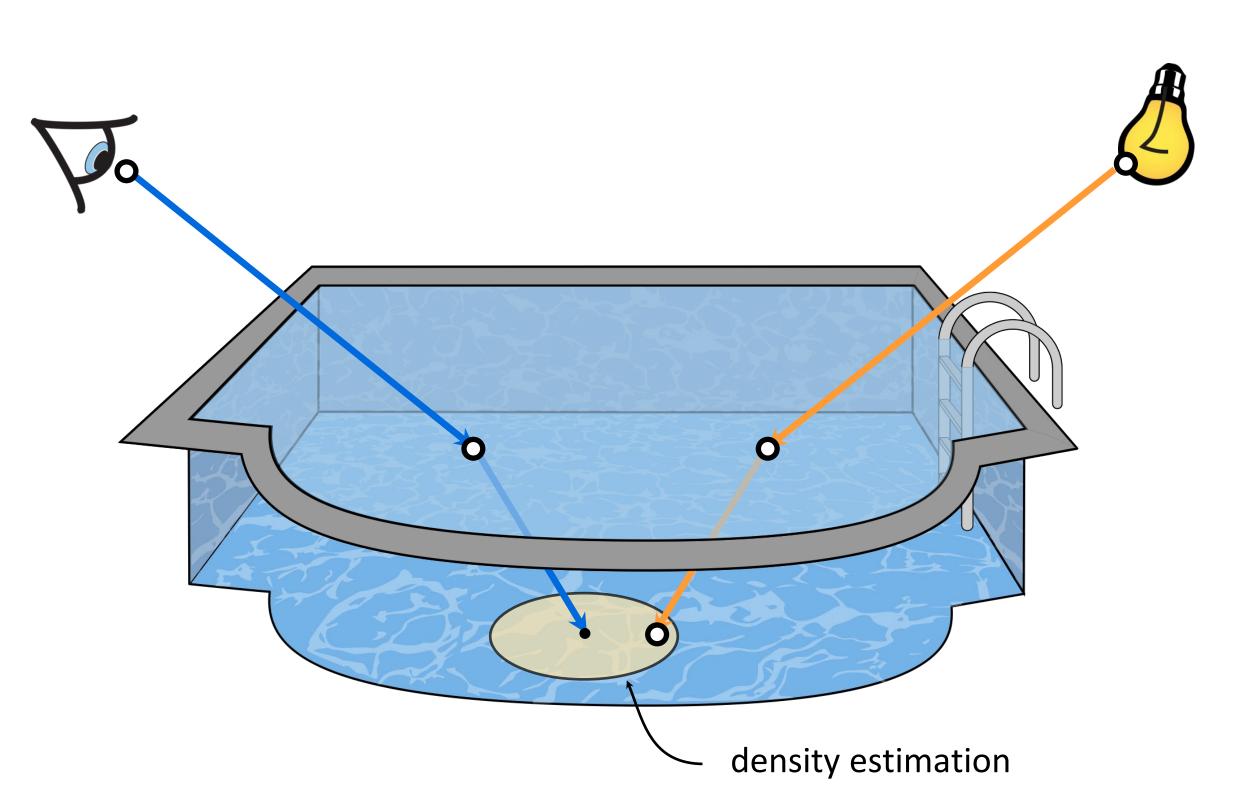






What now?





Regularize delta functions (path points): e.g., by employing kernel density estimation (blurring in space)

(predecessor of photon mapping)

Course Notes

maps

Illumination map = texture for accumulating irradiance

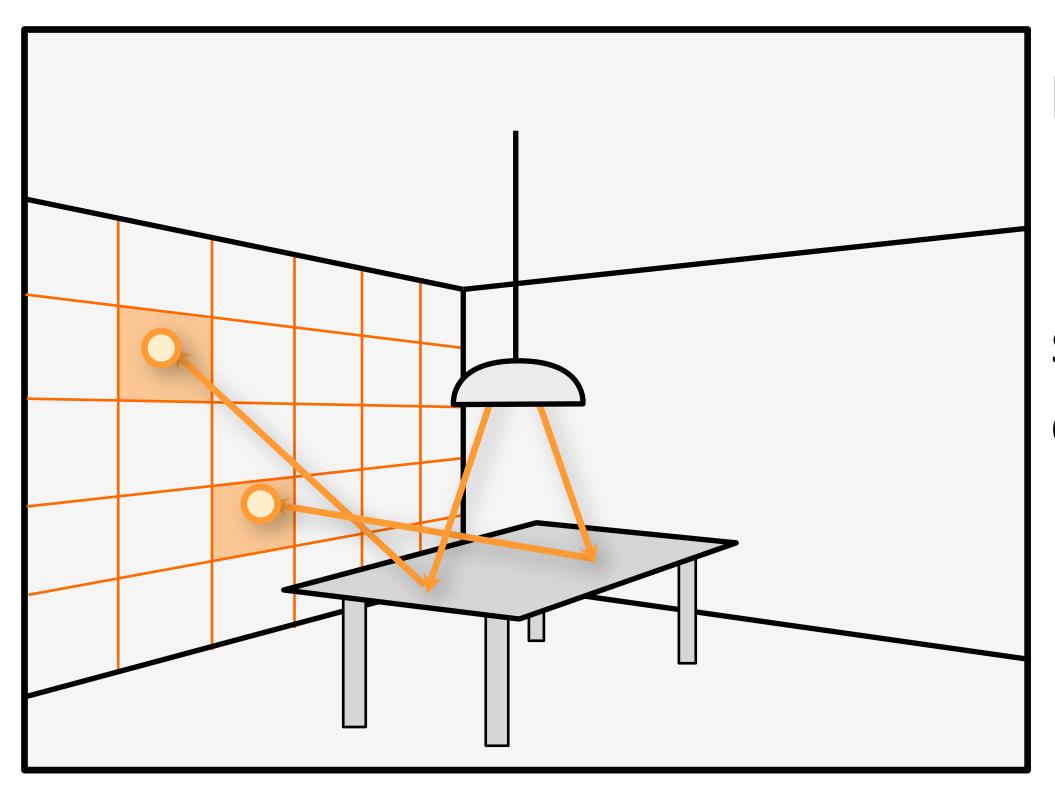
Note on the name of the technique: In retrospect, Arvo regretted using the term "backward" to refer to tracing light paths since many later publications use it in the opposite sense, i.e. tracing eye paths. To avoid confusion, he recommends terms such as light tracing and eye tracing as they are unambiguous.

James Arvo. In Developments in Ray Tracing, SIGGRAPH '86

Start paths from light sources and store energy in *illumination*

Preprocess:

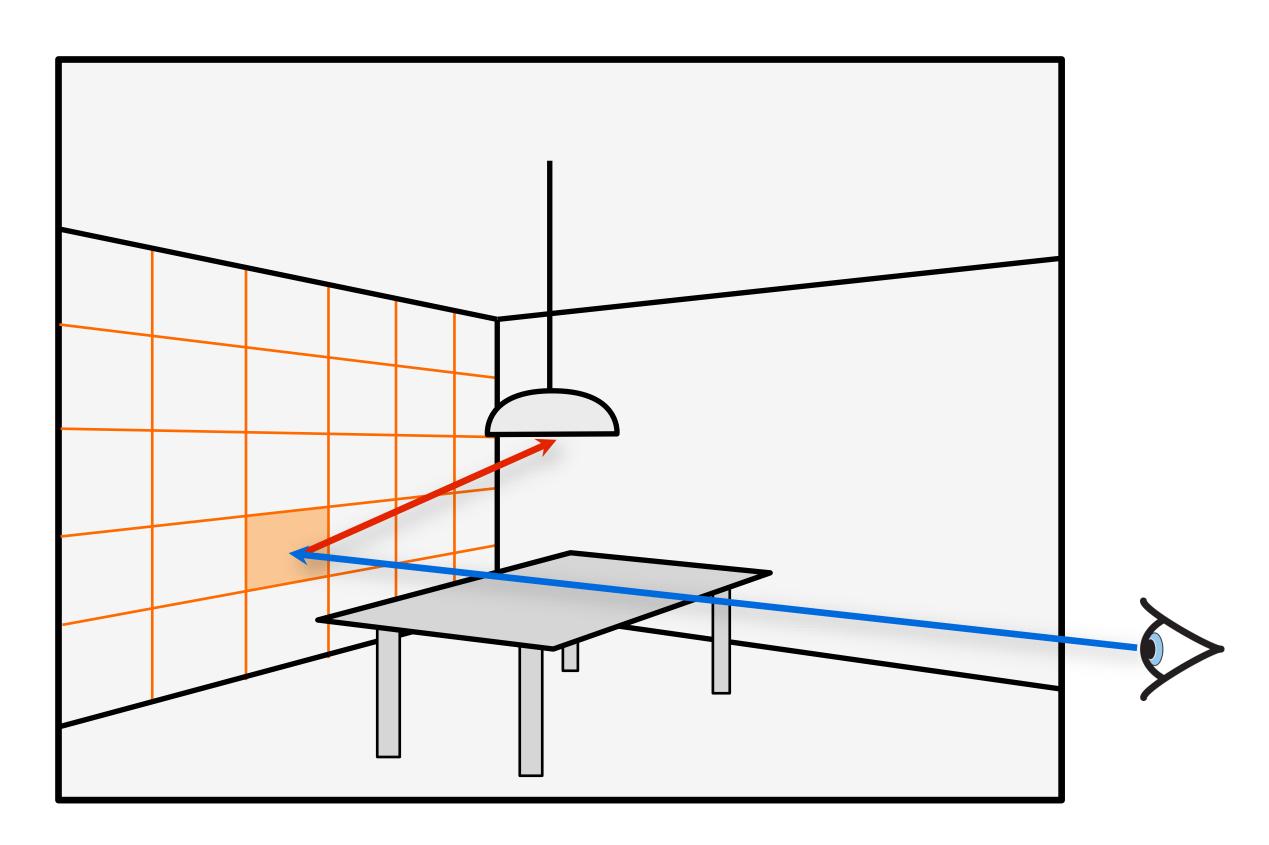
- shoot light from light sources
- deposit photon energy in illumination maps

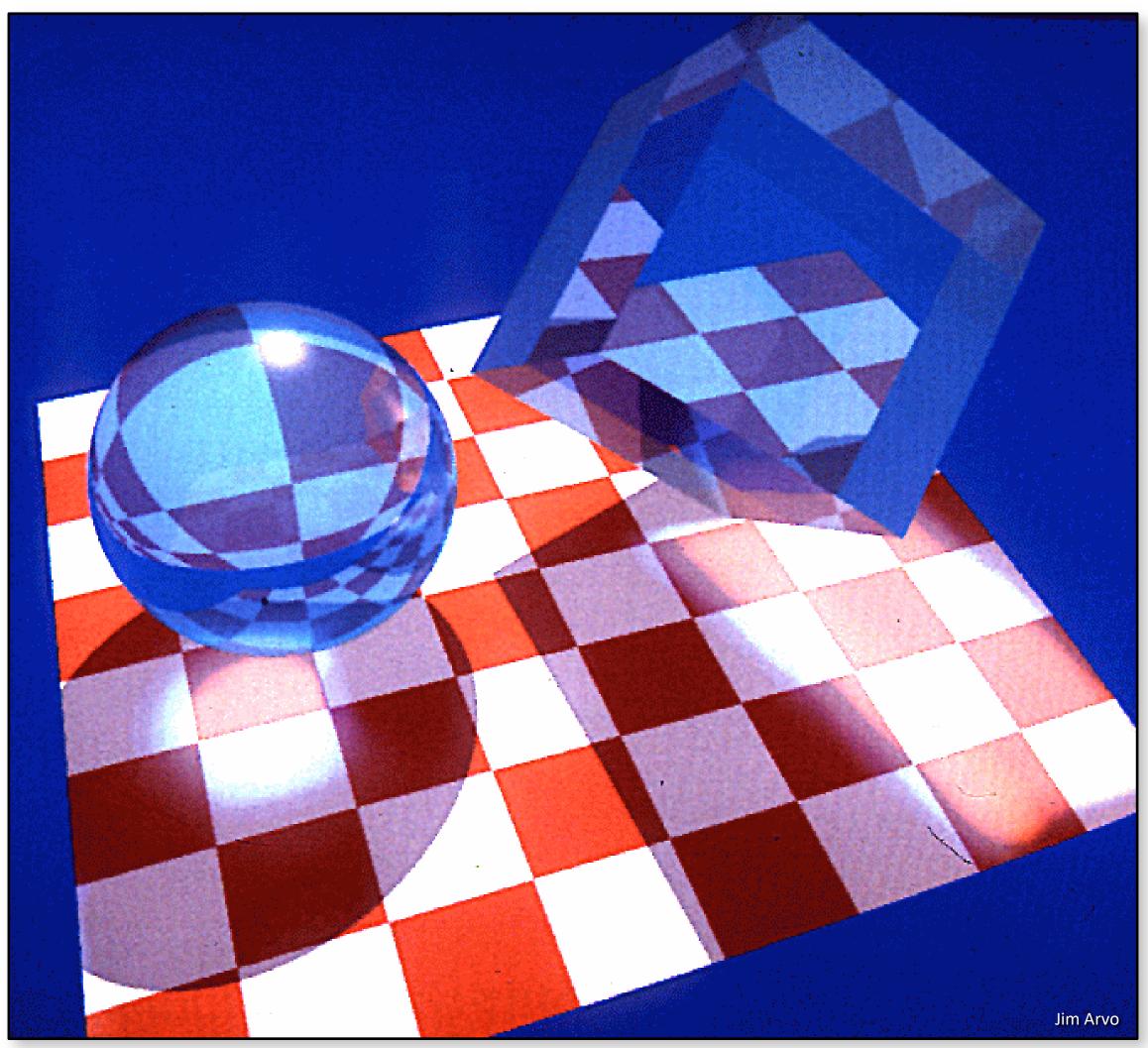


Irradiance: "number of photons hitting a small patch of a wall per second, divided by size of patch"

For each shading point

- compute direct lighting
- lookup indirect lighting from illumination maps

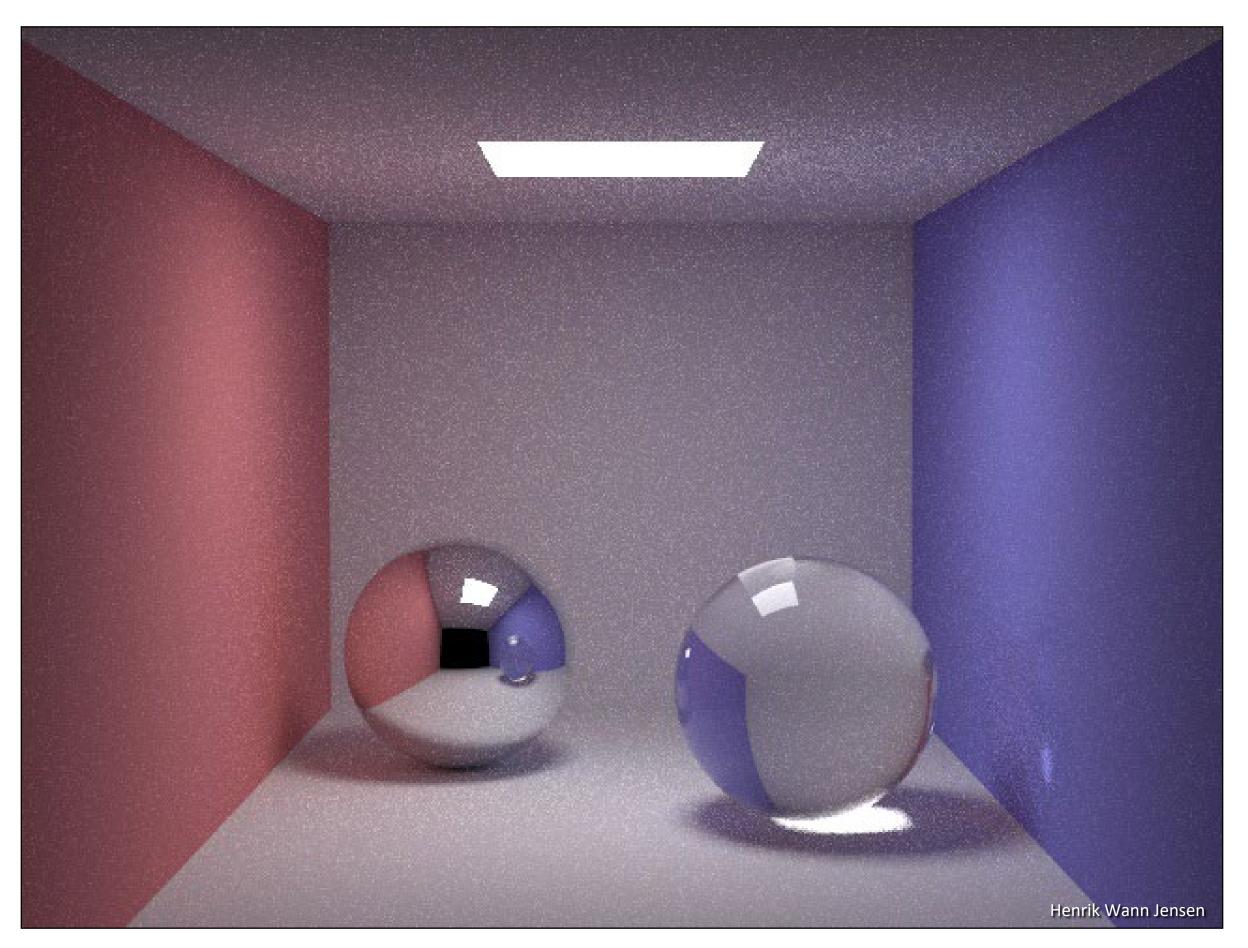




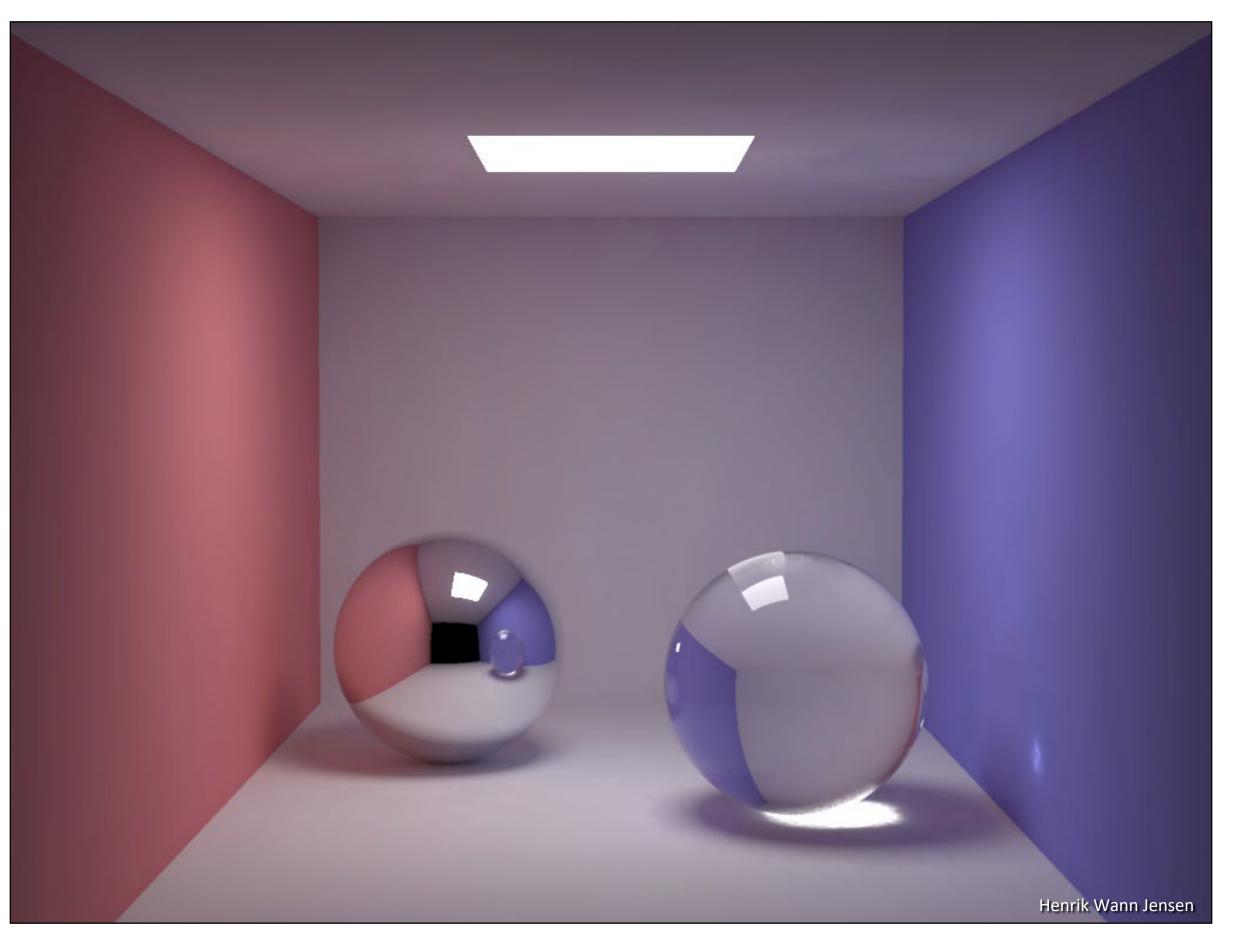
"Backward Ray Tracing", by James Arvo. In *Developments in Ray Tracing*, SIGGRAPH `86 Course Notes, Volume 12.

- Vone of the first techniques to simulate caustics!
- X Requires parametrizing surfaces or meshing
 - Difficult to handle complex or procedural geometry
- X Hard to choose illumination map resolution
 - high resolution with few photons: high-frequency noise
 - low resolution with many photons: blurred illumination

Path Tracing

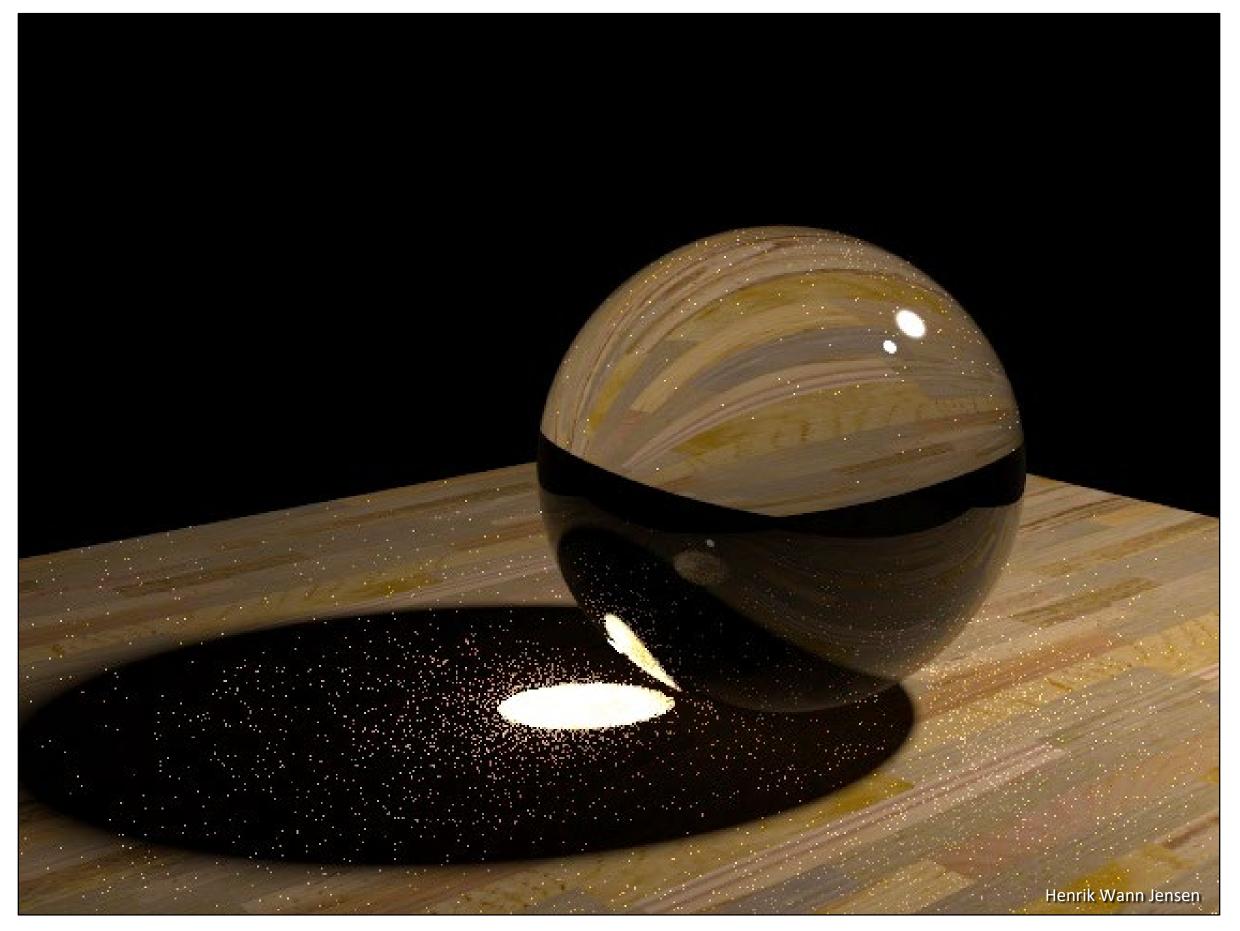


100 paths/pixel (5 minutes)



10 rays/pixel (5 seconds)

Path Tracing



1000 paths/pixel

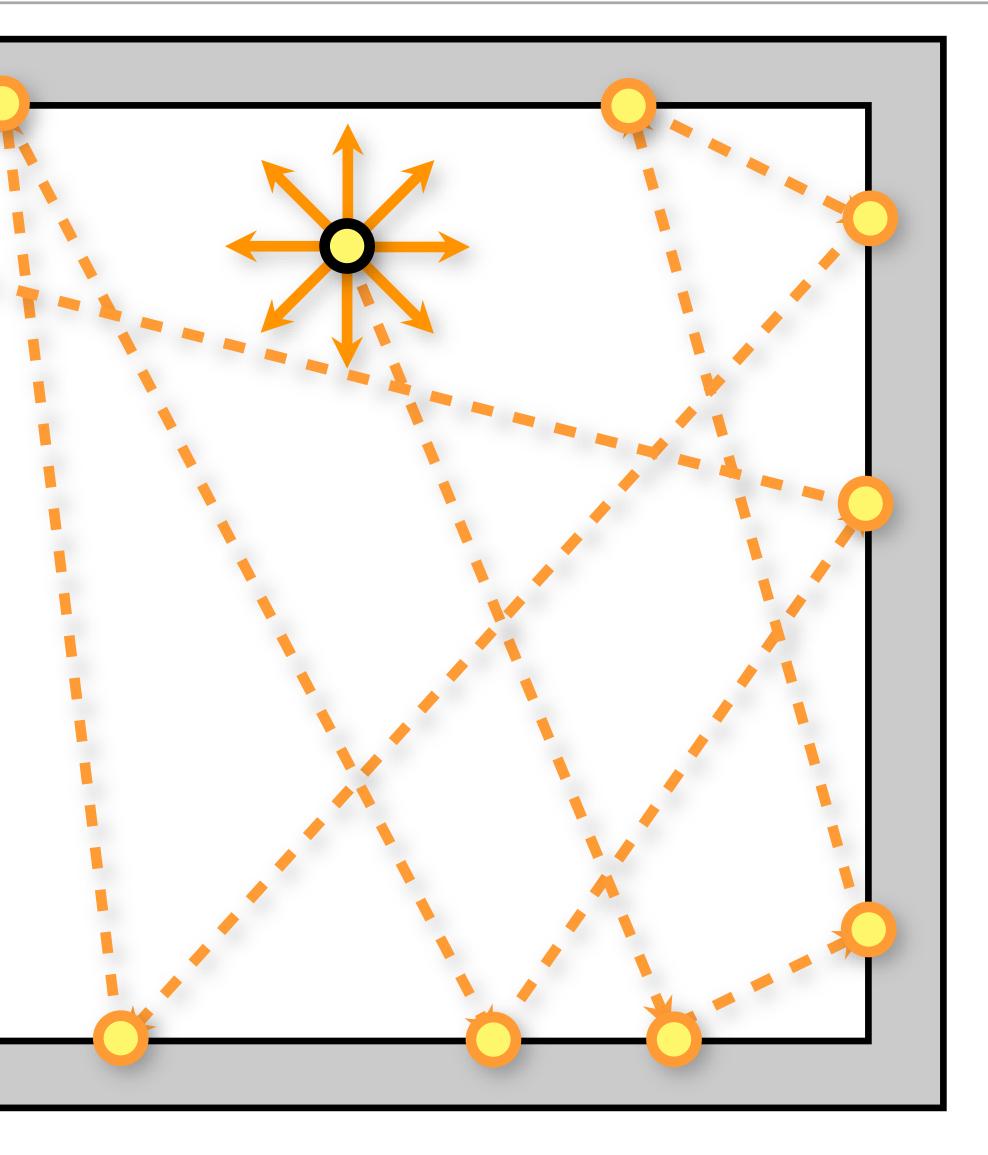
- A two-pass algorithm:
- Pass 1: Tracing photons from light sources, and caching them in a *photon map*
- Pass 2: Tracing from the eye and approximating indirect illumination using the photons
- Similar to "backward" ray tracing, but different way of storing photons & computing density

- A two-pass algorithm:
- Pass 1: Tracing photons from light sources, and caching them in a *photon map*
- Pass 2: Tracing from the eye and approximating indirect illumination using the photons
- photons & computing density

