

15-468, 15-668, 15-868 Physics-based Rendering Spring 2025, Lecture 10

Course announcements

- Programming assignment 2 posted, due Friday 2/28 at 23:59.
 - How many of you have looked at/started/finished it?
 - Any questions?

Overview of today's lecture

- Importance sampling the reflectance equation.
- BRDF importance sampling.
- Direct versus indirect illumination.
- Different forms of the reflectance equation.
- Environment lighting.
- Light sources.
- Mixture sampling.
- Multiple importance sampling.

Slide credits

Most of these slides were directly adapted from:

Wojciech Jarosz (Dartmouth).

Reflection equation

$$L_r(\mathbf{x}, \vec{\omega}_r) = \int_{H^2} f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) L_i(\mathbf{x}, \vec{\omega}_i) \cos \theta_i \, d\vec{\omega}_i$$

What terms can we importance sample?

- BRDF
- incident radiance
- cosine term

Reflection equation

$$L_r(\mathbf{x}, \vec{\omega}_r) = \int_{H^2} f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) L_i(\mathbf{x}, \vec{\omega}_i) \cos \theta_i d\vec{\omega}_i$$

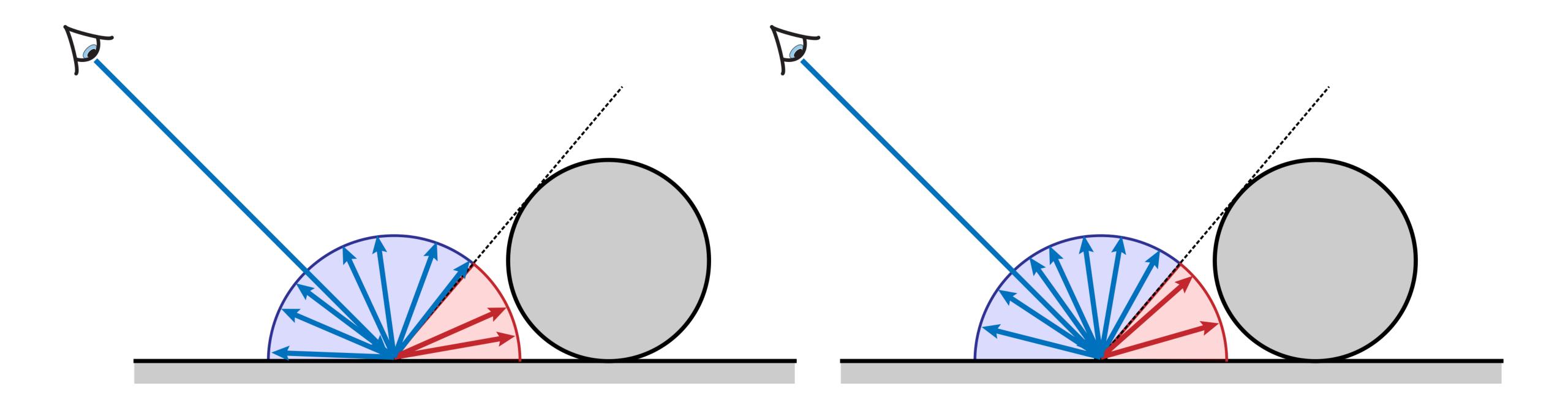
What terms can we importance sample?

- BRDF
- incident radiance
- cosine term

This is what we did for ambient occlusion

Uniform hemispherical sampling

Cosine-weighted importance sampling



Reflection equation

$$L_r(\mathbf{x}, \vec{\omega}_r) = \int_{H^2} \underbrace{f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r)} L_i(\mathbf{x}, \vec{\omega}_i) \cos \theta_i \, d\vec{\omega}_i$$

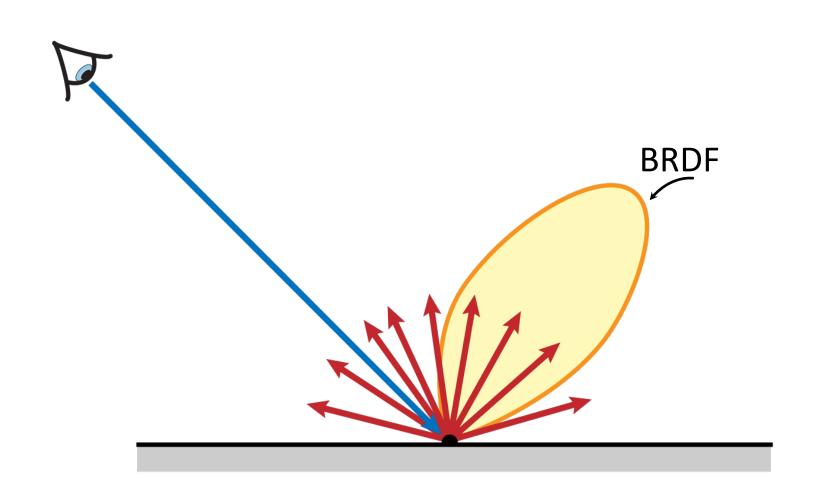
What terms can we importance sample?

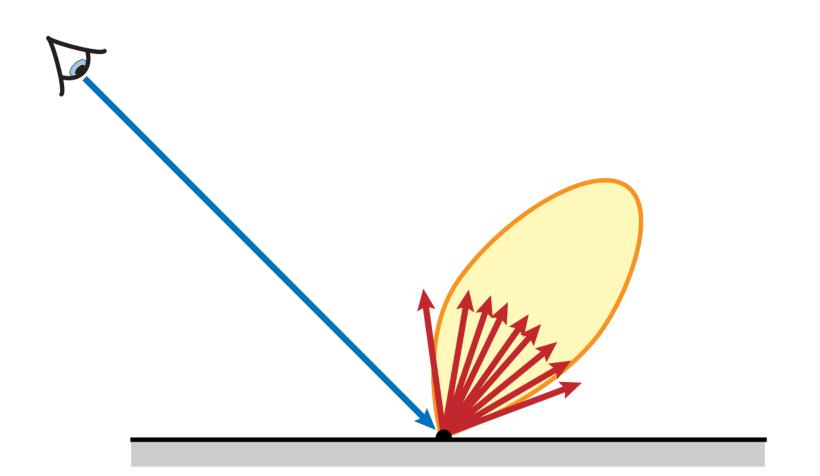
- BRDF
- incident radiance
- cosine term

Importance Sampling the BRDF

Cosine-weighted importance sampling

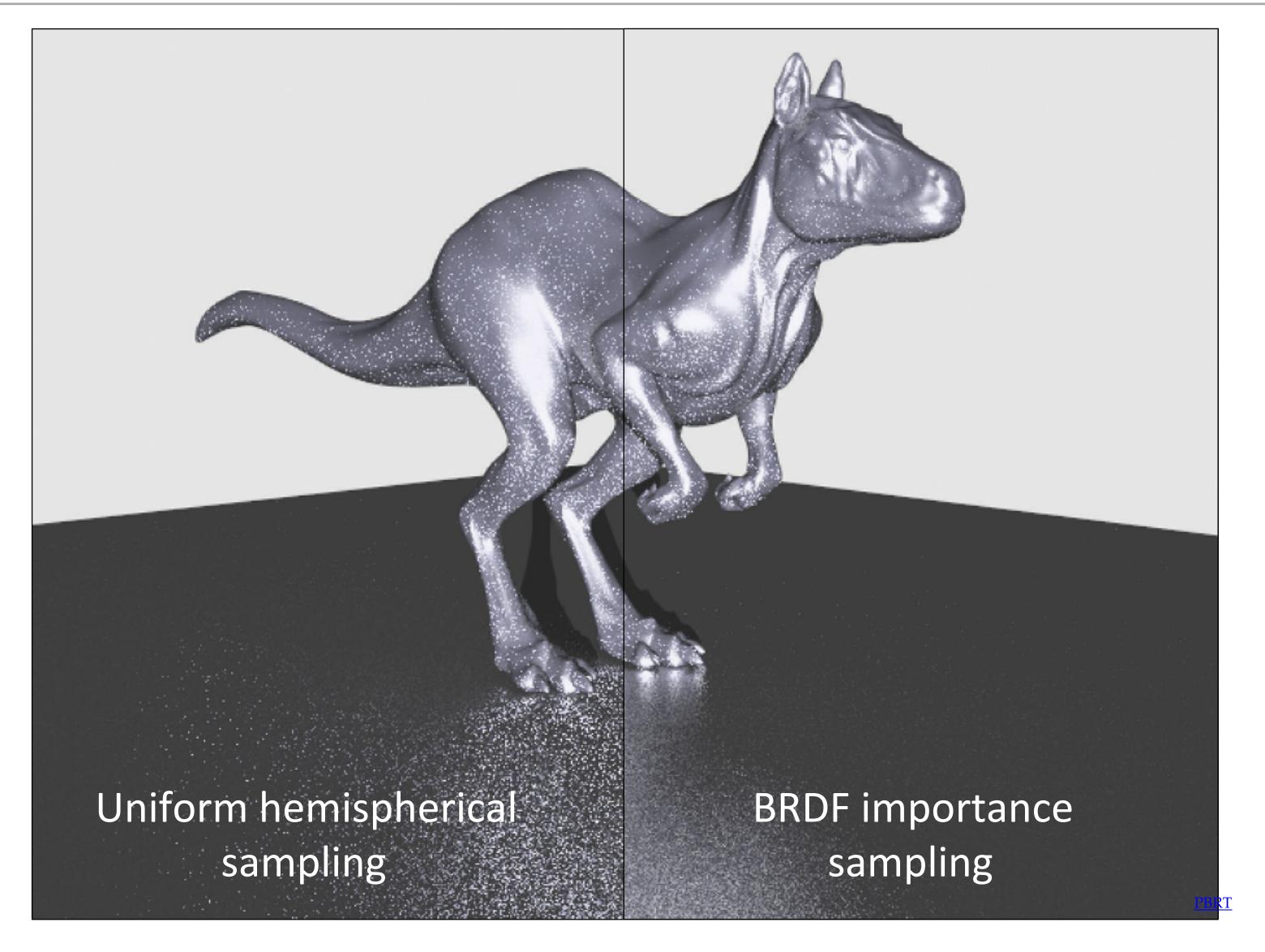
BRDF importance sampling





$$p(\vec{\omega}_i) \propto f(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r)$$

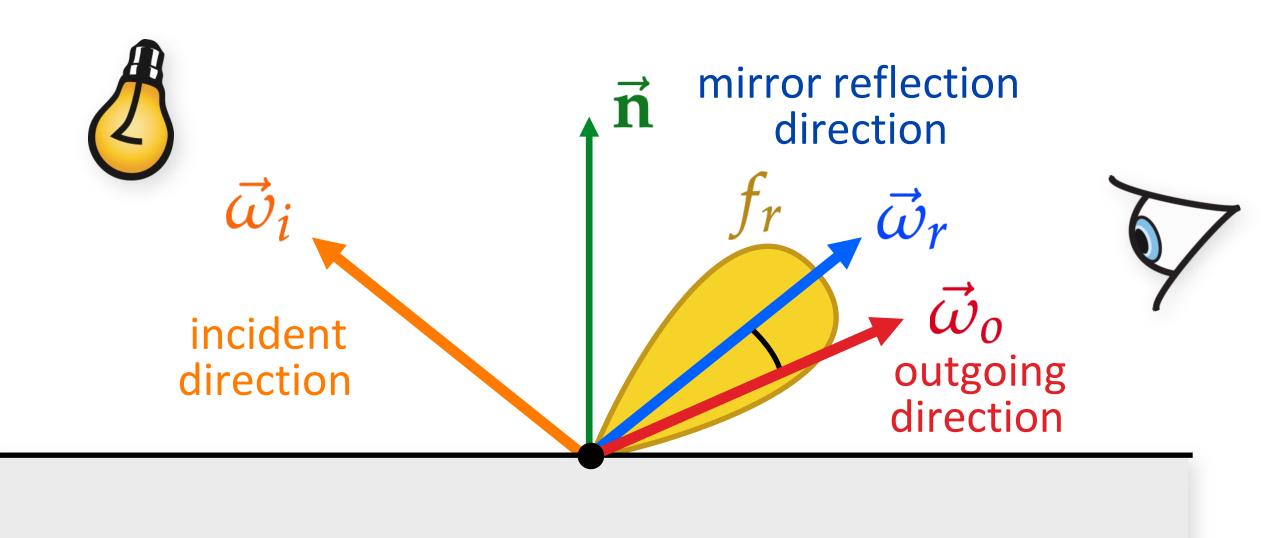
Importance Sampling the BRDF



Phong BRDF

Normalized exponentiated cosine lobe:

$$f_r(\vec{\omega}_o, \vec{\omega}_i) = \frac{e+2}{2\pi} (\vec{\omega}_r \cdot \vec{\omega}_o)^e$$
$$\vec{\omega}_r = (2\vec{\mathbf{n}}(\vec{\mathbf{n}} \cdot \vec{\omega}_i) - \vec{\omega}_i)$$



Phong BRDF

Normalized exponentiated cosine lobe:

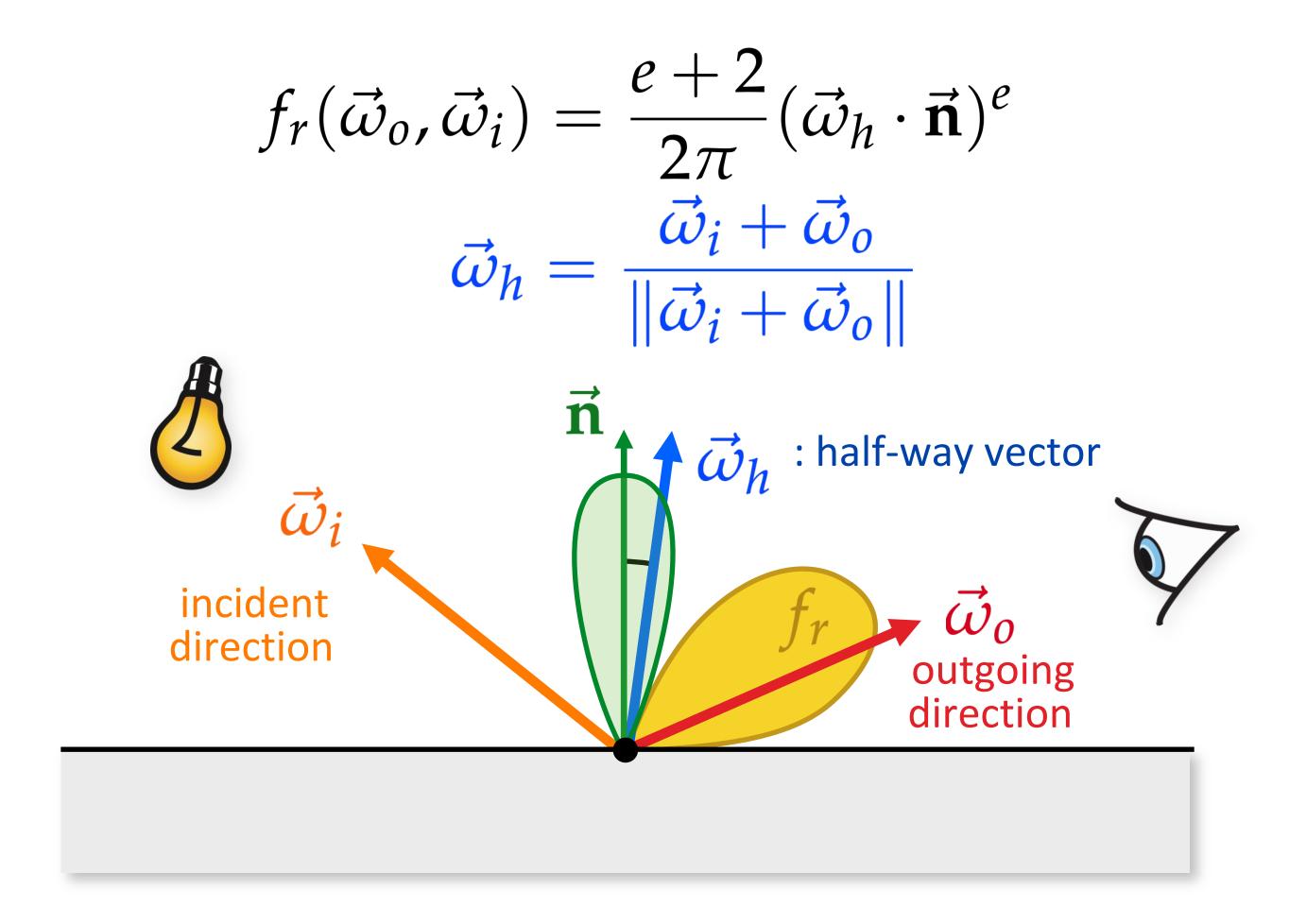
$$f_r(\vec{\omega}_o, \vec{\omega}_i) = \frac{e+2}{2\pi} (\vec{\omega}_r \cdot \vec{\omega}_o)^e$$
$$\vec{\omega}_r = (2\vec{\mathbf{n}}(\vec{\mathbf{n}} \cdot \vec{\omega}_i) - \vec{\omega}_i)$$

Interpretation

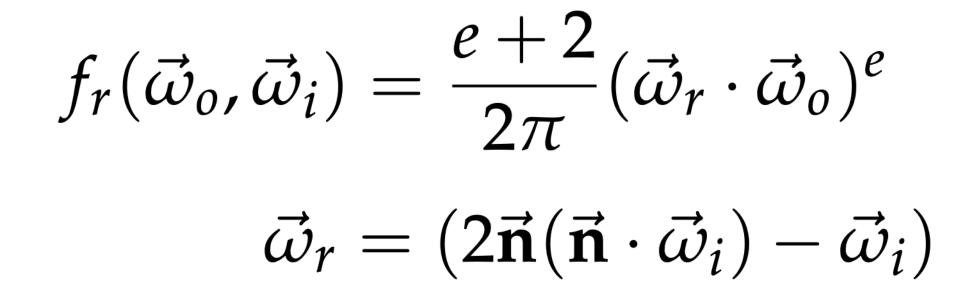
- randomize reflection rays in a lobe about mirror direction
- perfect mirror reflection of a blurred light

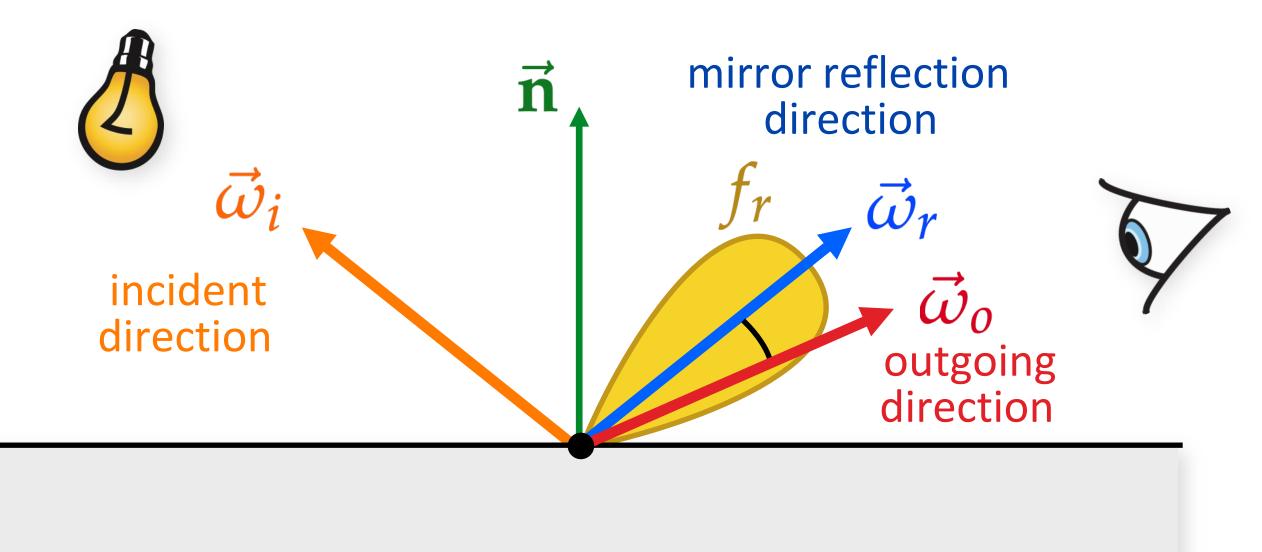
Blinn-Phong BRDF

Randomize normals instead of reflection directions



Phong BRDF





Importance Sampling the BRDF

Recipe:

- 1. Express the desired distribution in a convenient coordinate system
 - requires computing the Jacobian
- 2. Compute marginal and conditional 1D PDFs
- 3. Sample 1D PDFs using the inversion method

Sampling the Blinn-Phong BRDF

$$f_r(\vec{\omega}_o, \vec{\omega}_i) = \frac{e+2}{2\pi} (\vec{\omega}_h \cdot \vec{\mathbf{n}})^e$$

Mirror reflection from random micro-normal

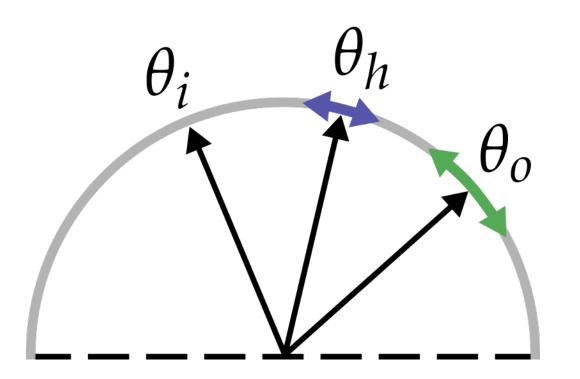
General recipe:

- randomly generate a ω_h , with PDF proportional to \cos^e
- reflect incident direction ω_i about ω_h to obtain ω_o
- convert PDF(ω_h) to PDF(ω_o) (change-of-variable)

Read PBRTv3 14.1

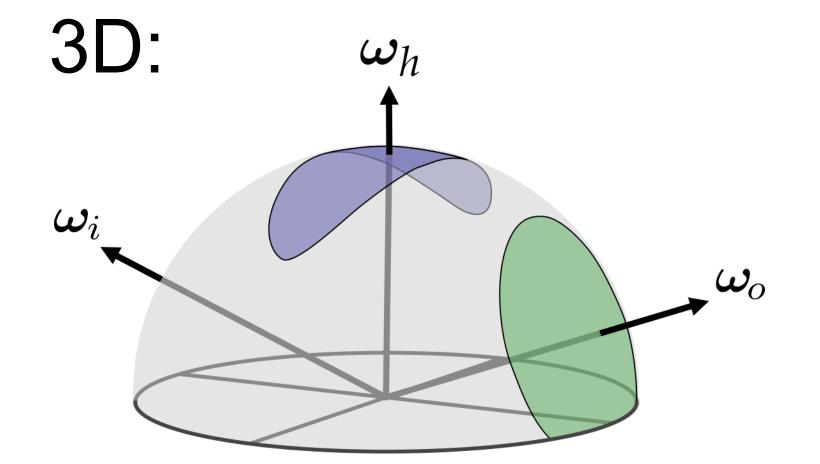
Half-direction transform

2D:



$$\theta_h \coloneqq \frac{\theta_i + \theta_o}{2}$$

$$\frac{\mathrm{d}\theta_h}{\mathrm{d}\theta_o} = ?$$



$$\omega_h \coloneqq rac{\omega_i + \omega_o}{\|\omega_i + \omega_o\|}$$

$$\frac{\mathrm{d}\omega_h}{\mathrm{d}\omega_o} =$$

Reflection equation

$$L_r(\mathbf{x}, \vec{\omega}_r) = \int_{H^2} f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) L_i(\mathbf{x}, \vec{\omega}_i) \cos \theta_i \, d\vec{\omega}_i$$

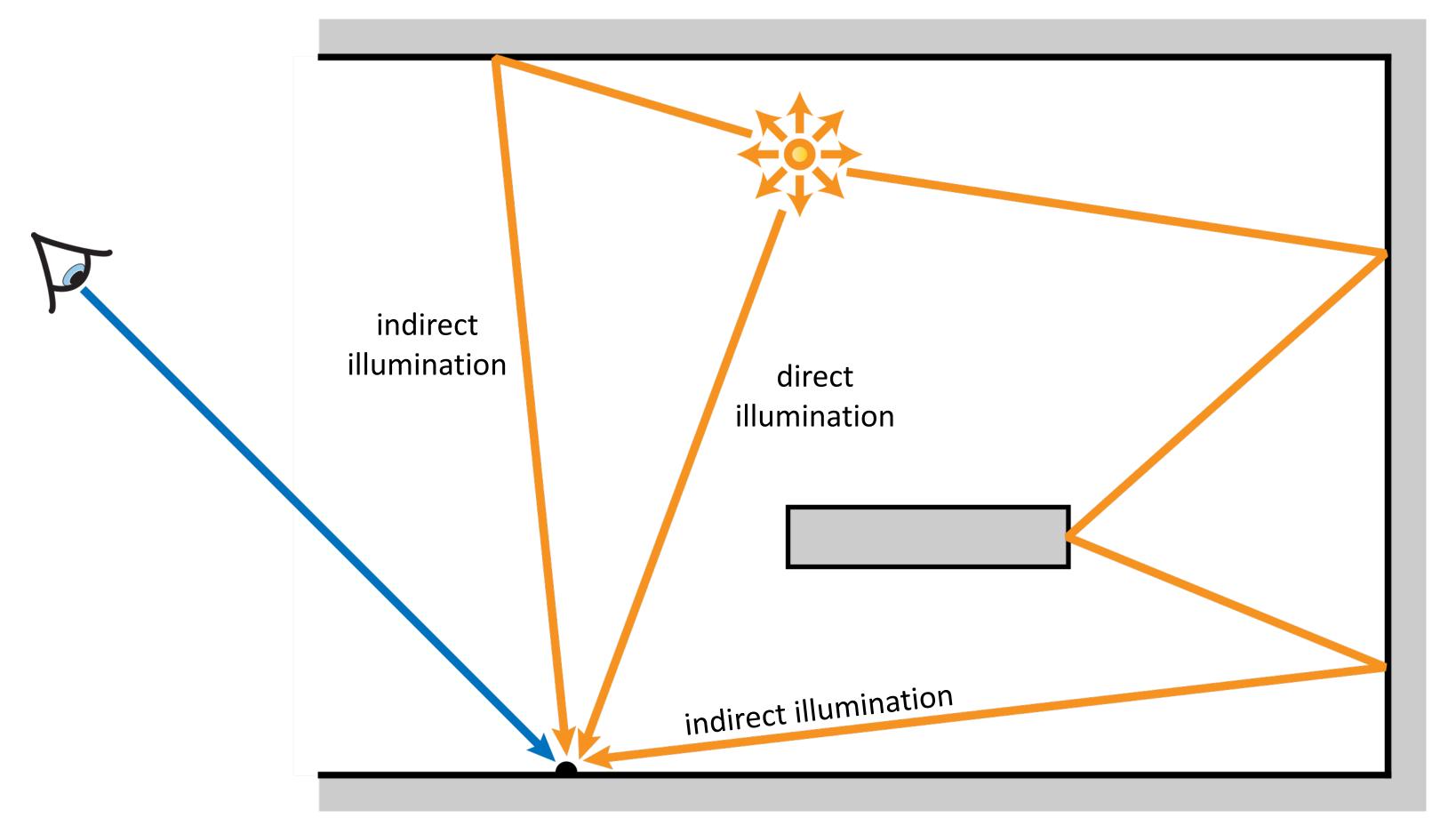
What terms can we importance sample?

