Bidirectional path tracing

15-468, 15-668, 15-868 Physics-based Rendering

Course announcements

- Extra OH on Mondays.
- Programming assignment 4 posted, due Friday 3/29 at 23:59.
- How many of you have looked at/started/finished it?
- Any questions?

Overview of today's lecture

- Types of light paths.
- Light tracing.
- Bidirectional path tracing.

Slide credits

Most of these slides were directly adapted from:

- Wojciech Jarosz (Dartmouth).

Light Paths

Light Paths

Express light paths in terms of the surface interactions that have occurred

A light path is a chain of linear segments joined at event "vertices"

Heckbert's Classification

Classification of "vertices":

- L : a light source
- E : the eye
- S : a specular reflection
- D : a diffuse reflection

Heckbert's Classification

Heckbert's Classification

Can express arbitrary classes of paths using a regular expression type syntax:

- k^{+}: one or more of event k
- k^{*} : zero or more of event k
- k ? : zero or one k events
- (k|h) : a k or h event

Heckbert's Classification

Direct illumination: $L(D \mid S) E$
Indirect illumination: $\quad L(D \mid S)(D \mid S)^{+} E$

Heckbert's Classification

Direct illumination: $L(D \mid S) E$
Indirect illumination: $\quad L(D \mid S)(D \mid S)^{+} E$
Full global illumination: $\quad L(D \mid S)^{*} E$

Diffuse inter-reflections: $L D D^{+} E$

Caustics: $L^{+} D E$

Subsurface Scattering

A Simple Scene

+ Glass/Mirror Material

10 paths/pixel

Path Tracing Caustics

Path Tracing Caustics

Path Tracing Caustics

Path Tracing Caustics

Random sampling of hemisphere will never hit the light source

Let's just give it more time...

Nature $\sim 2 \times 10^{33}$ / second

Fastest GPU ray tracer $\sim 2 \times 10^{8}$ / second

Let's just give it more time...

Path Tracing - Summary

\checkmark Full solution to the rendering equation
\checkmark Simple to implement
X Slow convergence

- requires $4 x$ more samples to half the error
X Robustness issues
- does not handle some light paths well (or not at all), e.g. caustics ($L S^{+} D E$)
X No reuse or caching of computation
X General sampling issue
- makes only locally good decisions

Today's agenda

Measurement Equation

Path Integral Framework

Solving the Rendering Equation

- Light tracing
- Bidirectional path tracing

Can we simulate this better?

Light transport is symmetric

Dual Photography [Sen et al. 2005]

Dual Photography

Pradeep Sen* Billy Chen* Gaurav Garg* Stephen R. Marschneri Mark Horowitz* Marc Levoy* Hendrik P.A. Lensch*

*Stanford University

\dagger Cornell University

Duality of Radiance and Importance

Measurement Equation

Rendering equation describes radiative equilibrium at point \mathbf{x} :

$$
L_{o}\left(\mathbf{x}, \vec{\omega}_{o}\right)=L_{e}\left(\mathbf{x}, \vec{\omega}_{o}\right)+\int_{H^{2}} f_{r}\left(\mathbf{x}, \vec{\omega}_{i}, \vec{\omega}_{o}\right) L_{i}\left(\mathbf{x}, \vec{\omega}_{i}\right) \cos \theta_{i} d \vec{\omega}_{i}
$$

We are interested in the total radiance contributing to pixel j :

$$
I_{j}=\int_{A_{\text {film }}} \int_{H^{2}} W_{e} \underbrace{}_{\begin{array}{l}
\text { response of the sensor at film location } \mathbf{x} \\
\text { to radiance arriving from direction } \vec{\omega} \\
\text { (often referred to as emitted importance) }
\end{array}}
$$

Radiometry as Measurements

Weighted integral of 5D radiance function

$$
\int_{V} \int_{H^{2}} W_{e}(\mathbf{x}, \vec{\omega}) L(\mathbf{x}, \vec{\omega}) \mathrm{d} \vec{\omega} \mathrm{~d} \mathbf{x}
$$

Other radiometric quantities are measurements

- expressing irradiance in terms of radiance:

$$
\int_{H^{2}} L(\mathbf{x}, \vec{\omega}) \cos \theta d \vec{\omega}=E(\mathbf{x})
$$