Similar to "backward" ray tracing, but different way of storing

Photon Tracing

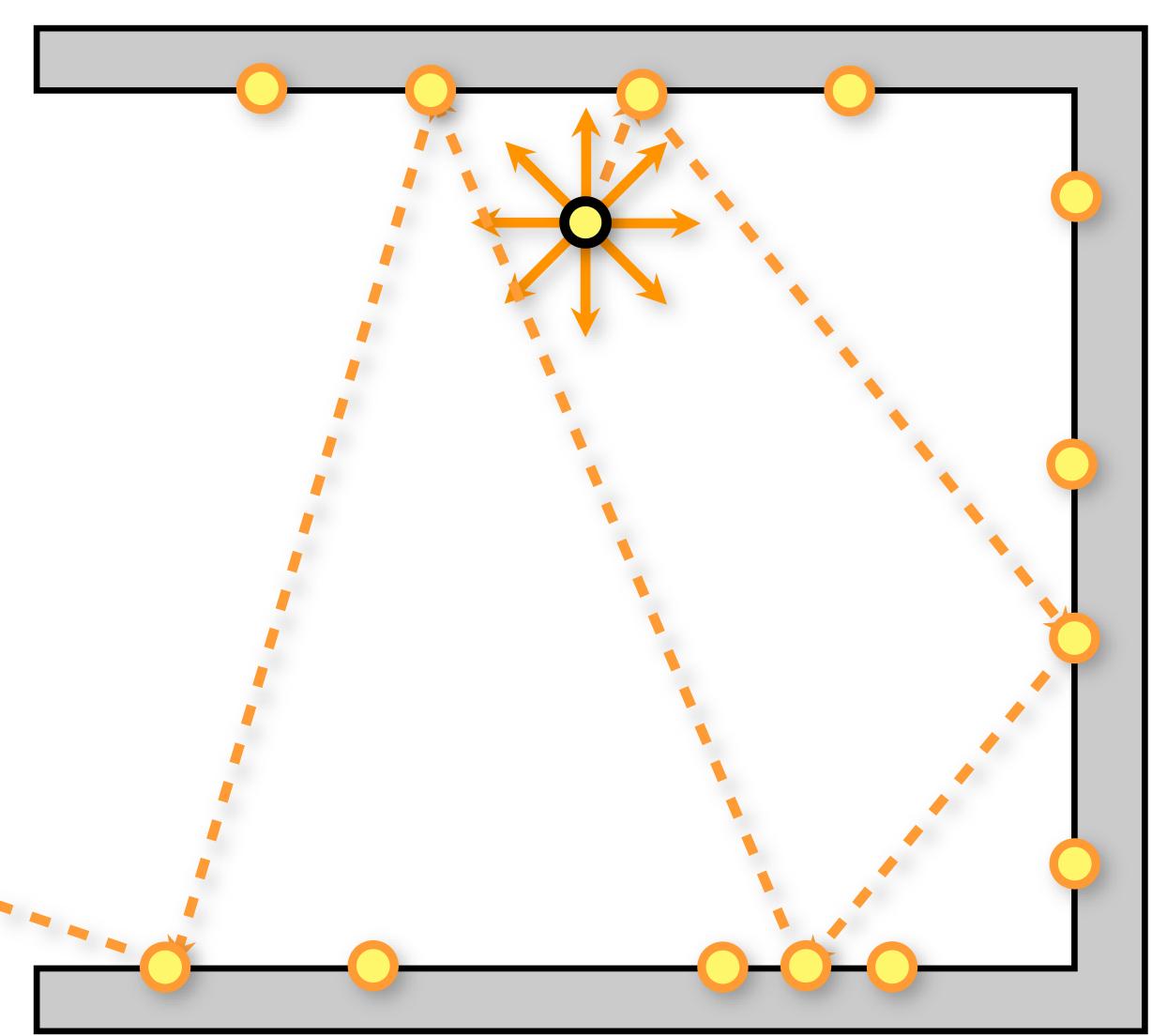
- 1) Emit photons
- 2) Scatter photons
- 3) Store photons



Photon Tracing

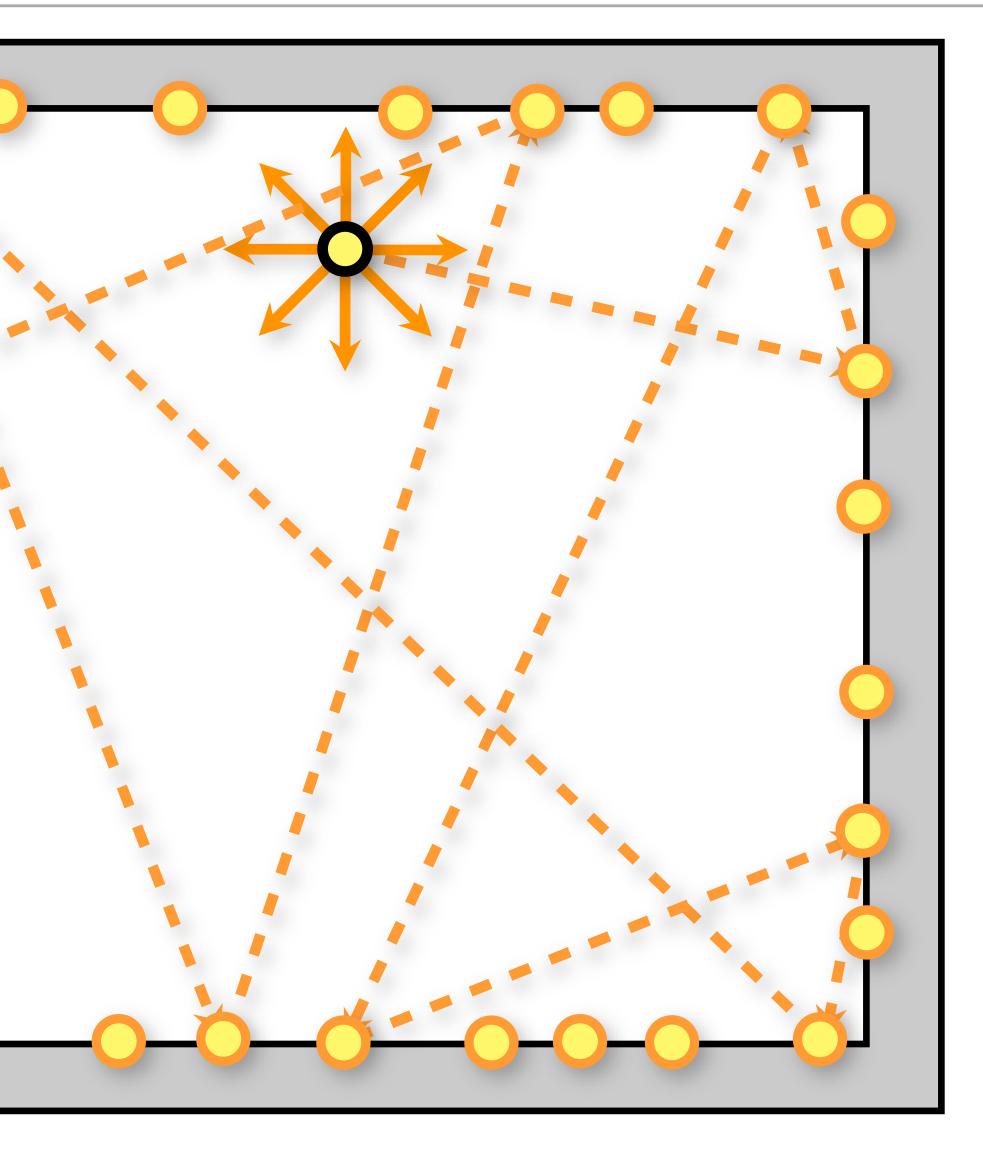
- 1) Emit photons
- 2) Scatter photons

3) Store photons

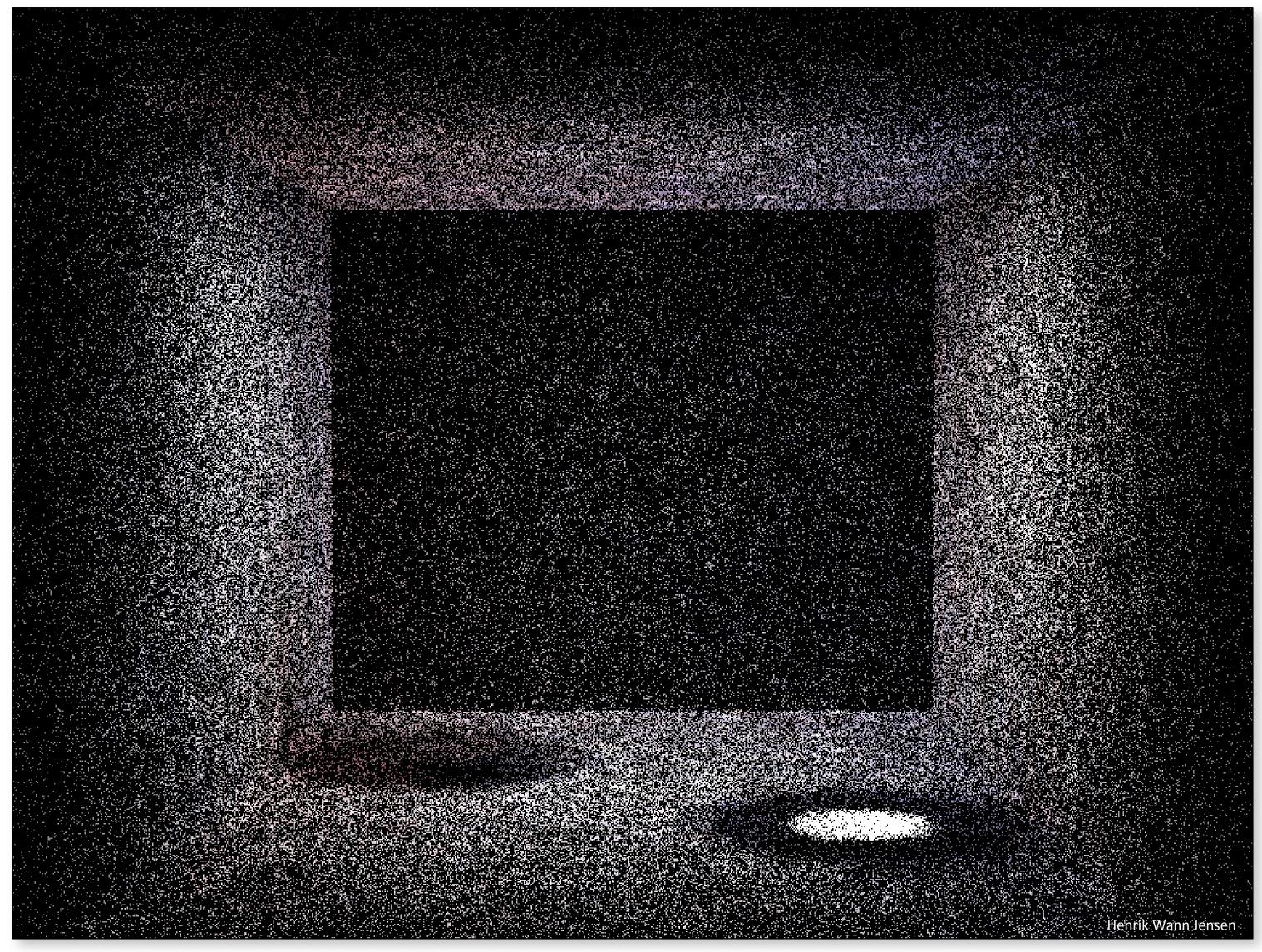


Photon Tracing

- 1) Emit photons
- 2) Scatter photons
- 3) Store photons



Visualization of the Photon Map



Photon Emission

Photons carry power (flux) not radiance!

- not a physical photon
- just a fraction of the light source power
- wavelengths (e.g. RGB)

- in most practical implementations, each photon carries multiple

Photon Emission

Define initial:

- **X**_p: position
- ω_p : direction
- Φ_p : photon power

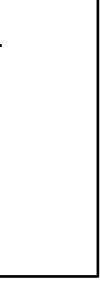
General recipe:

- Sample position on surface area of light with $p(\mathbf{x}_p)$
- Sample direction with $p(\omega_p \mid$

 $\Phi_p = \frac{1}{M} \frac{L_e(\mathbf{x}_p, \vec{\omega}_p) \cos \theta_p}{p(\mathbf{x}_p) p(\vec{\omega}_p | \mathbf{x}_p)}$

$$\mathbf{x}_p)$$

Aside: Can think of it as *one* term of an M-
sample MC estimate of total flux
$$\Phi = \int_A \int_{H^2} L_e(\mathbf{x}, \vec{\omega}) \cos \theta \mathrm{d} \vec{\omega} \mathrm{d} \mathbf{x}$$



Photon Emission

Interesting derivation: - if PDFs are proportional to the emission:

$$p(\mathbf{x}_{p}) = \frac{\int_{H^{2}} L_{e}(\mathbf{x}_{p}, \vec{\omega}) \cos \theta \, d\vec{\omega}}{\int_{A} \int_{H^{2}} L_{e}(\mathbf{x}, \vec{\omega}) \cos \theta \, d\vec{\omega} d\mathbf{x}} \quad p(\vec{\omega}_{p} | \mathbf{x}_{p}) = \frac{L_{e}(\mathbf{x}_{p}, \vec{\omega}_{p}) \cos \theta_{p}}{\int_{H^{2}} L_{e}(\mathbf{x}_{p}, \vec{\omega}) \cos \theta \, d\vec{\omega}}$$

$$\Phi_{p} = \frac{1}{M} \frac{L_{e}(\mathbf{x}_{p}, \vec{\omega}_{p}) \cos \theta_{p}}{p(\mathbf{x}_{p})p(\vec{\omega}_{p} | \mathbf{x}_{p})} = \frac{1}{M} \frac{L_{e}(\mathbf{x}_{p}, \vec{\omega}_{p}) \cos \theta \, d\vec{\omega}}{\frac{\int_{H^{2}} L_{e}(\mathbf{x}_{p}, \vec{\omega}) \cos \theta \, d\vec{\omega}}{\int_{A} \int_{H^{2}} L_{e}(\mathbf{x}, \vec{\omega}) \cos \theta \, d\vec{\omega} d\mathbf{x}}} \underbrace{\frac{L_{e}(\mathbf{x}_{p}, \vec{\omega}_{p}) \cos \theta_{p}}{\int_{H^{2}} L_{e}(\mathbf{x}_{p}, \vec{\omega}) \cos \theta \, d\vec{\omega}}} = \frac{\Phi}{M}$$

- then:

$$p(\mathbf{x}_{p}) = \frac{\int_{H^{2}} L_{e}(\mathbf{x}_{p},\vec{\omega}) \cos\theta \,\mathrm{d}\vec{\omega}}{\int_{A} \int_{H^{2}} L_{e}(\mathbf{x},\vec{\omega}) \cos\theta \,\mathrm{d}\vec{\omega} \,\mathrm{d}\mathbf{x}} \quad p(\vec{\omega}_{p}|\mathbf{x}_{p}) = \frac{L_{e}(\mathbf{x}_{p},\vec{\omega}_{p}) \cos\theta_{p}}{\int_{H^{2}} L_{e}(\mathbf{x}_{p},\vec{\omega}) \cos\theta \,\mathrm{d}\vec{\omega}} \\ \Phi_{p} = \frac{1}{M} \frac{L_{e}(\mathbf{x}_{p},\vec{\omega}_{p}) \cos\theta_{p}}{p(\mathbf{x}_{p})p(\vec{\omega}_{p}|\mathbf{x}_{p})} \\ = \frac{1}{M} \frac{L_{e}(\mathbf{x}_{p},\vec{\omega}) \cos\theta \,\mathrm{d}\vec{\omega}}{\frac{\int_{H^{2}} L_{e}(\mathbf{x}_{p},\vec{\omega}) \cos\theta \,\mathrm{d}\vec{\omega}}{\frac{\int_{H^{2}} L_{e}(\mathbf{x}_{p},\vec{\omega}) \cos\theta \,\mathrm{d}\vec{\omega}}{\frac{\int_{H^{2}} L_{e}(\mathbf{x}_{p},\vec{\omega}) \cos\theta \,\mathrm{d}\vec{\omega}}}} = \frac{\Phi}{M}$$

If you *perfectly importance sample* the emitted radiance, just take the *total power* and divide by # of *emitted* photons.

Photon Emission Examples

Isotropic point light:

- Generate uniform random direction over sphere Spotlight:
- Generate uniform random direction within spherical cap Diffuse area light:
- Generate uniform random position on surface
- Generate cosine-weighted direction over hemisphere

Pseudocode

void generatePhotonMap()

repeat:

(l, Probl) = chooseRandomLight()

 $(x, \omega, \Phi) = \text{emitPhotonFromLight}(l)$

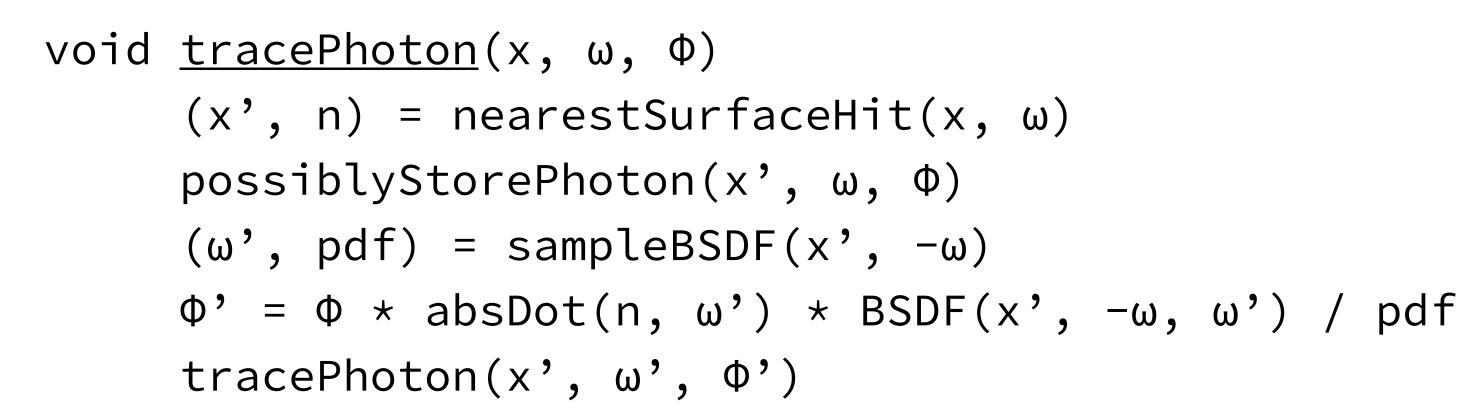
tracePhoton(x, ω , Φ / Prob_l)

until we have enough photons;

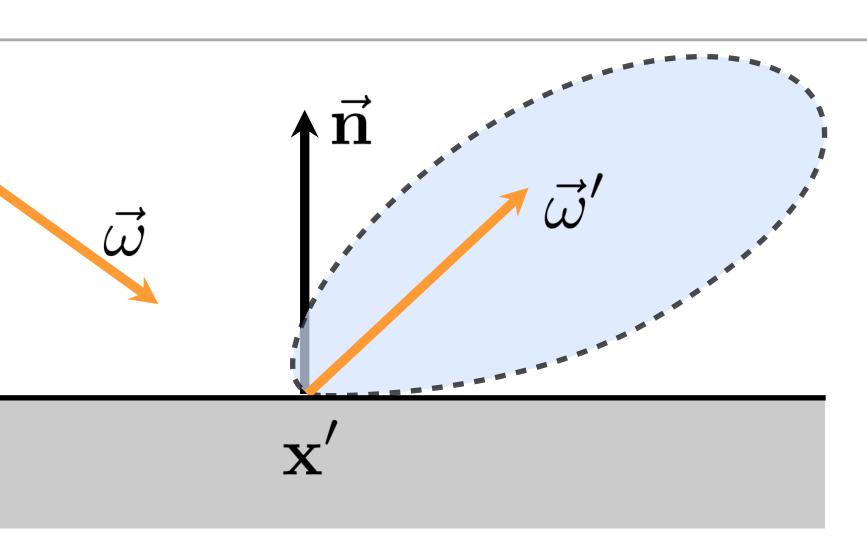
divide all photon powers by number of *emitted* photons

void <u>tracePhoton(x, ω , Φ)</u>

Pseudocode



 \mathbf{X}



Storing Photons

Store only on diffuse (or moderately glossy) surfaces

- Specular surfaces need to be handled using path tracing from the camera

Stored data: [36 bytes]

```
struct Photon
  float position[3];
  float power[3];
  float direction[3];
};
```


Storing Photons

Store only on diffuse (or moderately glossy) surfaces

- Specular surfaces need to be handled using path tracing from the camera Stored data:

```
struct Photon
 float position[3];
 char power[4]; // Packed RGBE format
 char phi, theta; // Packed direction
};
```

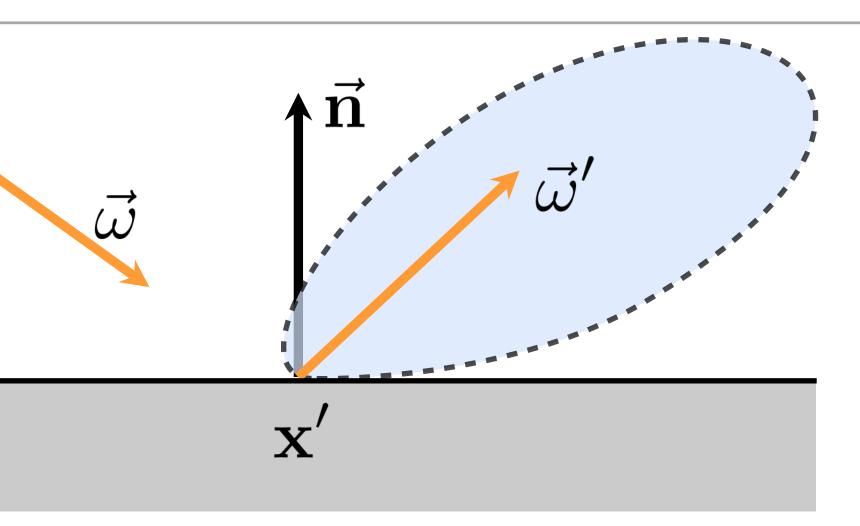

Scattering of Photons

Photons can be:

- absorbed, or scattered (reflected or refracted)
- BSDF sampling chooses either reflection or refraction
- the power of the scattered photon is lowered to account for absorption Problem:
- as photons bounce they carry less and less power
- ideally all stored photons would have the same power
- also, when should we terminate the recursion? Solution: Russian roulette

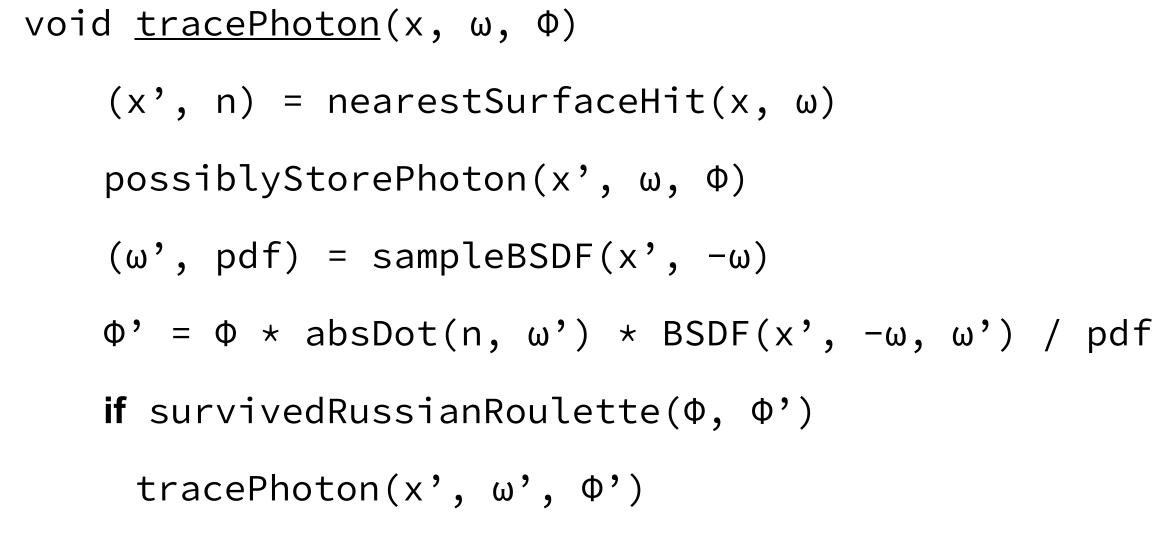
Pseudocode

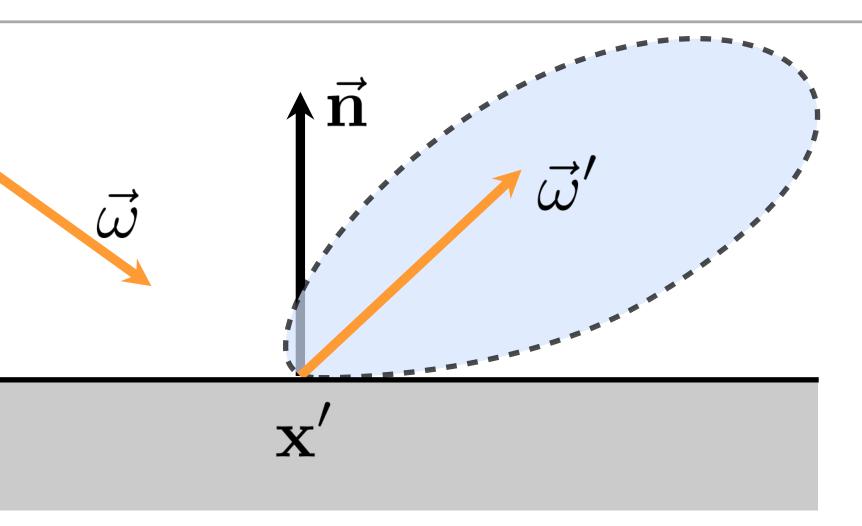
void <u>tracePhoton(x, ω , Φ)</u> (x', n) = nearestSurfaceHit(x, ω) possiblyStorePhoton(x', ω , Φ) $(\omega', pdf) = sampleBSDF(x', -\omega)$ $\Phi' = \Phi * absDot(n, \omega') * BSDF(x', -\omega, \omega') / pdf$ tracePhoton(x', ω' , Φ')



 \mathbf{X}

Pseudocode





 \mathbf{X}

Photon Path Termination

Probabilistically terminate the photon walk using Russian roulette (continue with prob. *p*)

Option 1: local termination probability:

- $E[F'] = (1-p) \cdot 0 + p \cdot \frac{E[F]}{p} = E[F]$
 - $p = \min\left(1, \frac{\Phi'}{\Phi}\right)$

Photon Path Termination

bool <u>survivedRussianRoulette</u>(Φ, Φ')

 $p = min(1, \Phi'/\Phi)$

if rand() > p:

// terminate

return false

else:

// continue with re-weighted power Φ'/= p return true if Φ'/Φ is smaller than 1, then $\Phi' = \Phi'/p = \Phi$ i.e., the scattered photon has the same power!

Photon Path Termination

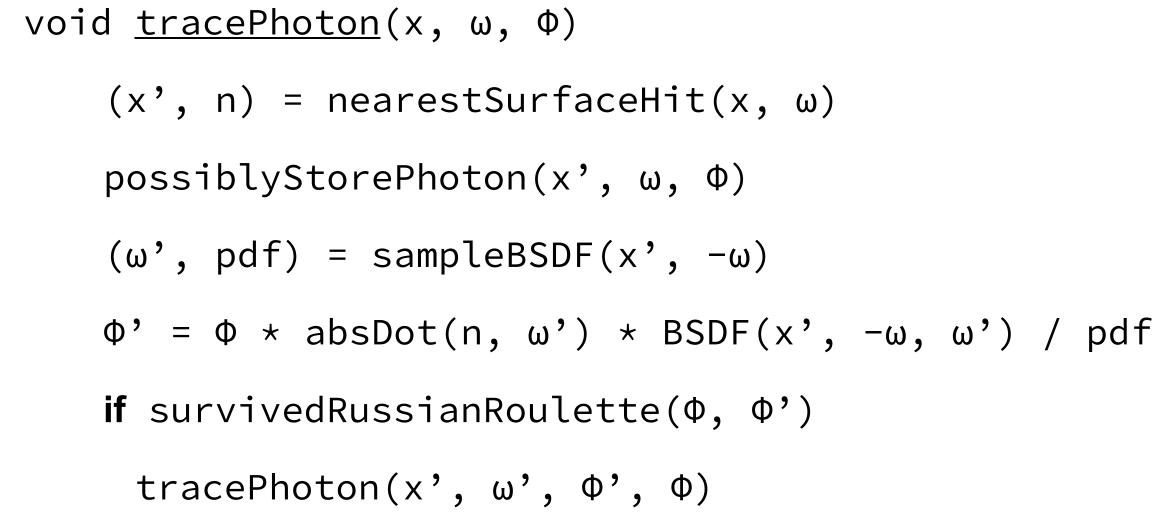
- Probabilistically terminate the photon walk using Russian roulette (continue with prob. p)
 - $E[F'] = (1-p) \cdot 0$
- **Option 1: local termination pr**
 - $p = \min$
- **Option 2: history-aware termination probability:**
- try to keep each photon same power

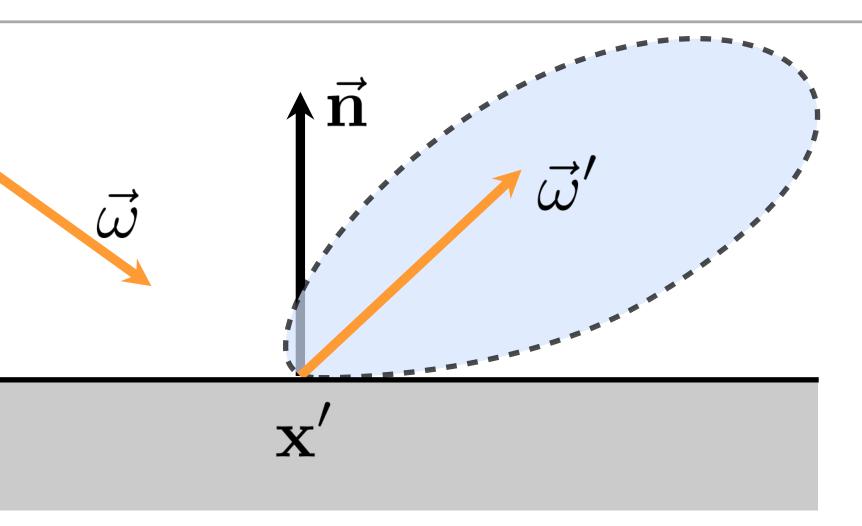
$$+ p \cdot \frac{E[F]}{p} = E[F]$$

obability:

$$\left(1, \frac{\Phi'}{\Phi}\right)$$

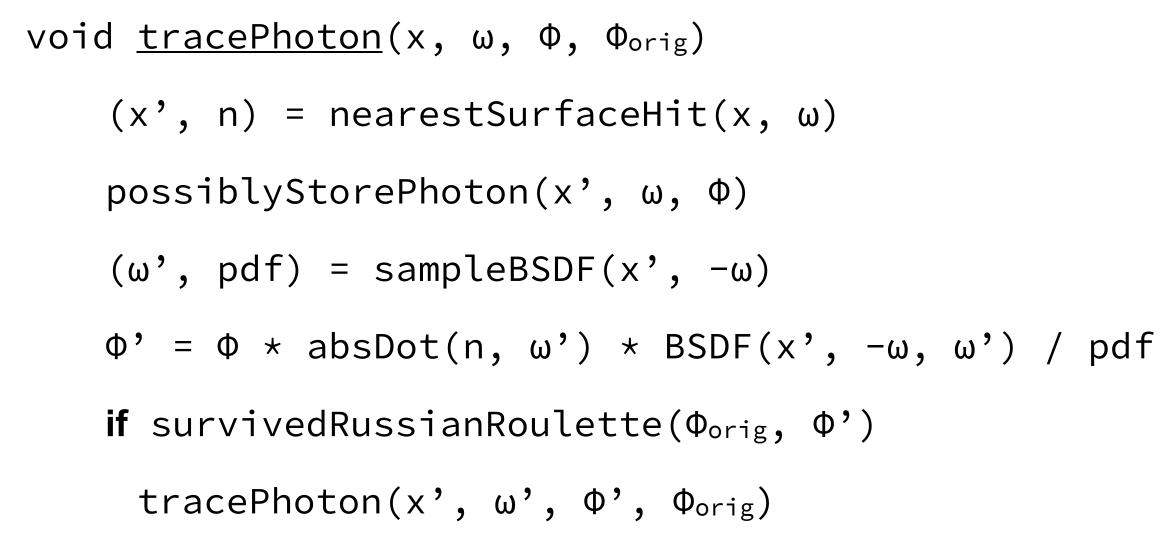
Pseudocode

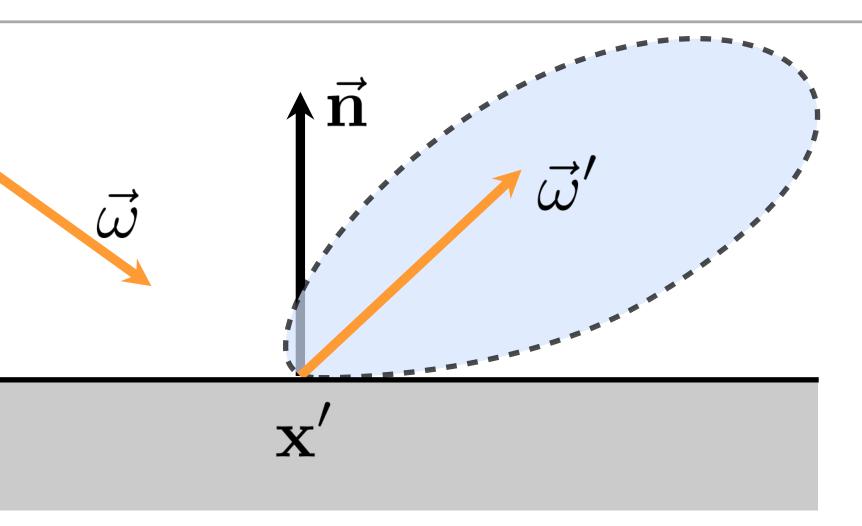




 \mathbf{X}

Pseudocode





 \mathbf{X}

Russian Roulette Example

50%

make ~150 photons continue with power 1.0 W

Very important!