- BRDF
- incident radiance
- cosine term

Where does L_i $L_r(\mathbf{x}, \vec{\omega}_r) = \int_{H^2} f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) L_i(\mathbf{x}, \vec{\omega}_i) \cos \theta_i \, d\vec{\omega}_i$ "come from"?

Where does L_i "come from"?

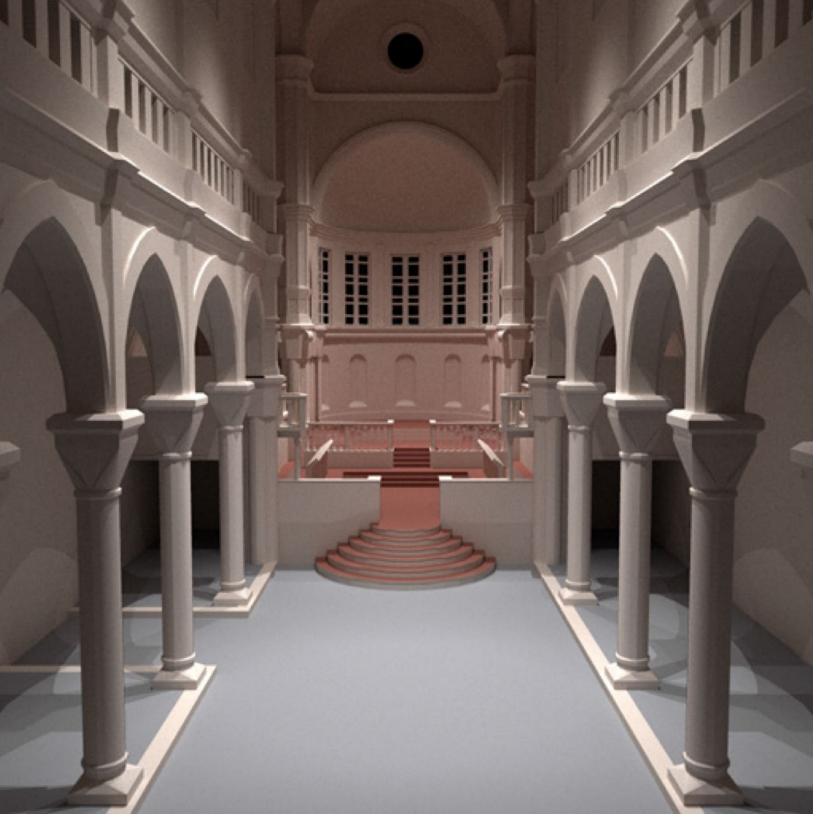
$$L_r(\mathbf{x}, \vec{\omega}_r) = \int_{H^2} f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) L_i(\mathbf{x}, \vec{\omega}_i) \cos \theta_i \, d\vec{\omega}_i$$



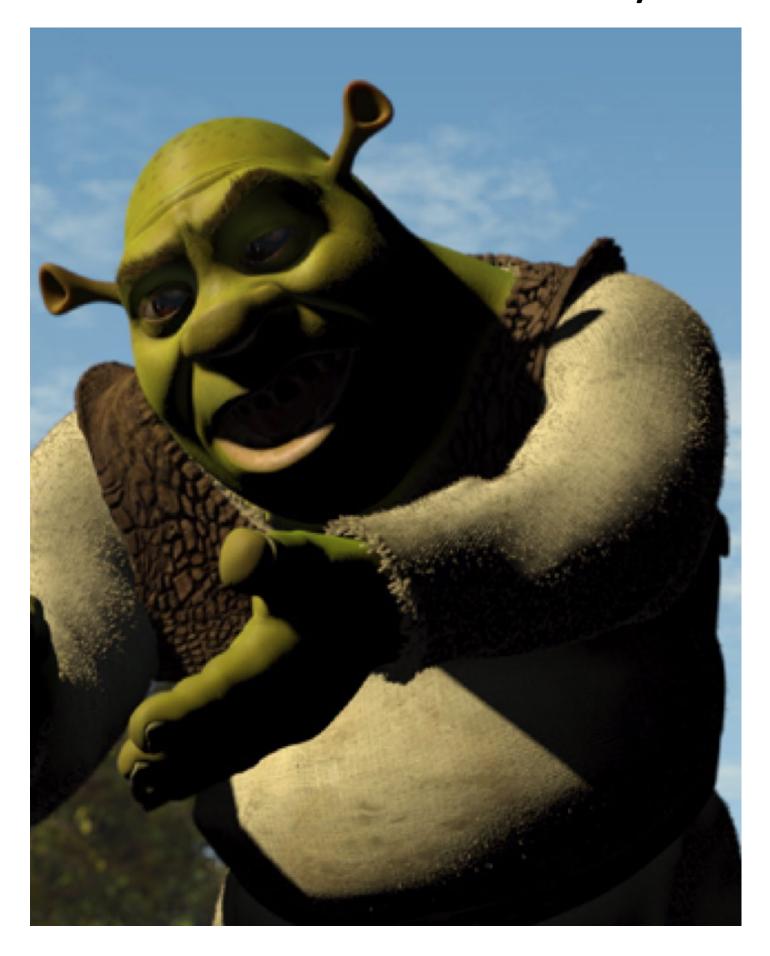
Direct illumination

Indirect illumination

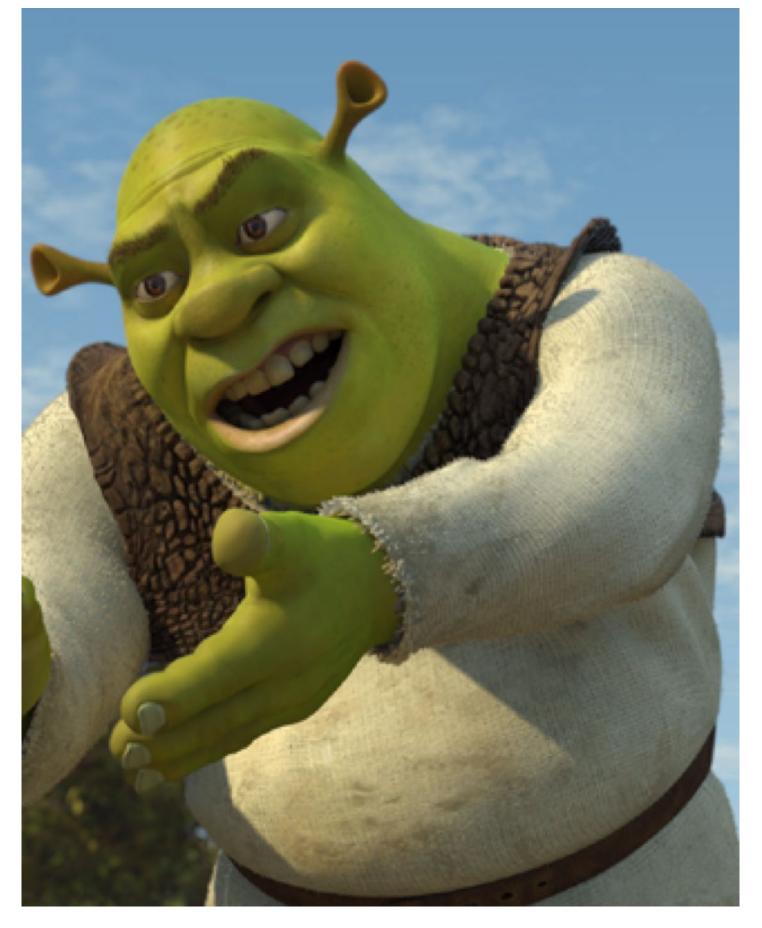
Direct + indirect illumination



Direct illumination only



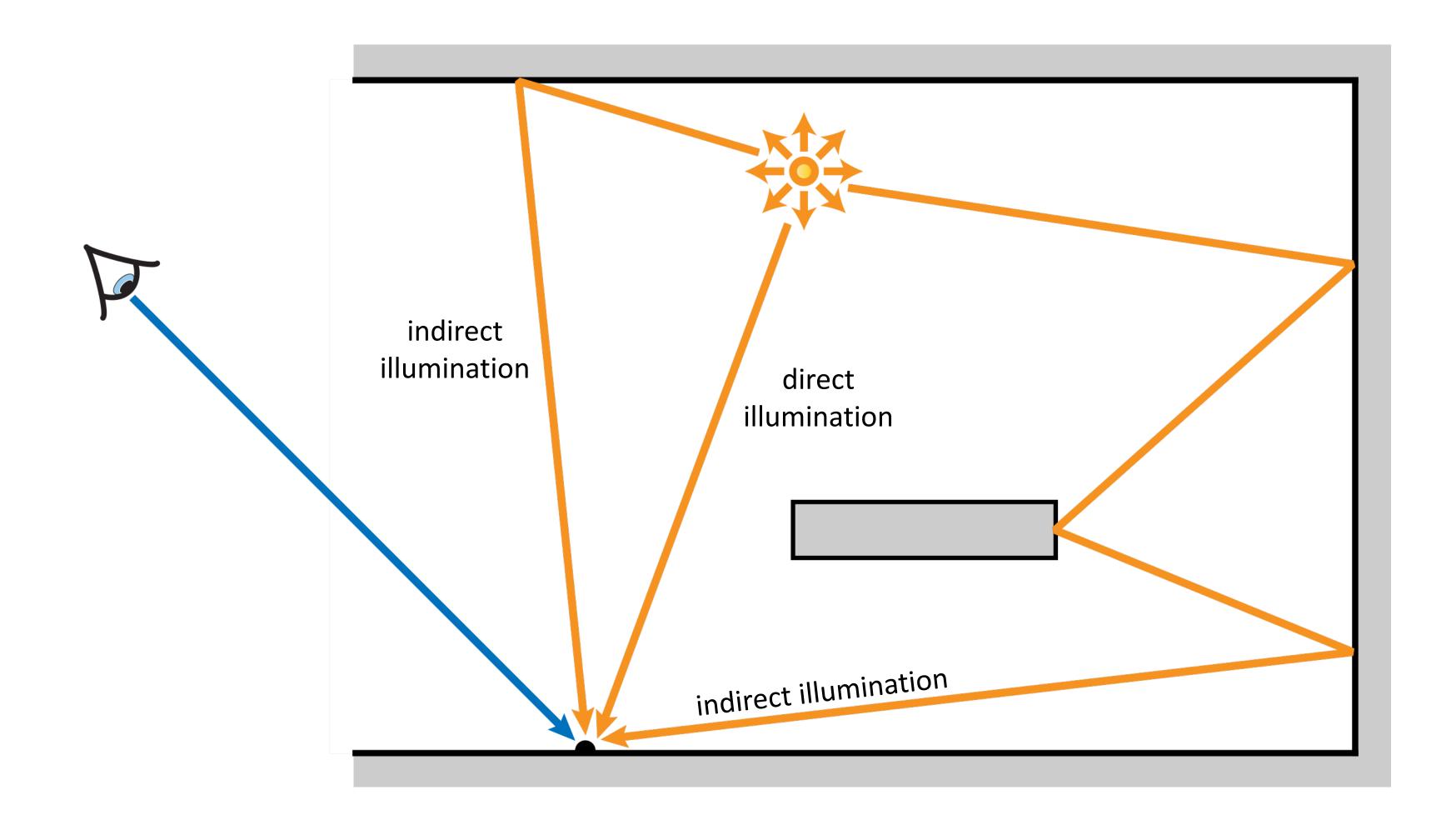
Direct + Indirect illumination



Images courtesy of PDI/DreamWorks

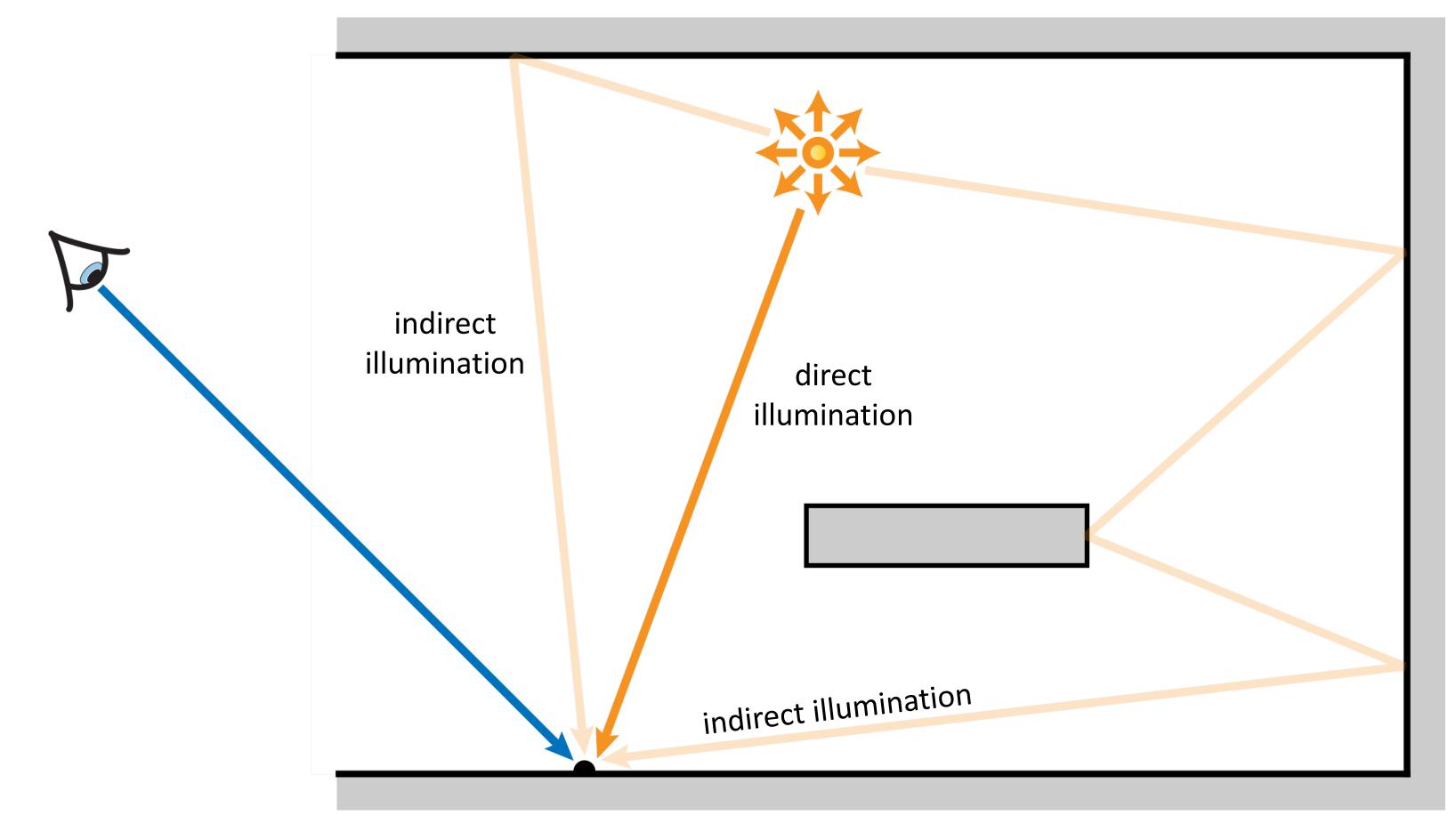
Importance Sampling Incident Radiance

Generally impossible, but...

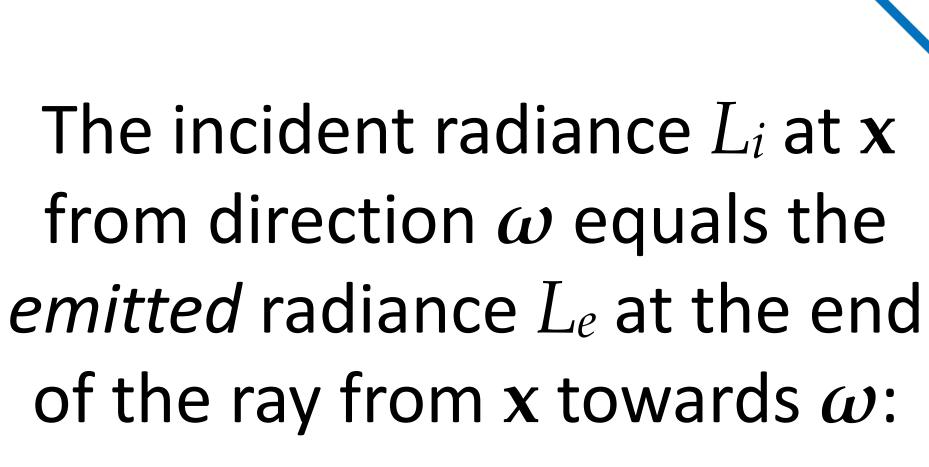


Importance Sampling Incident Radiance

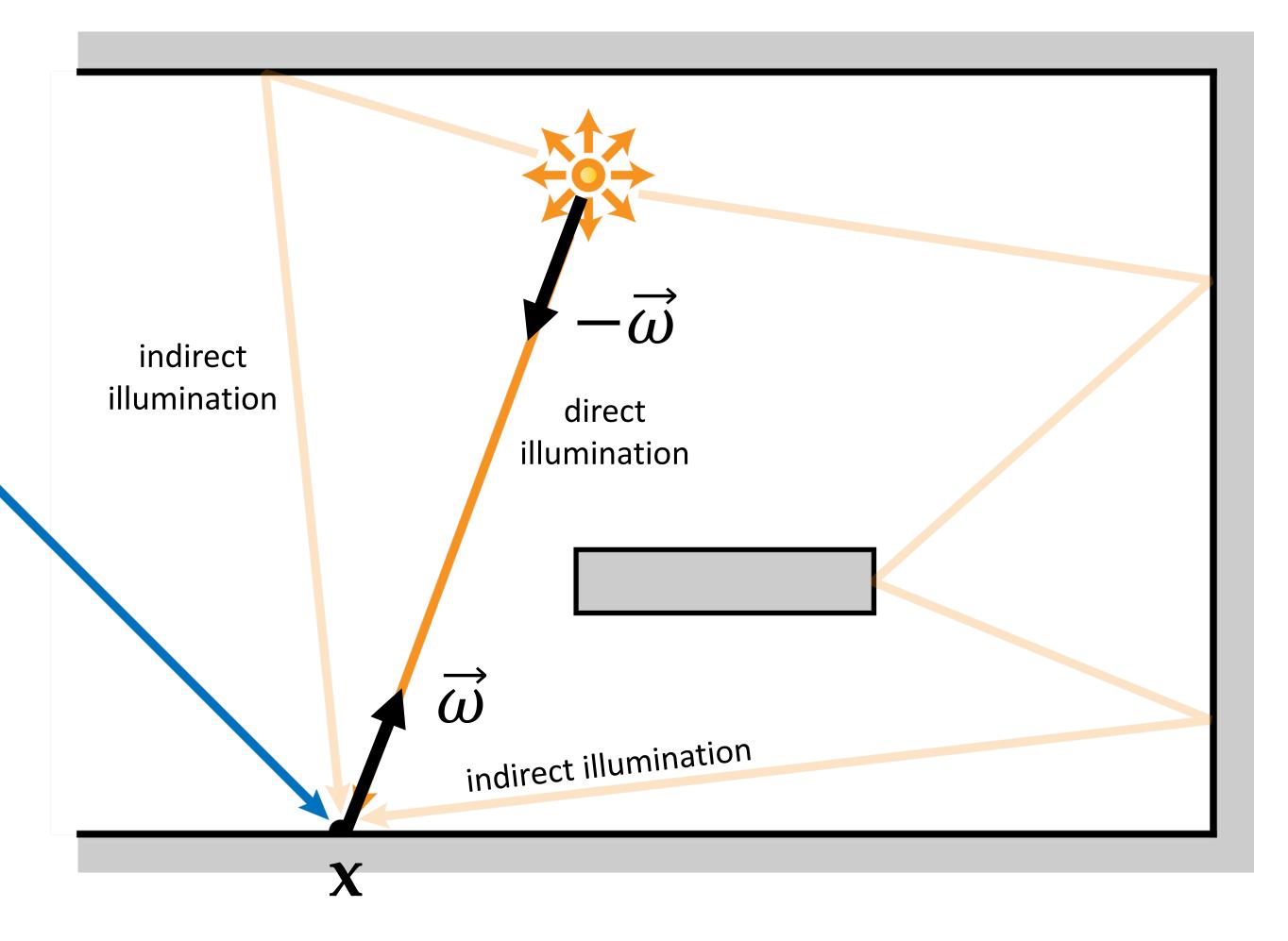
Generally impossible, but possible if we assume only direct illumination



$$L_r(\mathbf{x}, \mathbf{E}_n)\mathbf{x} = \int_{H^2} \int_{H^2} \mathbf{x}_r \int_$$



$$L_i(\mathbf{x}, \vec{\omega}) = L_e(r(\mathbf{x}, \vec{\omega}), -\vec{\omega})$$