Integrate radiance over hemisphere

- expressing flux/power in terms of radiance:

$$
\int_{A} \int_{H^{2}} L(\mathbf{x}, \vec{\omega}) \cos \theta d \vec{\omega} d A(\mathbf{x})=\Phi(A) \begin{aligned}
& \text { Integrate radiance over } \\
& \text { hemisphere and area }
\end{aligned}
$$

Radiance vs. Importance

Radiance

- emitted from light sources
- describes amount of light traveling within a differential beam

Importance

- "emitted" from sensors
- describes the response of the sensor to radiance traveling within a differential beam

Duality of Radiance \& Importance

$$
I_{j}=\int_{A_{\text {film }}} \int_{H^{2}} W_{e}(\mathbf{x}, \vec{\omega}) L_{i}(\mathbf{x}, \vec{\omega}) \cos \theta d \vec{\omega} d \mathbf{x}
$$

Duality of Radiance \& Importance

$$
\begin{aligned}
I_{j} & =\int_{A_{\text {film }}} \int_{H^{2}} W_{e}(\mathbf{x}, \vec{\omega}) L_{i}(\mathbf{x}, \vec{\omega}) \cos \theta d \vec{\omega} d \mathbf{x} \\
& =\int_{A_{\text {film }}} \int_{A} \underbrace{}_{\text {outgoing quantities }} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \mathbf{y}) L_{o}(\mathbf{y}, \mathbf{x}) d \mathbf{y} d \mathbf{x}
\end{aligned}
$$

Let's expand L_{o} and consider direct illumination only

Duality of Radiance \& Importance

$$
\begin{aligned}
& I_{j}=\int_{A_{\text {film }}} \int_{H^{2}} W_{e}(\mathbf{x}, \vec{\omega}) L_{i}(\mathbf{x}, \vec{\omega}) \cos \theta d \vec{\omega} d \mathbf{x} \\
&=\int_{A_{\text {film }}} \int_{A} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \mathbf{y}) L_{o}(\mathbf{y}, \mathbf{x}) d \mathbf{y} d \mathbf{x} \\
&=\int_{A_{\text {film }}} \int_{A} \int_{A_{\text {light }}} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \mathbf{y}) f(\mathbf{y}, \mathbf{z}, \mathbf{x}) G(\mathbf{y}, \mathbf{z}) L_{e}(\mathbf{z}, \mathbf{y}) d \mathbf{z} d \mathbf{y} d \mathbf{x} \\
& \begin{array}{c}
\text { emitted quantities with } \\
\text { identical measure }
\end{array}
\end{aligned}
$$

Let's swap the inner and outer integral

Duality of Radiance \& Importance

$$
\begin{aligned}
& I_{j}=\int_{A_{\text {film }}} \int_{H^{2}} W_{e}(\mathbf{x}, \vec{\omega}) L_{i}(\mathbf{x}, \vec{\omega}) \cos \theta d \vec{\omega} d \mathbf{x} \\
&=\int_{A_{\text {film }}} \int_{A} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \mathbf{y}) L_{o}(\mathbf{y}, \mathbf{x}) d \mathbf{y} d \mathbf{x} \\
&=\int_{A_{\text {film }}} \int_{A} \int_{A_{\text {light }}} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \mathbf{y}) f(\mathbf{y}, \mathbf{z}, \mathbf{x}) G(\mathbf{y}, \mathbf{z}) L_{e}(\mathbf{z}, \mathbf{y}) d \mathbf{z} d \mathbf{y} d \mathbf{x} \\
&=\int_{A_{\text {light }}} \int_{A} \int_{A_{\text {film }}} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \mathbf{y}) f(\mathbf{y}, \mathbf{z}, \mathbf{x}) G(\mathbf{y}, \mathbf{z}) L_{e}(\mathbf{z}, \mathbf{y}) d \mathbf{x} d \mathbf{y} d \mathbf{z} \\
& \text { symmetric functions }
\end{aligned}
$$