300 photons with power 1.0 W hit a surface with reflectance

Instead of reflecting 300 photons with power 0.5 W, RR will

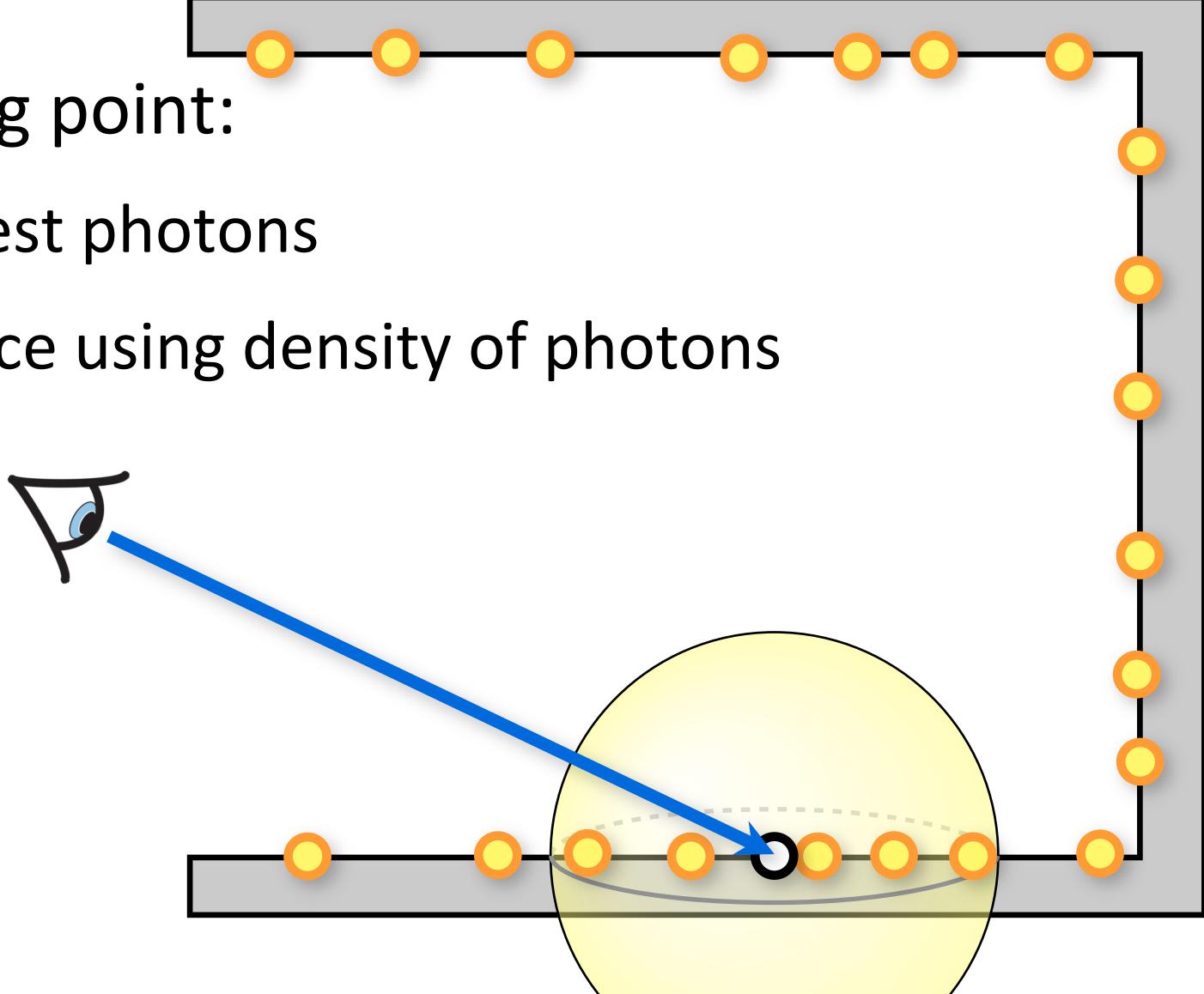
- A two-pass algorithm:
- Pass 1: Tracing of photons from light sources, and caching them in a photon map
- Pass 2: Tracing from the eye and approximating indirect illumination using the photons

- A two-pass algorithm:
- Pass 1: Tracing of photons from light sources, and caching them in a photon map
- Pass 2: Tracing from the eye and approximating indirect illumination using the photons

Rendering

For each shading point:

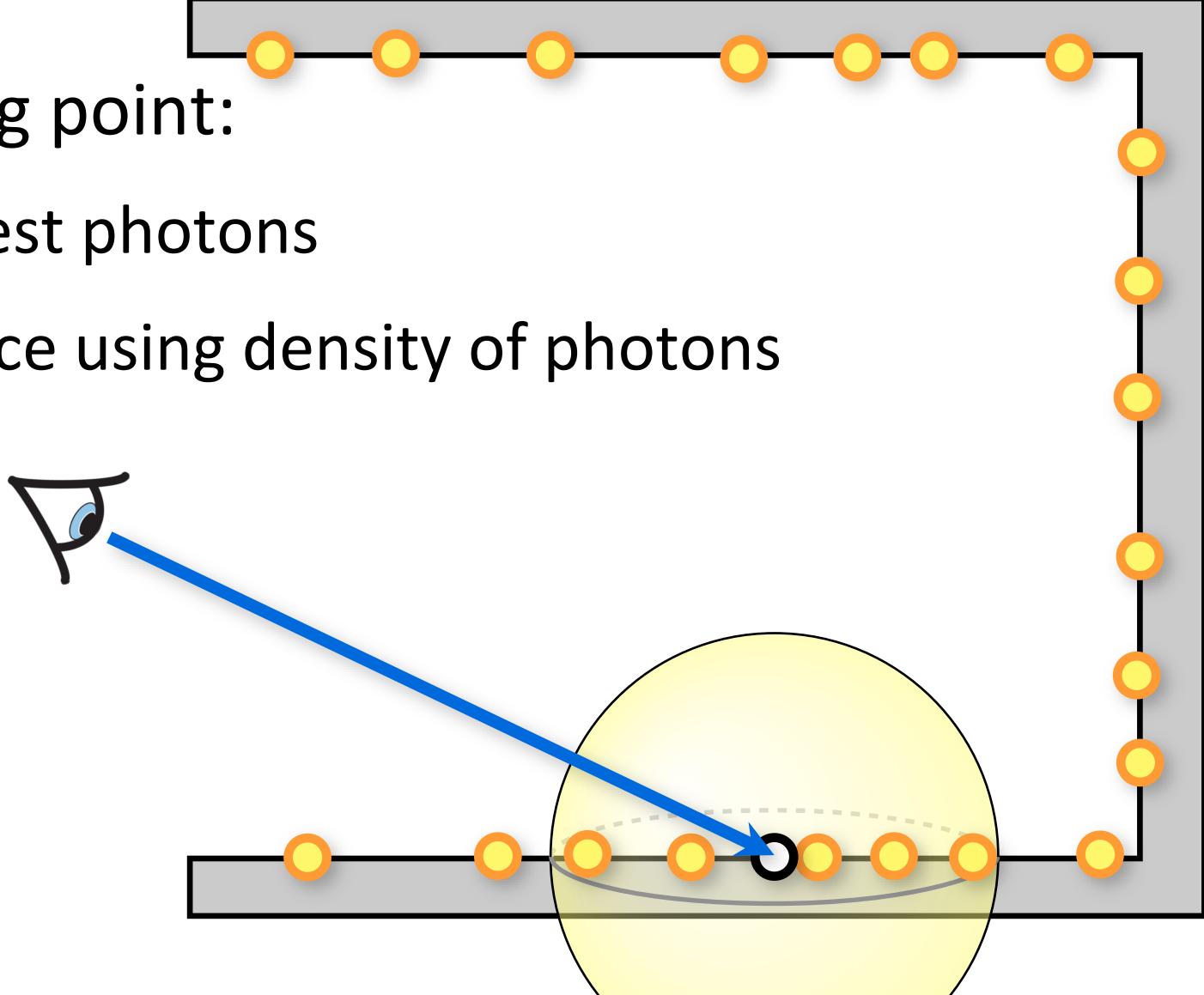
- Find the k closest photons
- Approx. radiance using density of photons



Rendering

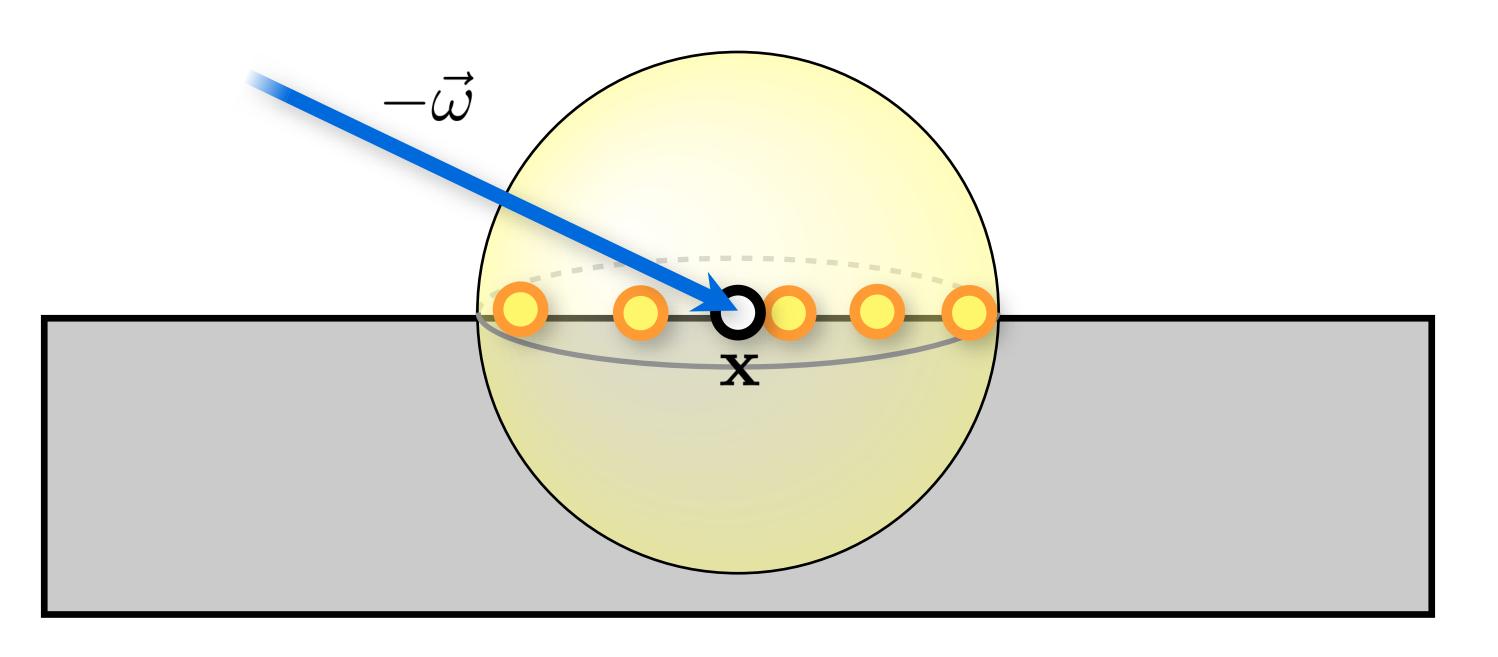
For each shading point:

- Find the k closest photons
- Approx. radiance using density of photons



Based on kernel density estimation

random variable (photon density)

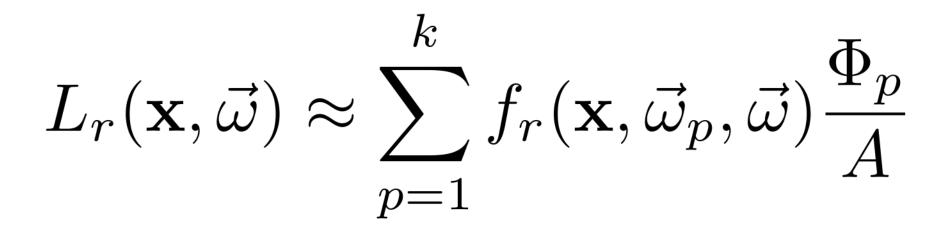


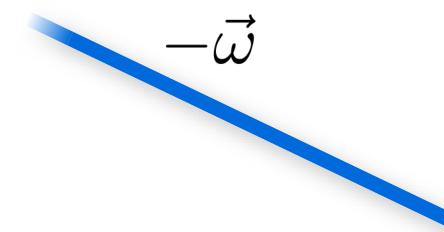
- Non-parametric way of estimating the probability density of a

Based on kernel density estimation - Non-parametric way of estimating the probability density of a random variable (photon density)

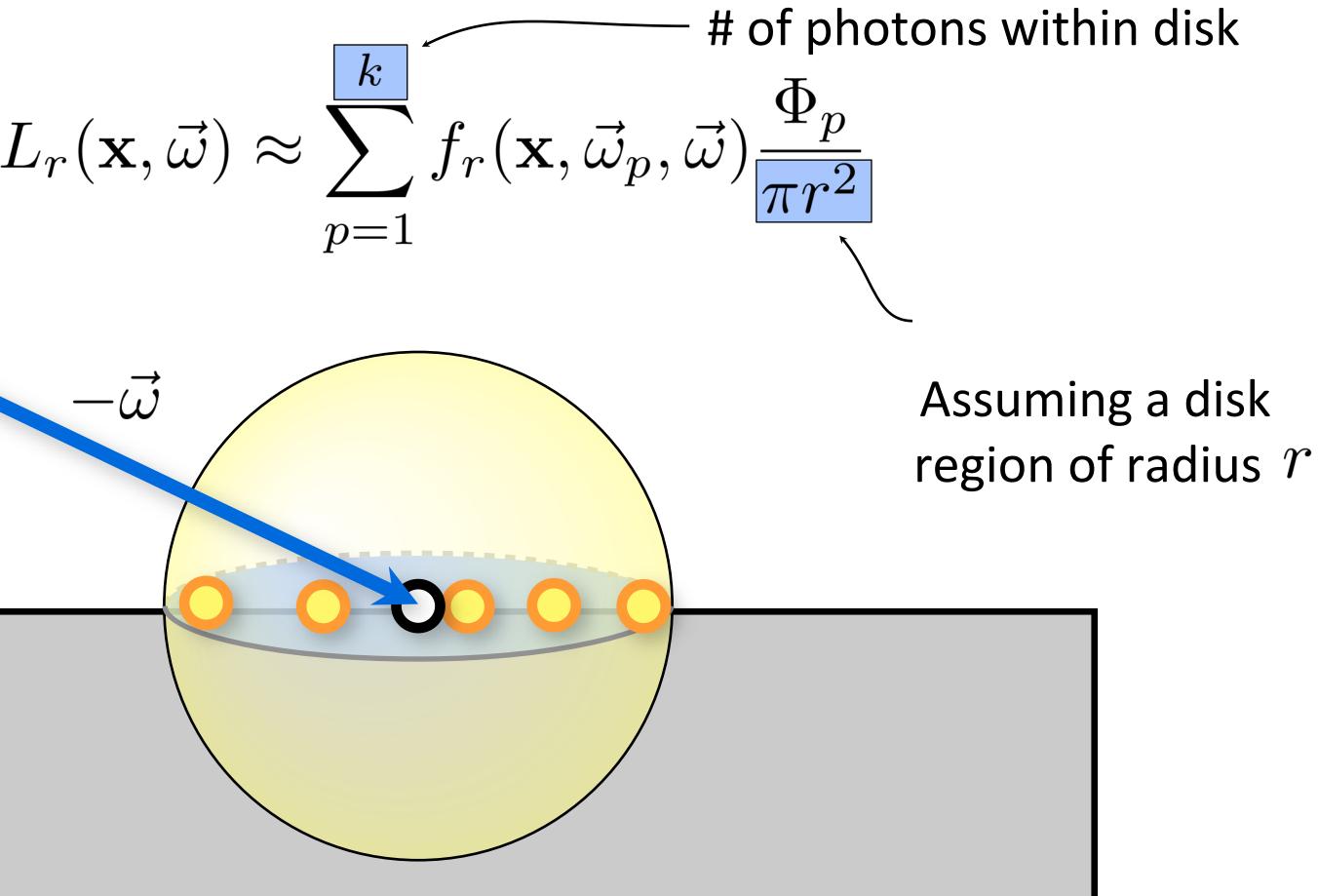
$$\begin{split} L_r(\mathbf{x}, \vec{\omega}) &= \int_{H^2} f_r(\mathbf{x}, \vec{\omega}', \vec{\omega}) L_i(\mathbf{x}, \vec{\omega}') \cos \theta' d\vec{\omega}' \\ &= \int_{H^2} f_r(\mathbf{x}, \vec{\omega}', \vec{\omega}) \frac{d\Phi^2(\mathbf{x}, \vec{\omega}')}{\cos \theta' d\vec{\omega}' dA} \cos \theta' d\vec{\omega}' \\ &= \int_{H^2} f_r(\mathbf{x}, \vec{\omega}', \vec{\omega}) \frac{d\Phi^2(\mathbf{x}, \vec{\omega}')}{dA} \\ &\approx \sum_{p=1}^n f_r(\mathbf{x}, \vec{\omega}_p, \vec{\omega}) \frac{\Delta \Phi_p(\mathbf{x}, \vec{\omega}_p)}{\Delta A} \end{split}$$

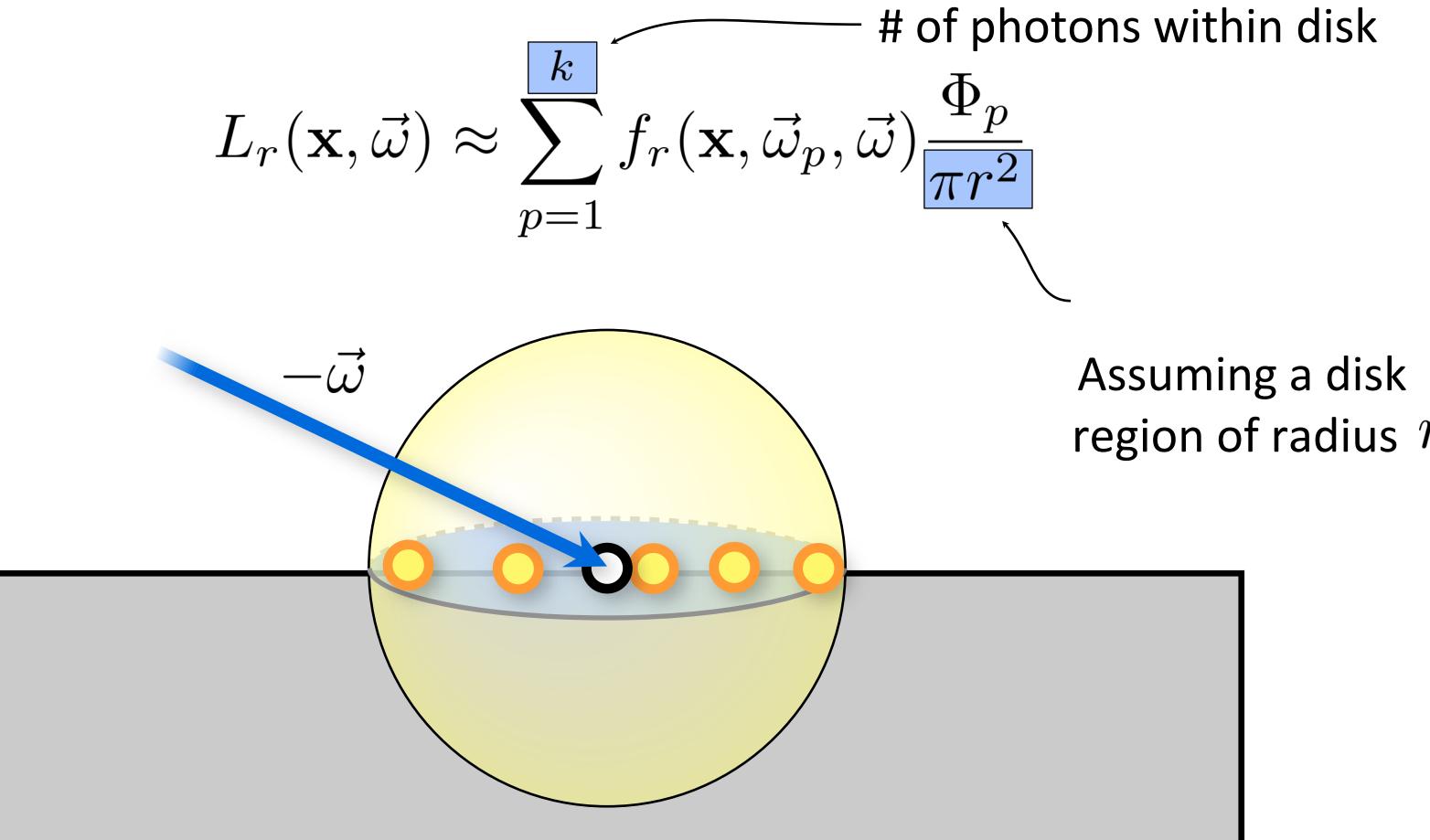
Approach 1: first define area, then find photons



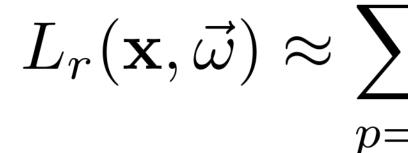


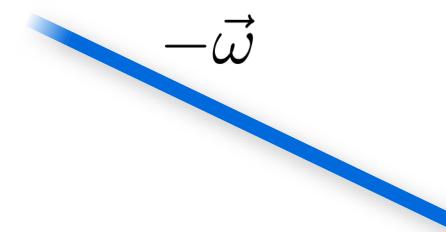
Approach 1: first define area, then find photons





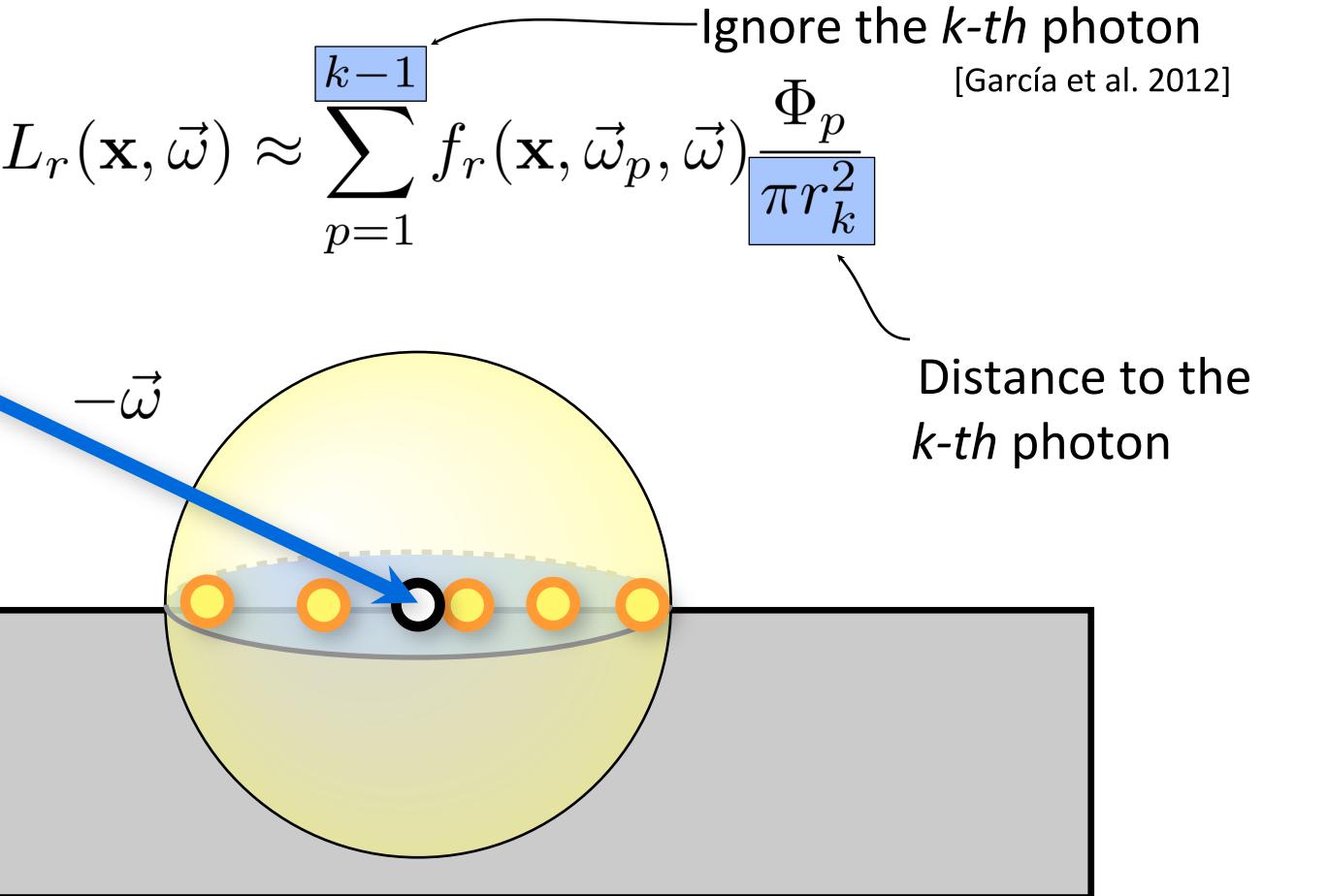
Approach 2: first find k nearest photons, then define area

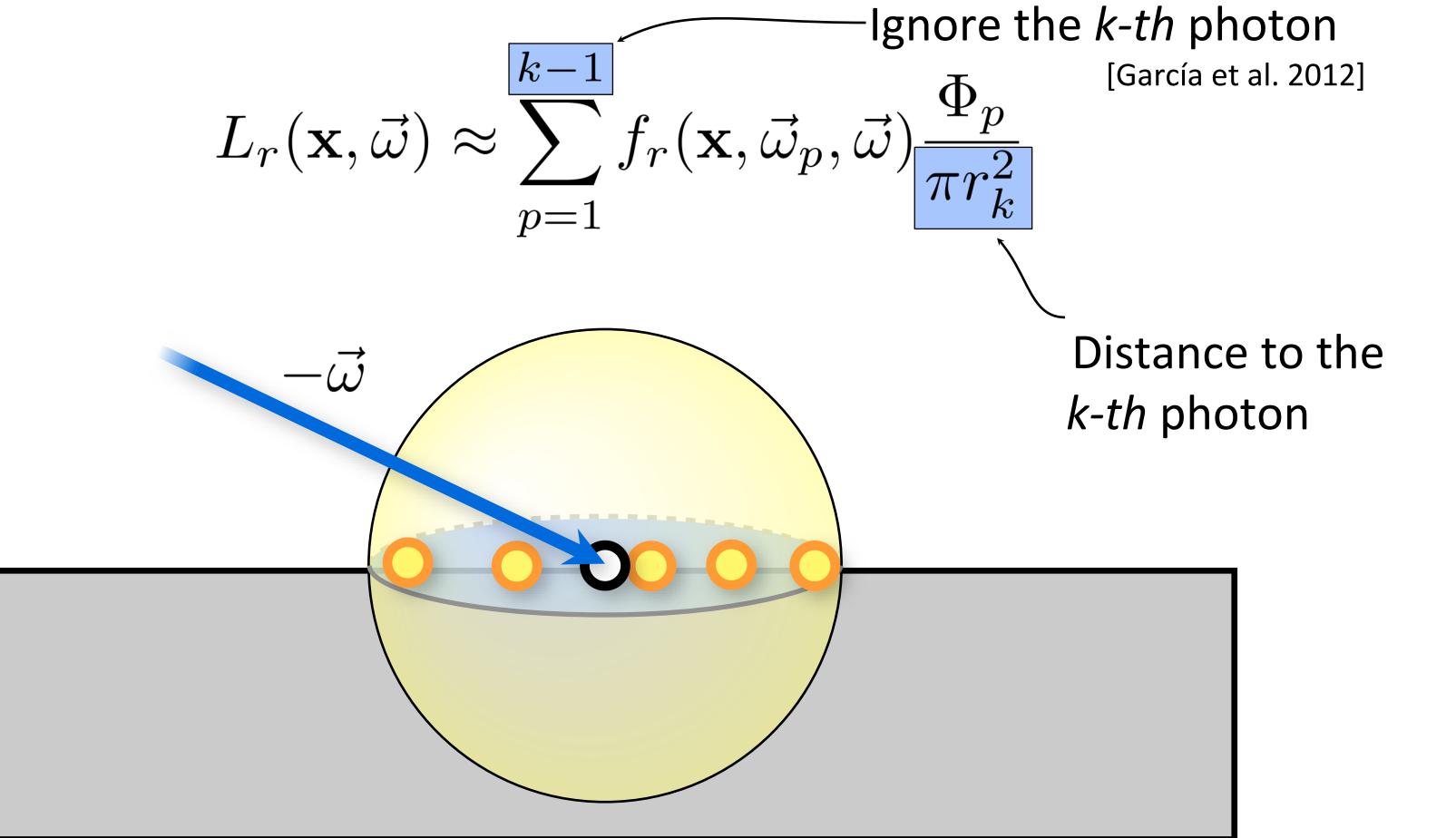




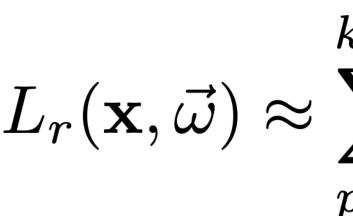
$$\sum_{p=1}^{k} f_r(\mathbf{x}, \vec{\omega}_p, \vec{\omega}) \frac{\Phi_p}{A}$$