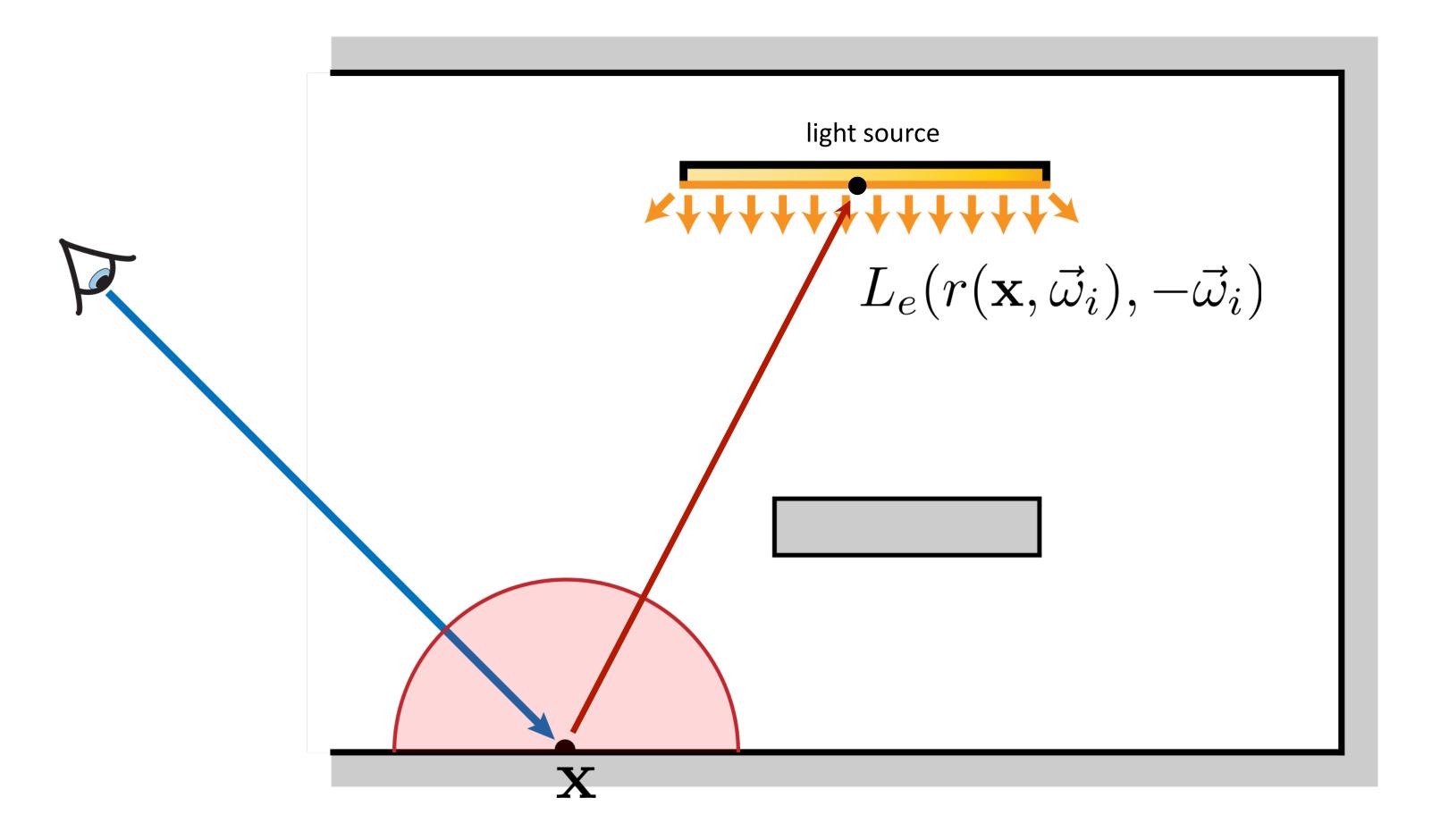


$$L_r(\mathbf{x}, \vec{\omega}_r) = \int_{H^2} f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) L_e(r(\mathbf{x}, \vec{\omega}_i), -\vec{\omega}_i) \cos \theta_i \, d\vec{\omega}_i$$

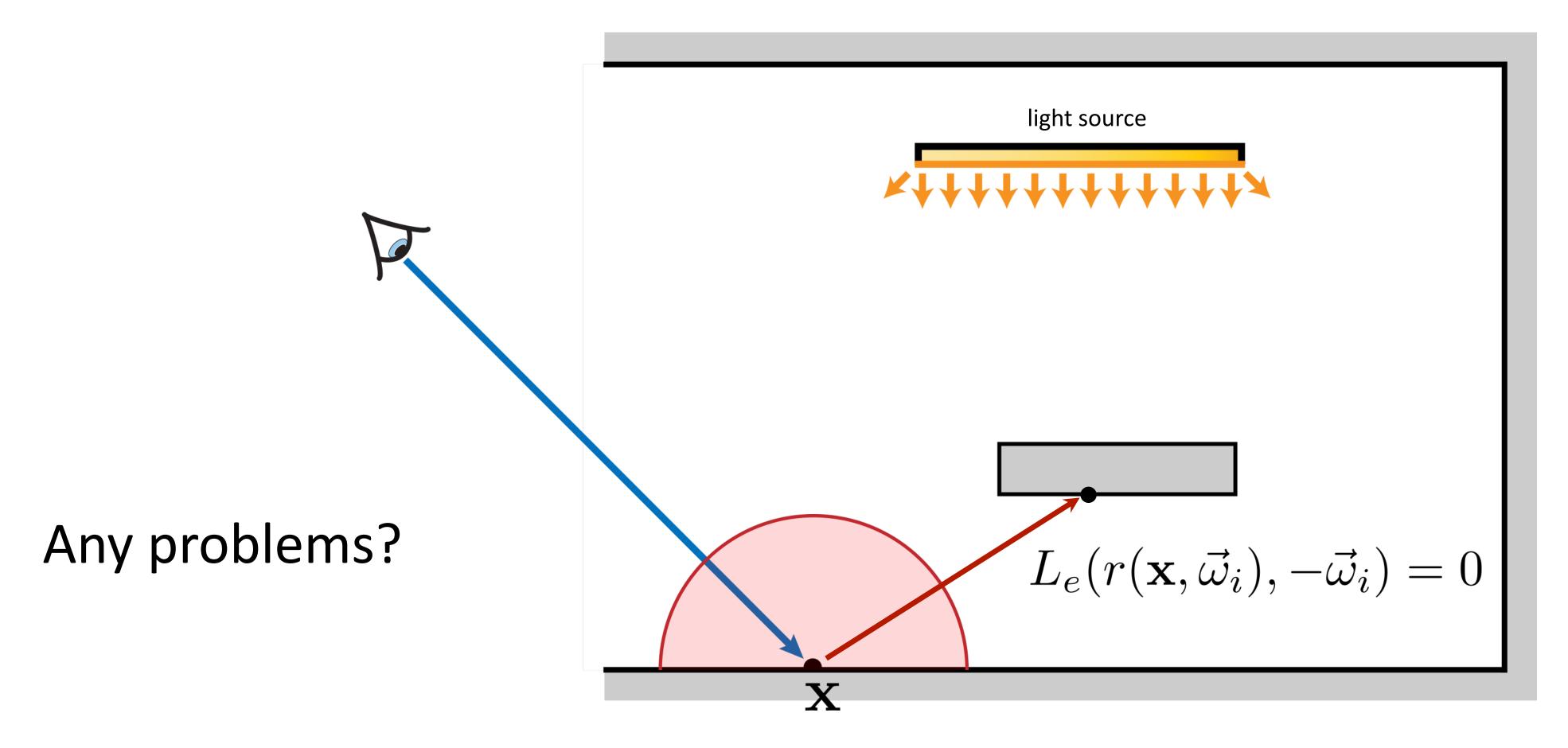
How can we estimate the integral?

$$\langle L_r(\mathbf{x}, \vec{\omega}_r)^N \rangle = \frac{1}{N} \sum_{k=1}^N \frac{f_r(\mathbf{x}, \vec{\omega}_{i,k}, \vec{\omega}_r) L_e(r(\mathbf{x}, \vec{\omega}_{i,k}), -\vec{\omega}_{i,k}) \cos \theta_{i,k}}{p_{\Omega}(\vec{\omega}_{i,k})}$$

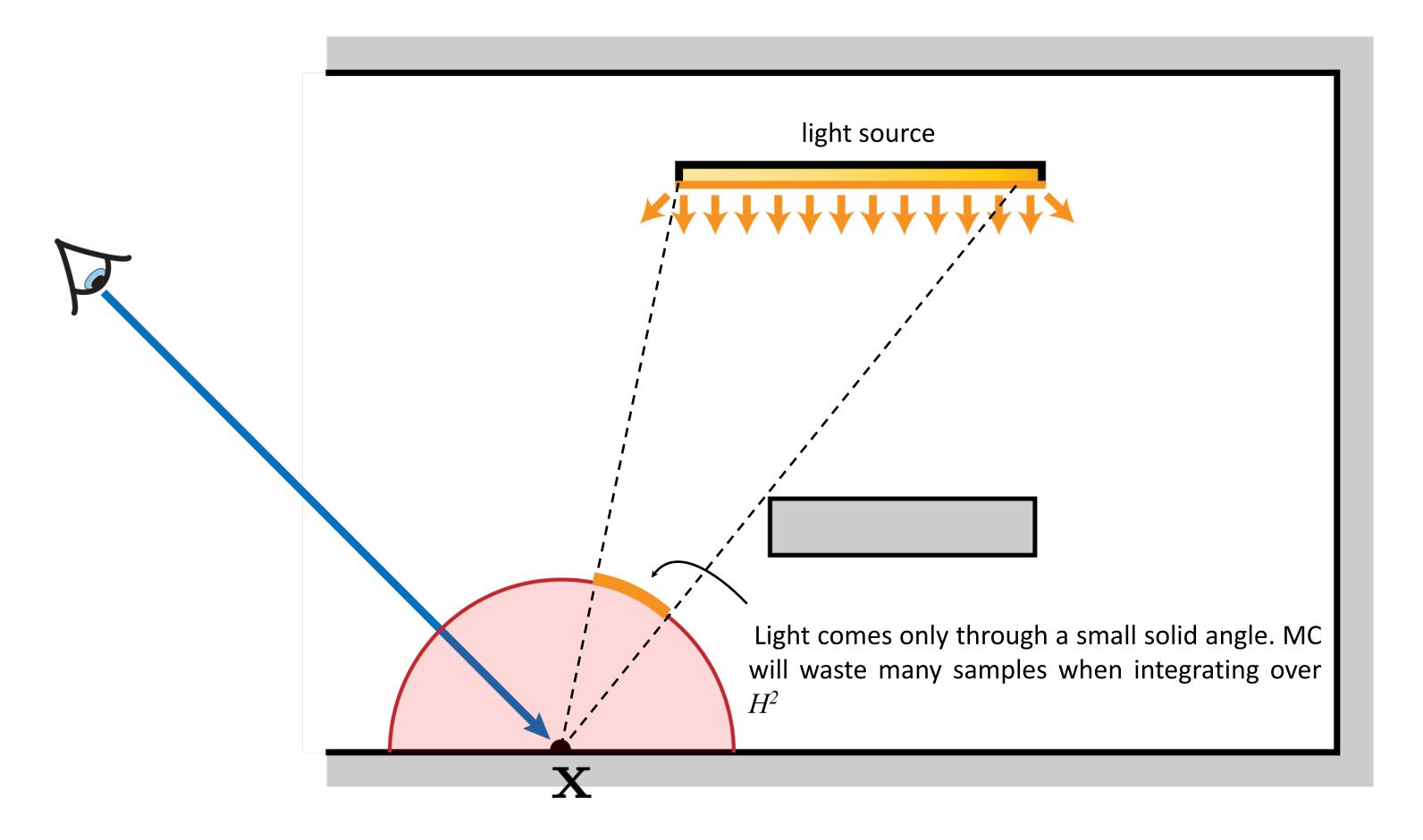
$$L_r(\mathbf{x}, \vec{\omega}_r) = \int_{H^2} f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) L_e(r(\mathbf{x}, \vec{\omega}_i), -\vec{\omega}_i) \cos \theta_i \, d\vec{\omega}_i$$



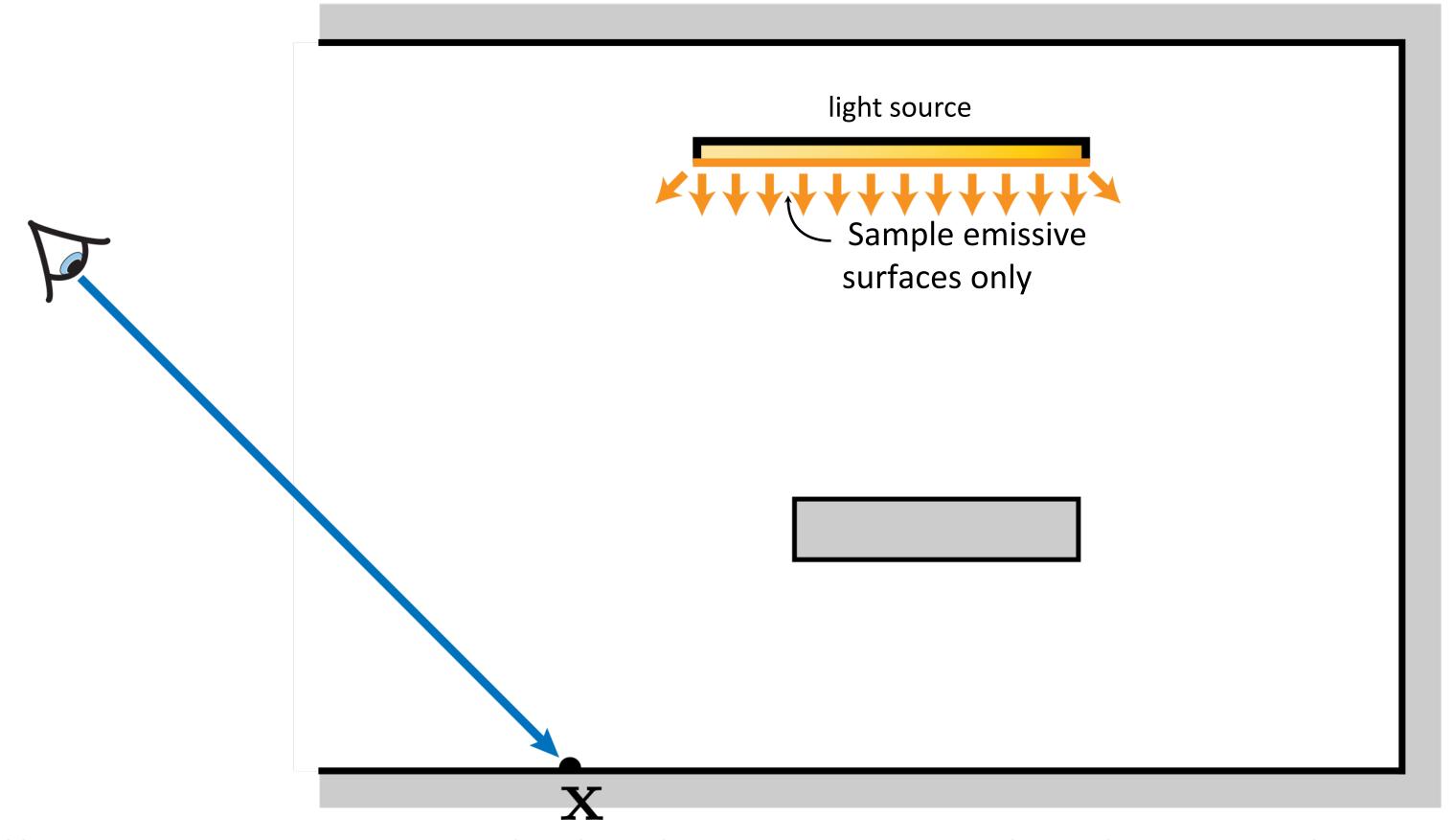
$$L_r(\mathbf{x}, \vec{\omega}_r) = \int_{H^2} f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) L_e(r(\mathbf{x}, \vec{\omega}_i), -\vec{\omega}_i) \cos \theta_i \, d\vec{\omega}_i$$



$$L_r(\mathbf{x}, \vec{\omega}_r) = \int_{H^2} f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) L_e(r(\mathbf{x}, \vec{\omega}_i), -\vec{\omega}_i) \cos \theta_i \, d\vec{\omega}_i$$



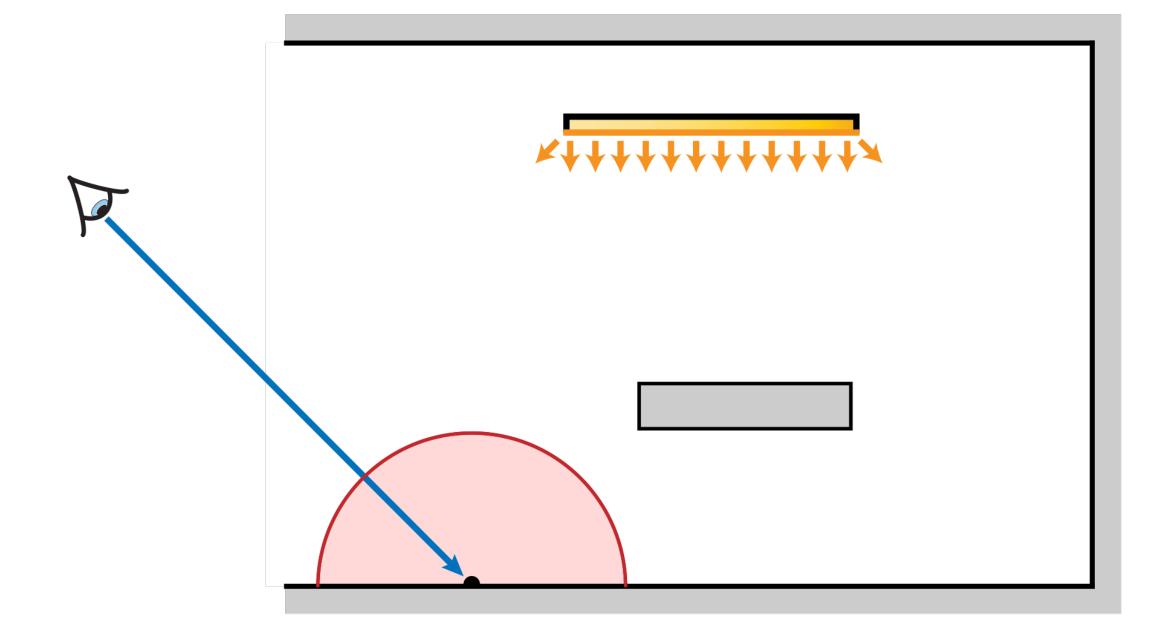
$$L_r(\mathbf{x}, \vec{\omega}_r) = \int_{H^2} f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) L_e(r(\mathbf{x}, \vec{\omega}_i), -\vec{\omega}_i) \cos \theta_i \, d\vec{\omega}_i$$



For direct illumination, it would be better to explicitly sample emissive surfaces

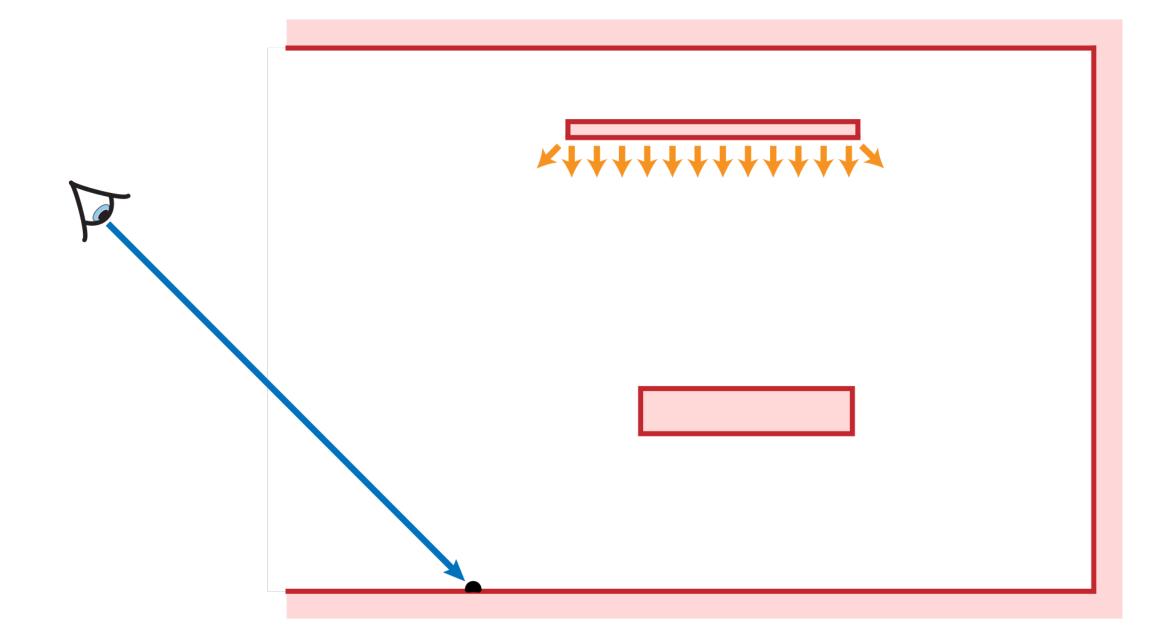
Forms of Reflection Equation

Hemispherical integration



$$L_r(\mathbf{x}, \vec{\omega}_r) = \int_{H^2} f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) L_i(\mathbf{x}, \vec{\omega}_i) \cos \theta_i \, d\vec{\omega}_i$$

Surface Area integration



$$L_r(\mathbf{x}, \vec{\omega}_r) = \int_{H^2} f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) L_i(\mathbf{x}, \vec{\omega}_i) \cos \theta_i \, d\vec{\omega}_i \qquad L_r(\mathbf{x}, \mathbf{z}) = \int_A f_r(\mathbf{x}, \mathbf{y}, \mathbf{z}) L_i(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \mathbf{y}) \, dA(\mathbf{y})$$

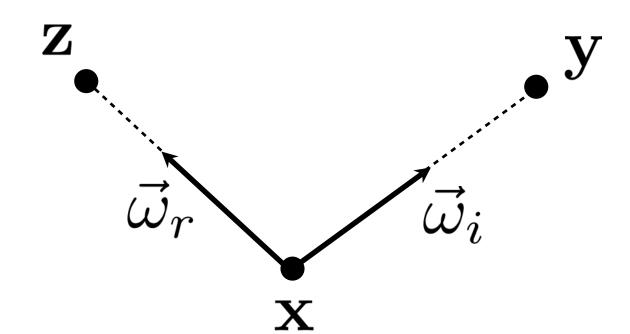
Forms of Reflection Equation

Change in notation:

$$L_i(\mathbf{x}, \vec{\omega}_i) = L_i(\mathbf{x}, \mathbf{y})$$

$$L_r(\mathbf{x}, \vec{\omega}_r) = L_r(\mathbf{x}, \mathbf{z})$$

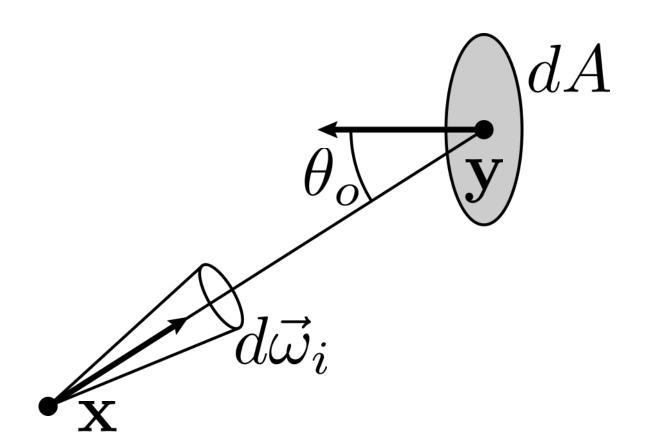
$$f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) = f_r(\mathbf{x}, \mathbf{y}, \mathbf{z})$$



Transform integral over directions into integral over surface area.