Duality of Radiance \& Importance

$$
\begin{aligned}
& I_{j}=\int_{A_{\text {film }}} \int_{H^{2}} W_{e}(\mathbf{x}, \vec{\omega}) L_{i}(\mathbf{x}, \vec{\omega}) \cos \theta d \vec{\omega} d \mathbf{x} \\
&=\int_{A_{\text {film }}} \int_{A} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \mathbf{y}) L_{o}(\mathbf{y}, \mathbf{x}) d \mathbf{y} d \mathbf{x} \\
&=\int_{A_{\text {film }}} \int_{A} \int_{A_{\text {light }}} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \mathbf{y}) f(\mathbf{y}, \mathbf{z}, \mathbf{x}) G(\mathbf{y}, \mathbf{z}) L_{e}(\mathbf{z}, \mathbf{y}) d \mathbf{z} d \mathbf{y} d \mathbf{x} \\
&=\int_{A_{\text {light }}} \int_{A} \int_{A_{\text {film }}} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{y}, \mathbf{x}) f(\mathbf{y}, \mathbf{x}, \mathbf{z}) G(\mathbf{z}, \mathbf{y}) L_{e}(\mathbf{z}, \mathbf{y}) d \mathbf{x} d \mathbf{y} d \mathbf{z} \\
& \text { symmetric functions }
\end{aligned}
$$

Duality of Radiance \& Importance

$$
\begin{aligned}
I_{j} & =\int_{A_{\text {film }}} \int_{H^{2}} W_{e}(\mathbf{x}, \vec{\omega}) L_{i}(\mathbf{x}, \vec{\omega}) \cos \theta d \vec{\omega} d \mathbf{x} \\
& =\int_{A_{\text {film }}} \int_{A} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \mathbf{y}) L_{o}(\mathbf{y}, \mathbf{x}) d \mathbf{y} d \mathbf{x} \\
& =\int_{A_{\text {film }}} \int_{A} \int_{A_{\text {light }}} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \mathbf{y}) f(\mathbf{y}, \mathbf{z}, \mathbf{x}) G(\mathbf{y}, \mathbf{z}) L_{e}(\mathbf{z}, \mathbf{y}) d \mathbf{z} d \mathbf{y} d \mathbf{x} \\
& =\int_{A_{\text {light }}} \int_{A} \int_{A_{\text {film }}} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{y}, \mathbf{x}) f(\mathbf{y}, \mathbf{x}, \mathbf{z}) G(\mathbf{z}, \mathbf{y}) L_{e}(\mathbf{z}, \mathbf{y}) d \mathbf{x} d \mathbf{y} d \mathbf{z} \\
& =\int_{A_{\text {light }}} \int_{A} W_{o}(\mathbf{y}, \mathbf{z}) G(\mathbf{z}, \mathbf{y}) L_{e}(\mathbf{z}, \mathbf{y}) d \mathbf{y} d \mathbf{z}
\end{aligned}
$$

Duality of Radiance \& Importance

$$
\begin{aligned}
I_{j} & =\int_{A_{\text {film }}} \int_{H^{2}} W_{e}(\mathbf{x}, \vec{\omega}) L_{i}(\mathbf{x}, \vec{\omega}) \cos \theta d \vec{\omega} d \mathbf{x} \\
& =\int_{A_{\text {film }}} \int_{A} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \mathbf{y}) L_{o}(\mathbf{y}, \mathbf{x}) d \mathbf{y} d \mathbf{x} \\
& =\int_{A_{\text {film }}} \int_{A} \int_{A_{\text {light }}} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \mathbf{y}) f(\mathbf{y}, \mathbf{z}, \mathbf{x}) G(\mathbf{y}, \mathbf{z}) L_{e}(\mathbf{z}, \mathbf{y}) d \mathbf{z} d \mathbf{y} d \mathbf{x} \\
& =\int_{A_{\text {light }}} \int_{A} \int_{A_{\text {film }}} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{y}, \mathbf{x}) f(\mathbf{y}, \mathbf{x}, \mathbf{z}) G(\mathbf{z}, \mathbf{y}) L_{e}(\mathbf{z}, \mathbf{y}) d \mathbf{x} d \mathbf{y} d \mathbf{z} \\
& =\int_{A_{\text {light }}} \int_{A} W_{o}(\mathbf{y}, \mathbf{z}) G(\mathbf{z}, \mathbf{y}) L_{e}(\mathbf{z}, \mathbf{y}) d \mathbf{y} d \mathbf{z} \\
& =\int_{A_{\text {light }}} \int_{H^{2}} W_{i}(\mathbf{z}, \vec{\omega}) L_{e}(\mathbf{z}, \vec{\omega}) \cos \theta d \vec{\omega} d \mathbf{z}
\end{aligned}
$$

Duality of Radiance \& Importance

Duality of Radiance \& Importance

start from light, search for importance at sensor

Light Tracing

Light Tracing

Shoot multiple paths from light sources hoping to randomly hit the sensor

- Optionally: at each path vertex, connect to the image using nextevent estimation (a.k.a. shadow rays in PT)

Light Tracing with NEE

Splat to the image at each vertex

Path Tracing Caustics

Light Tracing Caustics

Path vs. Light Tracing

Path tracing
Light tracing

Path vs. Light Tracing

Path tracing
Light tracing

Images courtesy of F. Suykens
Can we combine them?