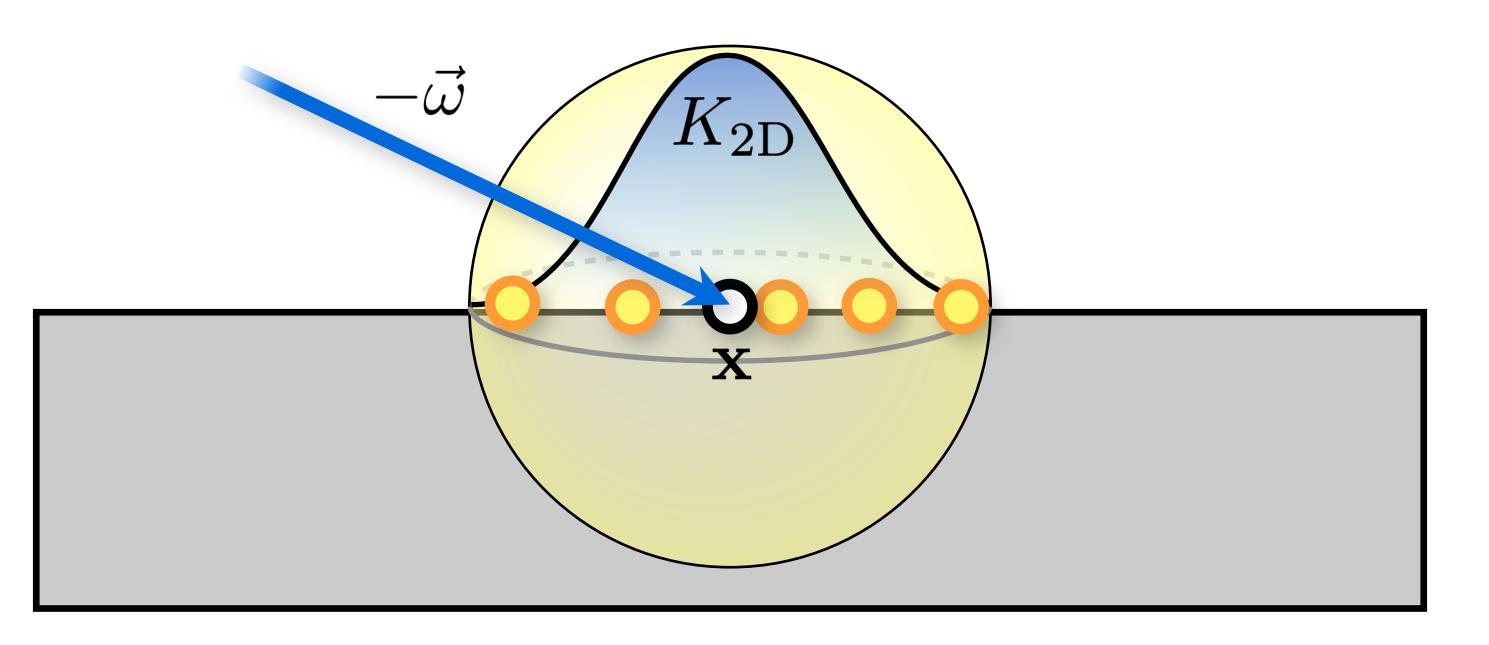
Approach 2: first find k nearest photons, then define area





Using a non-constant kernel:





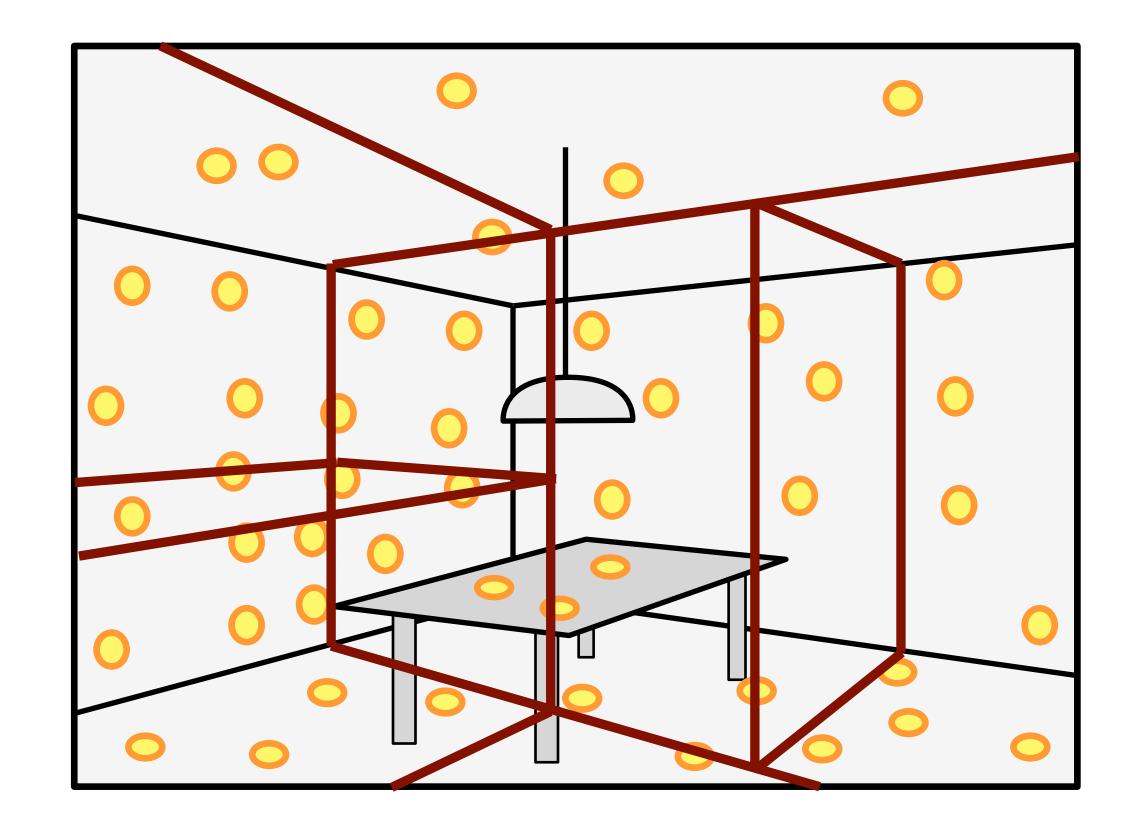
k - 1 $L_r(\mathbf{x},\vec{\omega}) \approx \sum f_r(\mathbf{x},\vec{\omega}_p,\vec{\omega}) \Phi_p K_{2\mathrm{D}}(r_p,r_k)$ p=1

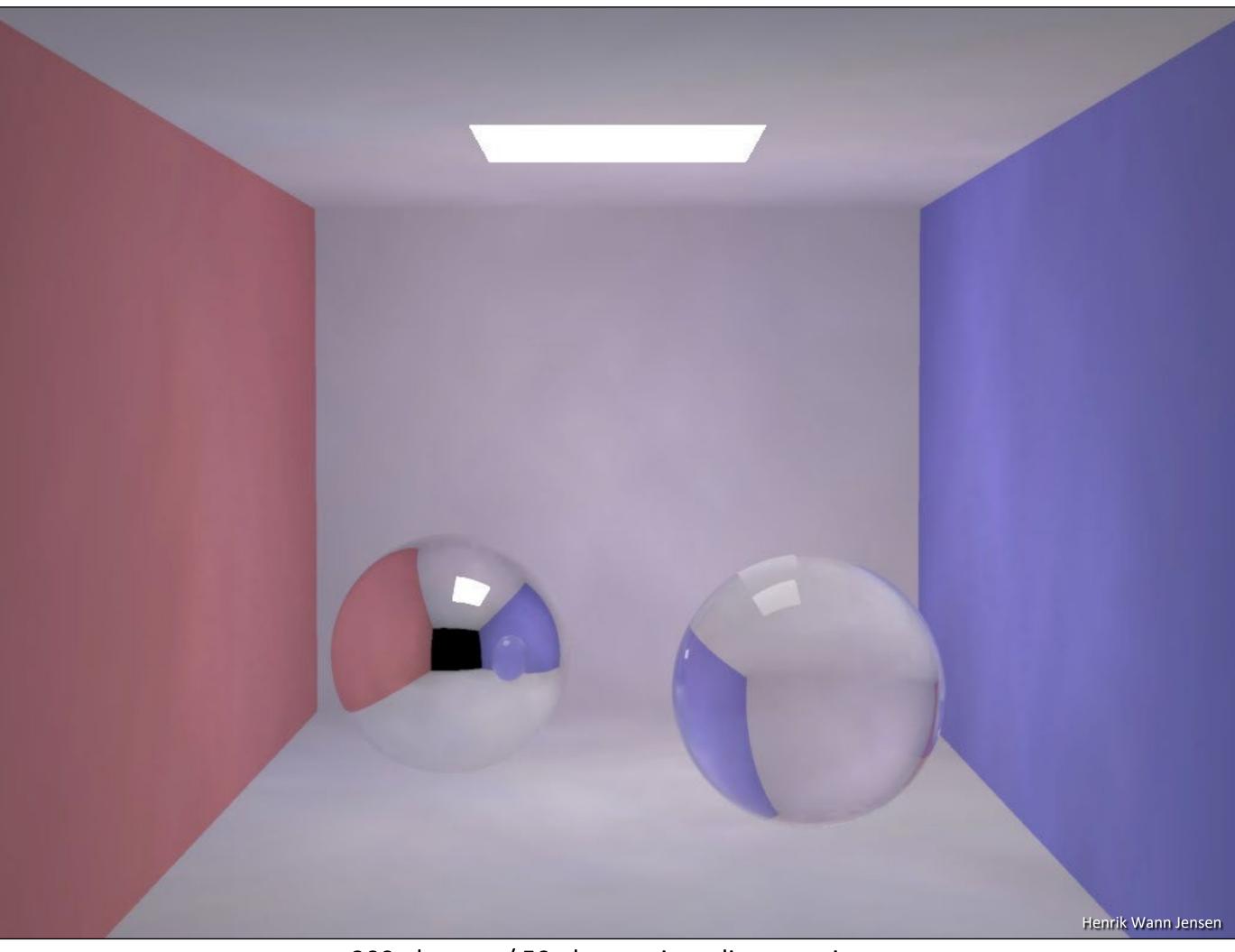
The Photon Map Data Structure

Requirements:

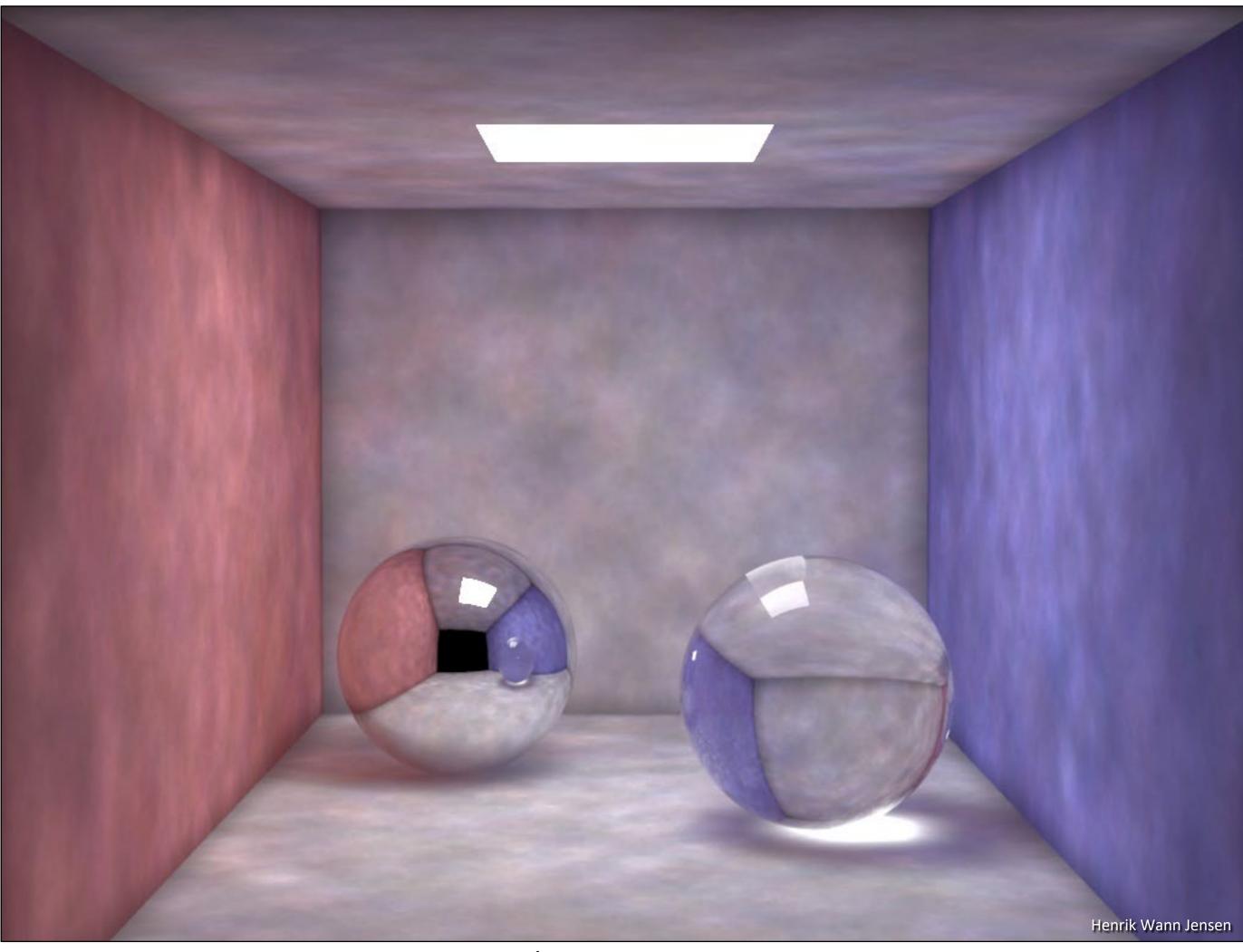
- Compact (we want many photons)
- Fast nearest neighbor search

KD-tree

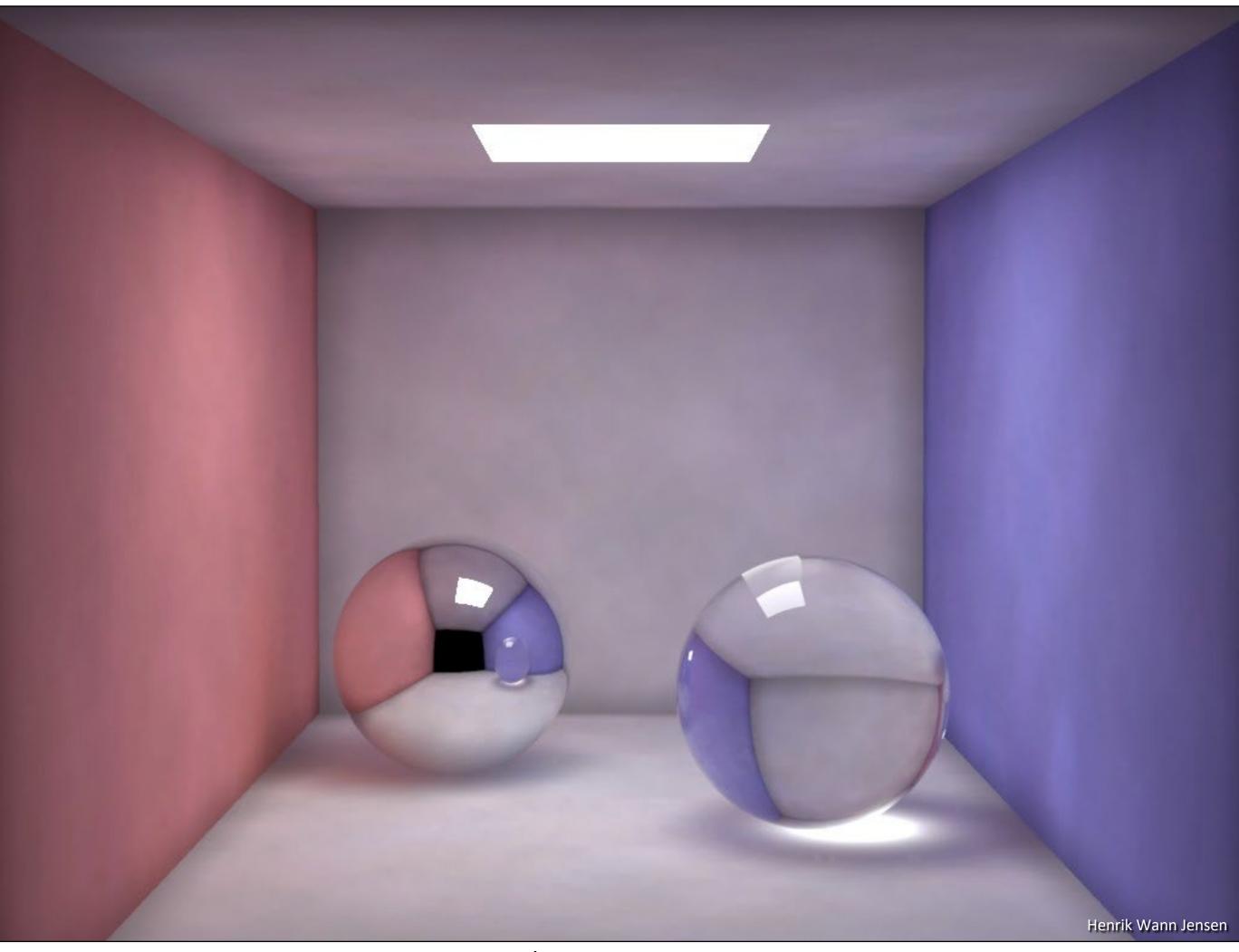




200 photons / 50 photons in radiance estimate

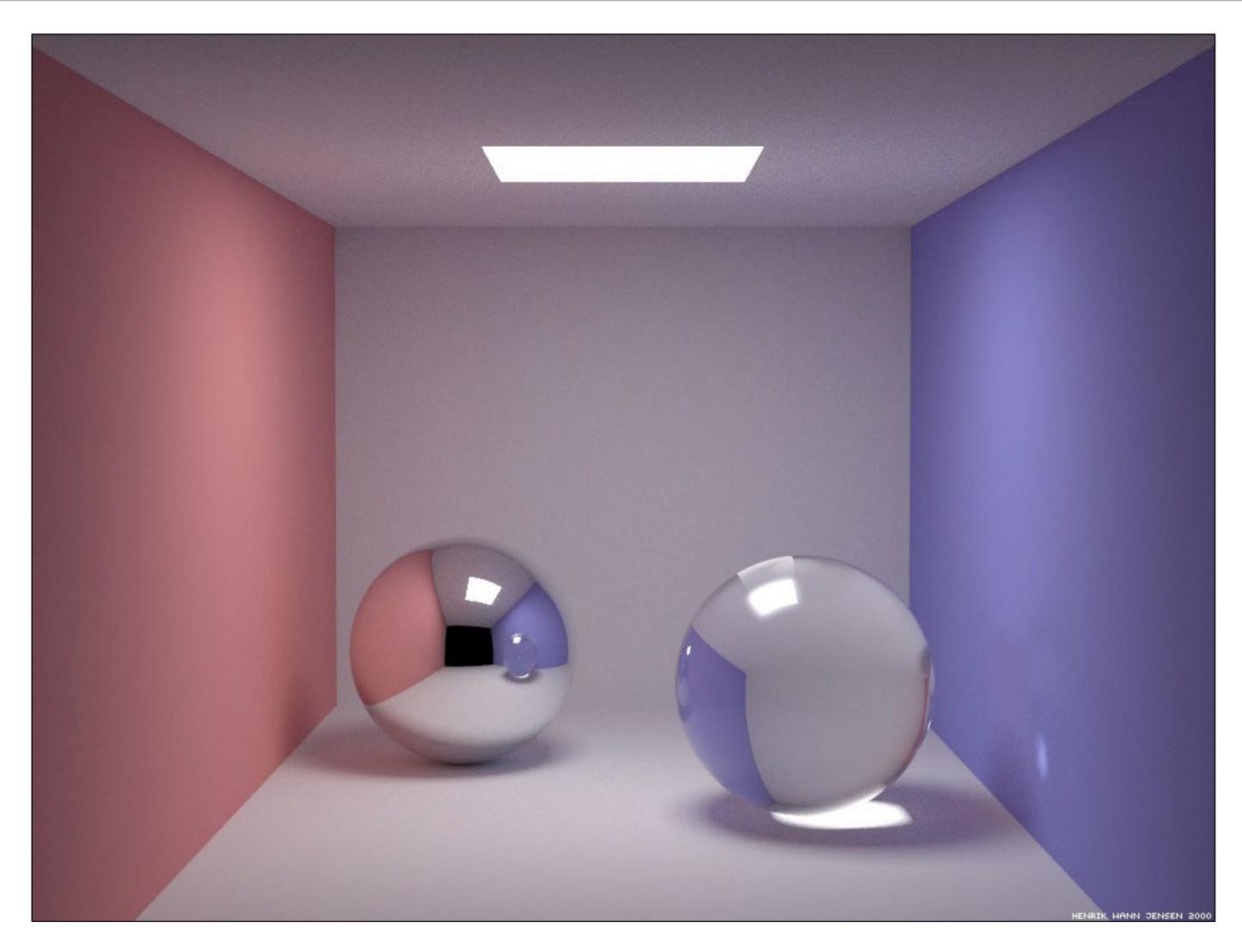


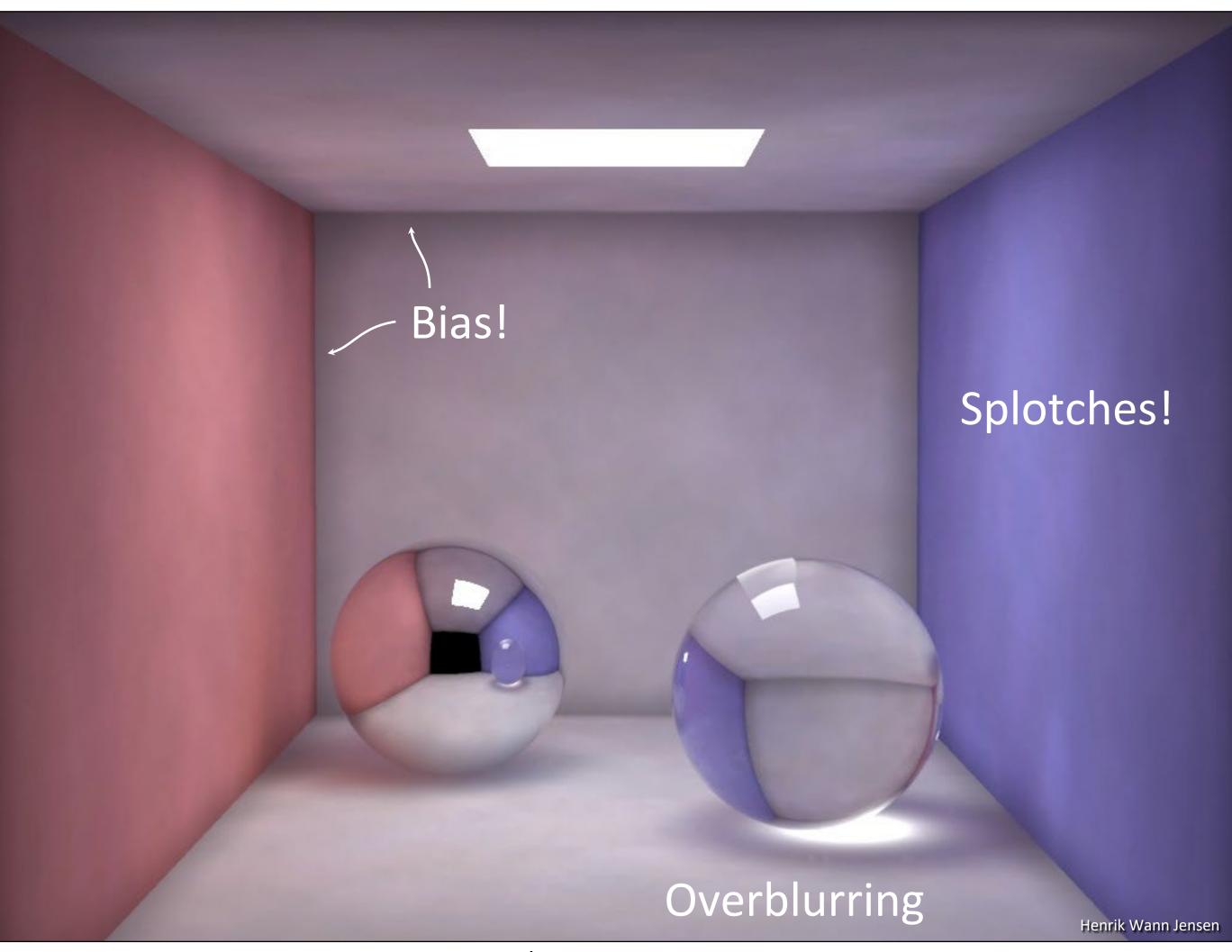
100,000 photons / 50 photons in radiance estimate



500,000 photons / 500 photons in radiance estimate

Path Tracing





500,000 photons / 500 photons in radiance estimate

Radiance estimate contains error/bias

- Produces darker/brighter, blotchy, blurry appearance
- Requires *many* photons for high quality

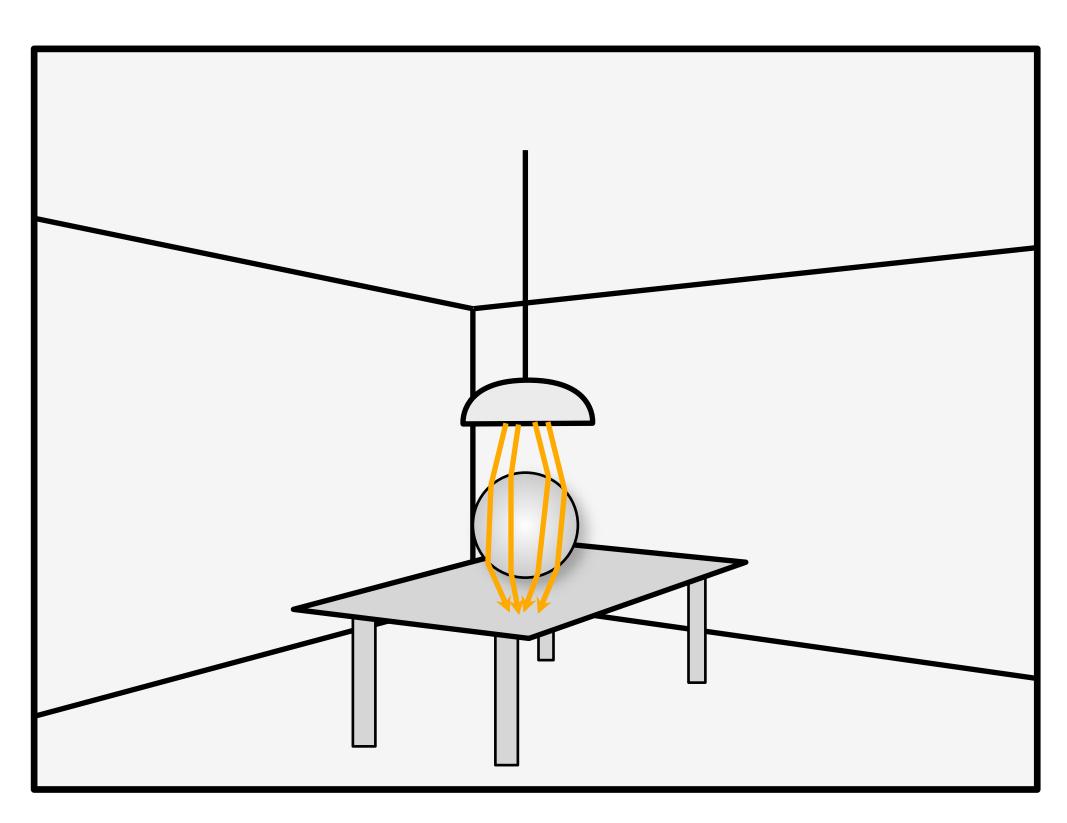
Split up lighting computation into components:

- Direct lighting
- Caustics (caustic photon map)
- Remaining indirect illumination (global photon map)

Improving Caustics

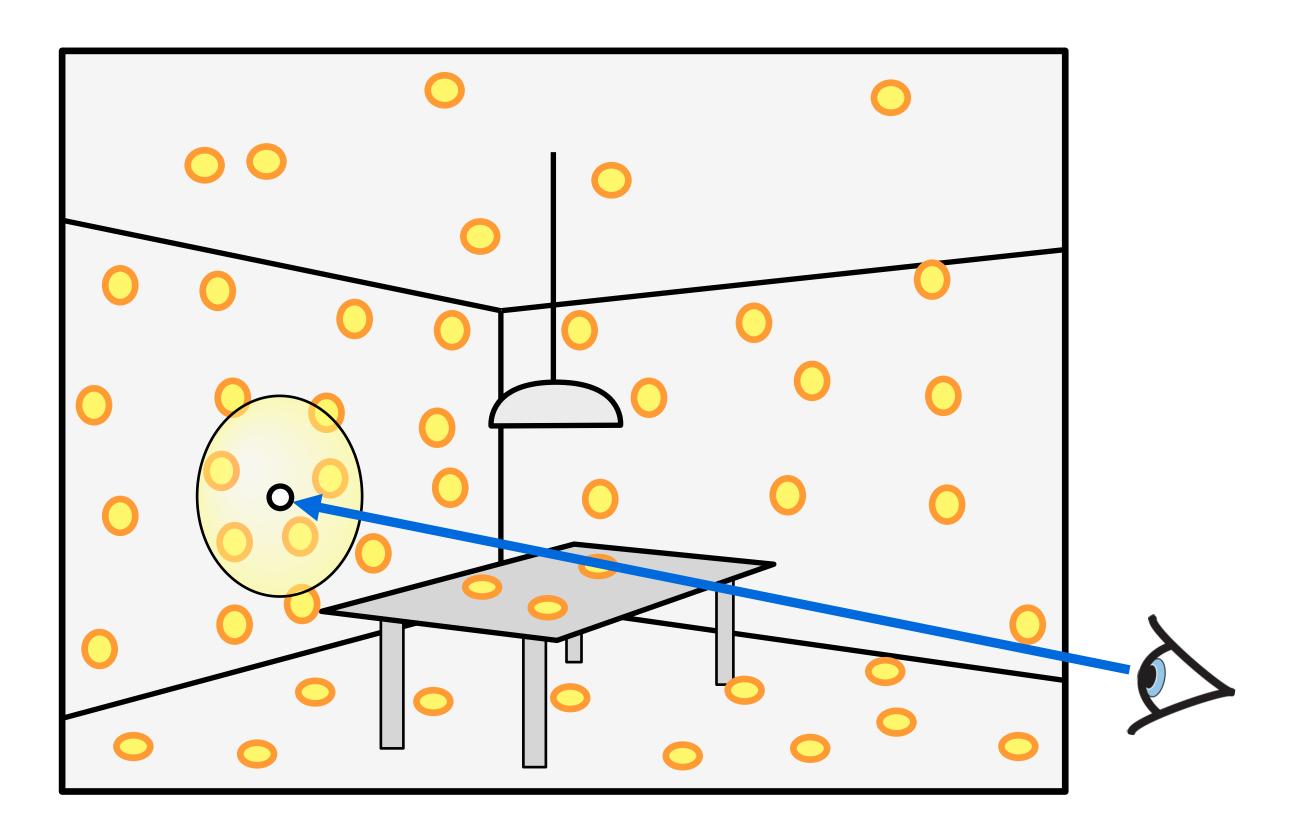
Higher quality photon map for caustics

- Only stores LS⁺D paths
- Many photons shot directly at specular objects



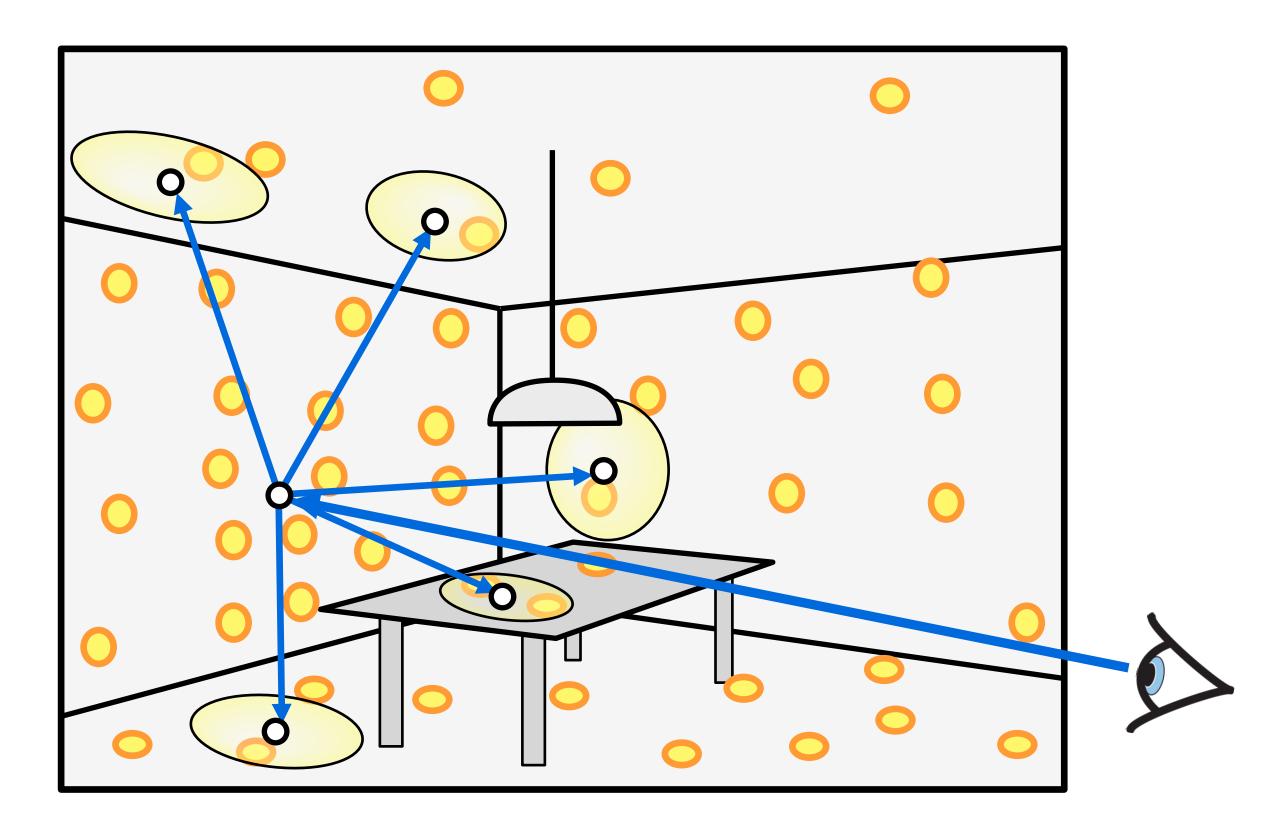
Improving Remaining Indirect

Original approach: direct density estimation



Improving Remaining Indirect

second non-specular surface from camera)