Jacobian determinant of the trans.:

$$d\vec{\omega}_i = \frac{|\cos \theta_o|}{\|\mathbf{x} - \mathbf{y}\|^2} dA$$



Forms of Reflection Equation

$$L_{i}(\mathbf{x}, \vec{\omega}_{i}) = L_{i}(\mathbf{x}, \mathbf{y})$$

$$L_{r}(\mathbf{x}, \vec{\omega}_{r}) = L_{r}(\mathbf{x}, \mathbf{z})$$

$$f_{r}(\mathbf{x}, \vec{\omega}_{i}, \vec{\omega}_{r}) = f_{r}(\mathbf{x}, \mathbf{y}, \mathbf{z})$$

$$d\vec{\omega}_{i} = \frac{|\cos \theta_{o}|}{\|\mathbf{x} - \mathbf{y}\|^{2}} dA$$

Hemispherical form:

$$L_r(\mathbf{x}, \vec{\omega}_r) = \int_{H^2} f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) L_i(\mathbf{x}, \vec{\omega}_i) \cos \theta_i \, d\vec{\omega}_i$$

Surface area form:

$$L_r(\mathbf{x}, \mathbf{z}) = \int_A f_r(\mathbf{x}, \mathbf{y}, \mathbf{z}) L_i(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \mathbf{y}) dA(\mathbf{y})$$

Area Form of the Reflection Eq.

$$L_r(\mathbf{x}, \mathbf{z}) = \int_A f_r(\mathbf{x}, \mathbf{y}, \mathbf{z}) L_i(\mathbf{x}, \mathbf{y}) \overline{G(\mathbf{x}, \mathbf{y})} dA(\mathbf{y})$$

Geometry term:

$$G(\mathbf{x}, \mathbf{y}) = V(\mathbf{x}, \mathbf{y}) \frac{|\cos \theta_i| |\cos \theta_o|}{||\mathbf{x} - \mathbf{y}||^2}$$

Visibility term:

$$V(\mathbf{x}, \mathbf{y}) = \begin{cases} 1 : \text{ visible} \\ 0 : \text{ not visible} \end{cases}$$

Area Form of the Reflection Eq.

$$L_r(\mathbf{x}, \mathbf{z}) = \int_A f_r(\mathbf{x}, \mathbf{y}, \mathbf{z}) L_i(\mathbf{x}, \mathbf{y}) \overline{G(\mathbf{x}, \mathbf{y})} dA(\mathbf{y})$$

Original foreshortening term

Geometry term:

$$G(\mathbf{x}, \mathbf{y}) = V(\mathbf{x}, \mathbf{y}) \frac{\cos \theta_i |\cos \theta_o|}{||\mathbf{x} - \mathbf{y}||^2}$$

Visibility term:

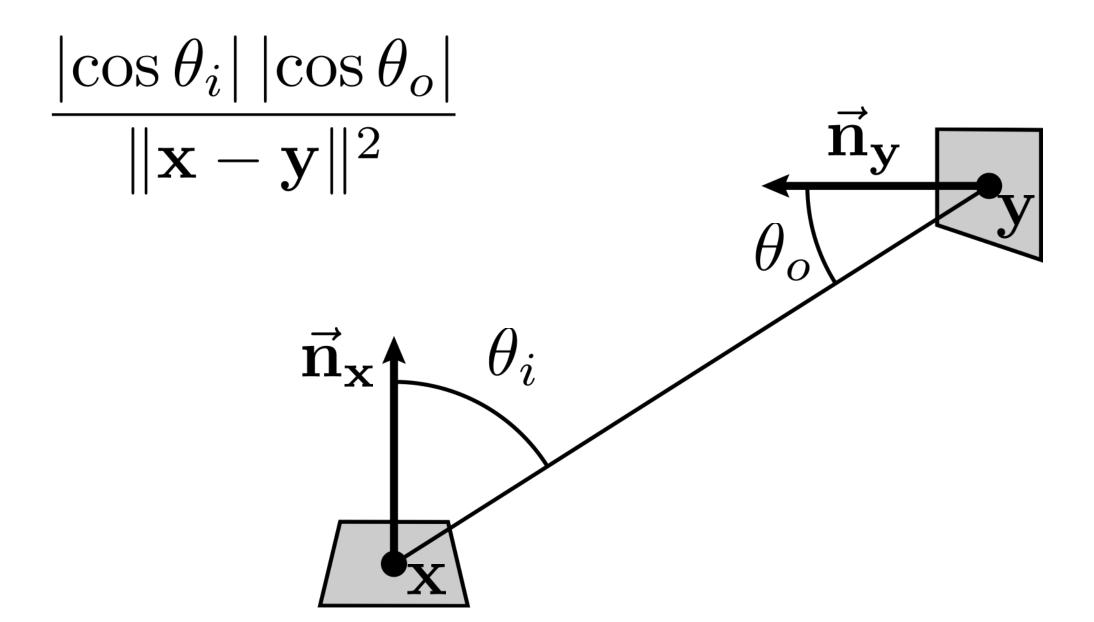
$$V(\mathbf{x}, \mathbf{y}) = \begin{cases} 1 : \text{ visible} \\ 0 : \text{ not visible} \end{cases} d\vec{\omega}_i = \frac{|\cos \theta_o|}{\|\mathbf{x} - \mathbf{y}\|^2} dA$$

Jacobian determinant of the transform

$$d\vec{\omega}_i = \frac{|\cos \theta_o|}{\|\mathbf{x} - \mathbf{y}\|^2} dA$$

Area Form of the Reflection Eq.

Interpreting

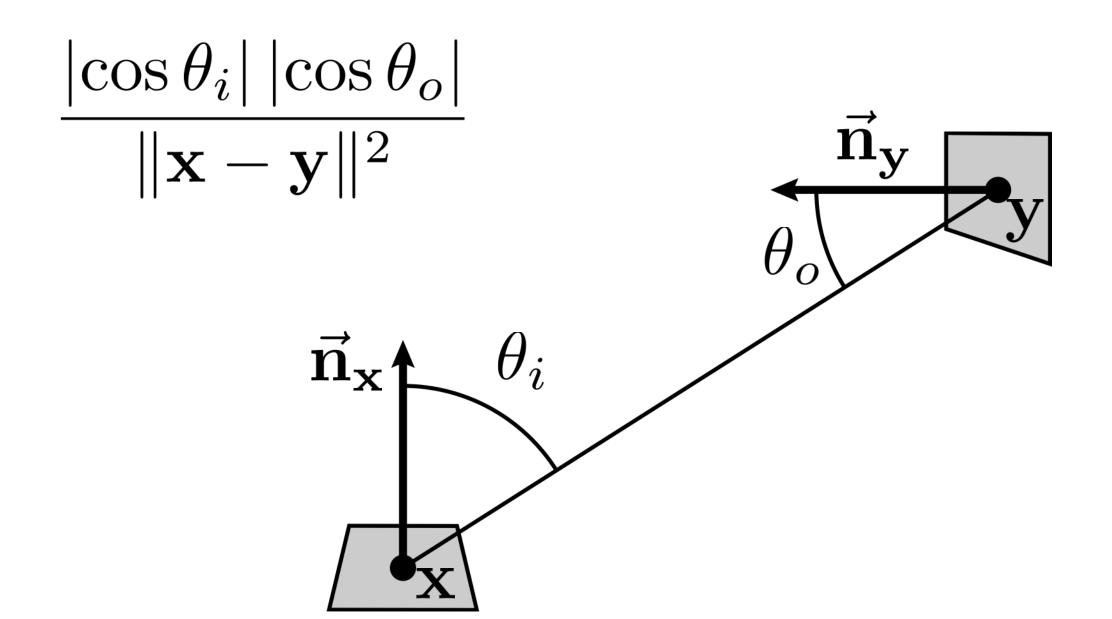


The chance that a photon emitted from a differential patch will hit another diff. patch decreases as:

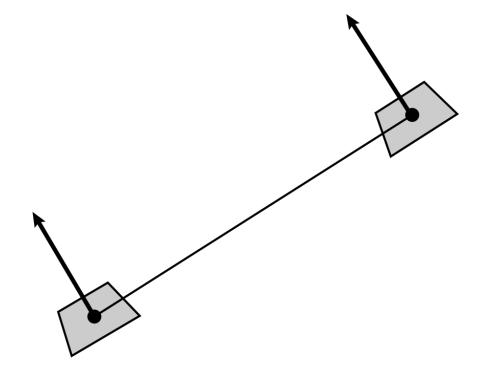
- the patches face away from each other (numerator)
- the patches move away from each other (denominator)

Area Form of the Reflection Eq.

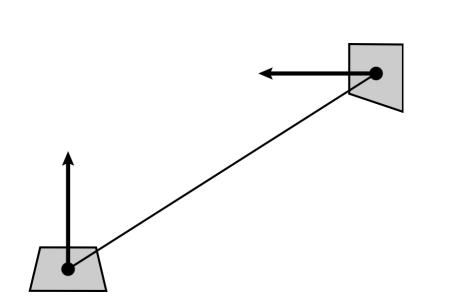
Interpreting



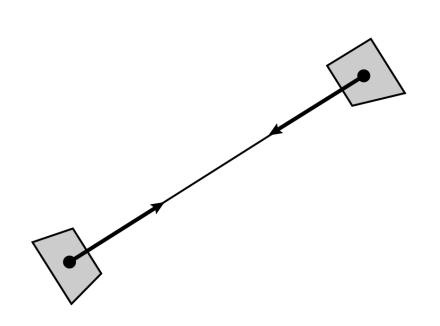
numerator = 0



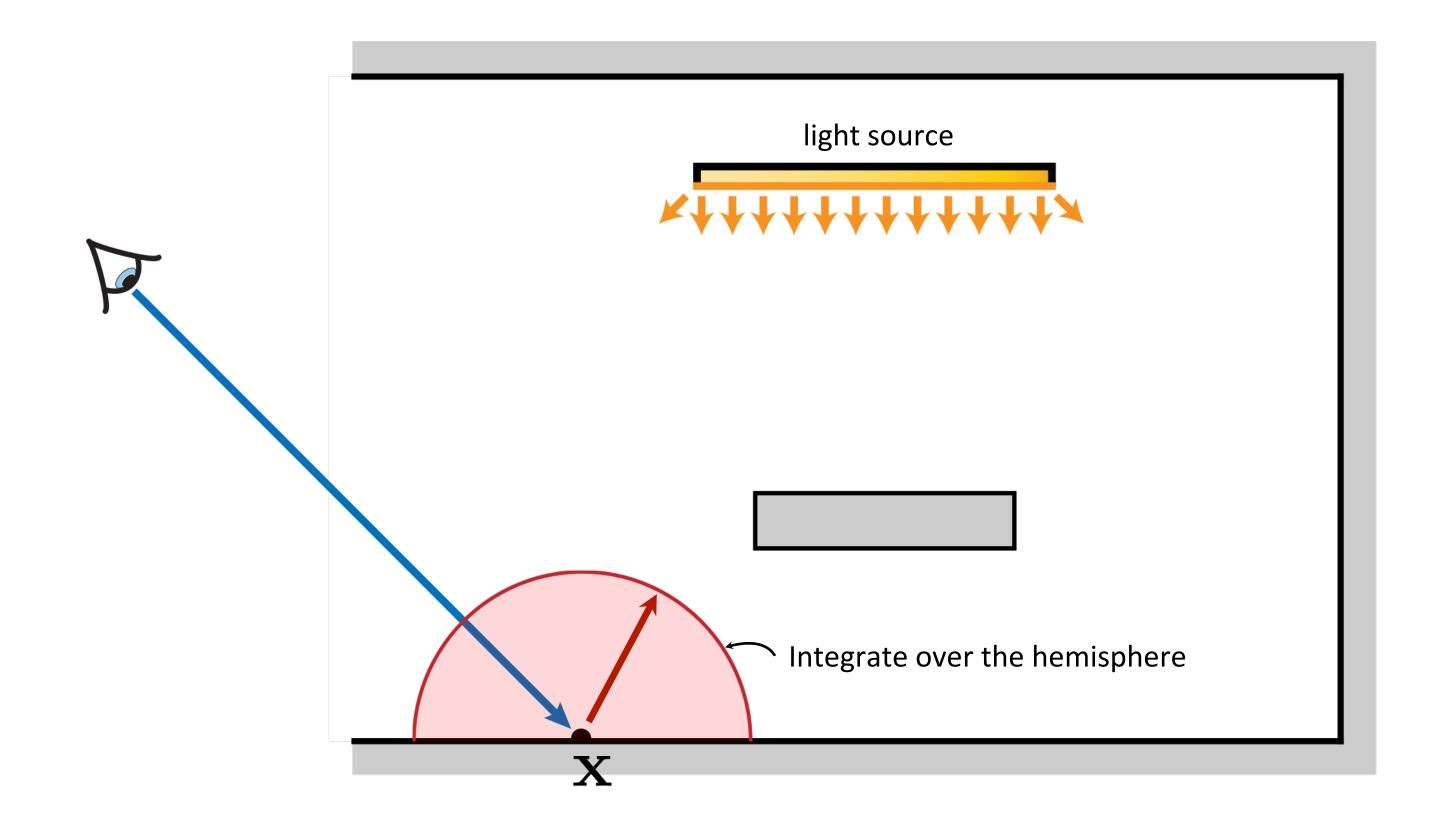
0 < numerator < 1



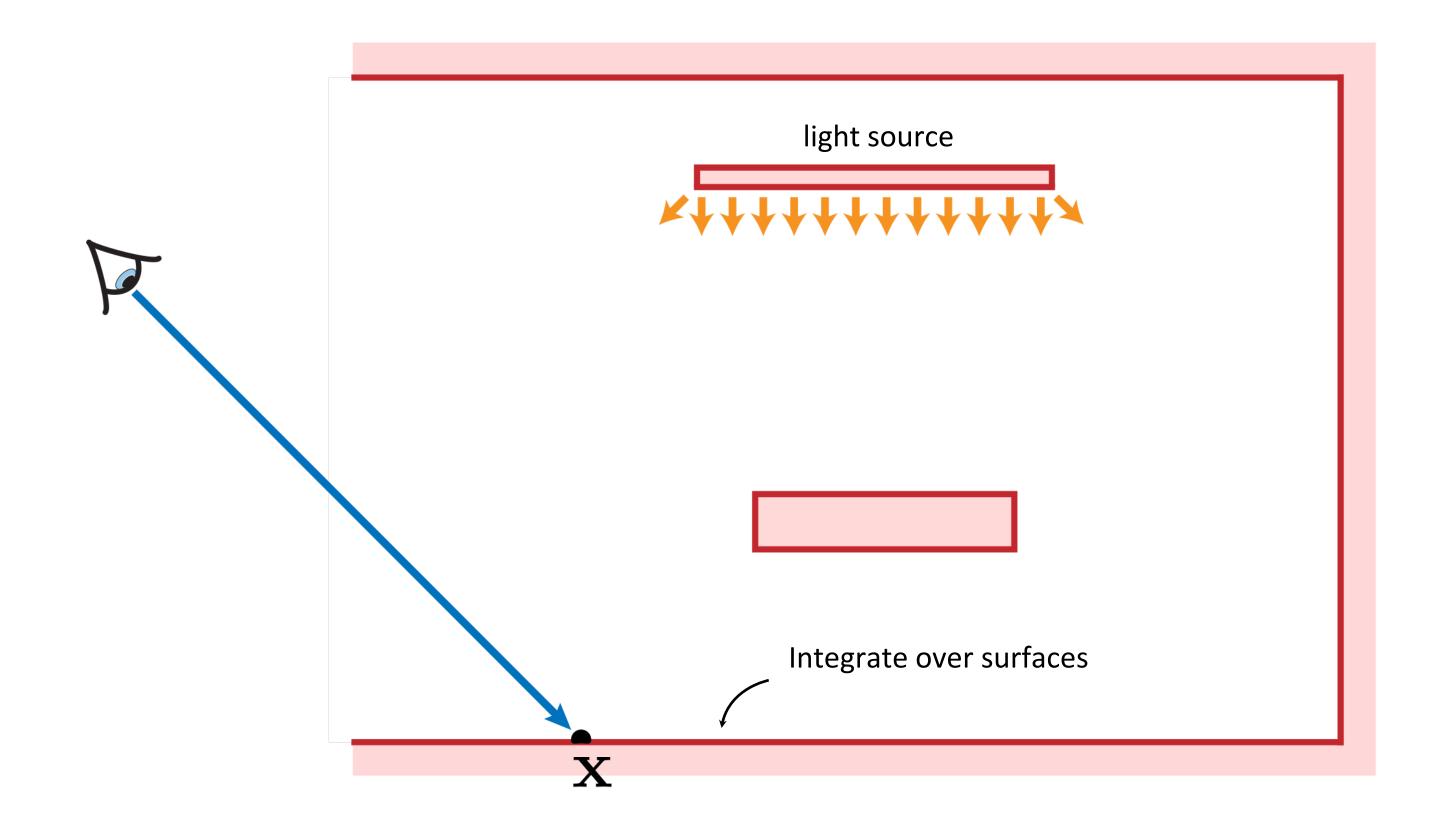
numerator = 1



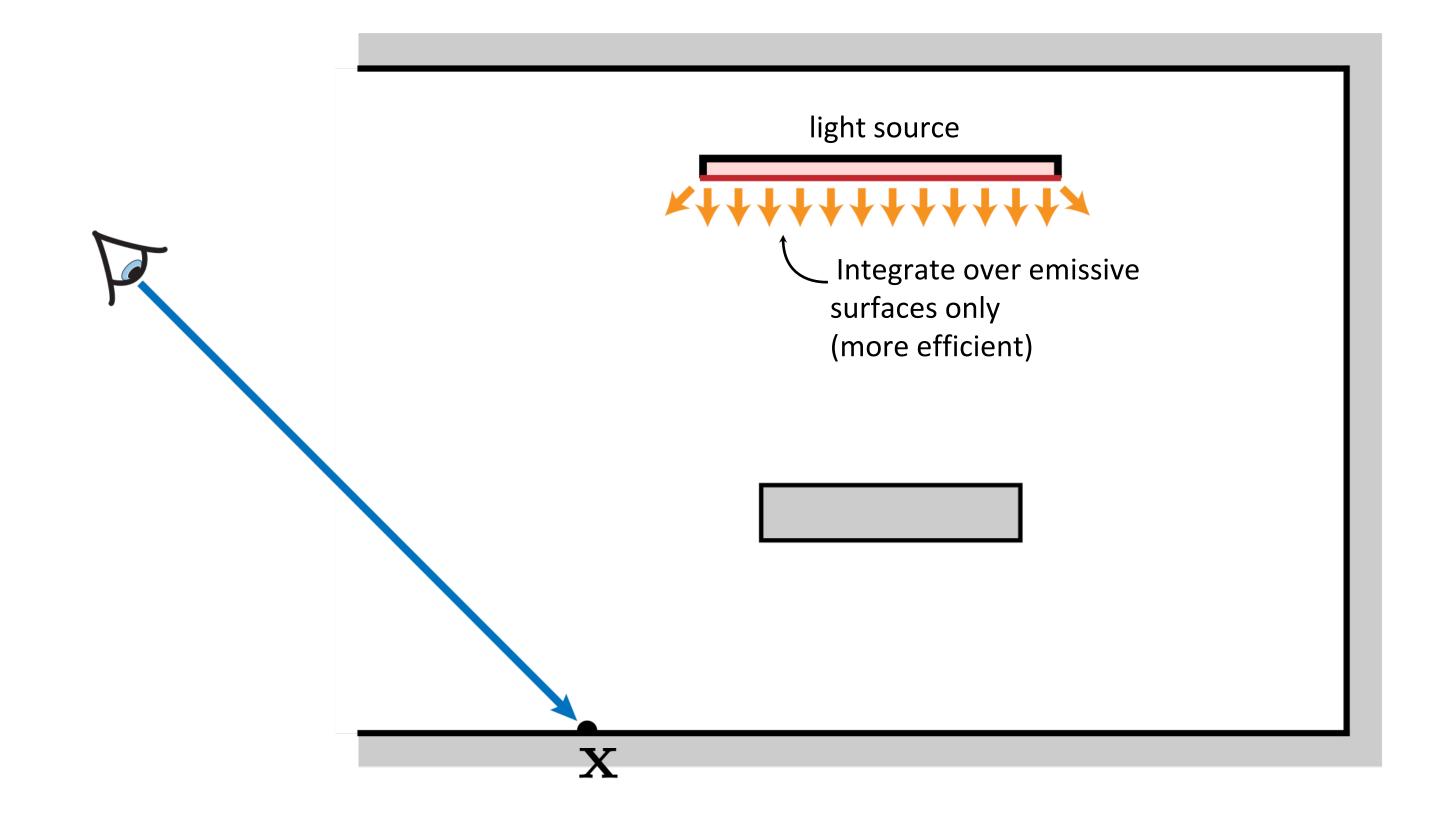
$$L_r(\mathbf{x}, \vec{\omega}_r) = \int_{H^2} f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) L_e(r(\mathbf{x}, \vec{\omega}_i), -\vec{\omega}_i) \cos \theta_i \, d\vec{\omega}_i$$



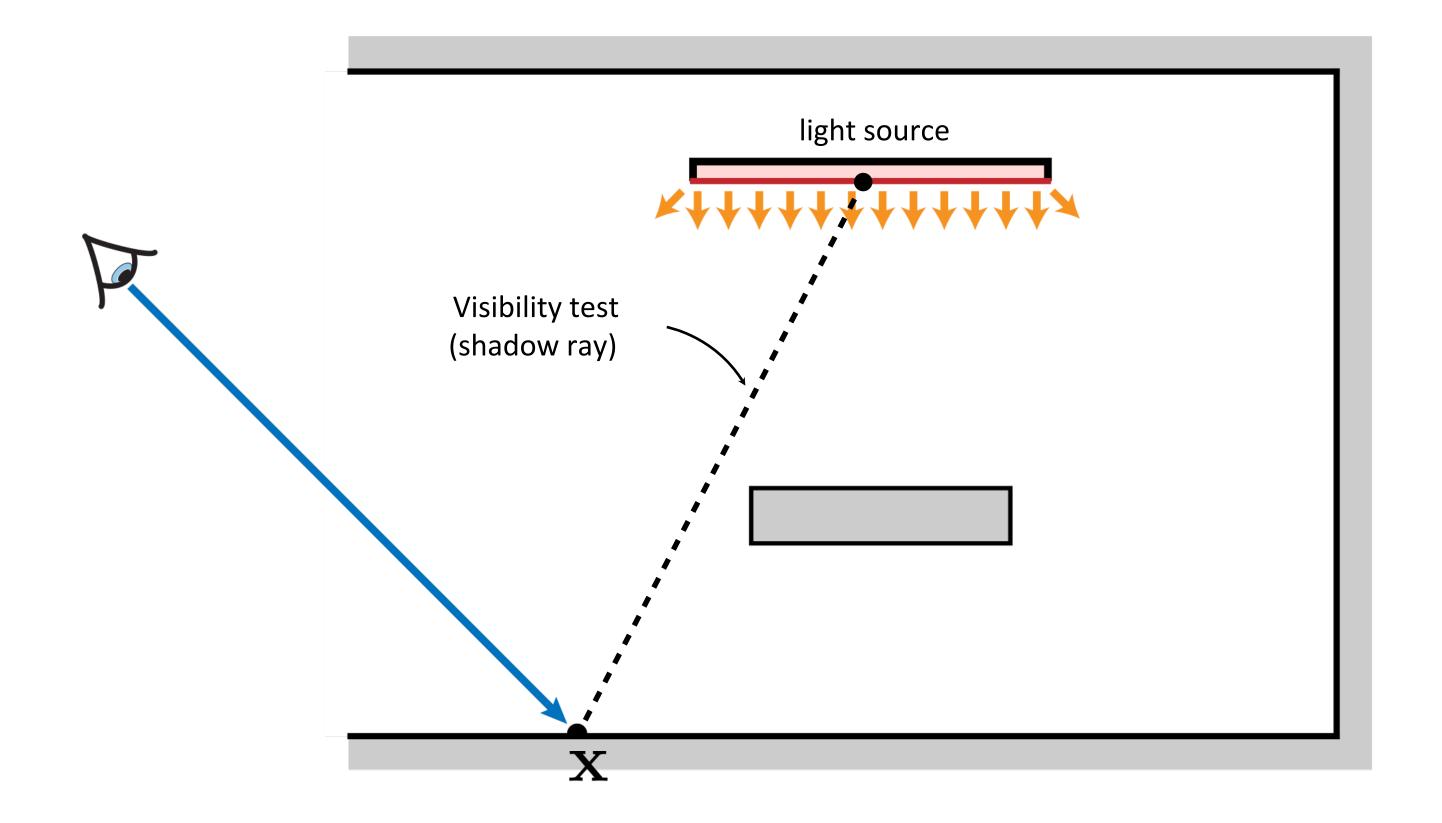
$$L_r(\mathbf{x}, \mathbf{z}) = \int_A f_r(\mathbf{x}, \mathbf{y}, \mathbf{z}) L_e(\mathbf{y}, \mathbf{x}) V(\mathbf{x}, \mathbf{y}) \frac{|\cos \theta_i| |\cos \theta_o|}{\|\mathbf{x} - \mathbf{y}\|^2} dA(\mathbf{y})$$