Path Integral Framework

Measurement Equation

$$
\begin{aligned}
& I_{j}=\int_{A} \int_{A} W_{e}\left(\mathbf{x}_{0}, \mathbf{x}_{1}\right) G\left(\mathbf{x}_{0}, \mathbf{x}_{1}\right) L_{o}\left(\mathbf{x}_{1}, \mathbf{x}_{0}\right) d \mathbf{x}_{1} d \mathbf{x}_{0} \\
& =\int_{A} \int_{A} W_{e}\left(\mathbf{x}_{0}, \mathbf{x}_{1}\right) G\left(\mathbf{x}_{0}, \mathbf{x}_{1}\right) L_{e}\left(\mathbf{x}_{1}, \mathbf{x}_{0}\right)+\int_{A} f\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{0}\right) G\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) L_{o}\left(\mathbf{x}_{2}, \mathbf{x}_{1}\right) d \mathbf{x}_{2} d \mathbf{x}_{1} d \mathbf{x}_{0} \\
& =\int_{A} \int_{A} W_{e}\left(\mathbf{x}_{0}, \mathbf{x}_{1}\right) G\left(\mathbf{x}_{0}, \mathbf{x}_{1}\right) L_{e}\left(\mathbf{x}_{1}, \mathbf{x}_{0}\right)+\int_{A} f\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{0}\right) G\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) L_{e}\left(\mathbf{x}_{2}, \mathbf{x}_{1}\right)+\int_{A} f\left(\mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{1}\right) G\left(\mathbf{x}_{2}, \mathbf{x}_{3}\right) L_{e}\left(\mathbf{x}_{3}, \mathbf{x}_{2}\right)+\int_{A} \ldots d \mathbf{x}_{4} d \mathbf{x}_{3} d \mathbf{x}_{2} d \mathbf{x}_{1} d \mathbf{x}_{0}
\end{aligned}
$$

Hard to concisely express arbitrary light
transport with all the nested integrals

Path Integral Form of Measurement Eq.

$$
\begin{aligned}
I_{j} & =\int_{A} \int_{A} W_{e}\left(\mathbf{x}_{0}, \mathbf{x}_{1}\right) G\left(\mathbf{x}_{0}, \mathbf{x}_{1}\right) L_{o}\left(\mathbf{x}_{1}, \mathbf{x}_{0}\right) d \mathbf{x}_{1} d \mathbf{x}_{0} \\
& =\iint_{A} W_{e}\left(\mathbf{x}_{0}, \mathbf{x}_{1}\right) L_{e}\left(\mathbf{x}_{1}, \mathbf{x}_{0}\right) G\left(\mathbf{x}_{0}, \mathbf{x}_{1}\right) d \mathbf{x}_{1} d \mathbf{x}_{0} \\
& +\iiint_{A} W_{e}\left(\mathbf{x}_{0}, \mathbf{x}_{1}\right) L_{e}\left(\mathbf{x}_{2}, \mathbf{x}_{1}\right) G\left(\mathbf{x}_{0}, \mathbf{x}_{1}\right) f\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{0}\right) G\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) d \mathbf{x}_{2} d \mathbf{x}_{1} d \mathbf{x}_{0}+\cdots \\
& +\int \cdots \int_{A} W_{e}\left(\mathbf{x}_{0}, \mathbf{x}_{1}\right) L_{e}\left(\mathbf{x}_{k}, \mathbf{x}_{k-1}\right) G\left(\mathbf{x}_{0}, \mathbf{x}_{1}\right) \prod_{j=1}^{k-1} f\left(\mathbf{x}_{j}, \mathbf{x}_{j+1}, \mathbf{x}_{j-1}\right) G\left(\mathbf{x}_{j}, \mathbf{x}_{j+1}\right) d \mathbf{x}_{k} \cdots d \mathbf{x}_{0}+\cdots
\end{aligned}
$$

introduce: $\quad \mathcal{P}_{k}=\left\{\overline{\mathbf{x}}=\mathbf{x}_{0} \cdots \mathbf{x}_{k} ; \mathbf{x}_{0} \cdots \mathbf{x}_{k} \in A\right\}$ space of all paths with $\quad k \quad$ segments