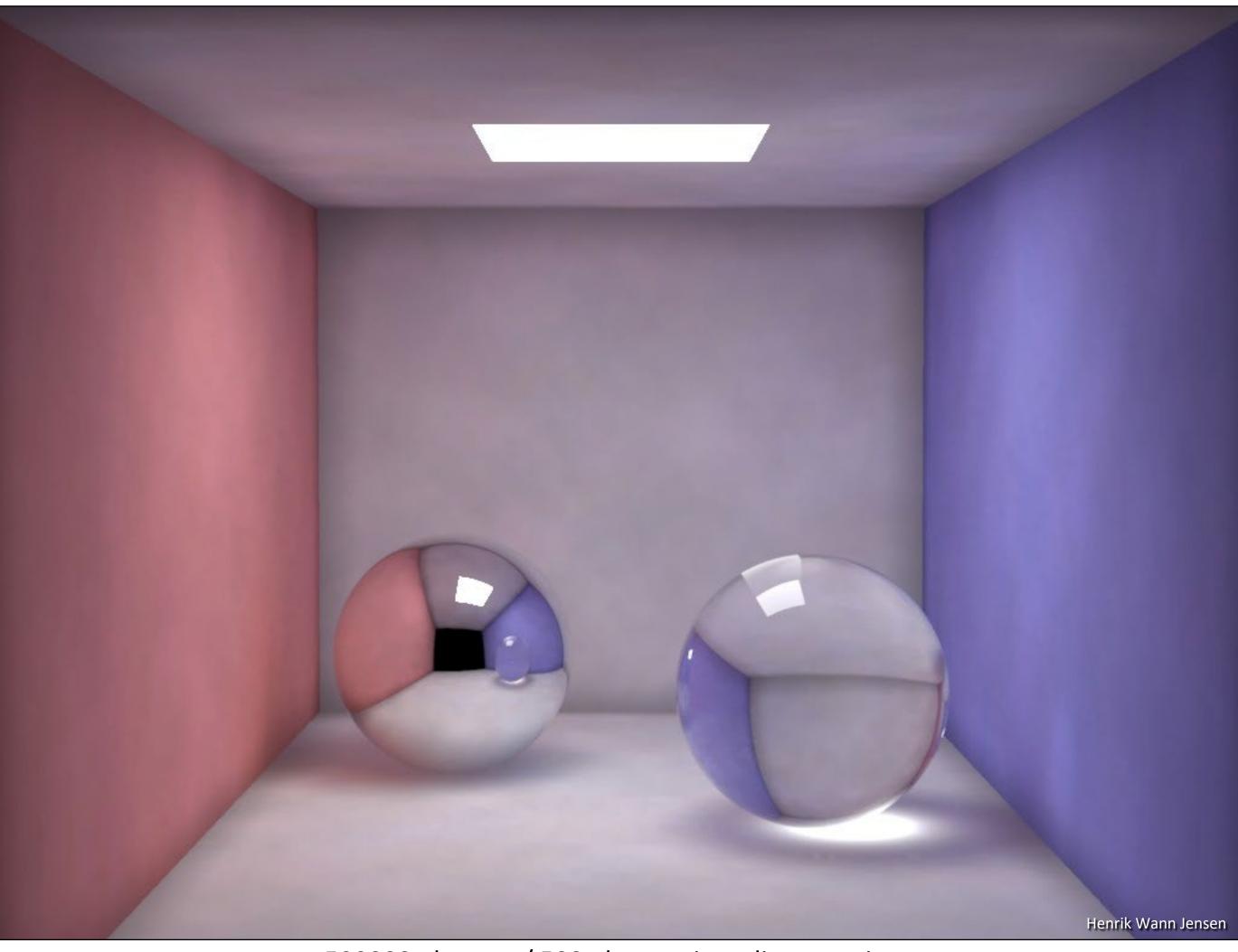
Improved approach: using *final gather* (i.e., path trace until

Improved Photon Mapping

Camera tracing

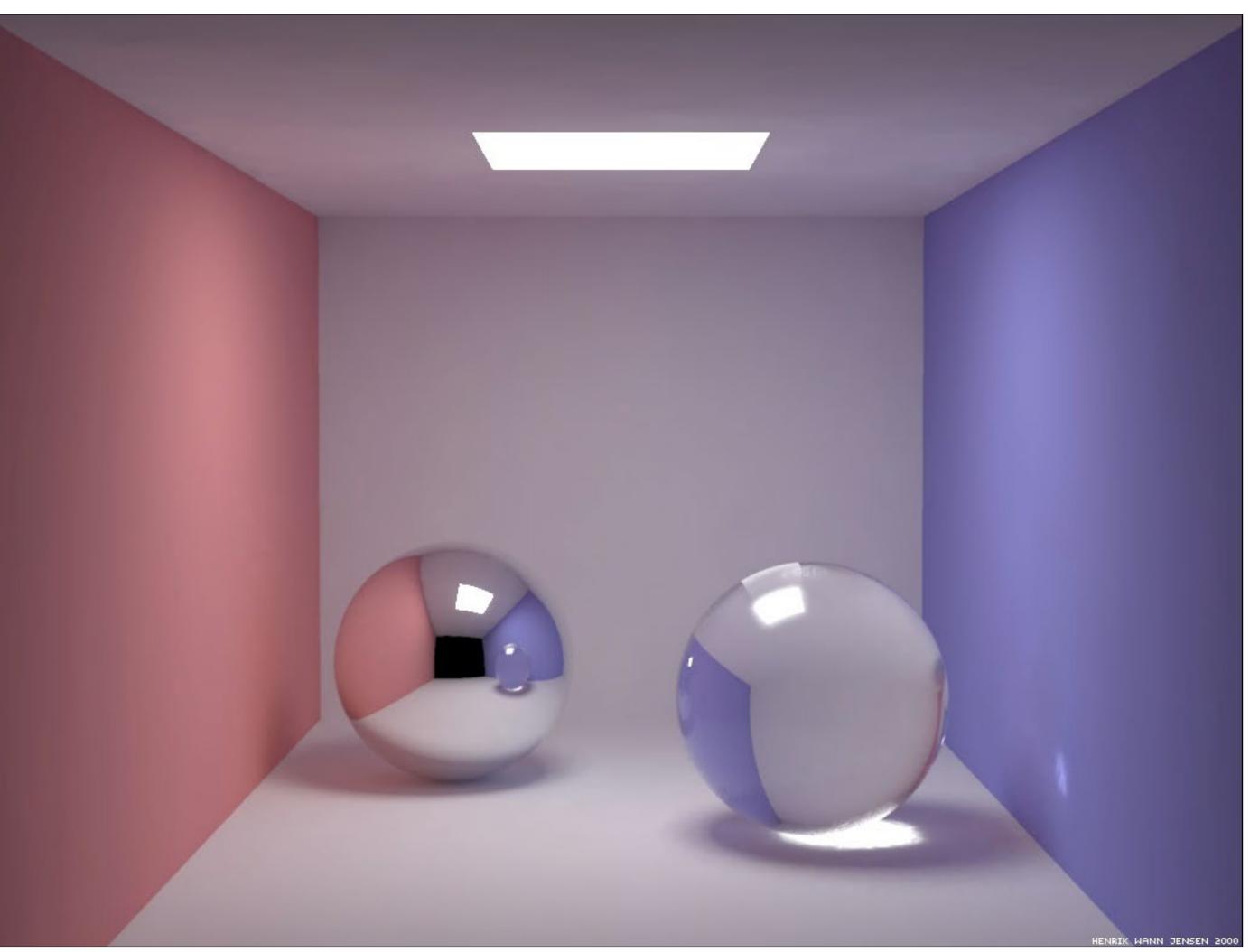
- Trace camera paths until they hit the first non-specular surface point ${\boldsymbol x}$
- At x we sum:
 - Emission
 - Direct illumination: trace shadow rays to lights
 - Caustics: density estimation at x using only the caustic photon map
 - Remaining indirect: continue path tracing until next non-specular vertex $\boldsymbol{y},$ perform density estimation from global photon map at \boldsymbol{y}

Photon Mapping



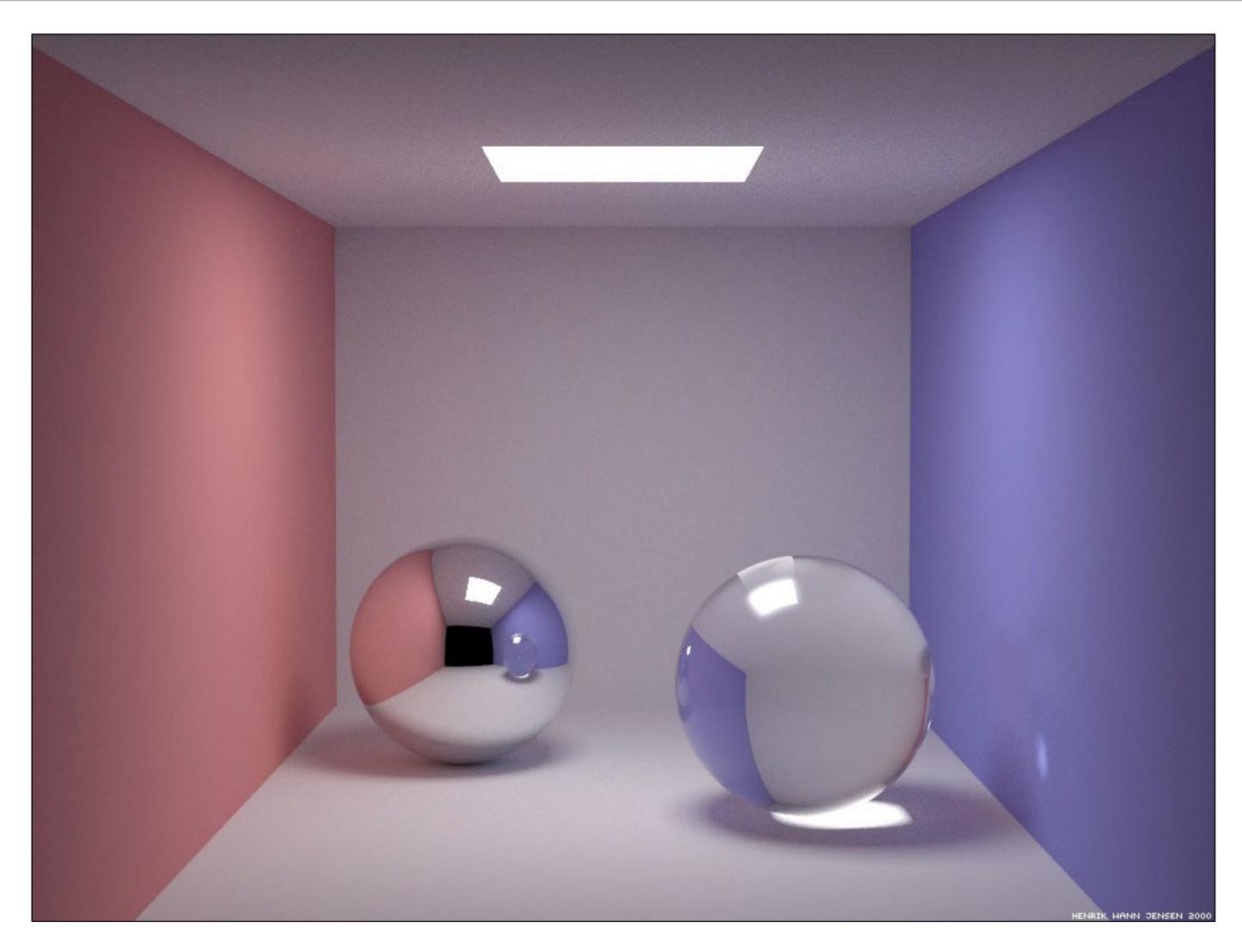
500000 photons / 500 photons in radiance estimate

Photon Mapping (Improved)



final gather + global photon map (200000) + caustic photon map (50000)

Path Tracing



Validation Tests

Test idea 1:

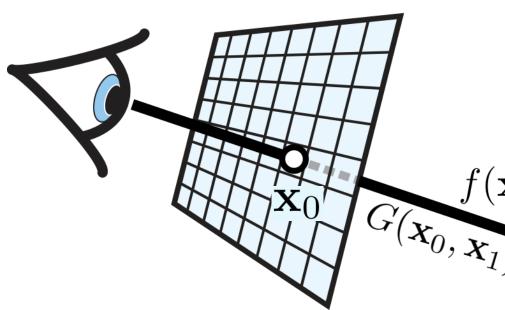
- store only direct photons
- visualize photon map directly
- compare to standard direct illumination
- should look identical with many photons

Test idea 2:

- create a perfectly transparent sphere (IOR = 1.0)
- store only caustic photons
- render direct illumination + caustics
- shadow should disappear

Recall: Path Integral Measurement Eq.

$$I_j = \int_{\mathcal{P}} W_e(\mathbf{x}_0)$$

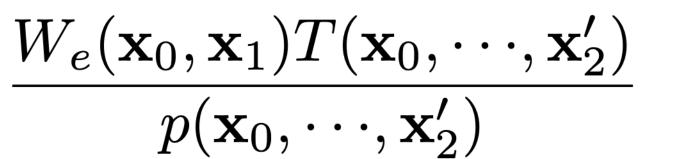


• Monte Carlo estimator:

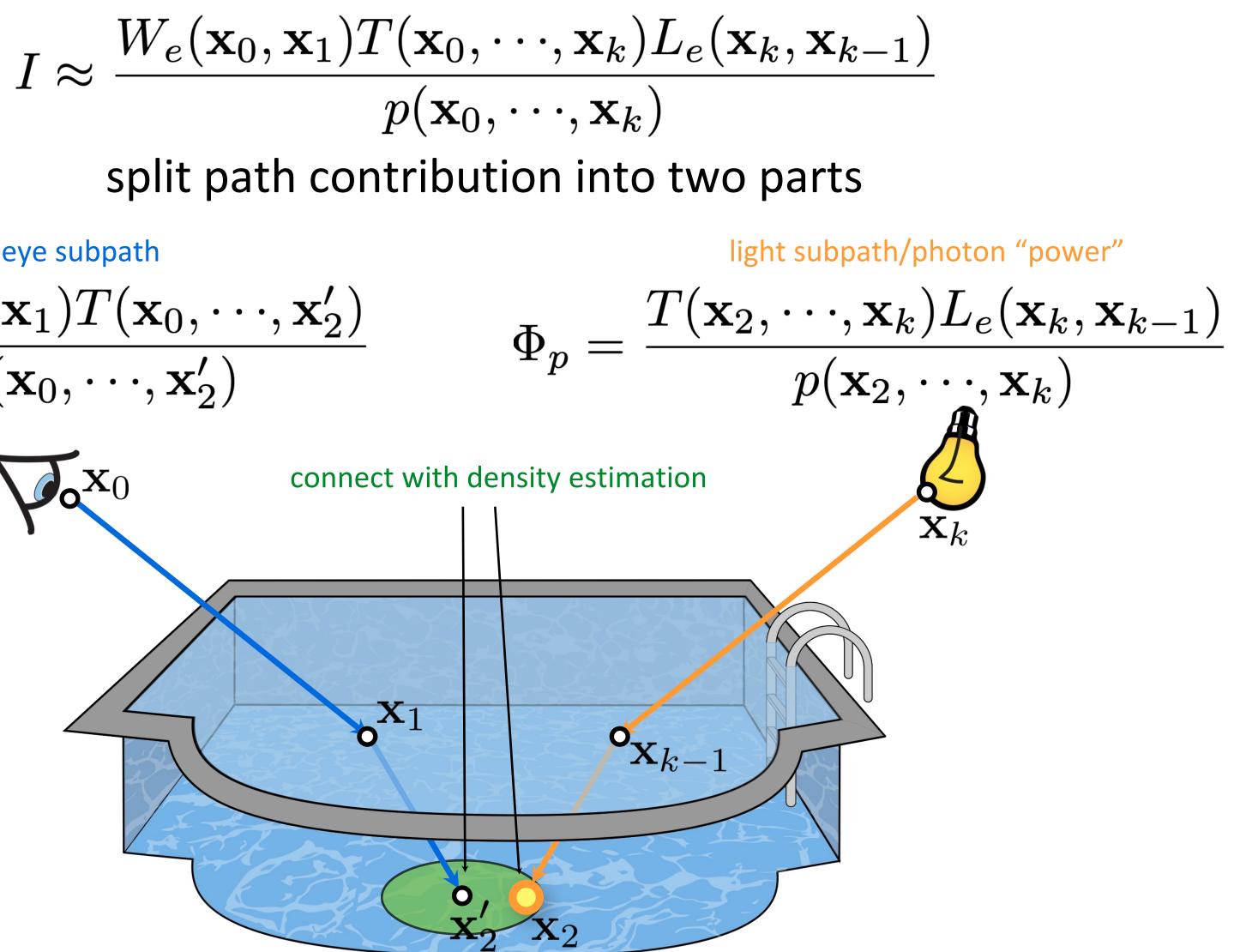
 $L_0, \mathbf{x}_1) L_e(\mathbf{x}_k, \mathbf{x}_{k-1}) T(\bar{\mathbf{x}}) d\bar{\mathbf{x}}$ k-1path throughput $T(\bar{\mathbf{x}}) = G(\mathbf{x}_0, \mathbf{x}_1) \prod f(\mathbf{x}_j, \mathbf{x}_{j+1}, \mathbf{x}_{j-1}) G(\mathbf{x}_j, \mathbf{x}_{j+1})$ j=1 $f(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_0) = f(\mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_1)$ $G(\mathbf{x}_0, \mathbf{x}_1) = G(\mathbf{x}_1, \mathbf{x}_2) = G(\mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_1)$ $I \approx \frac{W_e(\mathbf{x}_0, \mathbf{x}_1) T(\mathbf{x}_0, \cdots, \mathbf{x}_k) L_e(\mathbf{x}_k, \mathbf{x}_{k-1})}{p(\mathbf{x}_0, \cdots, \mathbf{x}_k)}$ joint PDF of path vertices

Photon Mapping

eye subpath



 \mathbf{x}_0



Light Sources in the Real World

Complex shape

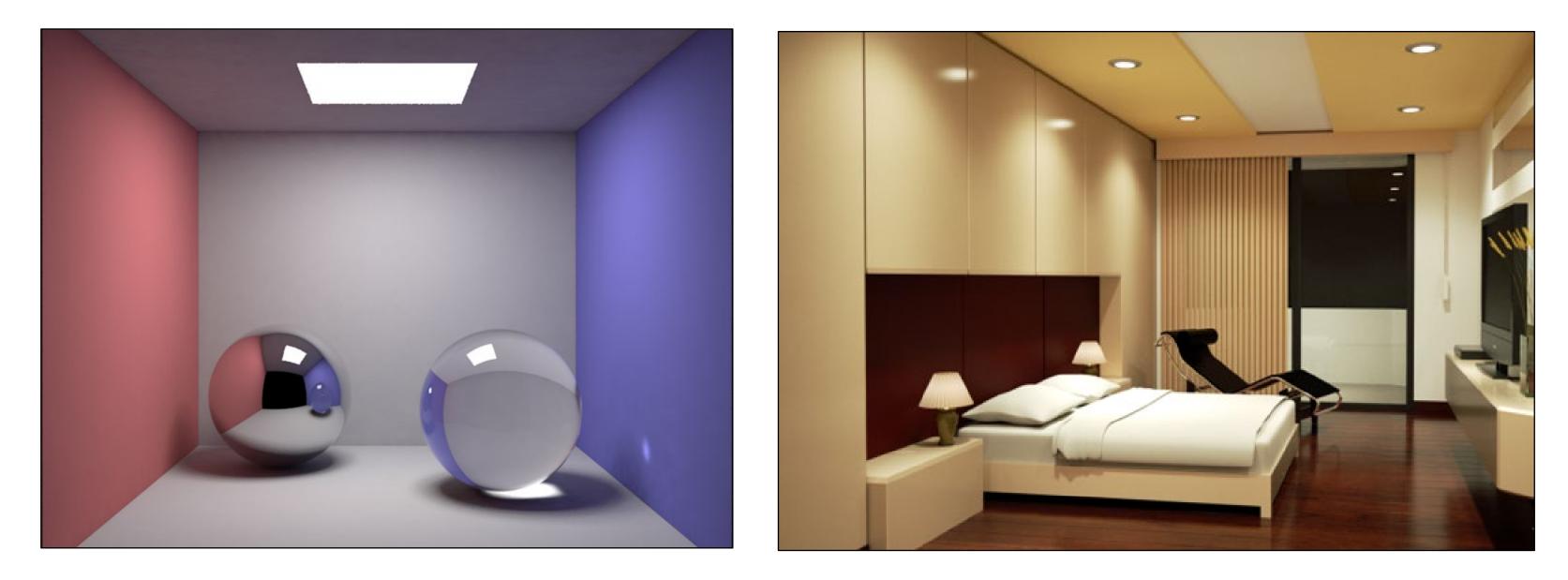
Covered with transparent materials Only a small part emits light

Light Sources in CG

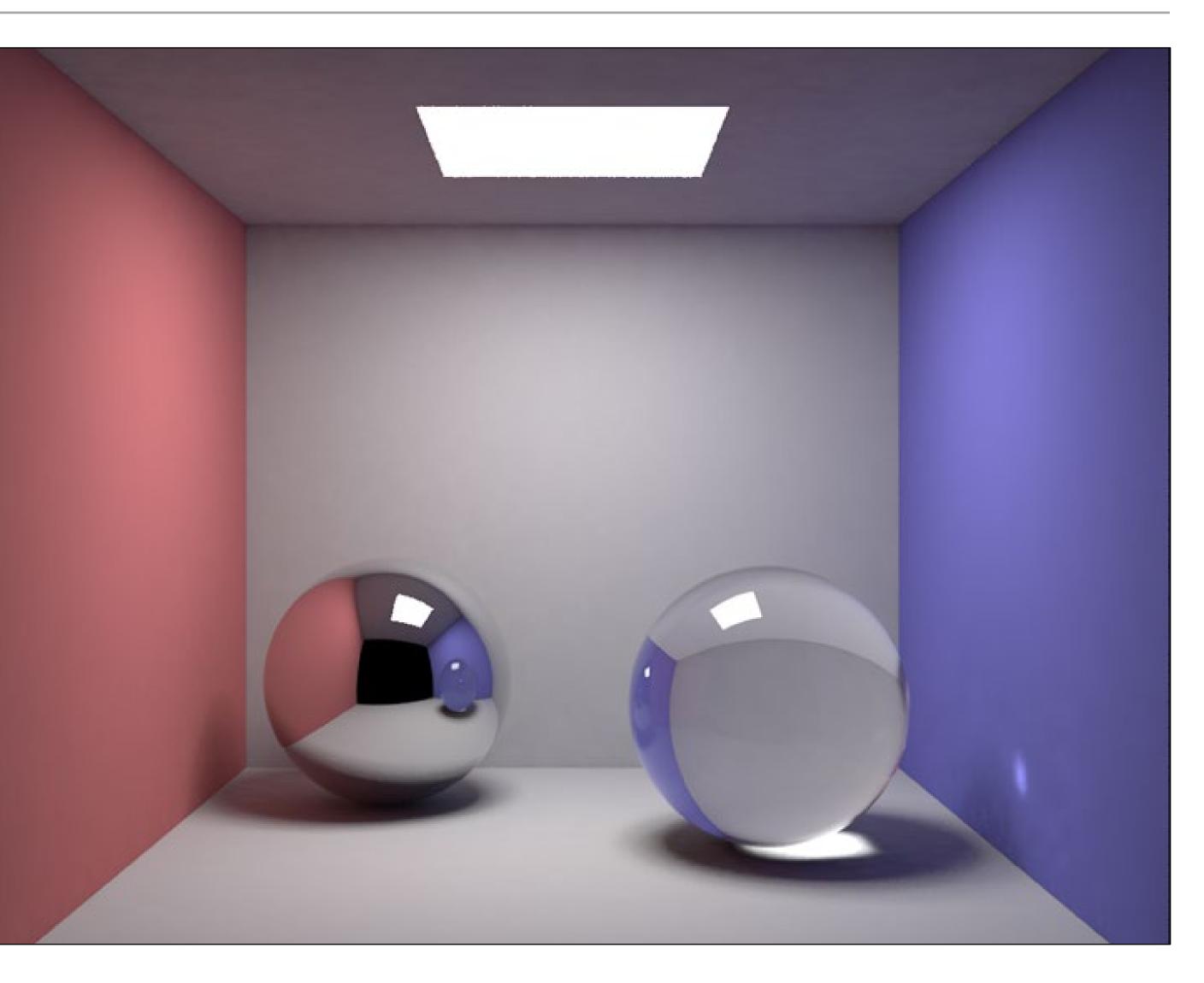
Simple shape

Bare light source

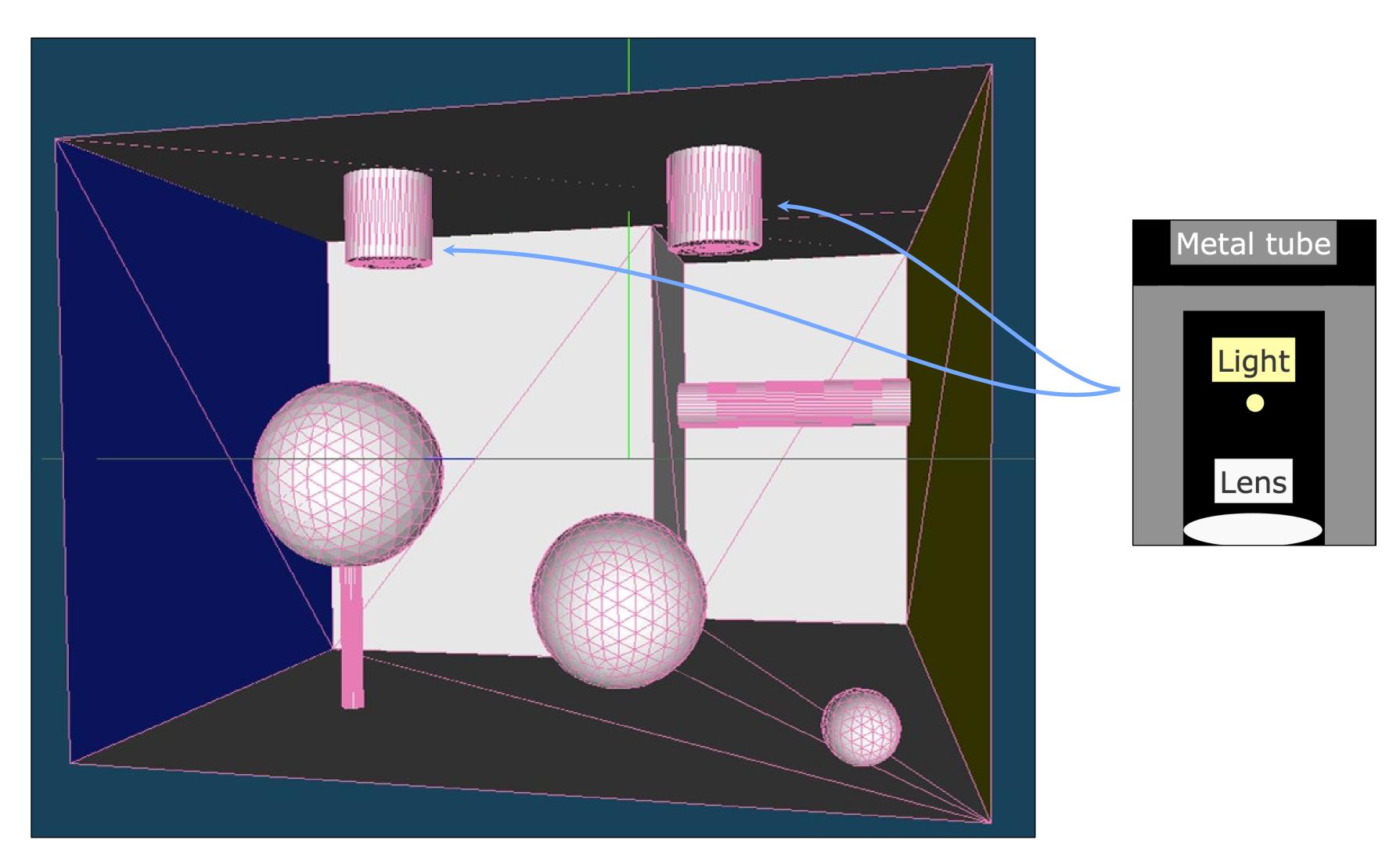
Entire part emits light



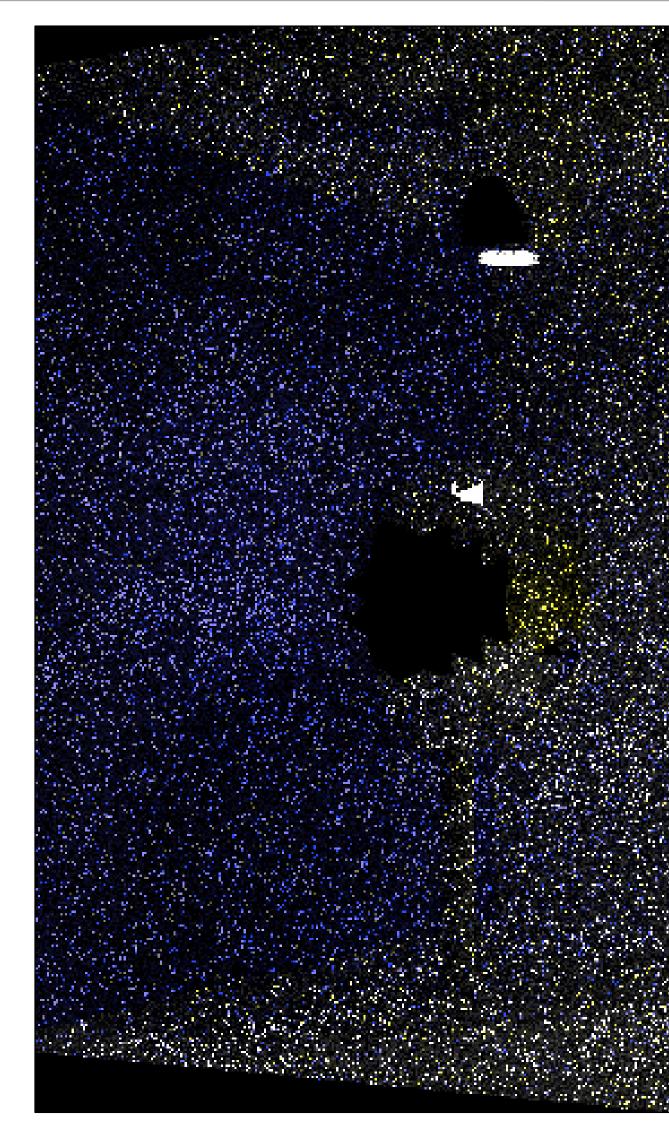
Why?