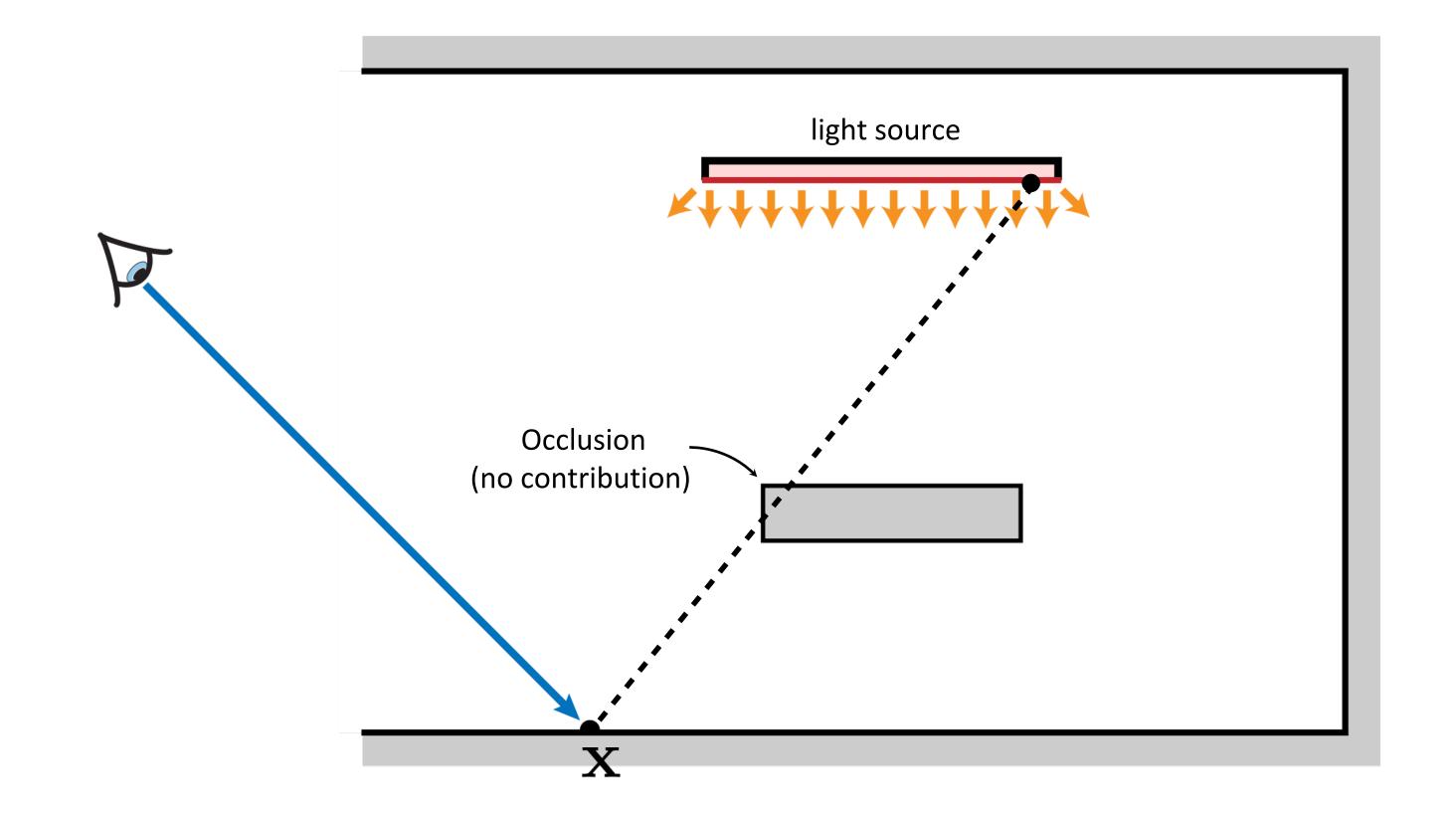
$$L_r(\mathbf{x}, \mathbf{z}) = \int_{A_e} f_r(\mathbf{x}, \mathbf{y}, \mathbf{z}) L_e(\mathbf{y}, \mathbf{x}) V(\mathbf{x}, \mathbf{y}) \frac{|\cos \theta_i| |\cos \theta_o|}{\|\mathbf{x} - \mathbf{y}\|^2} dA(\mathbf{y})$$

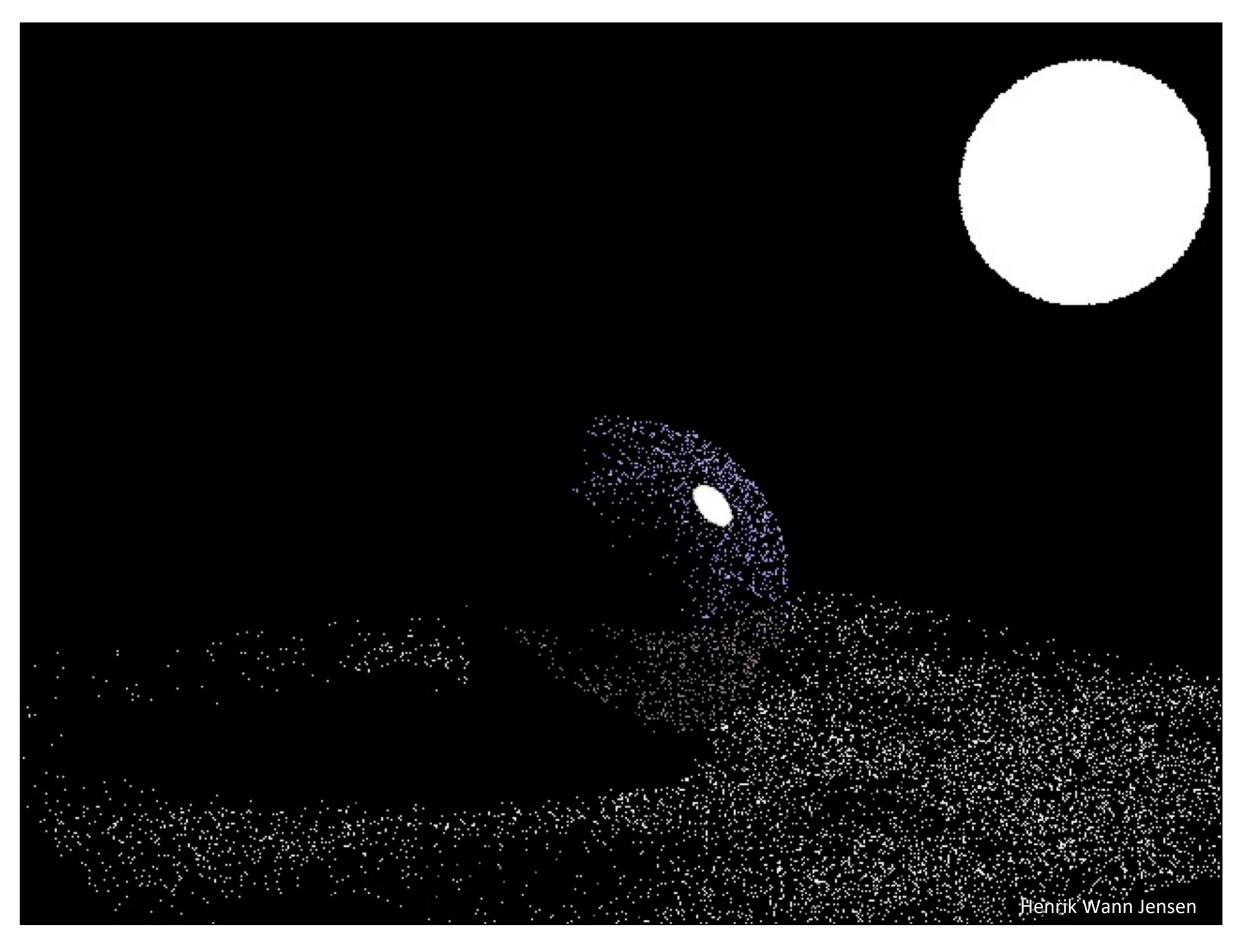


$$L_r(\mathbf{x}, \mathbf{z}) = \int_{A_e} f_r(\mathbf{x}, \mathbf{y}, \mathbf{z}) L_e(\mathbf{y}, \mathbf{x}) \frac{|\cos \theta_i| |\cos \theta_o|}{\|\mathbf{x} - \mathbf{y}\|^2} dA(\mathbf{y})$$

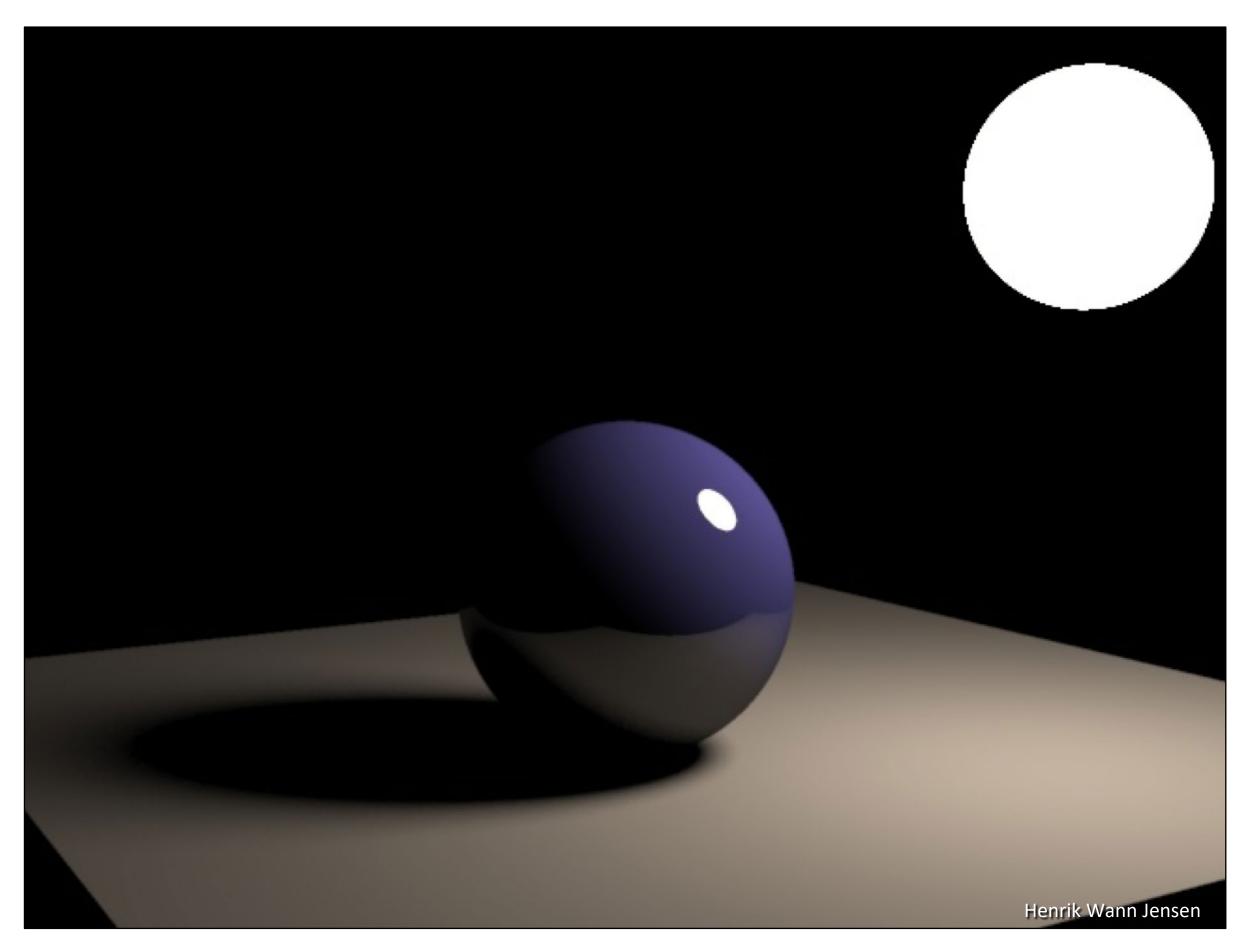


$$L_r(\mathbf{x}, \mathbf{z}) = \int_{A_e} f_r(\mathbf{x}, \mathbf{y}, \mathbf{z}) L_e(\mathbf{y}, \mathbf{x}) \frac{|\cos \theta_i| |\cos \theta_o|}{\|\mathbf{x} - \mathbf{y}\|^2} dA(\mathbf{y})$$





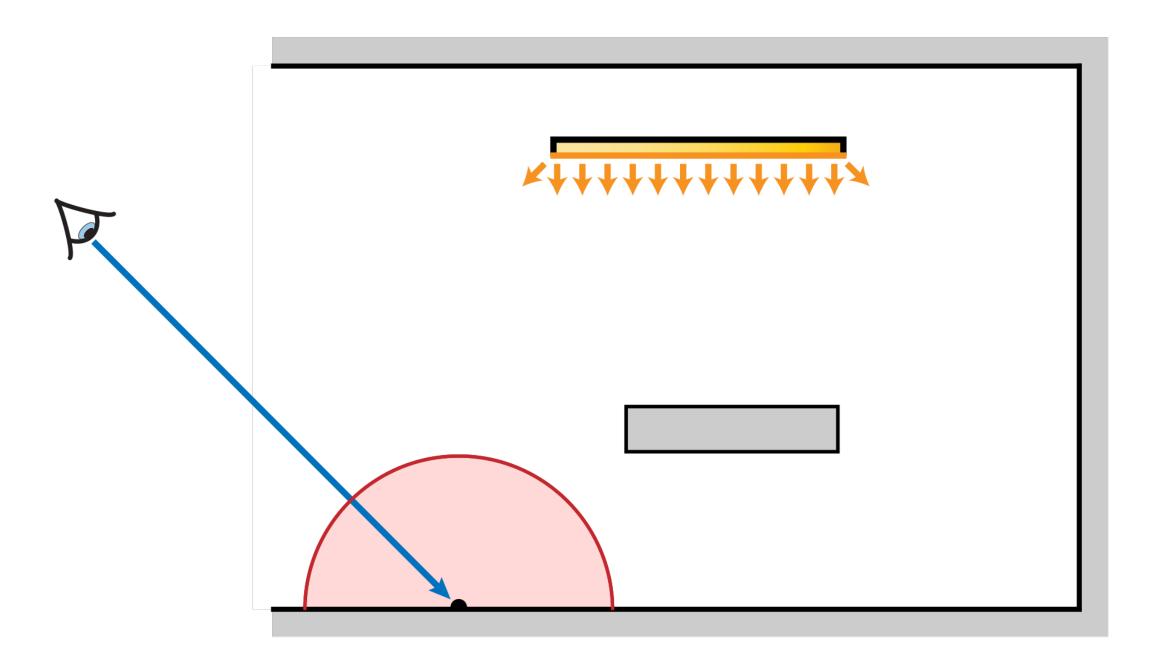
Sampling the hemisphere

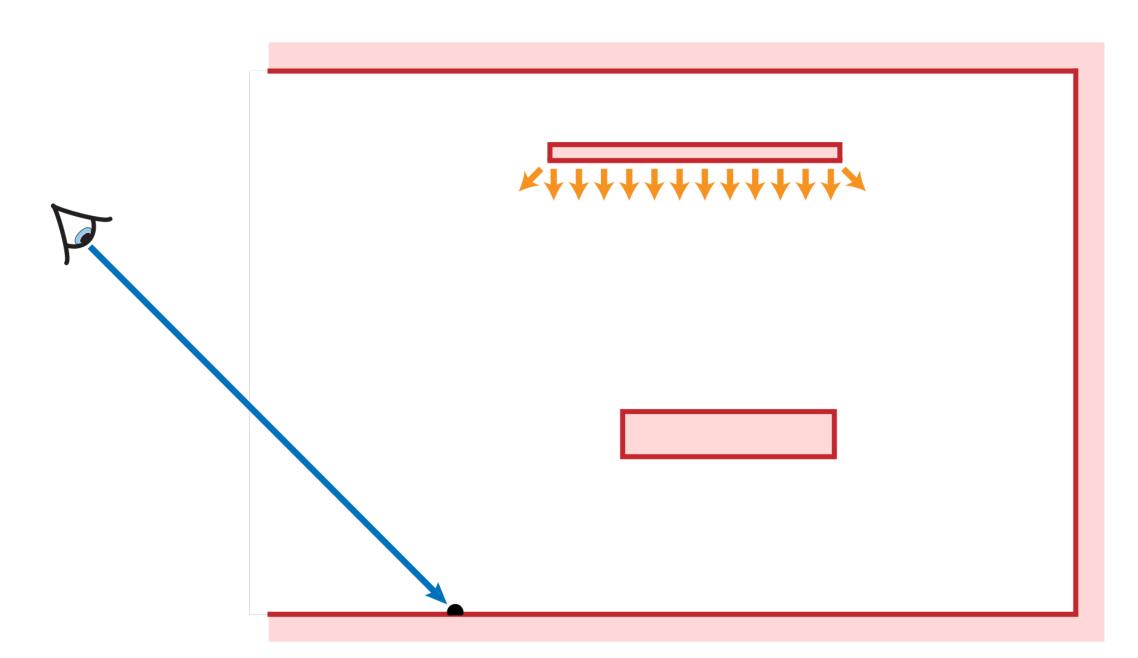


Sampling the area of the light

Forms of Reflection Equation

Hemispherical integration





$$L_r(\mathbf{x}, \vec{\omega}_r) = \int_{\mathbf{H}^2} f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) L_i(\mathbf{x}, \vec{\omega}_i) \cos \theta_i \, d\vec{\omega}_i$$

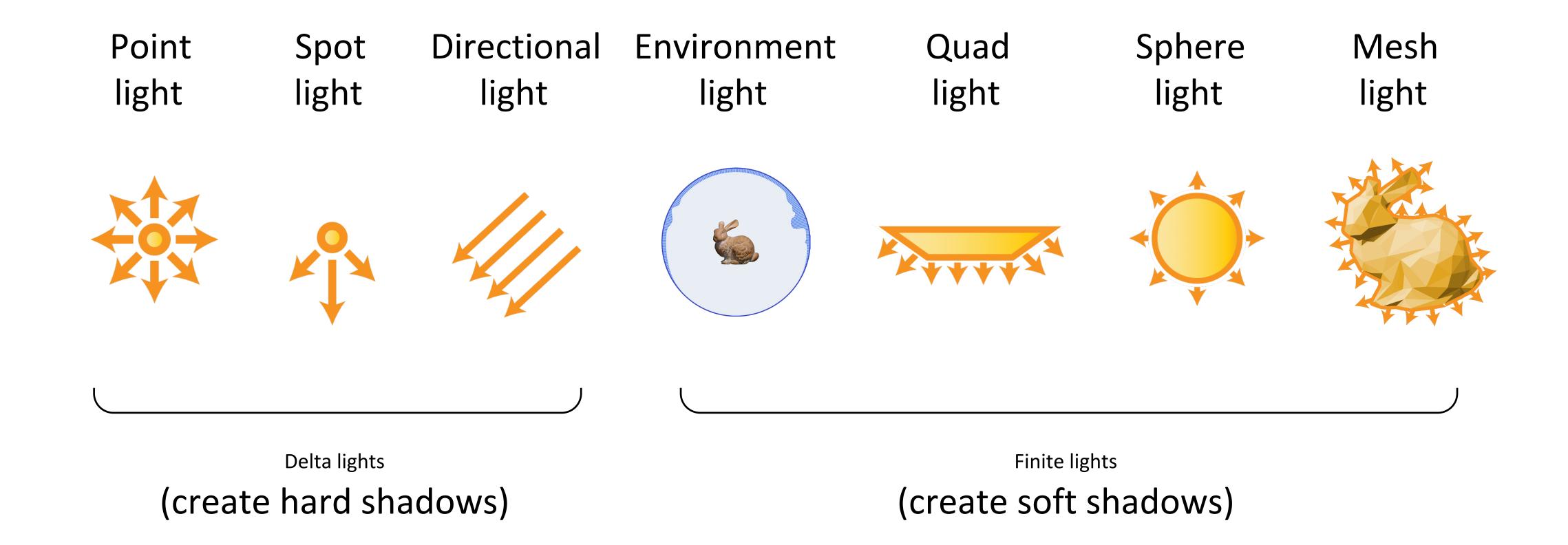
$$L_r(\mathbf{x}, \vec{\omega}_r) = \int_{H^2} f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) L_i(\mathbf{x}, \vec{\omega}_i) \cos \theta_i \, d\vec{\omega}_i \qquad L_r(\mathbf{x}, \mathbf{z}) = \int_A f_r(\mathbf{x}, \mathbf{y}, \mathbf{z}) L_i(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \mathbf{y}) \, dA(\mathbf{y})$$

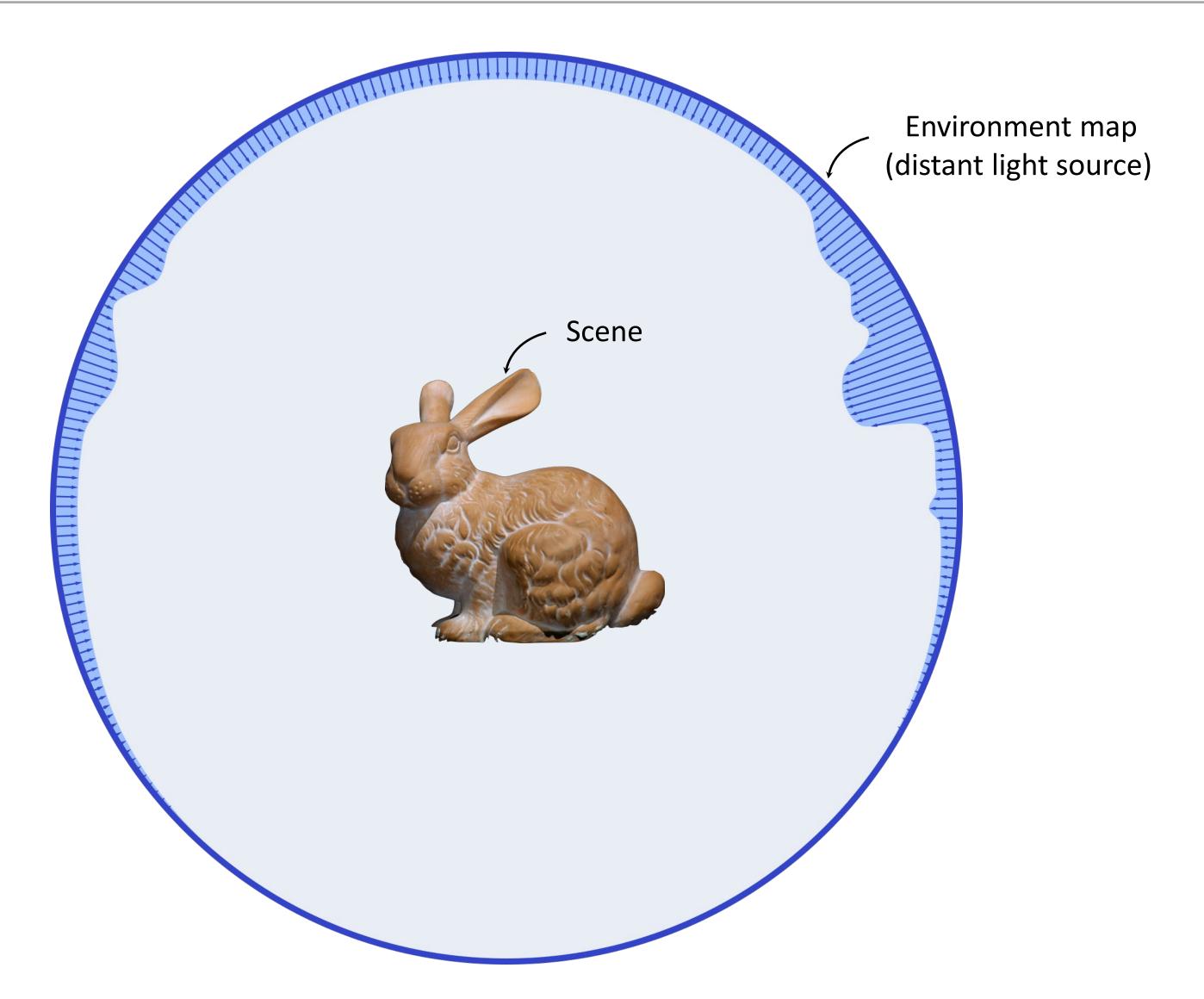
How do we decide which one to use for sampling direct illumination?

The answer depends on the types of light sources and BRDFs in the scene.