Path Integral Form of Measurement Eq.

$$
\begin{aligned}
& I_{j}=\int_{A} \int_{A} W_{e}\left(\mathbf{x}_{0}, \mathbf{x}_{1}\right) G\left(\mathbf{x}_{0}, \mathbf{x}_{1}\right) L_{o}\left(\mathbf{x}_{1}, \mathbf{x}_{0}\right) d \mathbf{x}_{1} d \mathbf{x}_{0} \\
&=\int_{\mathcal{P}_{1}} W_{e}\left(\mathbf{x}_{0}, \mathbf{x}_{1}\right) L_{e}\left(\mathbf{x}_{1}, \mathbf{x}_{0}\right) G\left(\mathbf{x}_{0}, \mathbf{x}_{1}\right) d \overline{\mathbf{x}}_{1} \\
&+\int_{\mathcal{P}_{2}} W_{e}\left(\mathbf{x}_{0}, \mathbf{x}_{1}\right) L_{e}\left(\mathbf{x}_{2}, \mathbf{x}_{1}\right) G\left(\mathbf{x}_{0}, \mathbf{x}_{1}\right) f\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{0}\right) G\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) d \overline{\mathbf{x}}_{2}+\cdots \\
&+\int_{\mathcal{P}_{k}} W_{e}\left(\mathbf{x}_{0}, \mathbf{x}_{1}\right) L_{e}\left(\mathbf{x}_{k}, \mathbf{x}_{k-1}\right) G\left(\mathbf{x}_{0}, \mathbf{x}_{1}\right) \prod_{j=1}^{k-1} f\left(\mathbf{x}_{j}, \mathbf{x}_{j+1}, \mathbf{x}_{j-1}\right) G\left(\mathbf{x}_{j}, \mathbf{x}_{j+1}\right) d \overline{\mathbf{x}}_{k}+\cdots \\
& \text { introduce illimumination } T\left(\overline{\mathbf{x}}_{k}\right)=G\left(\mathbf{x}_{0}, \mathbf{x}_{1}\right) \prod_{j=1}^{k-1} f\left(\mathbf{x}_{j}, \mathbf{x}_{j+1}, \mathbf{x}_{j-1}\right) G\left(\mathbf{x}_{j}, \mathbf{x}_{j+1}\right) \\
& \text { throughput of path } \quad \overline{\mathbf{x}}_{k}
\end{aligned}
$$

Path Integral Form of Measurement Eq.

$$
\begin{aligned}
I_{j} & =\int_{A} \int_{A} W_{e} W_{0}\left(\mathbf{x}_{0}, \mathbf{x}_{1}\right) G_{\left(\mathbf{x}_{0}, \mathbf{x}_{1}\right) L_{O}\left(\mathbf{x}_{1}, \mathbf{x}_{0}\right) d \mathbf{X}_{1} d \mathbf{x}_{0}}=\int_{\mathcal{P}_{1}} W_{e}\left(\mathbf{x}_{0}, \mathbf{x}_{1}\right) L_{e}\left(\mathbf{x}_{1}, \mathbf{x}_{0}\right) T\left(\overline{\mathbf{x}}_{1}\right) d \overline{\mathbf{x}}_{1} \\
& +\int_{\mathcal{P}_{2}} W_{e}\left(\mathbf{x}_{0}, \mathbf{x}_{1}\right) L_{e}\left(\mathbf{x}_{2}, \mathbf{x}_{1}\right) T\left(\overline{\mathbf{x}}_{2}\right) d \overline{\mathbf{x}}_{2}+\cdots \\
& +\int_{\mathcal{P}_{k}} W_{e}\left(\mathbf{x}_{0}, \mathbf{x}_{1}\right) L_{e}\left(\mathbf{x}_{k}, \mathbf{x}_{k-1}\right) T\left(\overline{\mathbf{x}}_{k}\right) d \overline{\mathbf{x}}_{k}+\cdots
\end{aligned}
$$

$$
\text { introduce: } \mathcal{P}=\bigcup_{k=1}^{\infty} \mathcal{P}_{k}
$$

the path space, i.e. the space of all paths of all lengths

Path Integral Form of Measurement Eq.