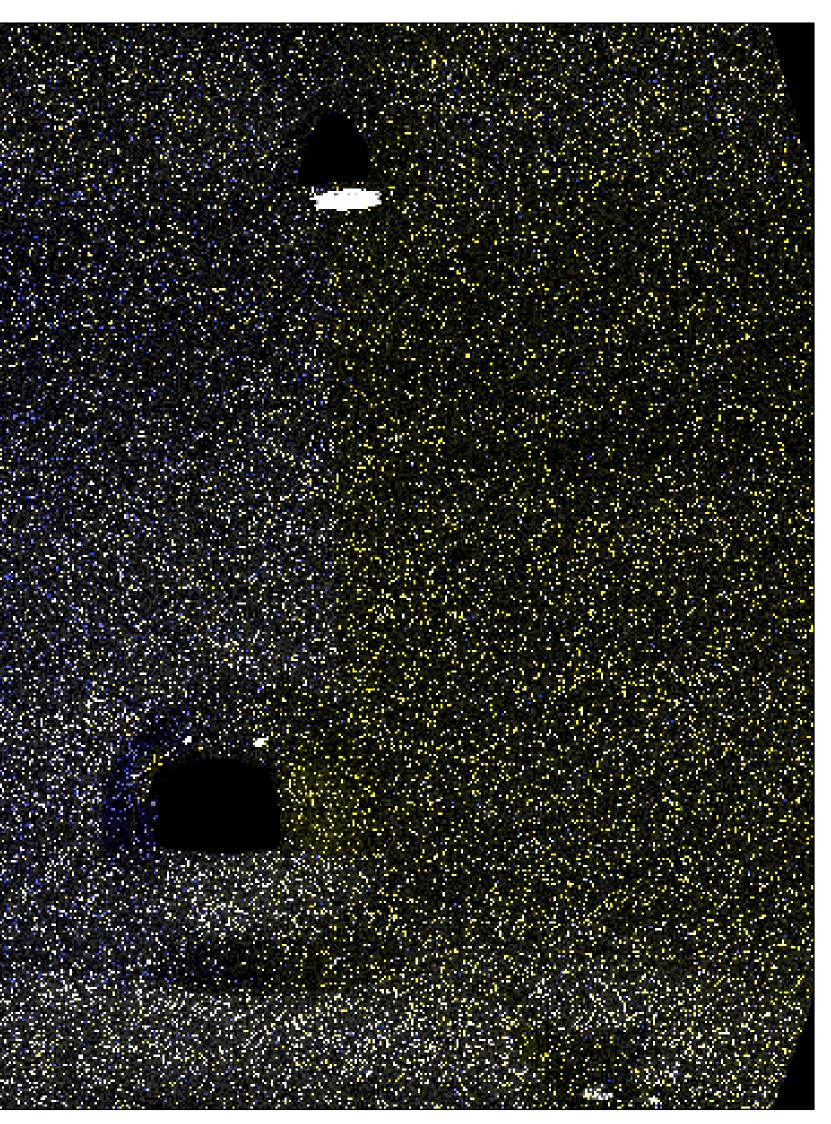


Scene with "Realistic" Lights

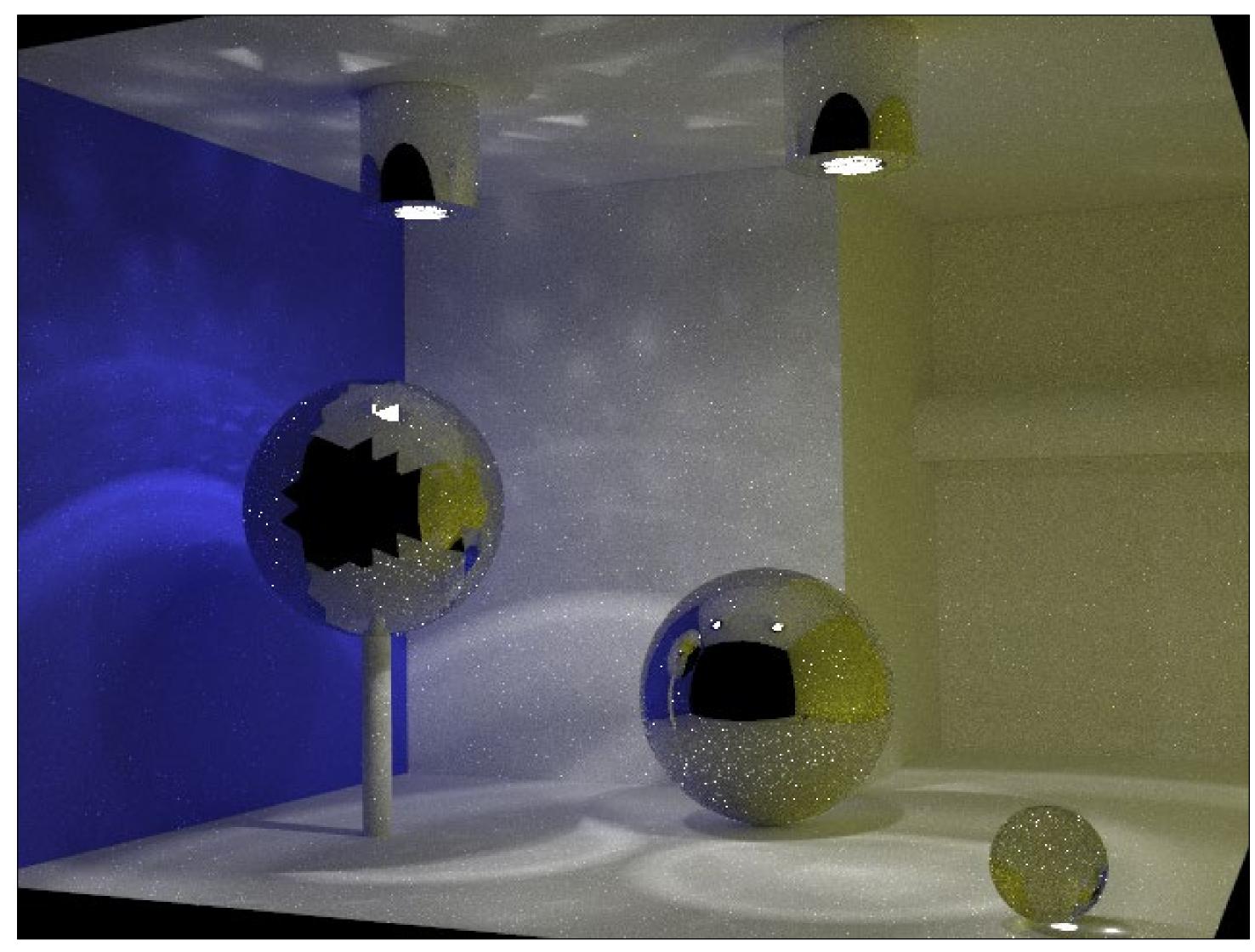


Path Tracing





Bidirectional Path Tracing



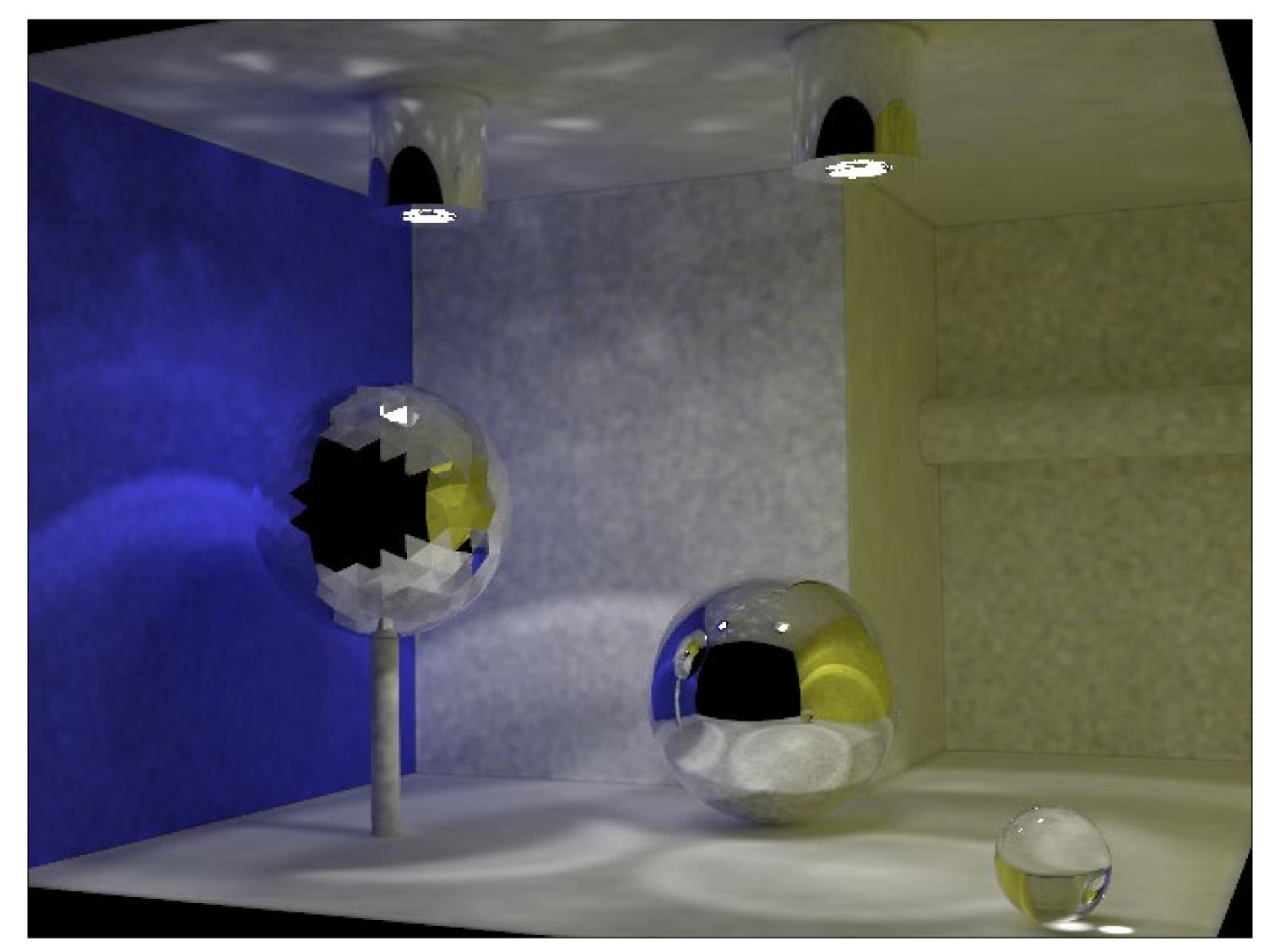
Robustness of Rendering Methods

None of these unbiased methods can handle real light sources well:

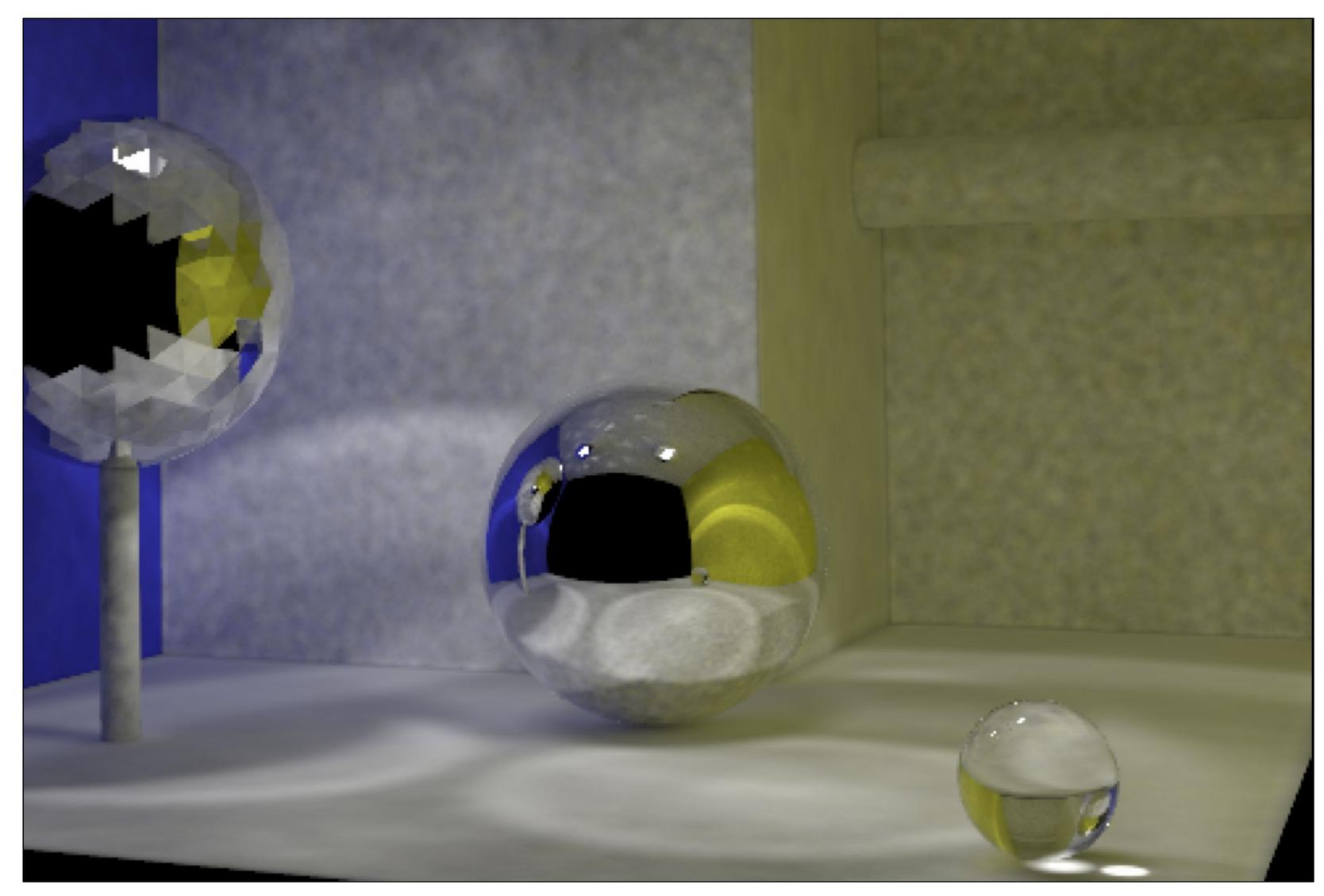
- Path Tracing
- Bidirectional Path Tracing

Photon Mapping?

Photon Mapping



Photon Mapping



Photon Mapping - Summary

Advantages

- Handles difficult paths more robustly than unbiased algorithms
- Consistent estimator
- Reuse of computation (photons)

Disadvantages

- Bias shows up in many different forms
- Requires additional data structure (KD-tree)
- No progressive rendering
- Large memory footprint
- Non-intuitive hyperparameter fine-tuning

Unbiased estimator

- expected value equals the true value being estimated $E[F] = \int f(x) \, dx$
- variance (noise) is the only error
- averaging infinitely many estimates (each with finite number of samples) also yields the correct answer

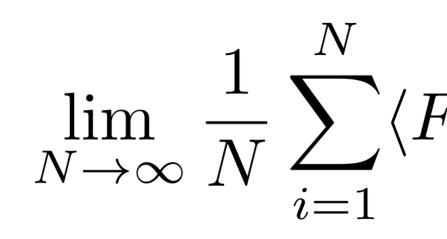
$$\lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \langle F^k \rangle = \int f(x) dx$$

Bias of an estimator

true value being estimated

 $\beta = E[F]$

- expected average difference
- the bias



- difference between the expected value of the estimator and the

$$-\int f(x)\,dx$$

- averaging infinitely many estimates yields the correct answer plus

$$\langle F^k \rangle = \int f(x) dx + \beta$$

Consistent estimator

- bias disappears in the limit
 - $\lim_{N \to \infty} E[F]$
- *Consistent* estimators and *unbiased* estimators are asymptotically equivalent
- zero

$$= \int f(x) \, dx$$

- both need an infinite number of samples to reduce the error to

- Mean Squared Error (MSE) of an estimator
- combines variance and squared bias
 - $MSE[F] = Var[F] + Bias[F]^2$
- Root Mean Squared Error (RMSE)
- has the same units as the quantity being estimated
- for unbiased estimators equal to std. deviation

$$\operatorname{RMSE}[F] = \sqrt{N}$$

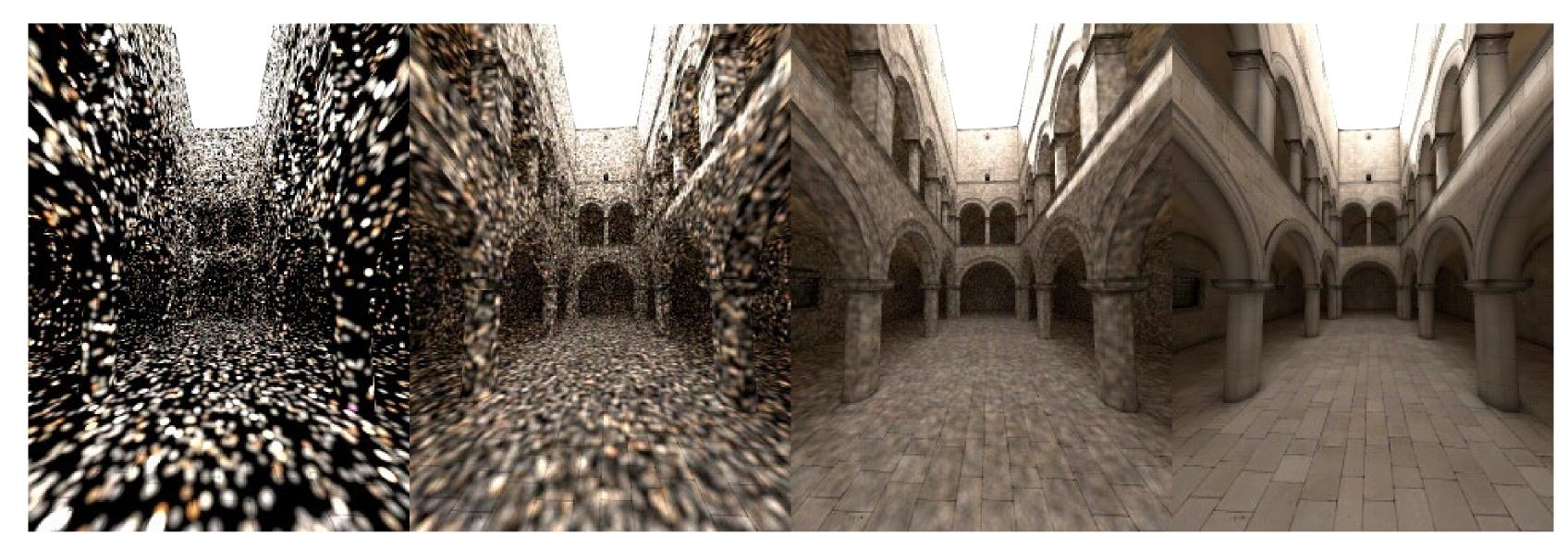
Rendering Techniques

Examples of unbiased methods

- Path tracing
- Light tracing
- Bidirectional path tracing
- Examples of biased/consistent methods
- (Progressive) photon mapping
- Many-light methods

Consistency of Photon Mapping

Result converges to the correct solution



Conditions for convergence:

- Infinitesimally small radius
- Infinite number of nearby photons

• Infinite storage requirement!

Progressive Photon Mapping

Key Idea

Progressively shrink the density estimation kernel

Hachisuka et al. 2008, 2009, ...

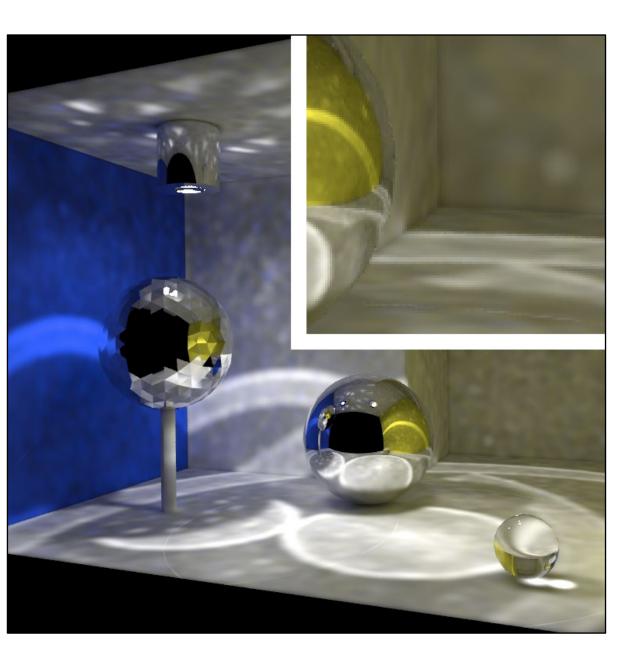
- store/update statistics at each camera ray hitpoint