Light Sources

Light Sources

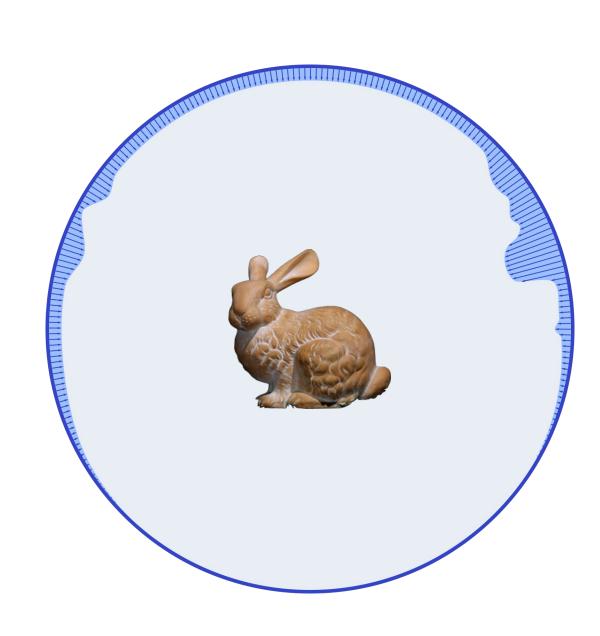




The image "wraps" around the virtual scene, serving as a distant source of illumination

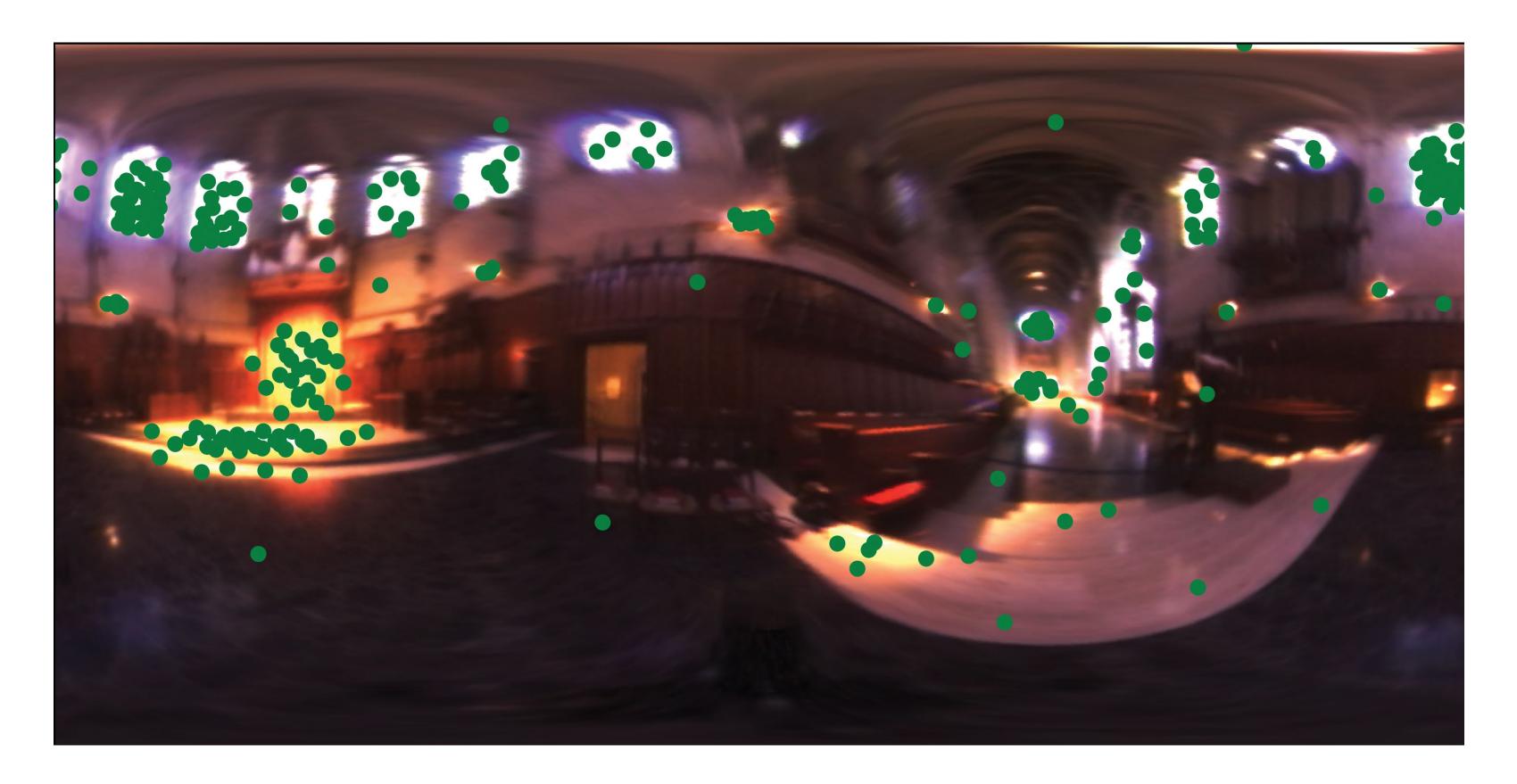
Convenient to express using the *hemispherical* form of the reflectance equation

$$L_r(\mathbf{x}, \vec{\omega}_r) = \int_{\Omega} f_r(\vec{\omega}_i, \vec{\omega}_r) L_i(\mathbf{x}, \vec{\omega}_i) \cos \theta_i \, d\vec{\omega}_i$$
$$= \int_{\Omega} f_r(\vec{\omega}_i, \vec{\omega}_r) L_{\text{env}}(\vec{\omega}_i) V(\mathbf{x}, \vec{\omega}_i) \cos \theta_i \, d\vec{\omega}_i$$



$$L_r(\mathbf{x}, \vec{\omega}_r) = \int_{\Omega} f_r(\vec{\omega}_i, \vec{\omega}_r) L_{\text{env}}(\vec{\omega}_i) V(\mathbf{x}, \vec{\omega}_i) \cos \theta_i \, d\vec{\omega}_i$$

Importance Sampling L_{env}



Sample using the hemispherical form of the reflectance equation and pdf

$$p(\vec{\omega}_i) \propto L_{\rm env}(\vec{\omega}_i)$$

Importance Sampling $L_{\rm env}$

$$p(\vec{\omega}_i) \propto L_{\rm env}(\vec{\omega}_i)$$

Several strategies exist

We'll discuss:

- Marginal/Conditional CDF method
- Hierarchical warping method

Importance Sampling

Recipe:

- 1. Express the desired distribution in a convenient coordinate system
 - requires computing the Jacobian
- 2. Compute marginal and conditional 1D PDFs
- 3. Sample 1D PDFs using the inversion method

Marginal/Conditional CDF

Assume the lat/long parameterization

Draw samples from joint $p(heta,\phi) \propto L_{
m env}(heta,\phi) \sin heta$

Why the Sine?

General case of integrating some $f(\vec{\omega})$ over S^2

If we set

 $d\vec{\omega} = \sin\theta d\theta d\phi$ we want to cancel out the sine.

Comes from the Jacobian

$$\int_{S^2} f(\vec{\omega}) d\vec{\omega} = \int_0^{2\pi} \int_0^{\pi} f(\theta, \phi) \sin \theta \, d\theta d\phi$$

$$\approx \frac{1}{N} \sum_{i=1}^N \frac{f(\theta_i, \phi_i) \sin \theta_i}{p(\theta_i, \phi_i)}$$

$$p(\theta, \phi) \propto f(\theta, \phi) \sin \theta$$

Marginal/Conditional CDF

Assume the lat/long parameterization

Draw samples from joint $p(\theta,\phi) \propto L_{\mathrm{env}}(\theta,\phi) \sin \theta$

- Step 1: create scalar version $L'(\theta,\phi)$ of $L_{\mathrm{env}}(\theta,\phi)\sin\theta$
- Step 2: compute marginal PDF

$$p(\theta) = \int_0^{2\pi} L'(\theta, \phi) \, d\phi$$

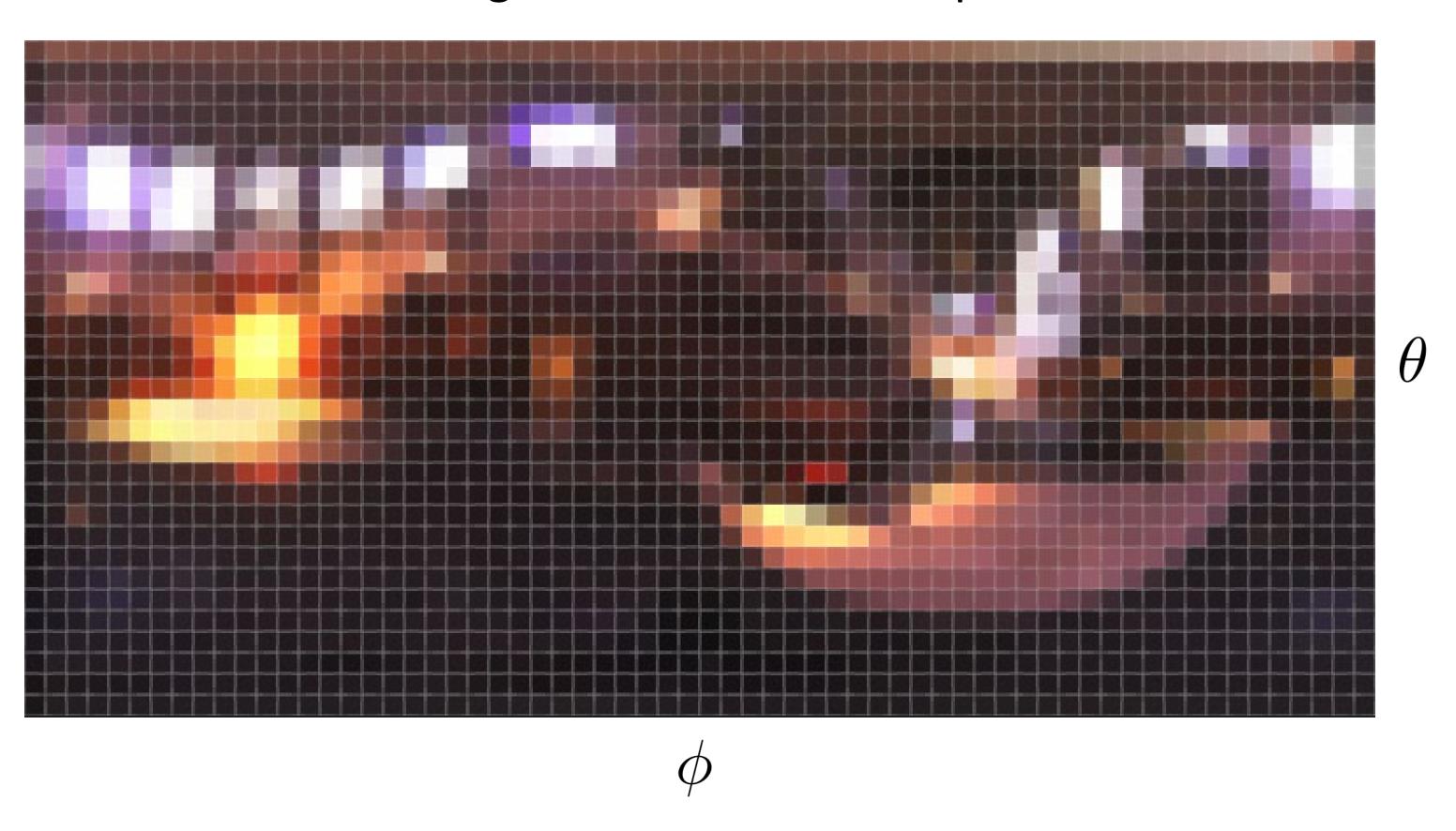
- Step 3: compute conditional PDF

$$p(\phi|\theta) = \frac{p(\theta,\phi)}{p(\theta)}$$

- Step 4: draw samples $\theta_i \sim p(\theta)$ and $\phi_i = p(\phi|\theta)$

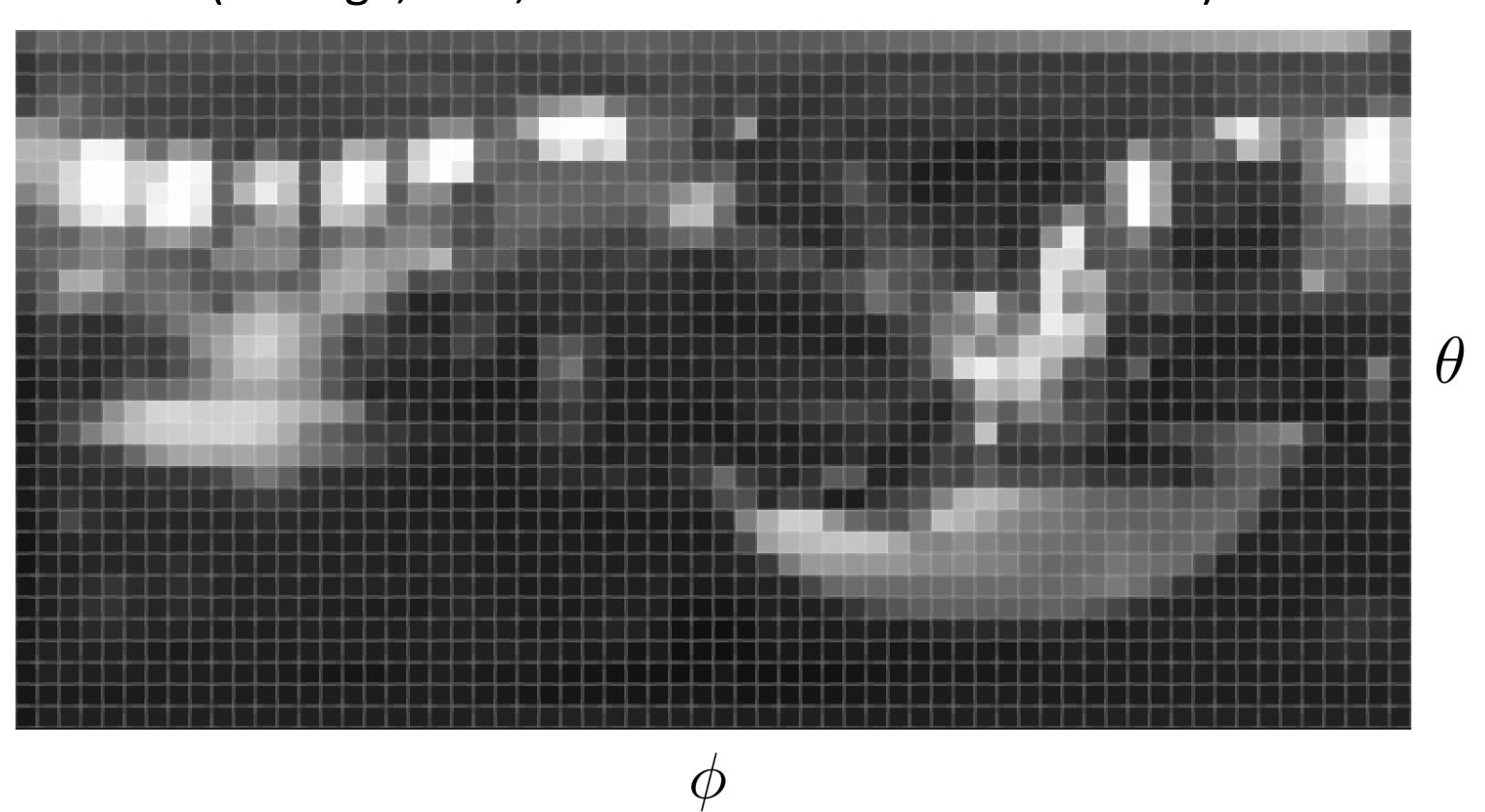
Step 1: Scalar Importance Func.

Original environment map



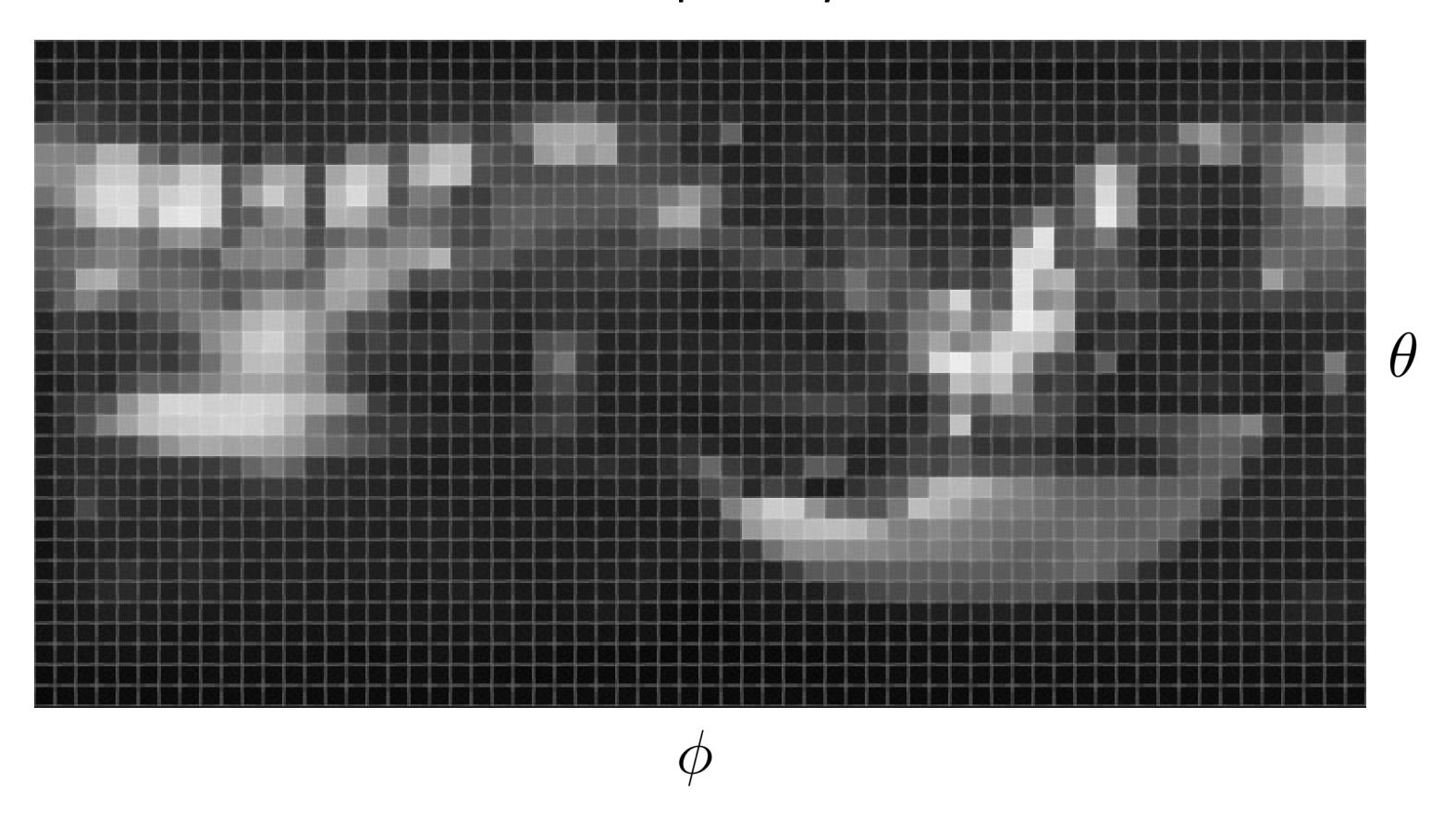
Step 1: Scalar Importance Func.

Scalar version (average, max, or luminance of RGB channels)

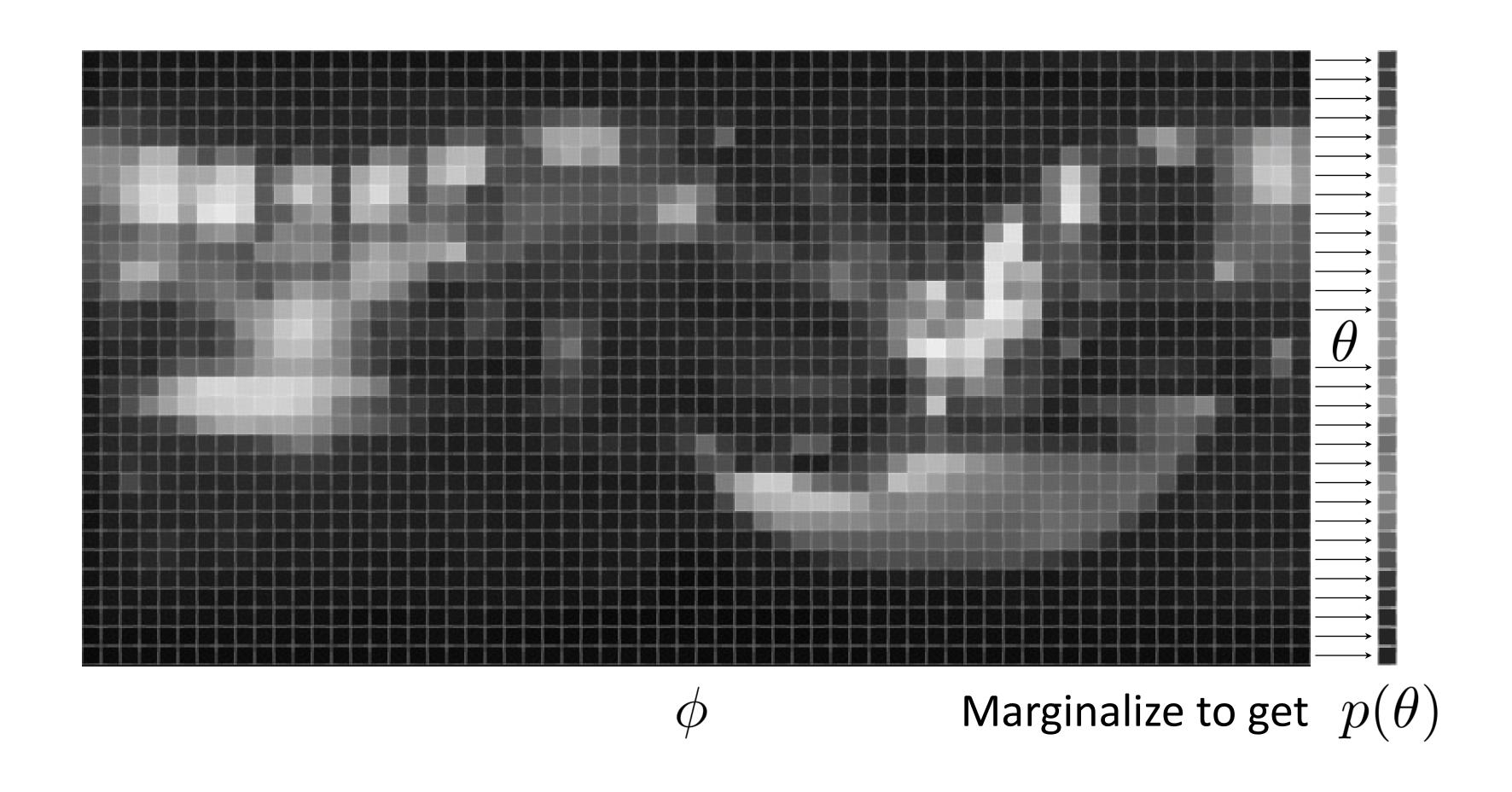


Step 1: Scalar Importance Func.