$$
\begin{aligned}
I_{j} & =\int_{A} \int_{A} W_{e}\left(\mathbf{x}_{0}, \mathbf{x}_{1}\right) G\left(\mathbf{x}_{0}, \mathbf{x}_{1}\right) L_{o}\left(\mathbf{x}_{1}, \mathbf{x}_{0}\right) d \mathbf{x}_{1} d \mathbf{x}_{0} \\
& =\int_{\mathcal{P}} W_{e}\left(\mathbf{x}_{0}, \mathbf{x}_{1}\right) L_{e}\left(\mathbf{x}_{k}, \mathbf{x}_{k-1}\right) T(\overline{\mathbf{x}}) d \overline{\mathbf{x}}
\end{aligned}
$$

Path Integral Form of Measurement Eq.

$$
I_{j}=\int_{\mathcal{P}} W_{e}\left(\mathbf{x}_{0}, \mathbf{x}_{1}\right) L_{e}\left(\mathbf{x}_{k}, \mathbf{x}_{k-1}\right) T(\overline{\mathbf{x}}) d \overline{\mathbf{x}}
$$

$$
\begin{aligned}
& \text { path throughput } \\
& \qquad T(\overline{\mathbf{x}})=G\left(\mathbf{x}_{0}, \mathbf{x}_{1}\right) \prod_{j=1}^{k-1} f\left(\mathbf{x}_{j}, \mathbf{x}_{j+1}, \mathbf{x}_{j-1}\right) G\left(\mathbf{x}_{j}, \mathbf{x}_{j+1}\right)
\end{aligned}
$$

Path Integral Form of Measurement Eq.

$$
I_{j}=\int_{\mathcal{P}} W_{e}\left(\mathbf{x}_{0}, \mathbf{x}_{1}\right) L_{e}\left(\mathbf{x}_{k}, \mathbf{x}_{k-1}\right) T(\overline{\mathbf{x}}) d \overline{\mathbf{x}}
$$

Advantages:

- no recursion, no "nasty" nested integrals
- emphasizes symmetry of light transport
- easy to relate different rendering algorithms
- focuses on path geometry, independent of strategy for constructing paths
- MC estimator on path space looks much simpler

Path Integral Form of Measurement Eq.

$$
I_{j}=\int_{\mathcal{P}} W_{e}\left(\mathbf{x}_{0}, \mathbf{x}_{1}\right) L_{e}\left(\mathbf{x}_{k}, \mathbf{x}_{k-1}\right) T(\overline{\mathbf{x}}) d \overline{\mathbf{x}}
$$

Monte Carlo estimator:

$$
\begin{gathered}
I_{j} \approx \frac{1}{N} \sum_{i=1}^{N} \frac{W_{e}\left(\mathbf{x}_{i, 0}, \mathbf{x}_{i, 1}\right) L_{e}\left(\mathbf{x}_{i, k}, \mathbf{x}_{i, k-1}\right) T\left(\overline{\mathbf{x}}_{i}\right)}{p\left(\overline{\mathbf{x}}_{i}\right)} \\
p(\overline{\mathbf{x}})=\underbrace{p\left(\mathbf{x}_{0}, \mathbf{x}_{1}, \cdots, \mathbf{x}_{k-1}, \mathbf{x}_{k}\right)}_{\text {path PDF }}
\end{gathered}
$$

Path Construction

$$
p(\overline{\mathbf{x}})=p\left(\mathbf{x}_{0}, \mathbf{x}_{1}, \cdots, \mathbf{x}_{k-1}, \mathbf{x}_{k}\right)
$$

Path tracing w/o NEE

$$
\begin{aligned}
p(\overline{\mathbf{x}}) & =p\left(\mathbf{x}_{0}\right) \\
& \times p\left(\mathbf{x}_{1} \mid \mathbf{x}_{0}\right) \\
& \times p\left(\mathbf{x}_{2} \mid \mathbf{x}_{0} \mathbf{x}_{1}\right) \\
& \times p\left(\mathbf{x}_{3} \mid \mathbf{x}_{0} \mathbf{x}_{1} \mathbf{x}_{2}\right)
\end{aligned}
$$

Path Construction

$$
p(\overline{\mathbf{x}})=p\left(\mathbf{x}_{0}, \mathbf{x}_{1}, \cdots, \mathbf{x}_{k-1}, \mathbf{x}_{k}\right)
$$