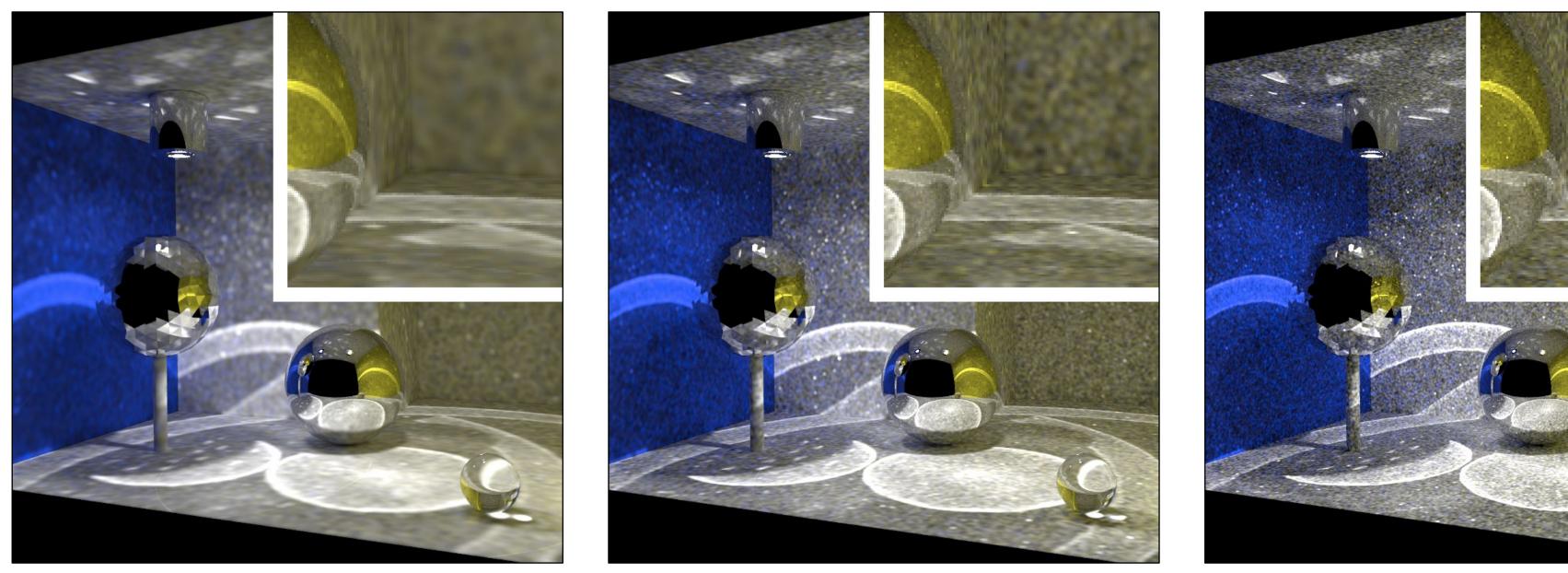
Knaus & Zwicker 2011

smaller radius, and average

- no statistics, just render independent images with smaller and

Different kernel radii







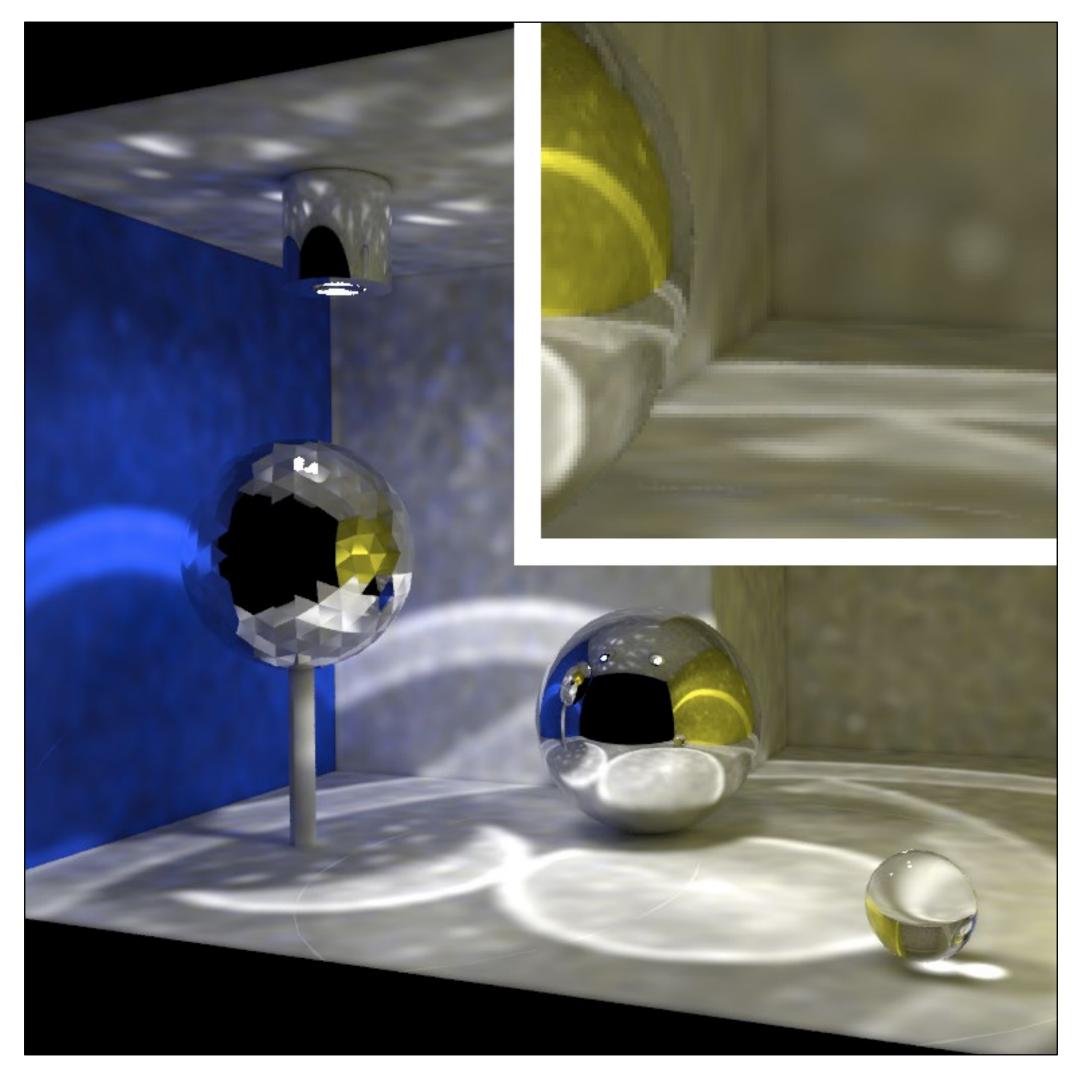


Image 1, r = 20

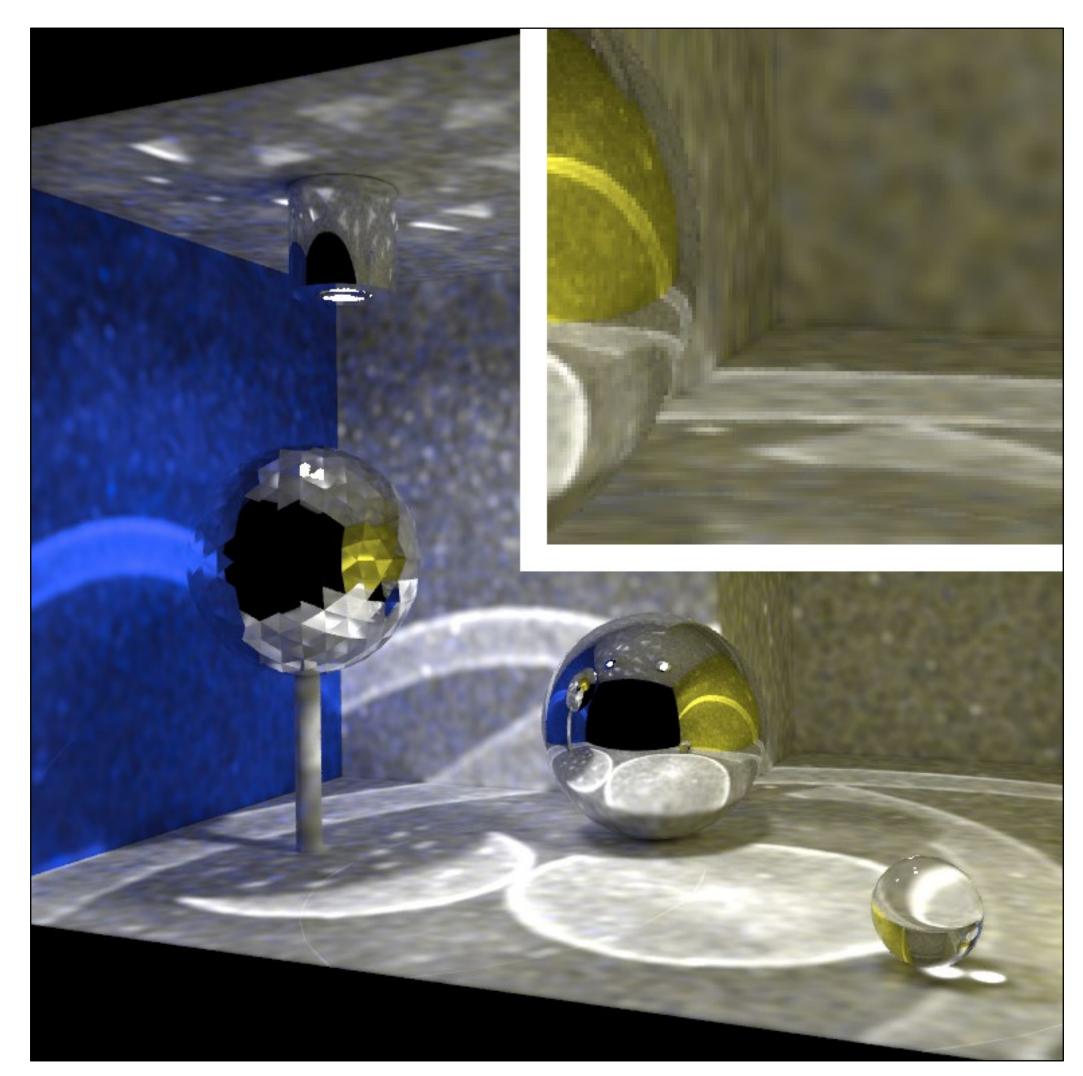


Image 10, *r* = *11.87*

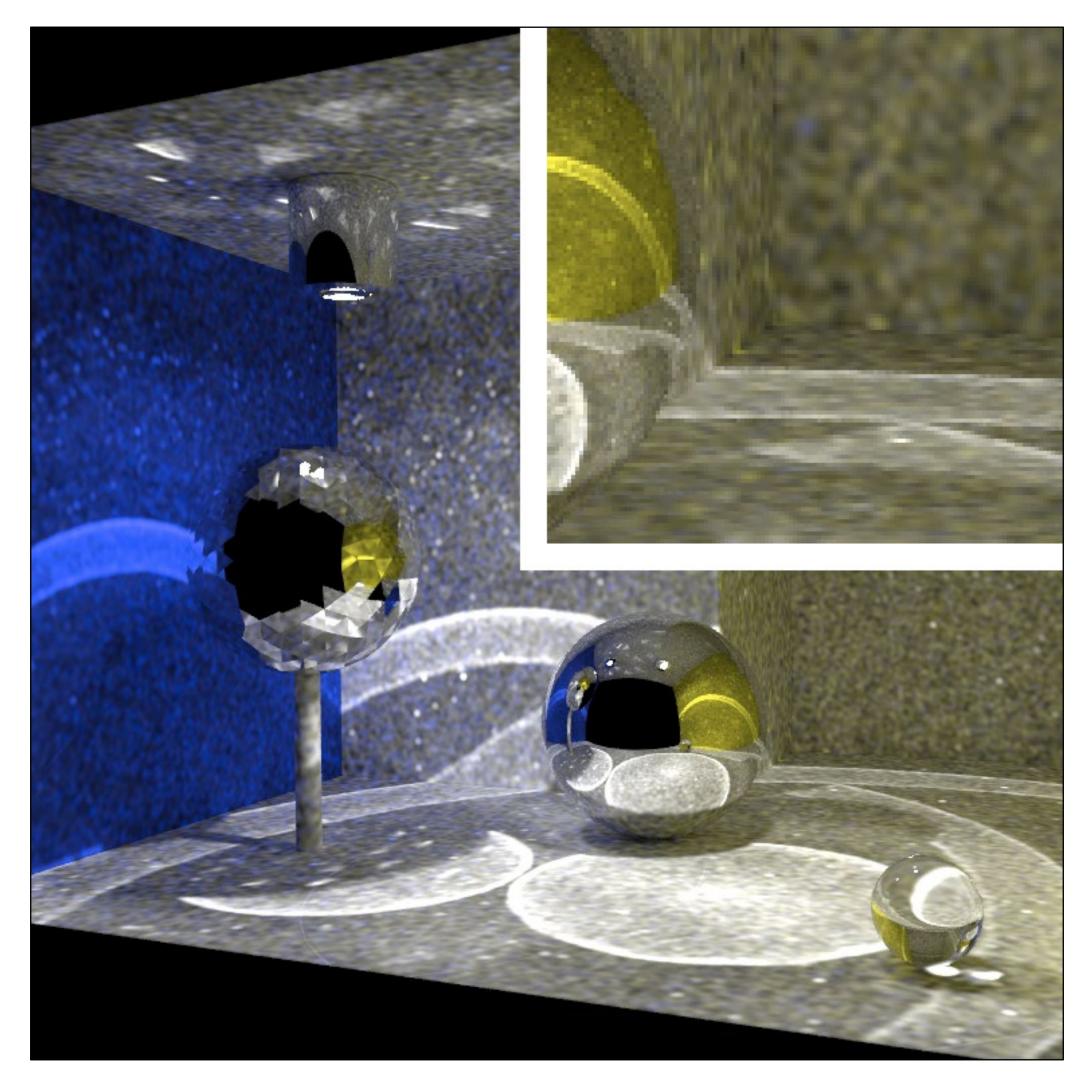
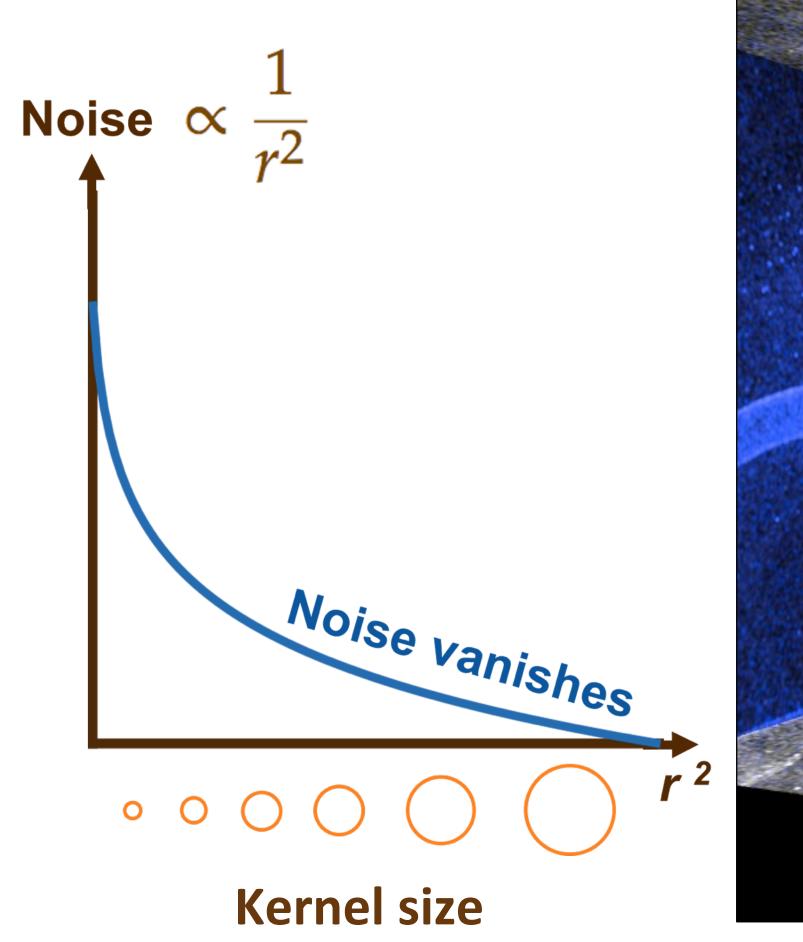


Image 100, *r* = *6*.71



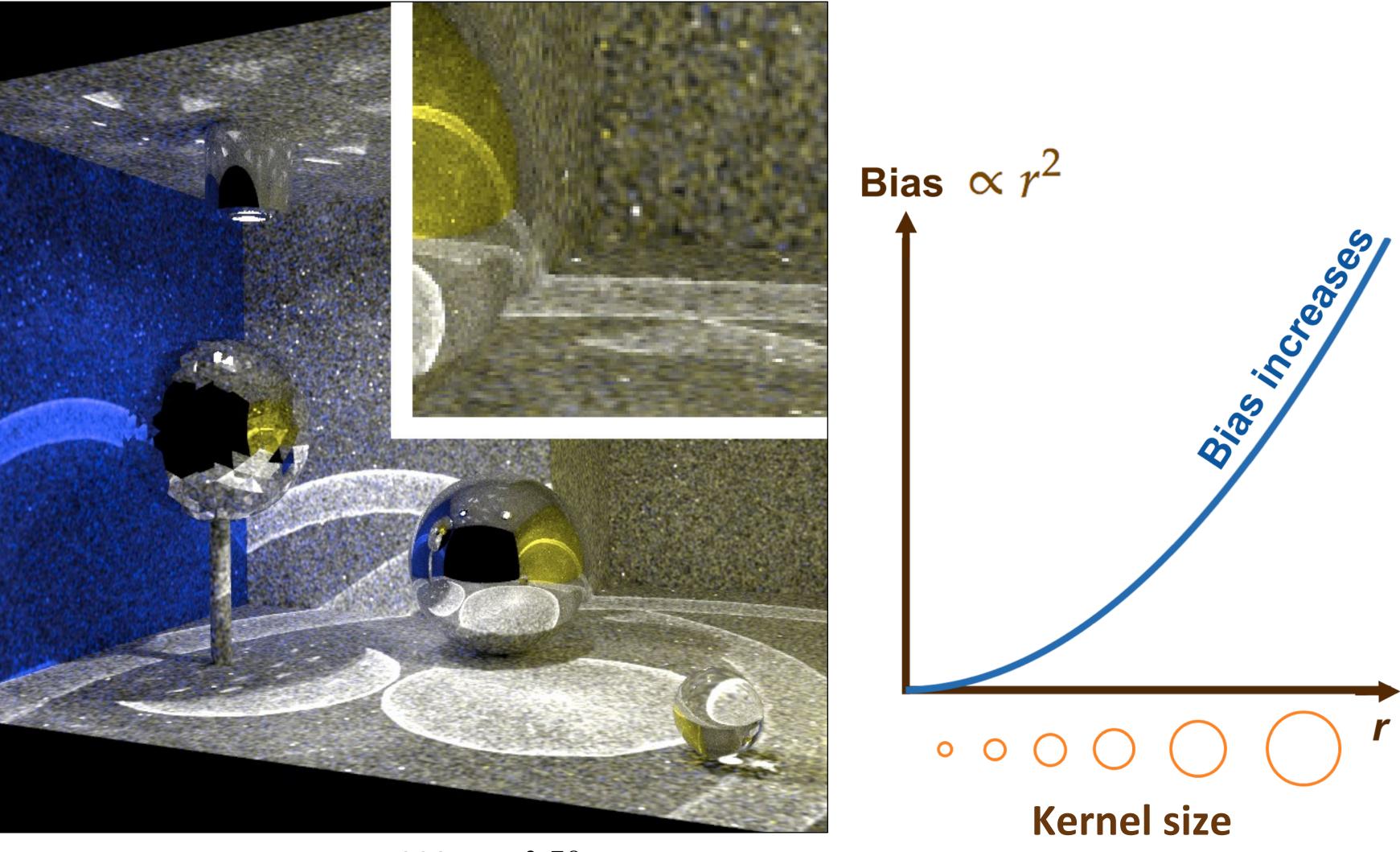
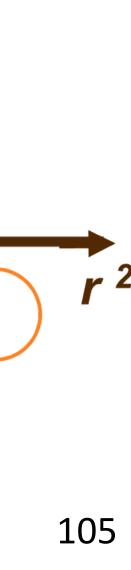


Image 1000, r = 3.78



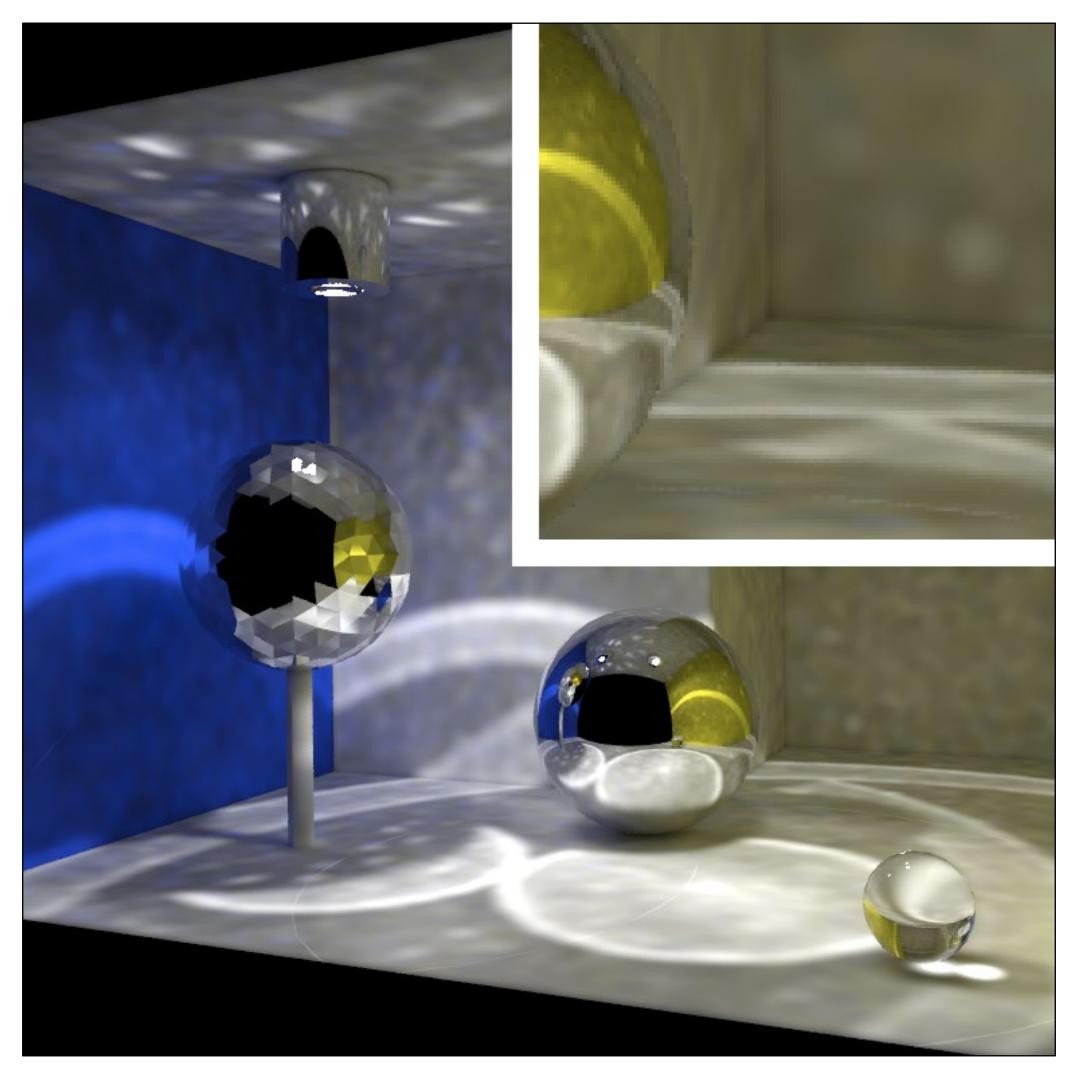
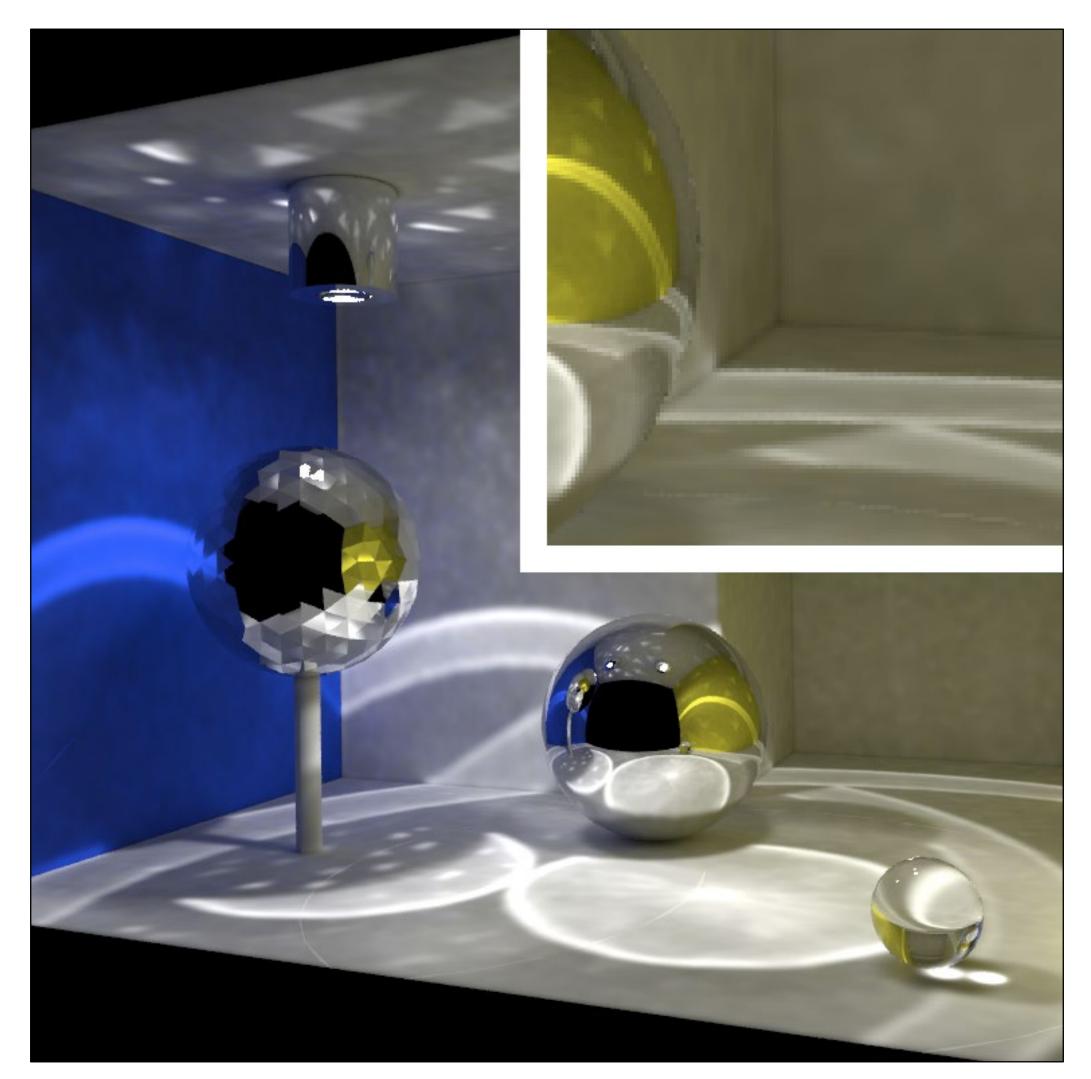
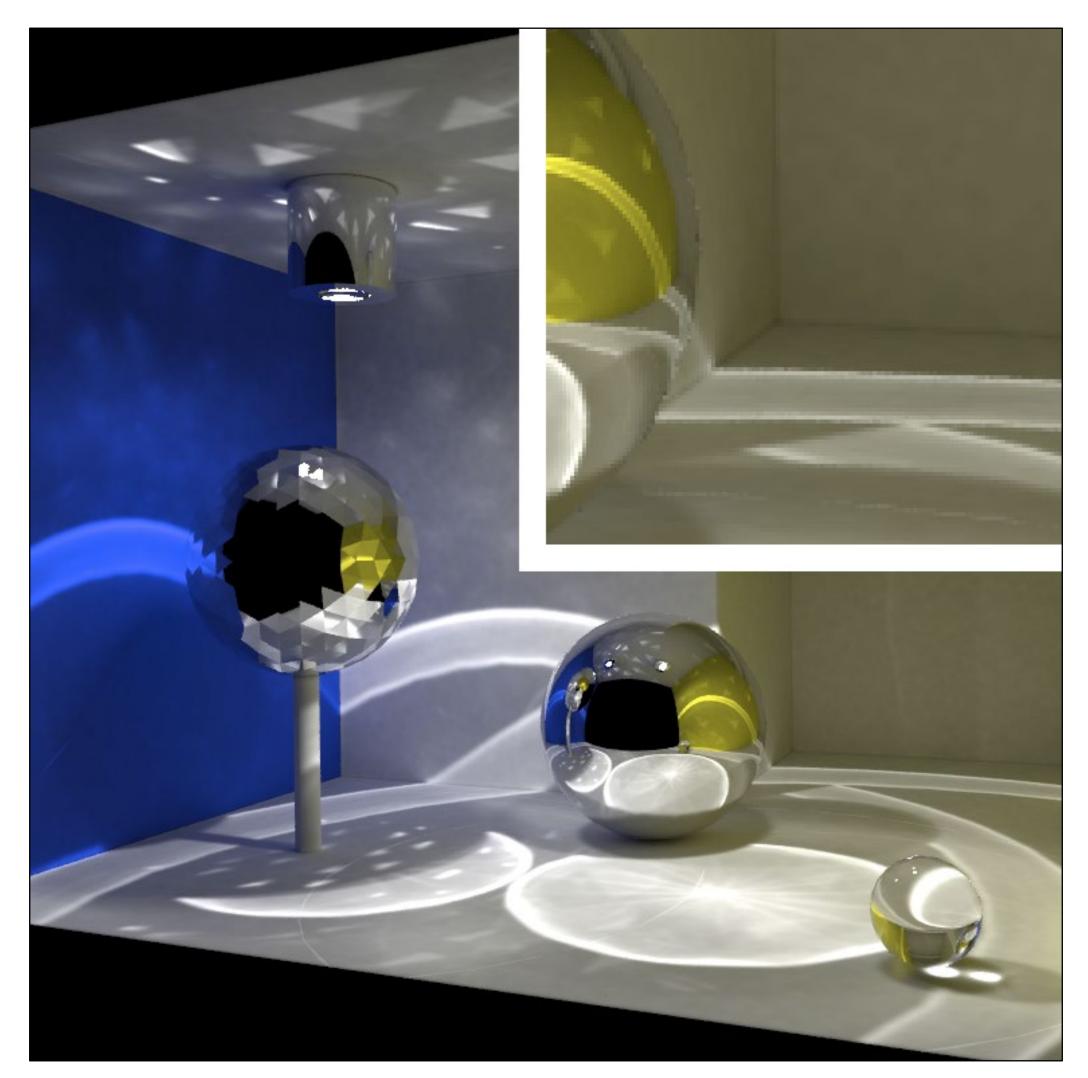