Multiplied by $\sin heta$

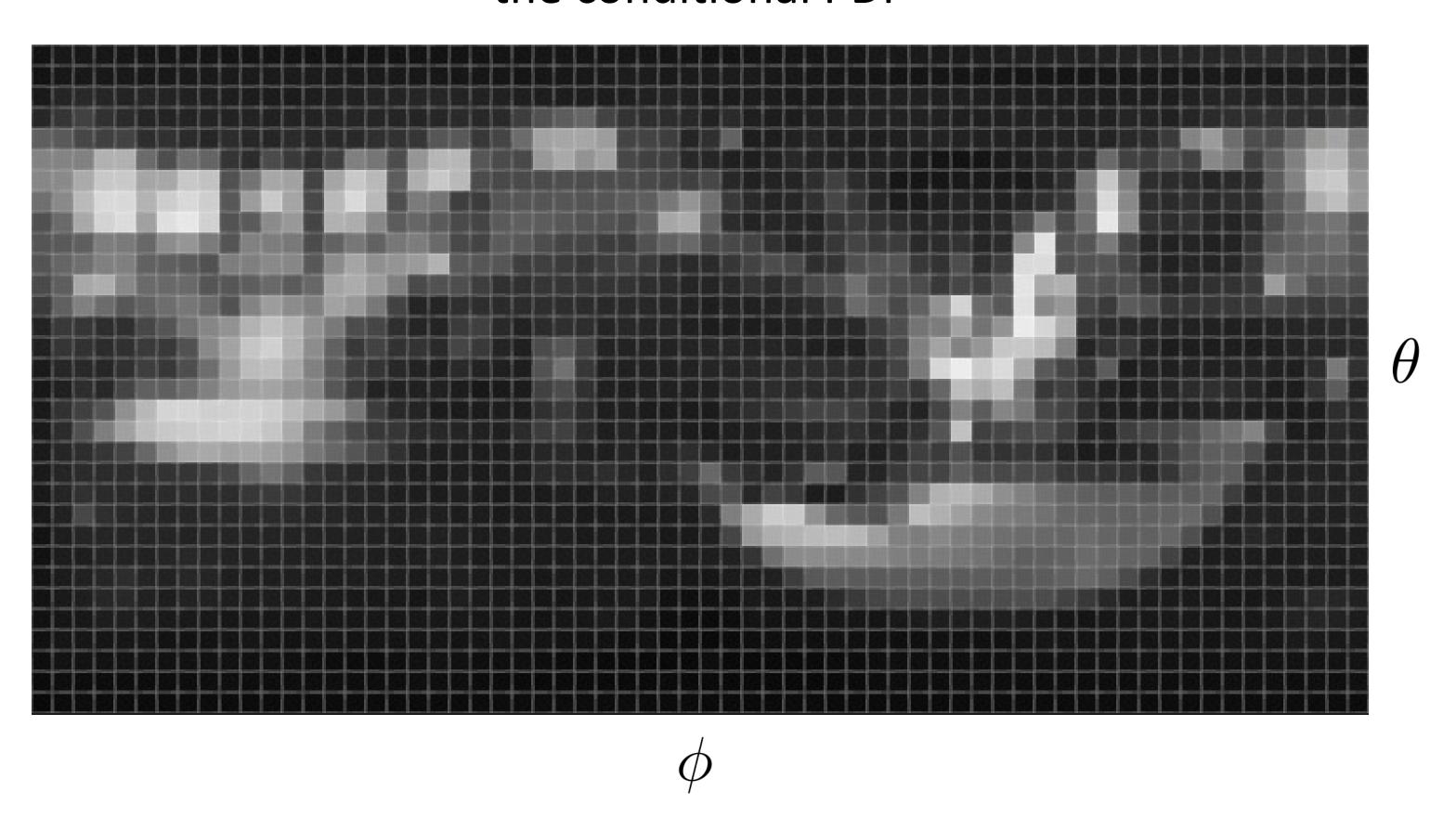


Step 2: Marginalization

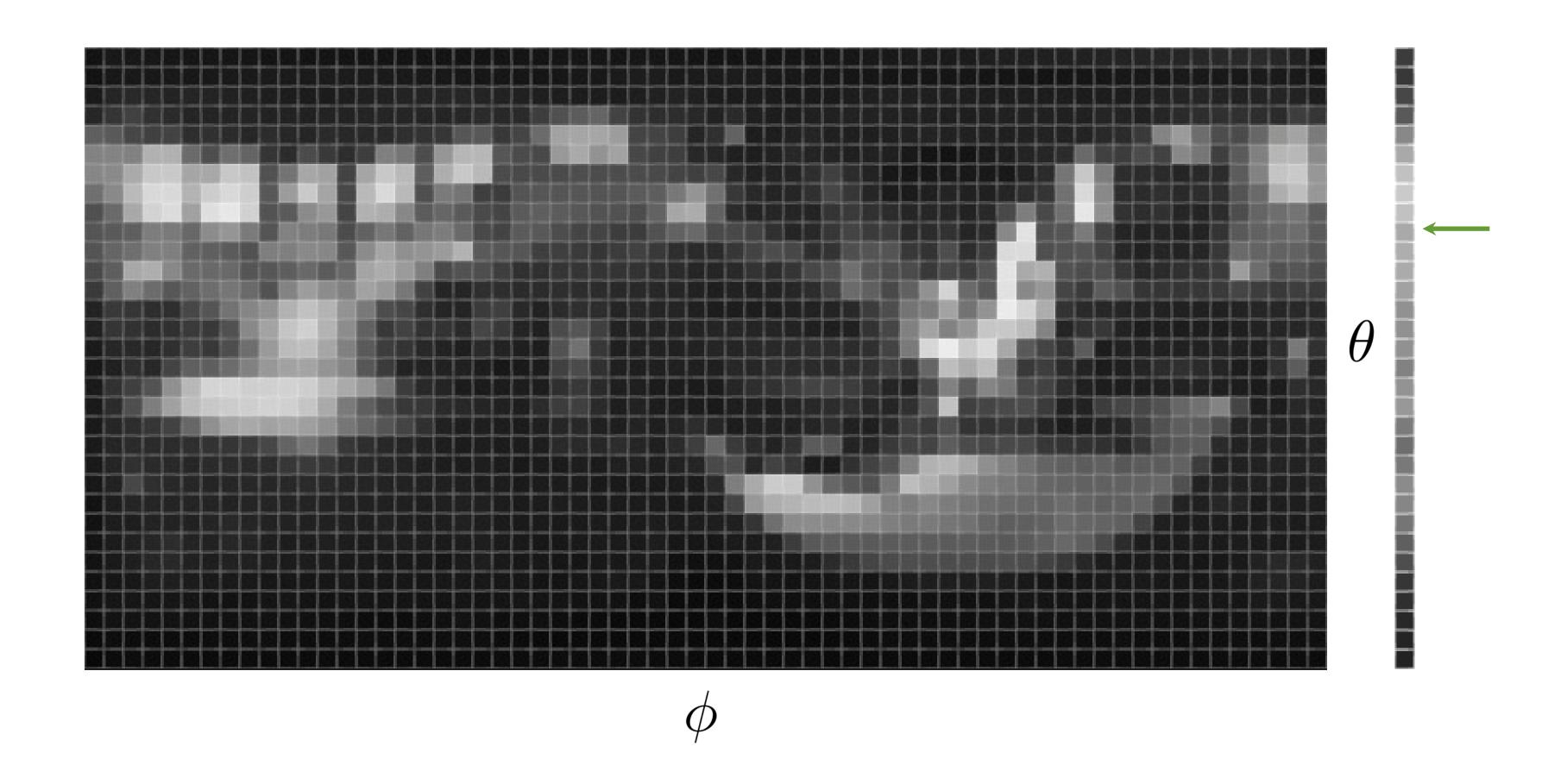


Step 3: Conditional PDFs

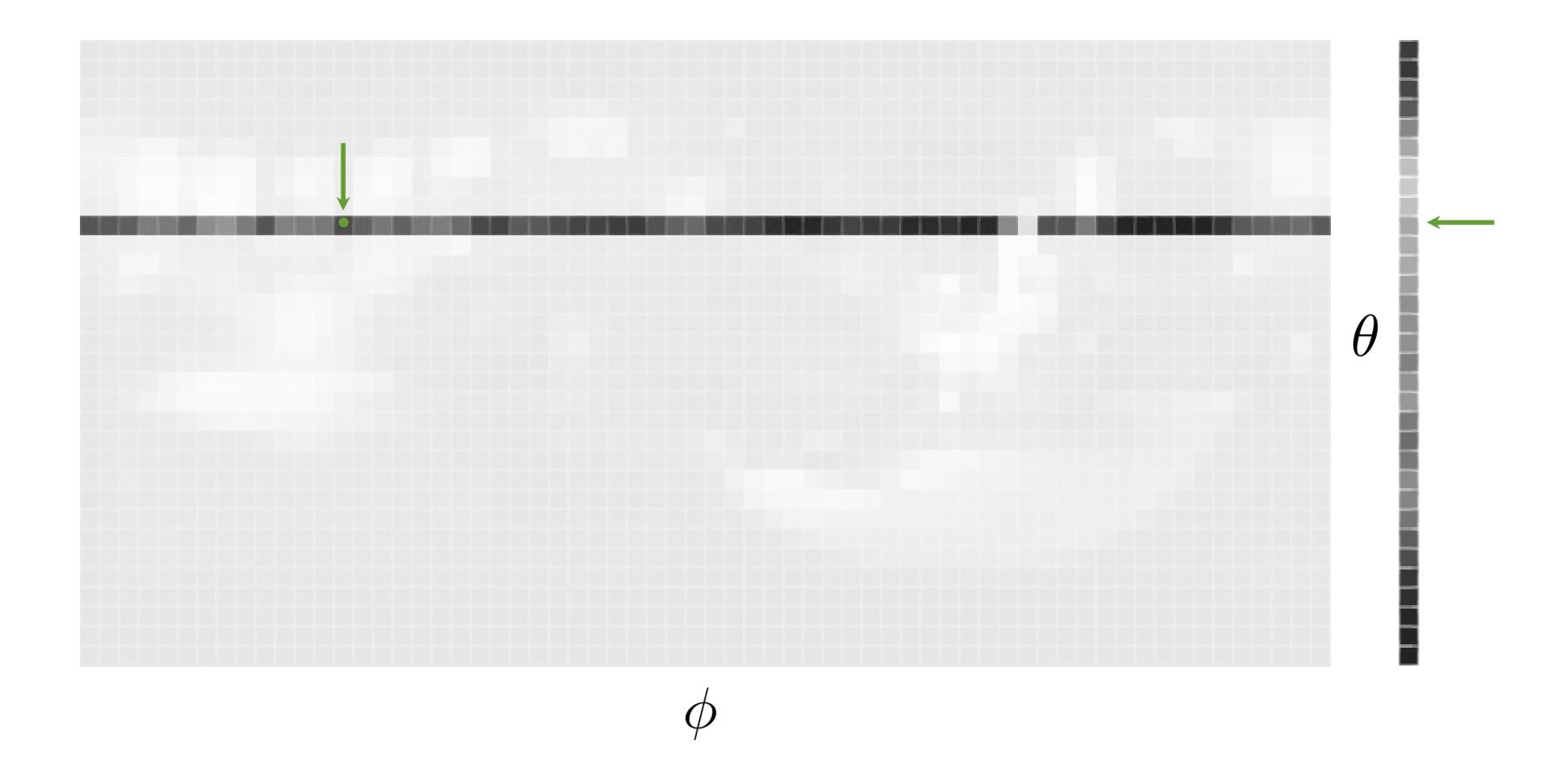
Once normalized, each row can serve as the conditional PDF



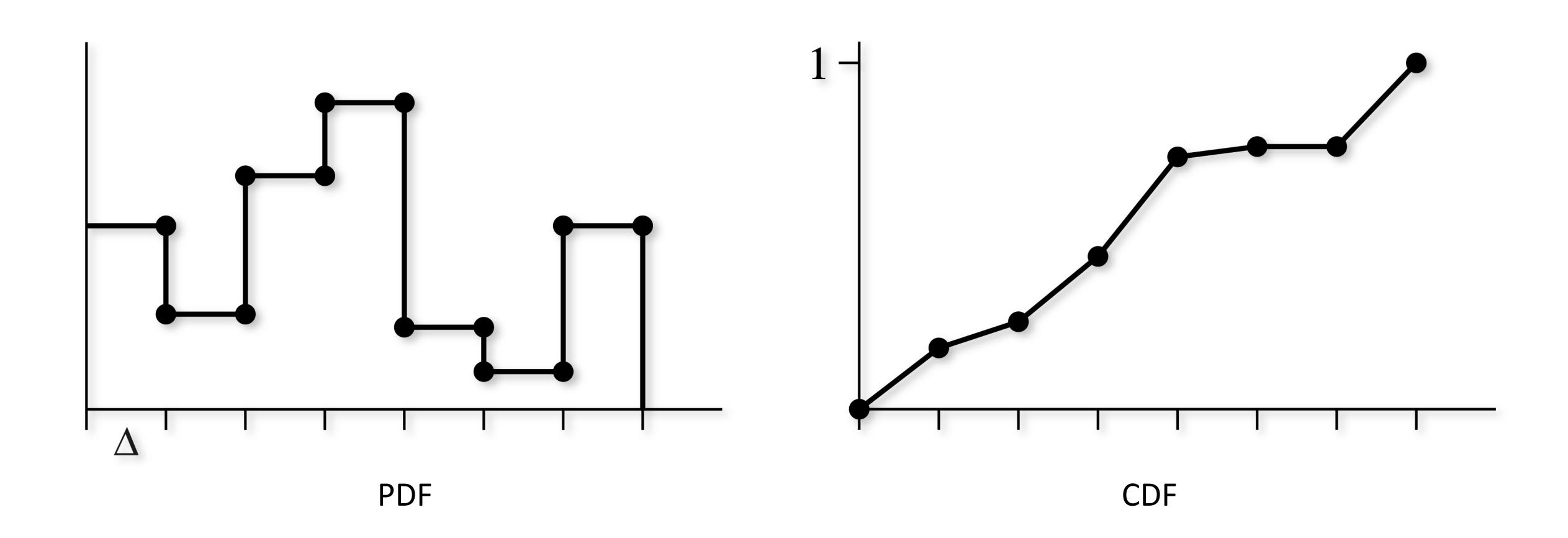
Step 4: Sampling



Step 4: Sampling



Sampling Discrete 1D PDFs

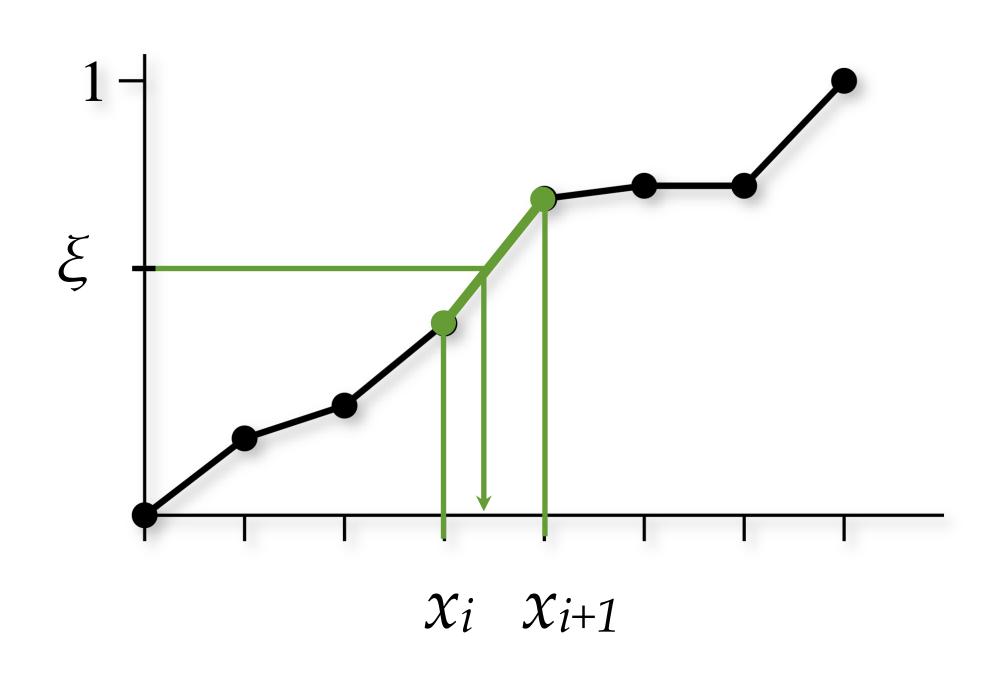


Sampling Discrete 1D PDFs

Given a uniform random value ξ

Find x_i and x_{i+1} using binary search

Linearly interpolate to find x

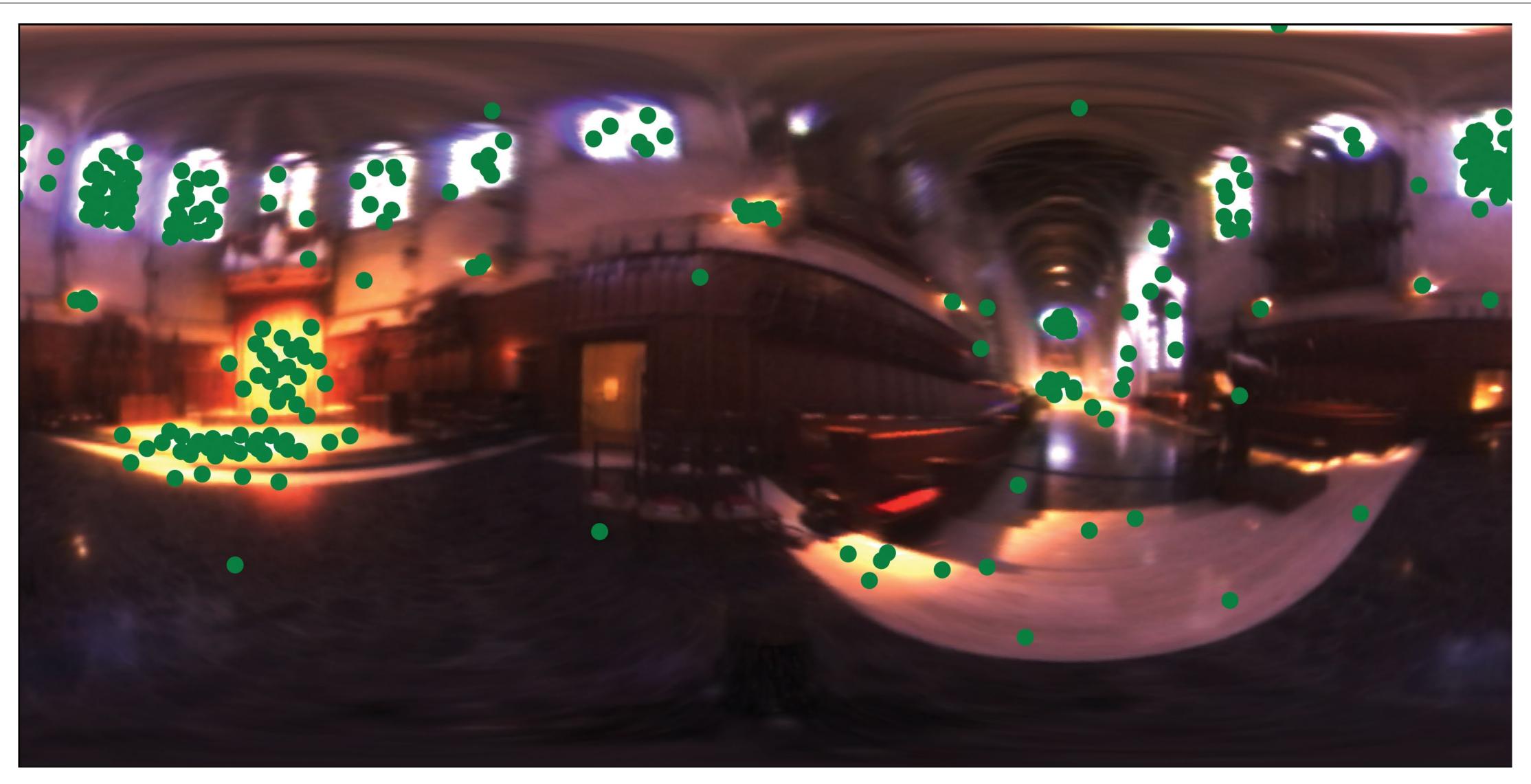


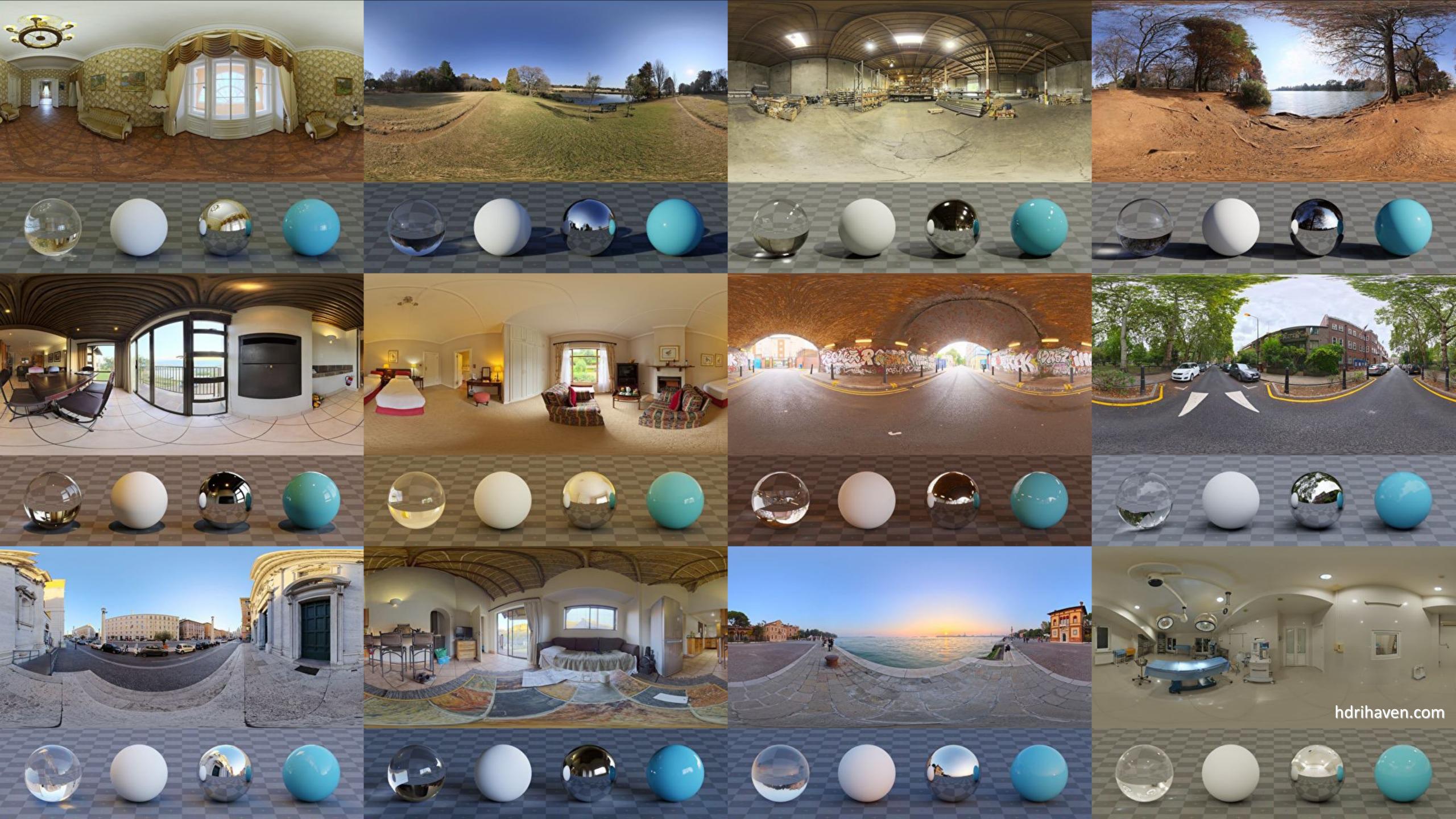
C++ details

Don't need to implement binary search yourself!

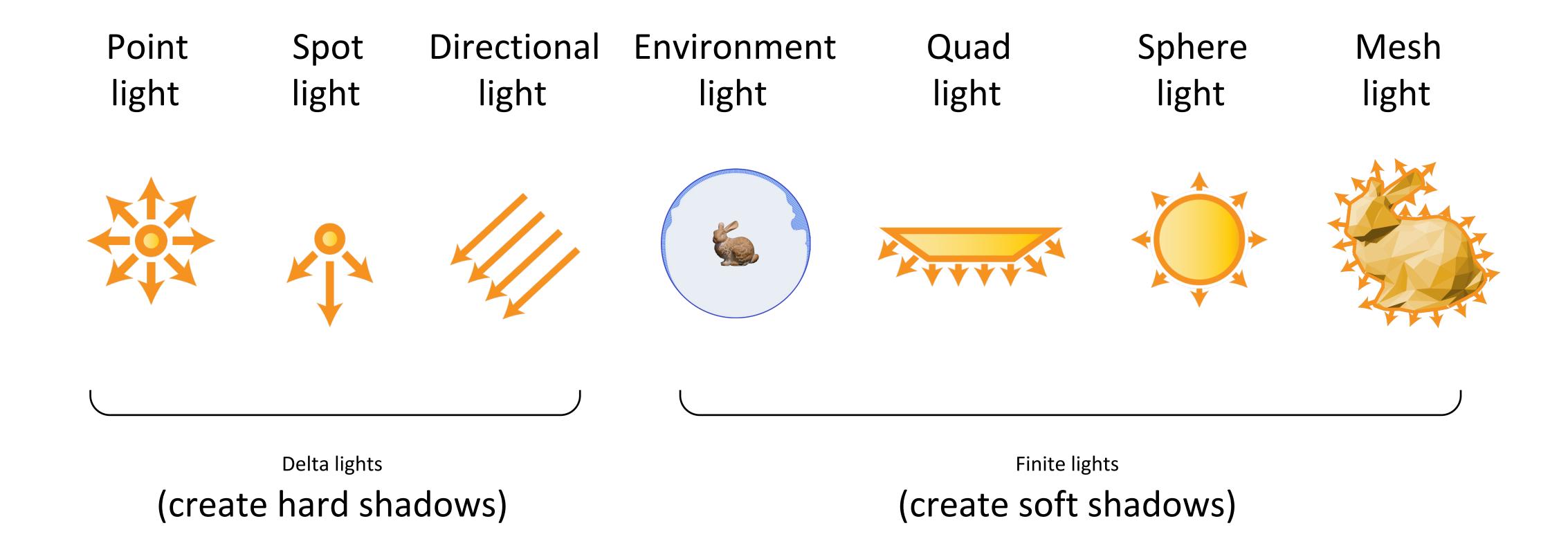
- Given sorted list, use std::lower_bound(...)
- See implementation in PBRT

Resulting Sample Distribution





Light Sources



Point Light

Omnidirectional emission from a single point

Typically defined using a point ${\bf p}$ and emitted power Φ

- delta function with respect to which form of the reflection equation?