Path tracing with NEE

$$
\begin{aligned}
p(\overline{\mathbf{x}}) & =p\left(\mathbf{x}_{0}\right) \\
& \times p\left(\mathbf{x}_{1} \mid \mathbf{x}_{0}\right) \\
& \times p\left(\mathbf{x}_{2} \mid \mathbf{x}_{0} \mathbf{x}_{1}\right) \\
& \times p\left(\mathbf{x}_{3}\right) \\
& \underbrace{}_{\substack{\text { assuming uniform } \\
\text { area sampling }}}
\end{aligned}
$$

Path Construction

$$
p(\overline{\mathbf{x}})=p\left(\mathbf{x}_{0}, \mathbf{x}_{1}, \cdots, \mathbf{x}_{k-1}, \mathbf{x}_{k}\right)
$$

Light tracing

$$
\begin{aligned}
p(\overline{\mathbf{x}}) & =p\left(\mathbf{x}_{0} \mid \mathbf{x}_{3} \mathbf{x}_{2} \mathbf{x}_{1}\right) \\
& \times p\left(\mathbf{x}_{1} \mid \mathbf{x}_{3} \mathbf{x}_{2}\right) \\
& \times p\left(\mathbf{x}_{2} \mid \mathbf{x}_{3}\right) \\
& \times p\left(\mathbf{x}_{3}\right)
\end{aligned}
$$

Path Construction

$$
p(\overline{\mathbf{x}})=p\left(\mathbf{x}_{0}, \mathbf{x}_{1}, \cdots, \mathbf{x}_{k-1}, \mathbf{x}_{k}\right)
$$

Light tracing with NEE

assuming uniform

$$
\begin{aligned}
p(\overline{\mathbf{x}}) & =p\left(\mathbf{x}_{0}\right) \\
& \times p\left(\mathbf{x}_{1} \mid \mathbf{x}_{3} \mathbf{x}_{2}\right) \\
& \times p\left(\mathbf{x}_{2} \mid \mathbf{x}_{3}\right) \\
& \times p\left(\mathbf{x}_{3}\right)
\end{aligned}
$$

Path Construction

$$
p(\overline{\mathbf{x}})=p\left(\mathbf{x}_{0}, \mathbf{x}_{1}, \cdots, \mathbf{x}_{k-1}, \mathbf{x}_{k}\right)
$$

Independent sampling of path vertices
(not very practical though)

$$
\begin{aligned}
p(\overline{\mathbf{x}}) & =p\left(\mathbf{x}_{0}\right) \\
& \times p\left(\mathbf{x}_{1}\right) \\
& \times p\left(\mathbf{x}_{2}\right) \\
& \times p\left(\mathbf{x}_{3}\right)
\end{aligned}
$$

Can we combine them?

Bidirectional Path Tracing

Bidirectional Path Tracing

t - \# vertices on camera subpath
s - \# vertices on light subpath
$t s$ - \# connections

Bidirectional Path Tracing

color estimate (point x)
\{
lp = sample light subpath
$c p=$ sample camera subpath for image point x
for each vertex s in lp for each vertex t in $c p$ fullPath = join(cp[0..s], lp[0..t]) splat(fullPath.screenPos,
fullPath.contrib)
\}

Bidirectional Path Tracing

Key observations:

- Every path (formed by connecting camera sub-path to light sub-path) with k vertices can be constructed using $k+1$ strategies
- For a particular path length, all strategies estimate the same integral
- Each strategy has a different PDF, i.e., each strategy has different strengths and weaknesses
- Let's combine them using MIS!

Bidirectional Path Tracing

Bidirectional Path Tracing

Bidirectional Path Tracing (MIS)

Bidirectional Path Tracing

(Unidirectional) path tracing

Bidirectional path tracing

Bidirectional Path Tracing

Path tracing
Light tracing
Bidirectional PT

Still not robust enough...

Reference Bidirectional PT

Still not robust enough...

$L S D S E \quad$ paths are difficult for any unbiased method

Still not robust enough...

Extensions

- Combination with photon mapping
- Unified Path Sampling [Hachisuka et al. 2012]
- Vertex Connection Merging [Georgiev et al. 2012]
- Metropolis sampling (global PDF)
- Path-space regularization [Kaplanyan et al. 2013]
- Path guiding (learn global PDF)