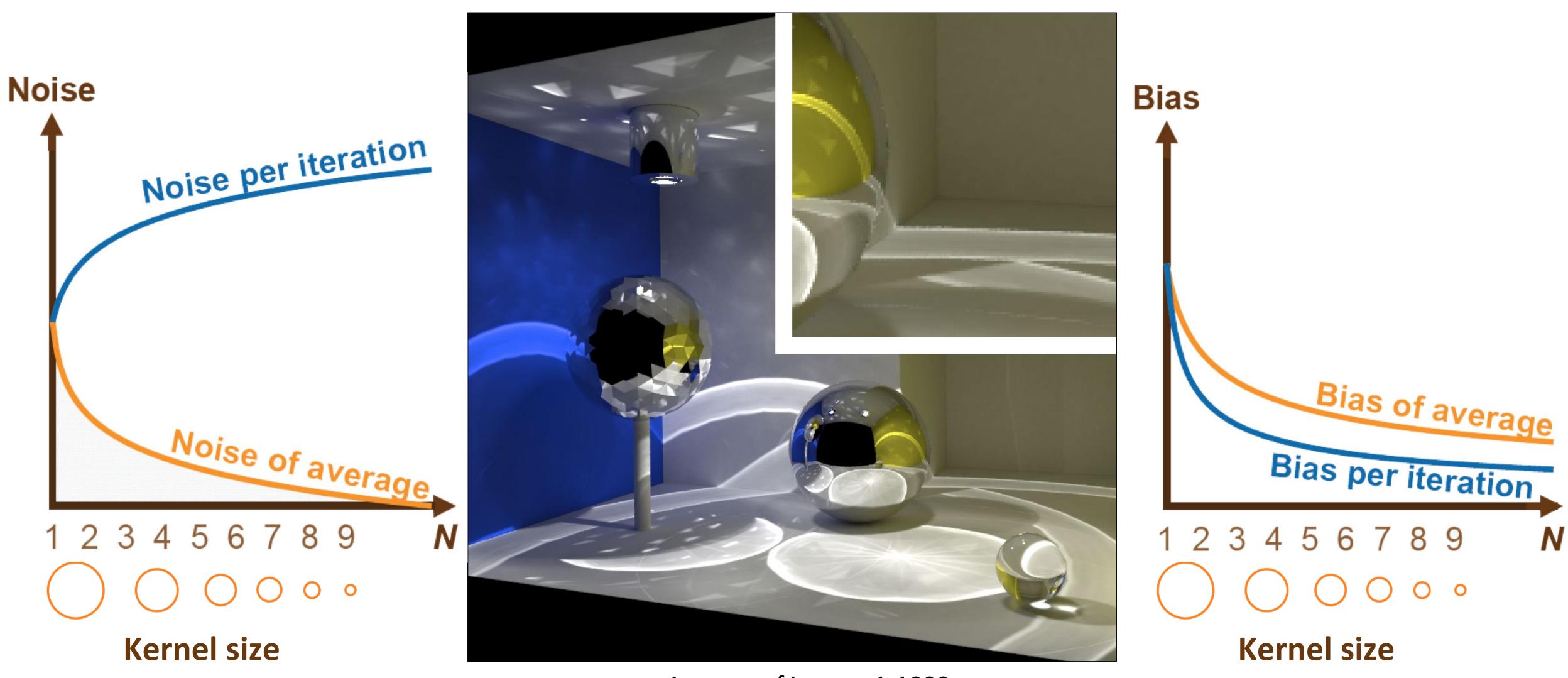
Image 1



Average of Images 1-10

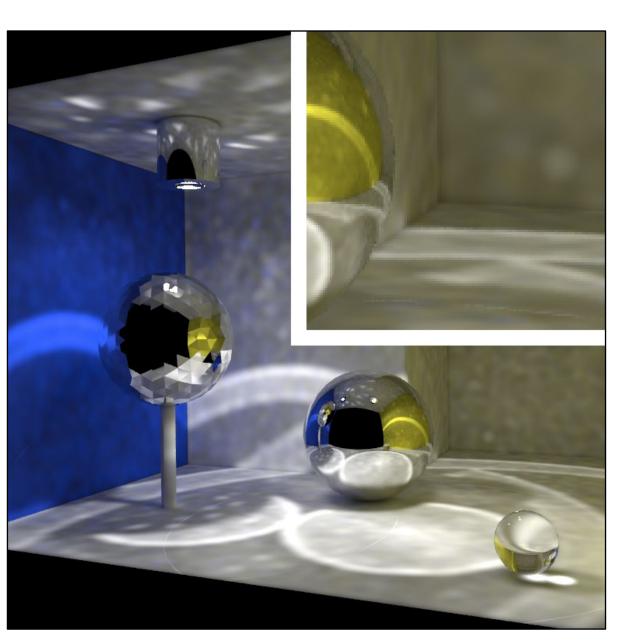


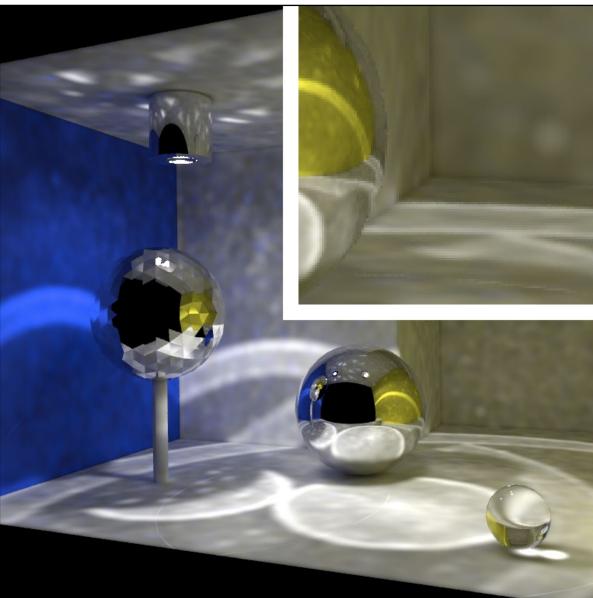
Average of Images 1-100

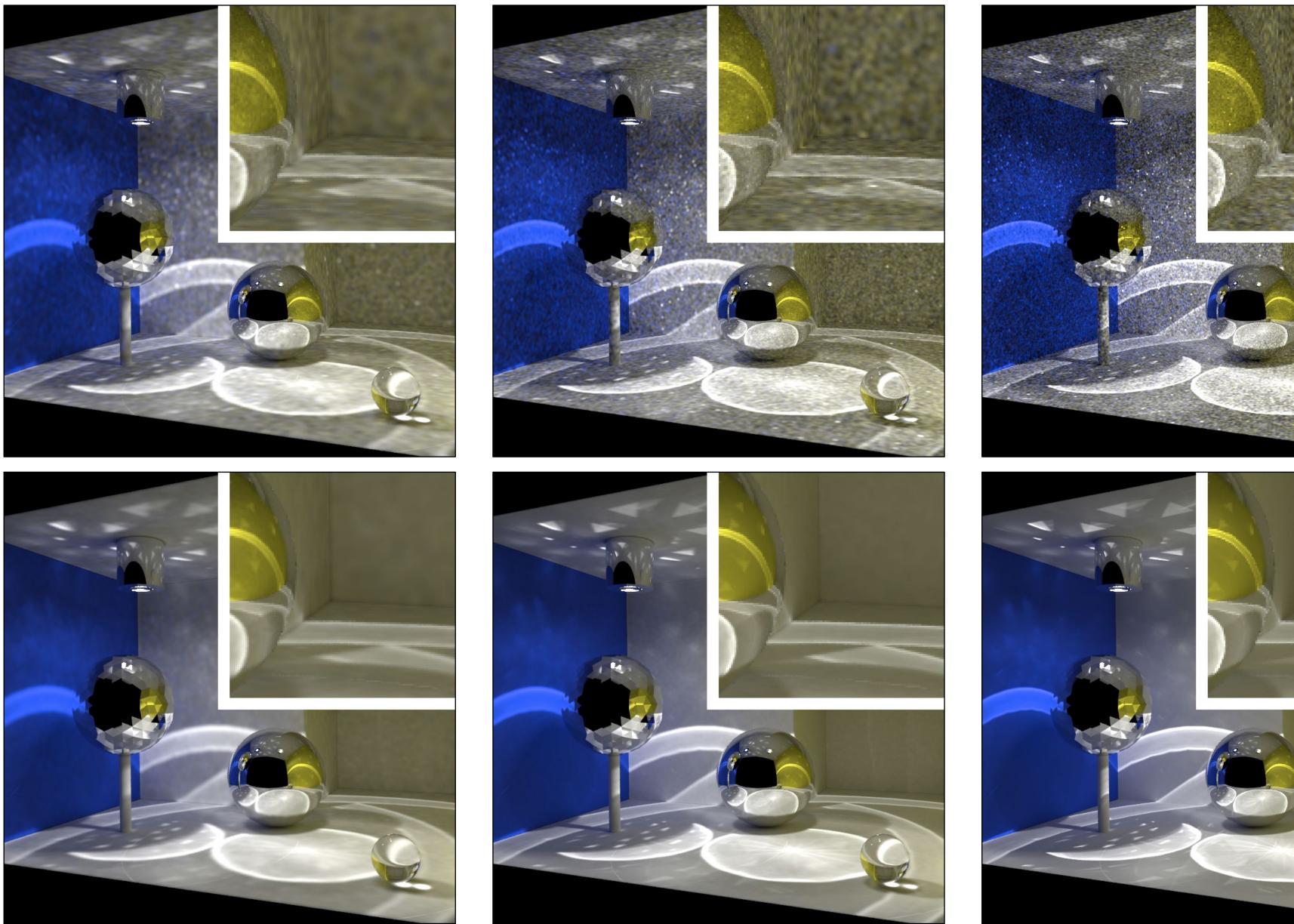


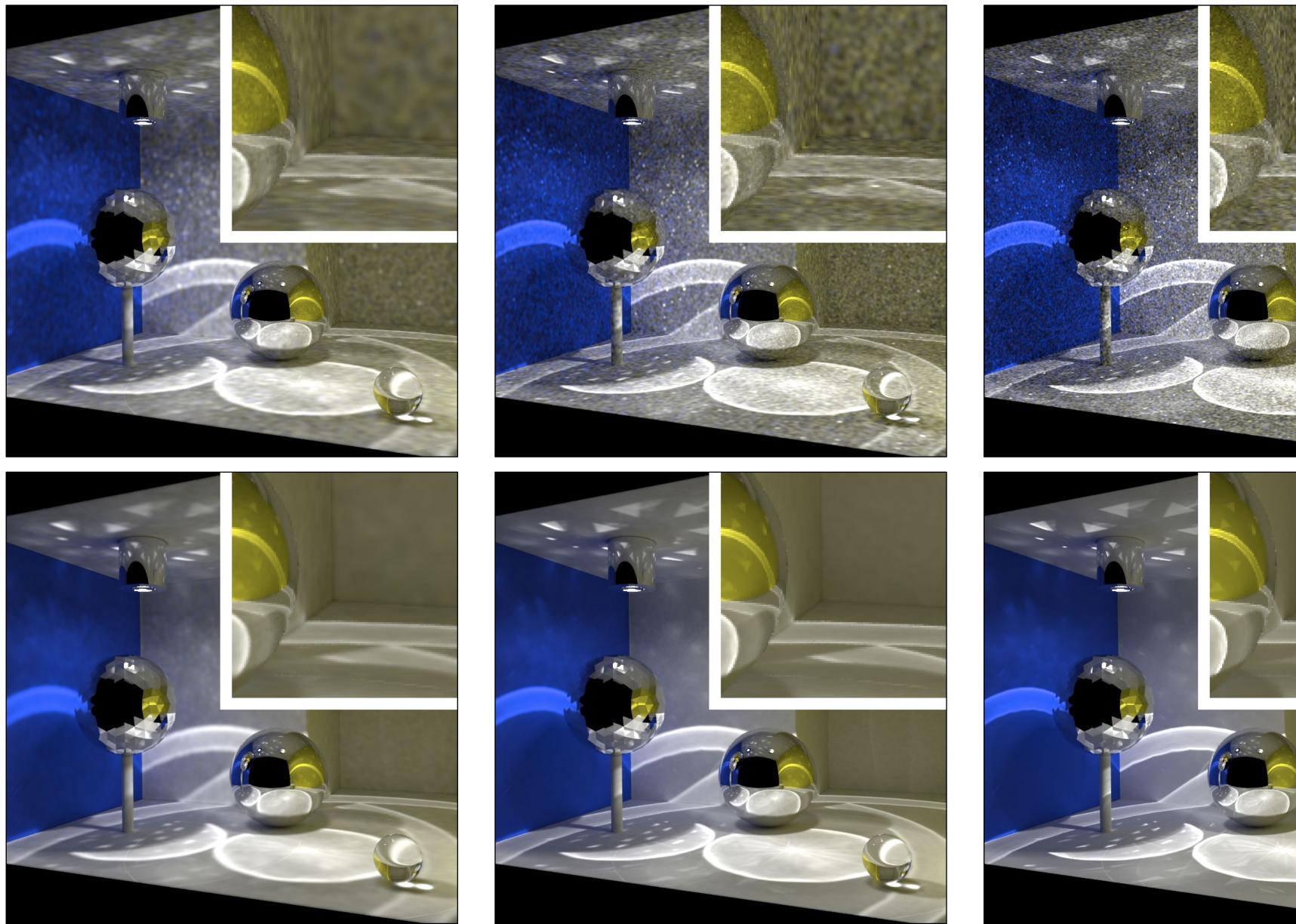
Average of Images 1-1000

Individual iterations









Running average

Radius Reduction

Given:

- Iteration *i*
- Kernel radius r_i
- Parameter $\alpha \in (0, 1)$ for controlling the shrinking

The radius for the next iteration is:

$r_{i+1}^2 = \frac{i + \alpha}{i + 1} r_i^2$

See [Knaus & Zwicker 2011] for derivation

111

Algorithm

Step 1:

- Photon tracing: emit, scatter, store photons

Step 2:

- Trace camera paths
- Evaluate radiance estimate using radius r_i

Display running average

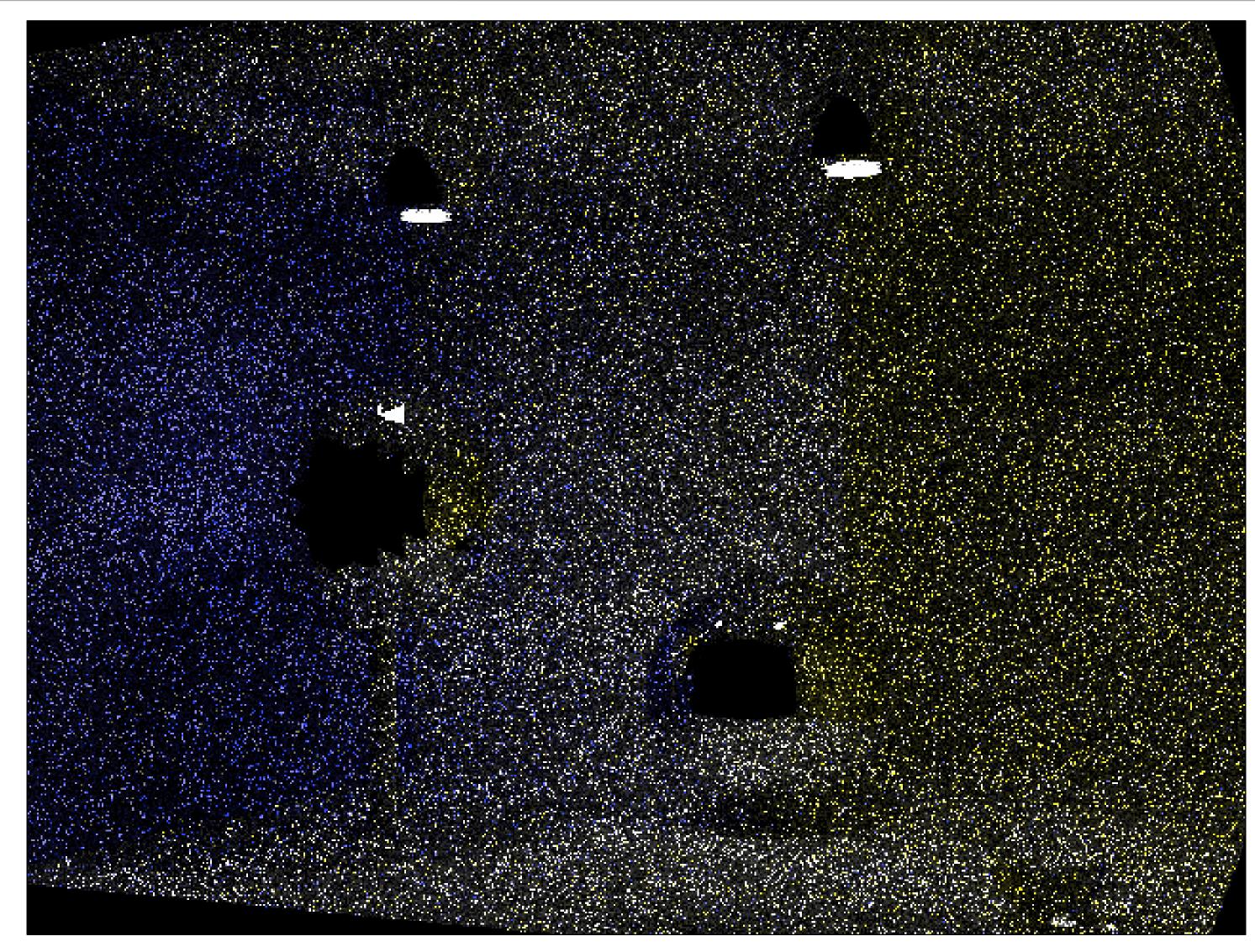
Compute new radius

 $r_{i+1}^2 = \frac{1}{i}$

$$\frac{+\alpha}{+1}$$
aĥd repeat...

Trivially parallelizable by iteration

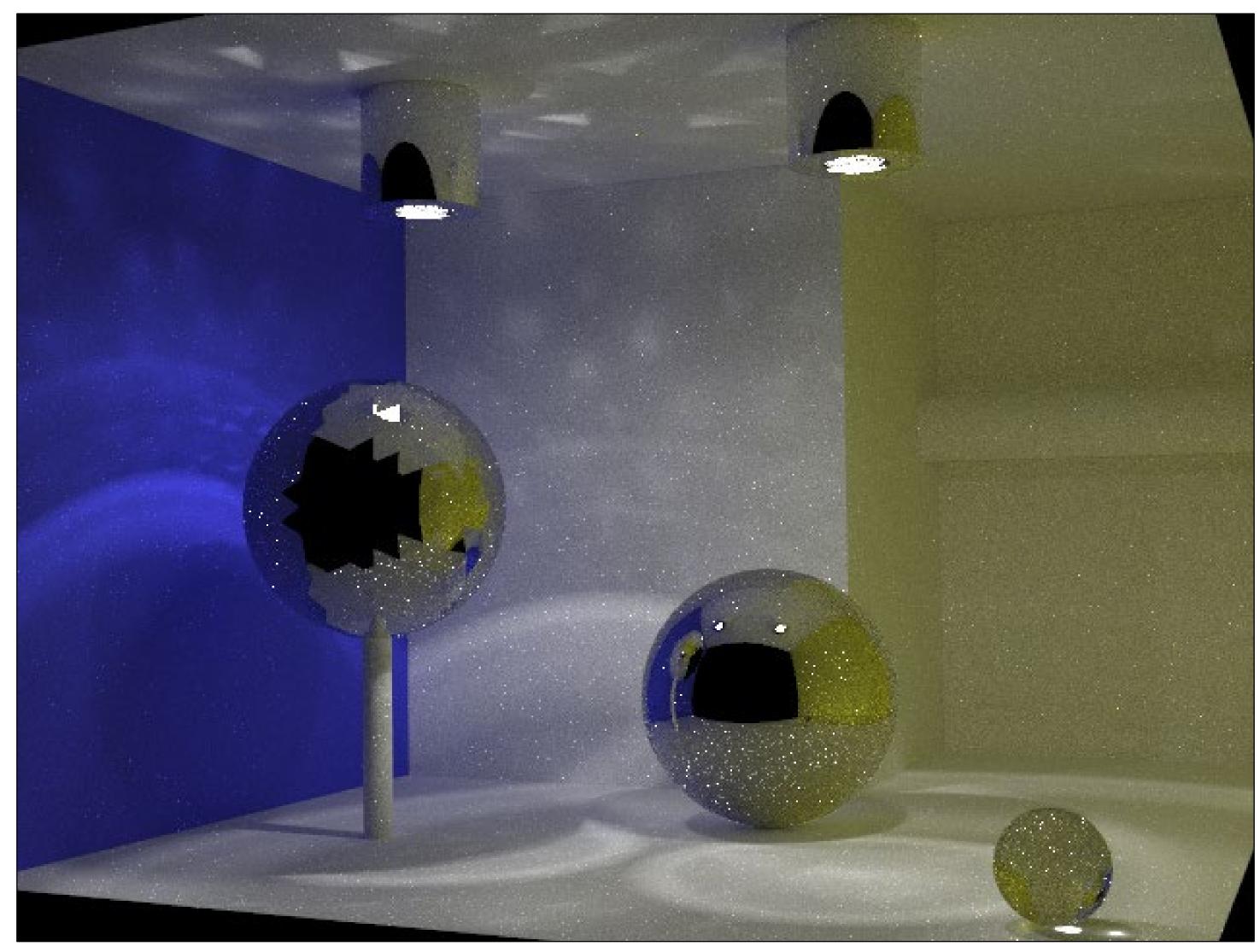
Path Tracing



Images courtesy of C. Knaus and M. Zwicker

114

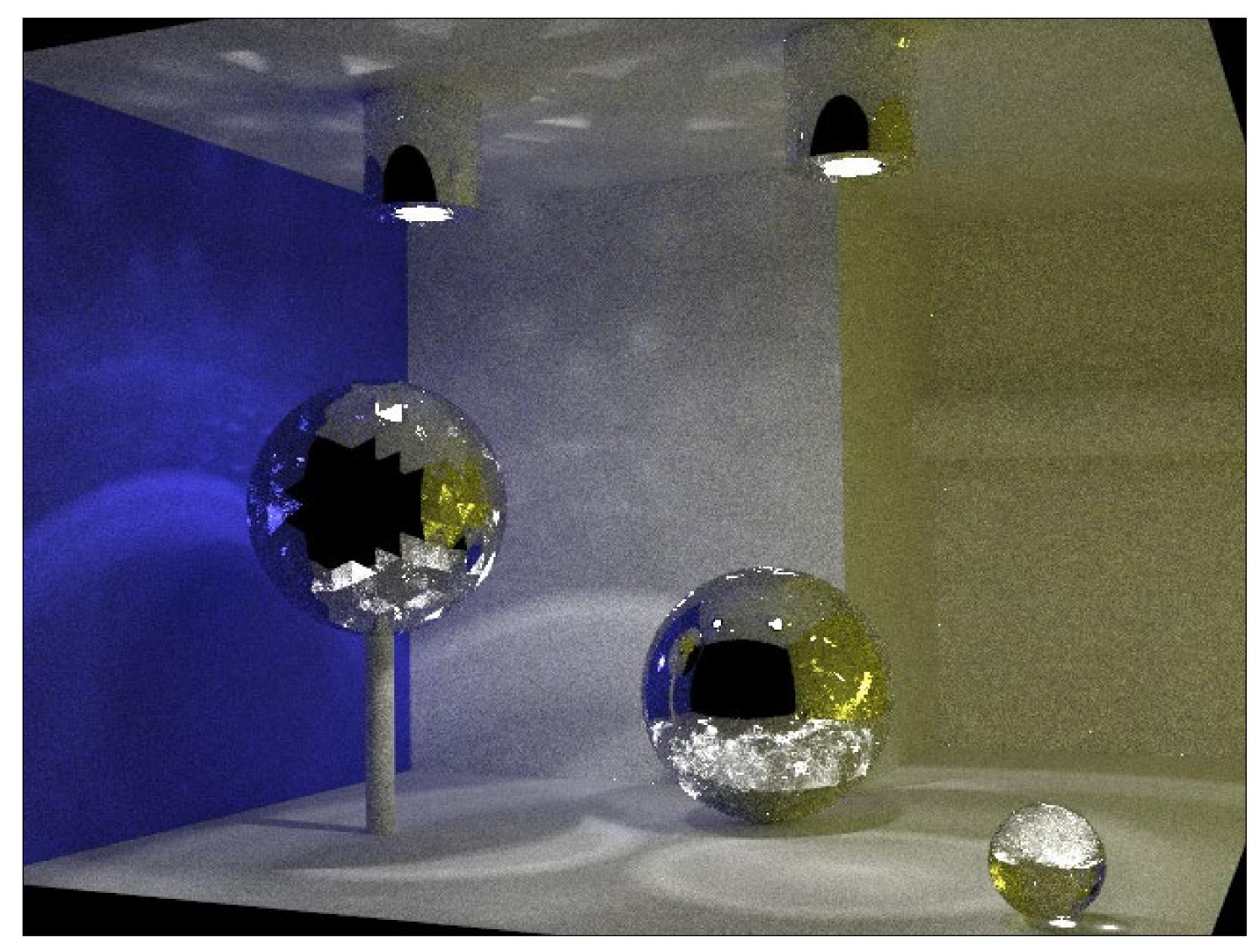
Bidirectional Path Tracing



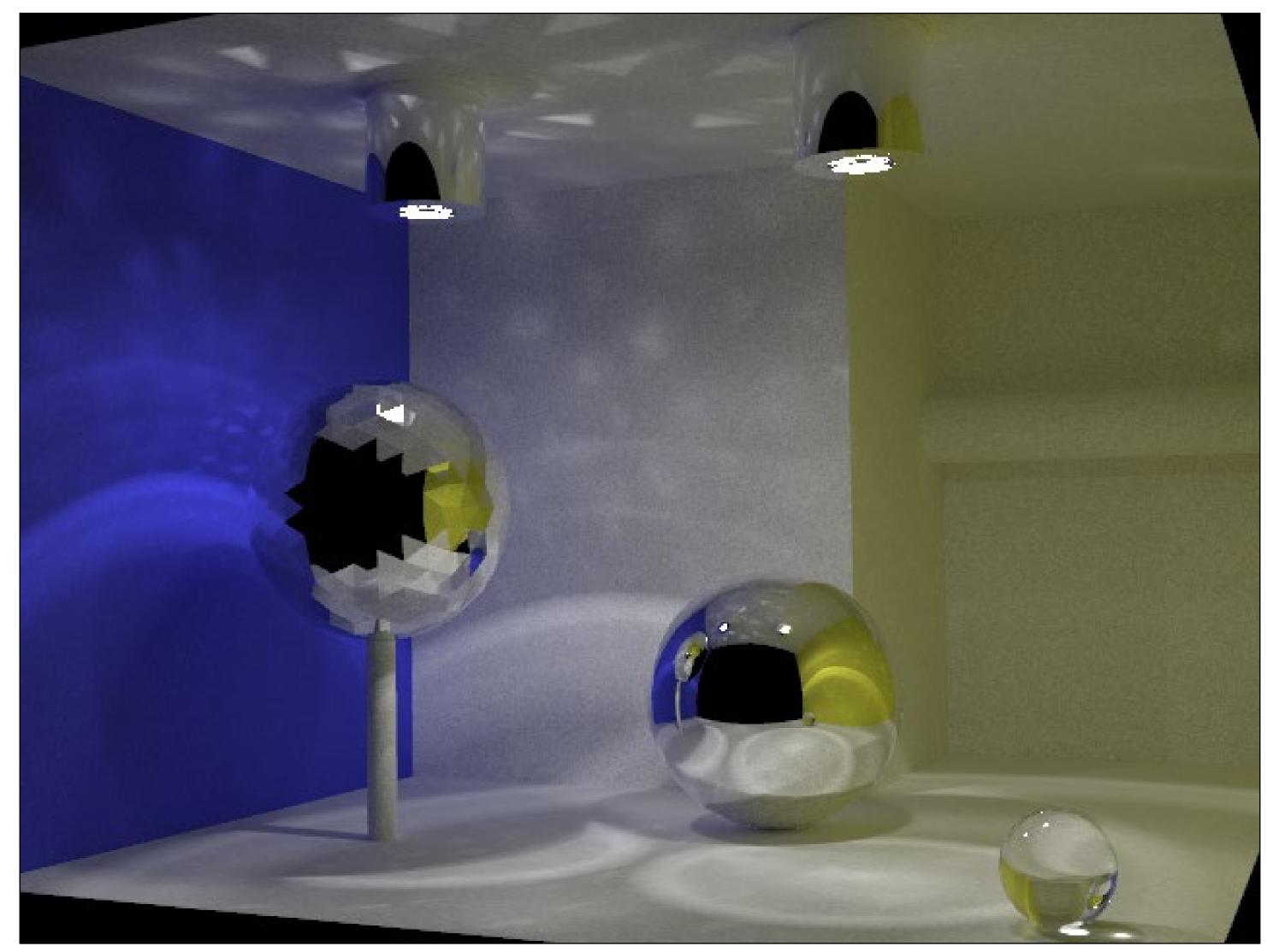
Images courtesy of T. Hachisuka

115

Metropolis Light Transport



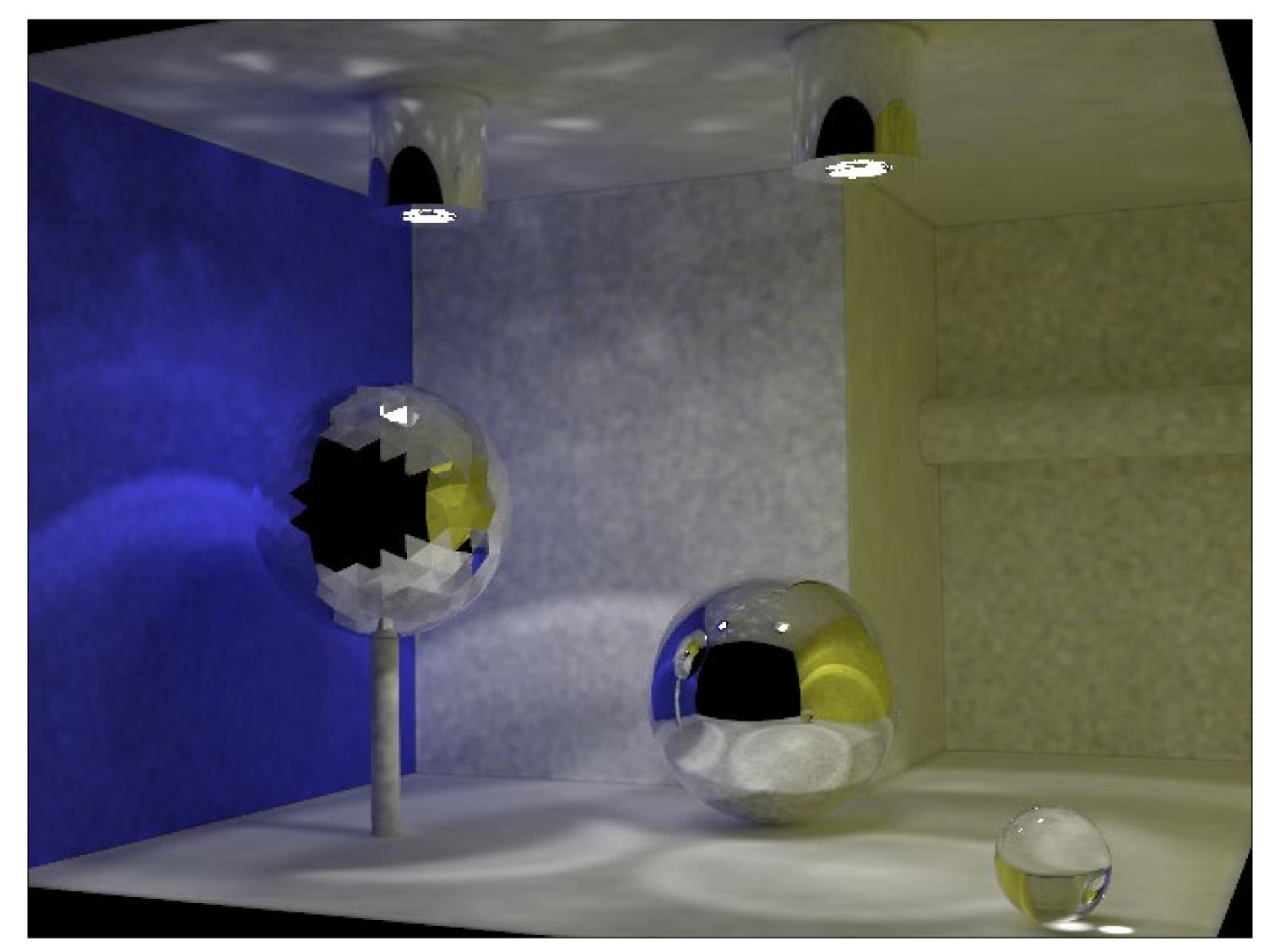
Progressive Photon Mapping



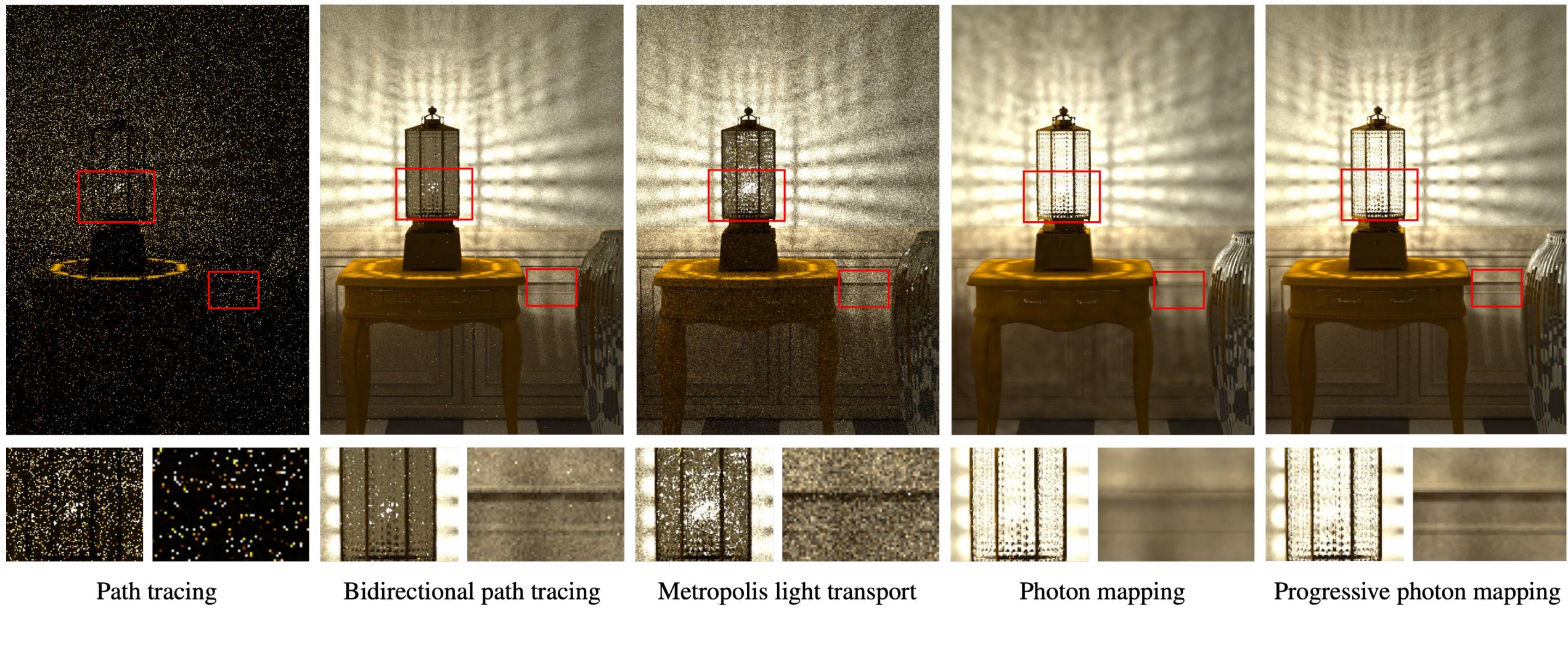
Images courtesy of T. Hachisuka

117

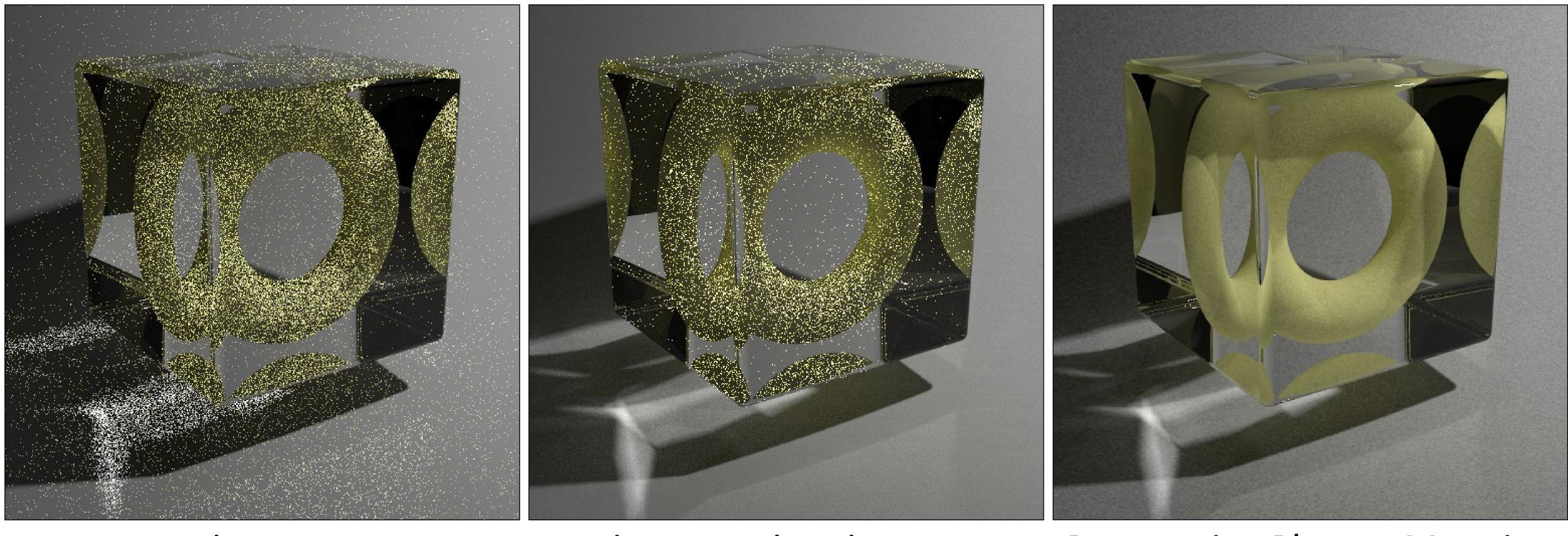
Photon Mapping



Glass Lantern



Torus in Cube (LS+D*S+E)



Path Tracing

Bidirectional Path Tracing

Progressive Photon Mapping

Progressive PM - Summary

Reduces memory footprint

- Converges without requiring infinite memory Renders progressively (user-friendly) Data structure does not need to be as sophisticated No need to bother using a caustic map, just use a single
- photon map for everything

More On Photon Mapping