Point Light

Omnidirectional emission from a single point

Typically defined using a point ${\bf p}$ and emitted power Φ

- delta function with respect to surface integral form of the reflection equation

$$L_r(\mathbf{x}, \mathbf{z}) = \int_{A_e} f_r(\mathbf{x}, \mathbf{y}, \mathbf{z}) \underbrace{L_e(\mathbf{y}, \mathbf{x})} V(\mathbf{x}, \mathbf{y}) \frac{|\cos \theta_i| |\cos \theta_o|}{\|\mathbf{x} - \mathbf{y}\|^2} dA(\mathbf{y})$$

$$L_e(\mathbf{y}, \mathbf{x}) = \frac{\Phi}{4\pi} \delta(\mathbf{y} - \mathbf{p})$$

$$L_r(\mathbf{x}, \mathbf{z}) = \frac{\Phi}{4\pi} f_r(\mathbf{x}, \mathbf{p}, \mathbf{z}) V(\mathbf{x}, \mathbf{p}) \frac{|\cos \theta_i|}{\|\mathbf{x} - \mathbf{p}\|^2}$$

Point Light

Omnidirectional emission from a single point

Typically defined using a point ${\bf p}$ and emitted power Φ

- delta function with respect to surface integral form of the reflection equation

$$L_r(\mathbf{x}, \mathbf{z}) = \frac{\Phi}{4\pi} f_r(\mathbf{x}, \mathbf{p}, \mathbf{z}) V(\mathbf{x}, \mathbf{p}) \frac{|\cos \theta_i|}{\|\mathbf{x} - \mathbf{p}\|^2}$$

Spot Light?

Directionally dependent emission from a single point

Typically defined using a point p and ...

$$L_r(\mathbf{x}, \mathbf{z}) = \frac{\Phi}{4\pi} f_r(\mathbf{x}, \mathbf{p}, \mathbf{z}) V(\mathbf{x}, \mathbf{p}) \frac{|\cos \theta_i|}{\|\mathbf{x} - \mathbf{p}\|^2}$$

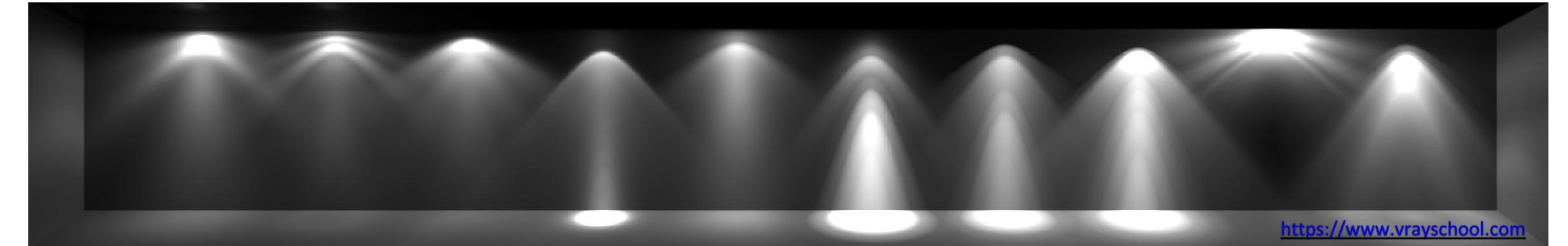
Spot Light

Directionally dependent emission from a single point

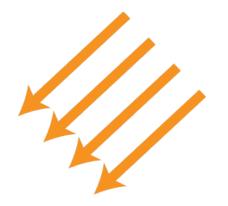
Typically defined using a point ${\bf p}$ and a directionally dependent radiant intensity function ${\it I}$

$$L_r(\mathbf{x}, \mathbf{z}) = I(\mathbf{p}, \mathbf{x}) f_r(\mathbf{x}, \mathbf{p}, \mathbf{z}) V(\mathbf{x}, \mathbf{p}) \frac{|\cos \theta_i|}{\|\mathbf{x} - \mathbf{p}\|^2}$$

The intensity can be defined using IES profiles:



Directional Light



Far-away emission from single direction (delta environment map)

Typically defined using a direction $\overrightarrow{\omega}_d$ and radiance L_d

- delta function with respect to which form of the reflection equation?

Directional Light

Far-away emission from single direction (delta environment map)

Typically defined using a direction $\overrightarrow{\omega}_d$ and radiance L_d

- delta function with respect to hemispherical integral form of the reflection equation

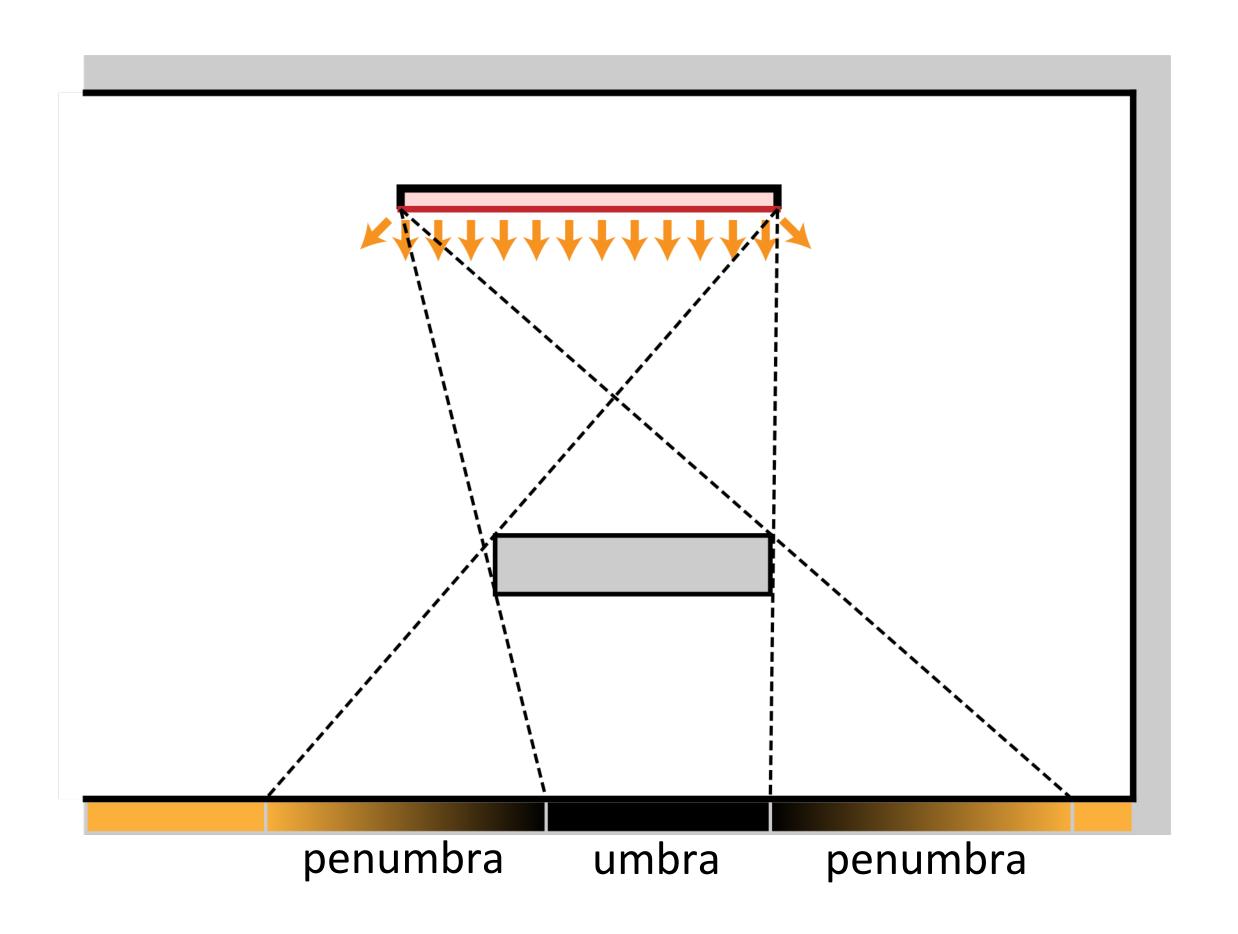
$$L_r(\mathbf{x}, \vec{\omega}_r) = \int_{H^2} f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) \underbrace{L_e(r(\mathbf{x}, \vec{\omega}_i), -\vec{\omega}_i)}_{\text{cos } \theta_i d\vec{\omega}_i}$$

$$L_e(\mathbf{y}, \vec{\omega}) = V(\mathbf{y}, \vec{\omega}_d) L_d \delta(\vec{\omega}_d - \vec{\omega})$$

$$L(\mathbf{x}, \vec{\omega}_r) = f_r(\mathbf{x}, \vec{\omega}_d, \vec{\omega}_r) V(\mathbf{x}, \vec{\omega}_d) L_d \cos \theta_d$$

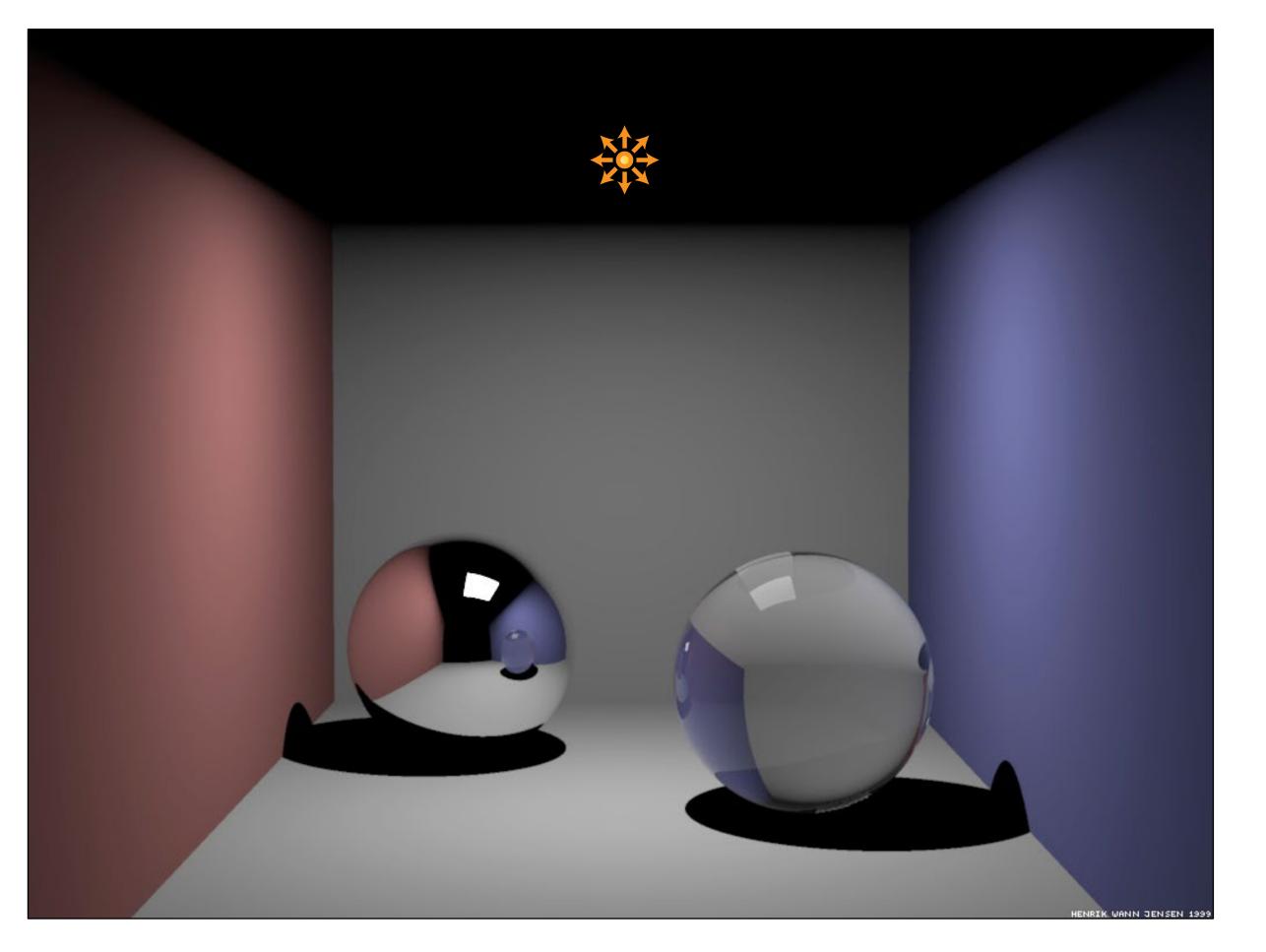
Quad Light

Has finite area... creates soft shadows

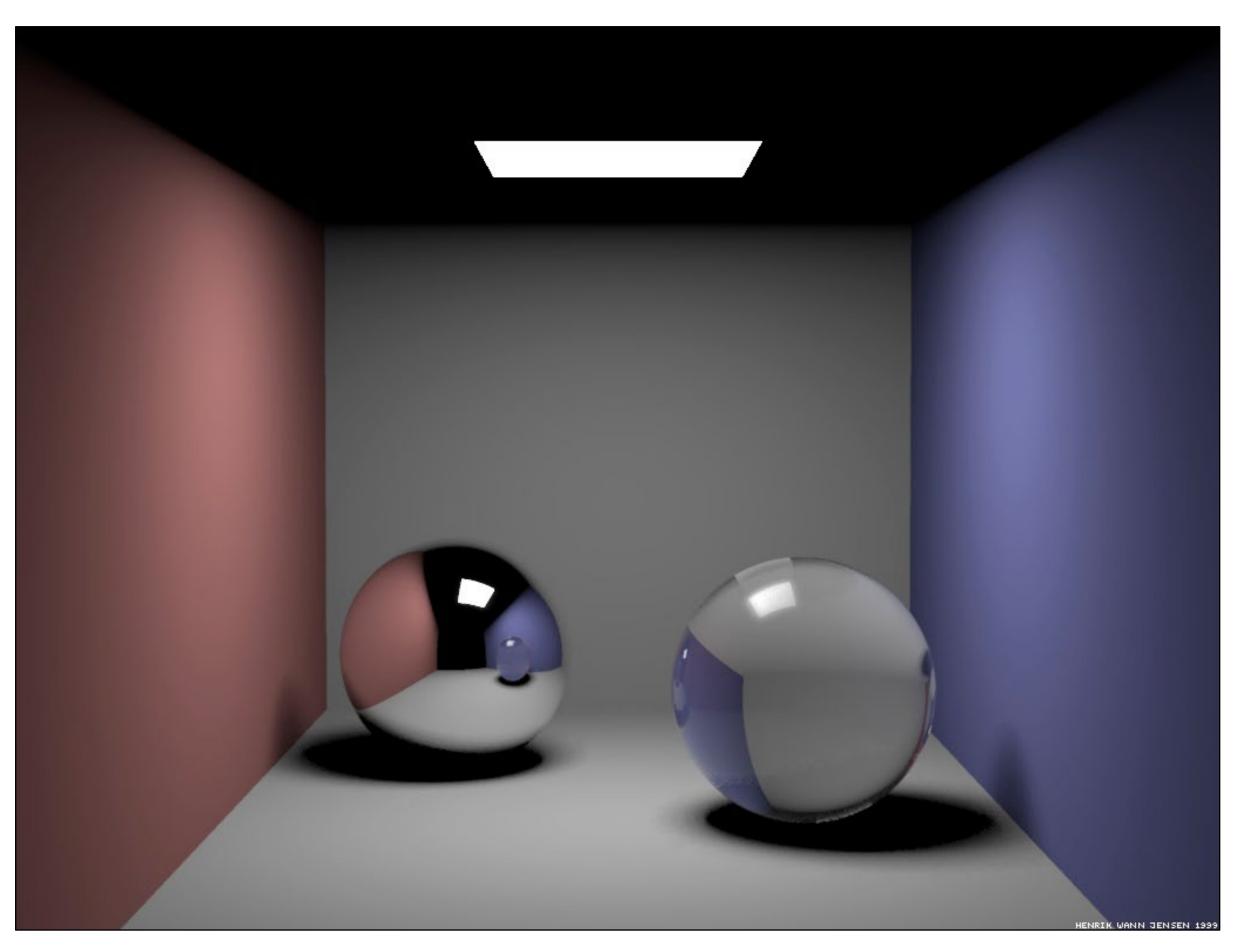


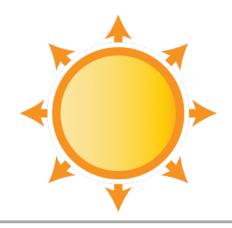
Quad Light

Point light



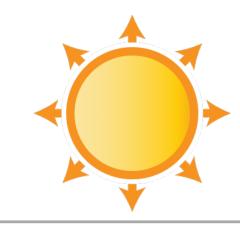
Quad light





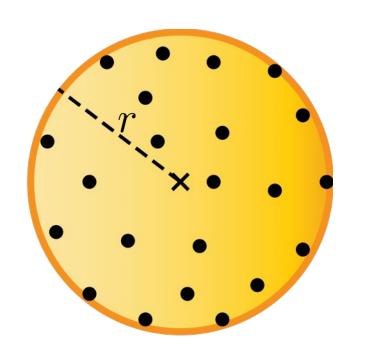
Typically defined using a center ${\bf p}$, radius r, and emitted power Φ (or emitted radiance $L_{\rm e}$)

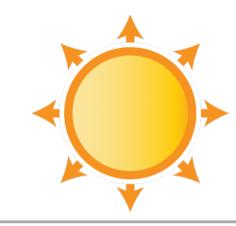
Has finite surface area $4\pi r^2$



How to sample points on the sphere light?

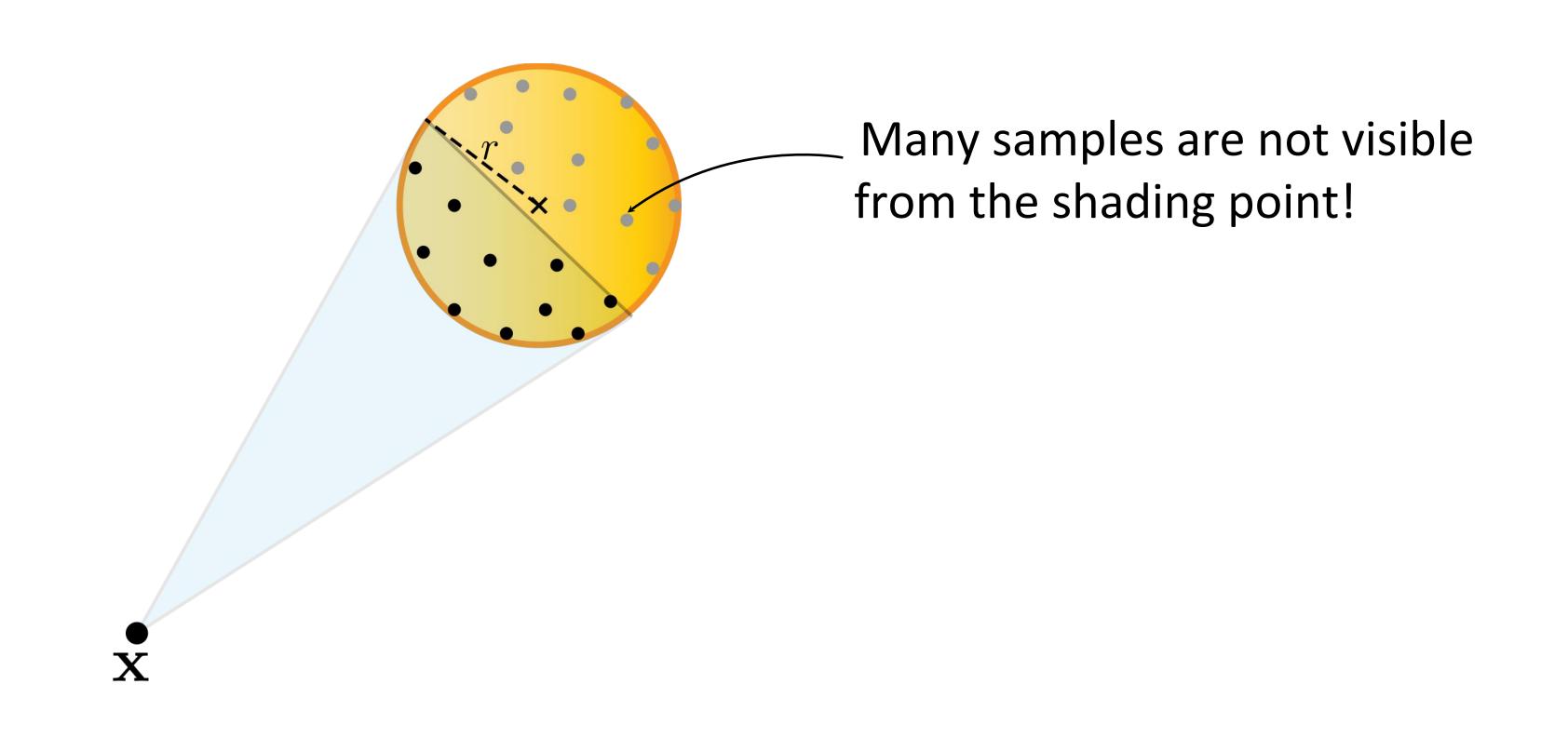
Approach 1: uniformly sample sphere area

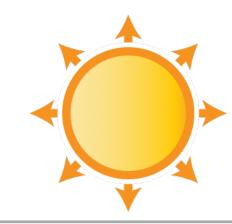




How to sample points on the sphere light?

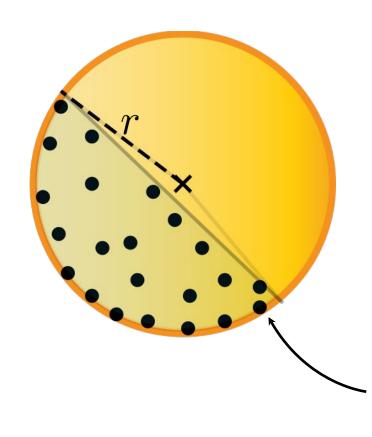
Approach 1: uniformly sample sphere area



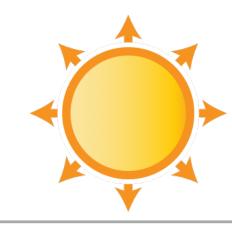


How to sample points on the sphere light?

Approach 2 (better): uniformly sample <u>area</u> of the *visible* spherical cap

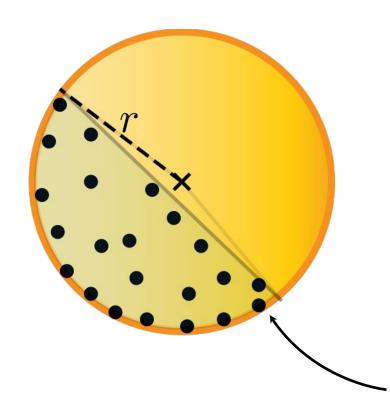


spherical cap on light area

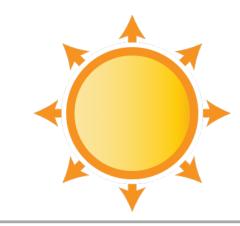


How to sample points on the sphere light?

Approach 2 (better): uniformly sample <u>area</u> of the *visible* spherical cap

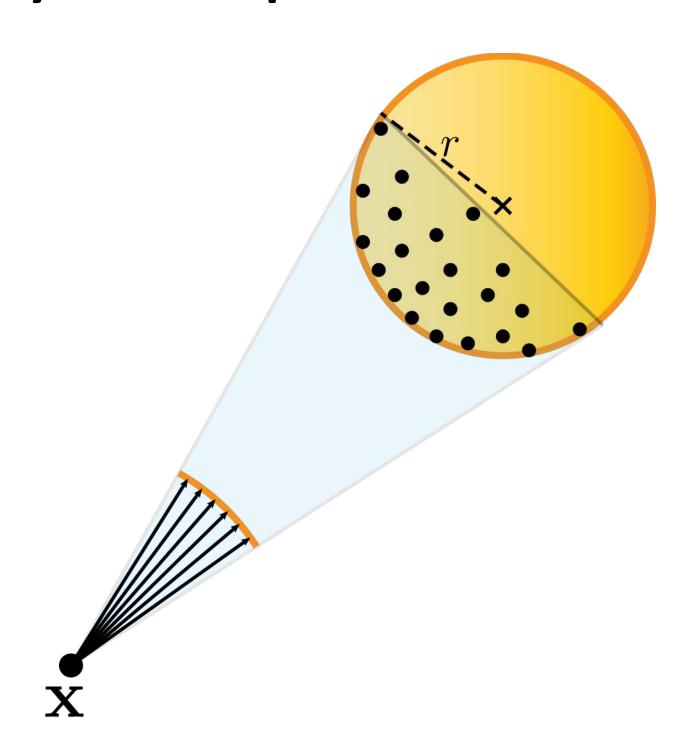


Uniform area-density is not ideal as emitted radiance is weighted by the cosine term (recall the form factor in the G term)



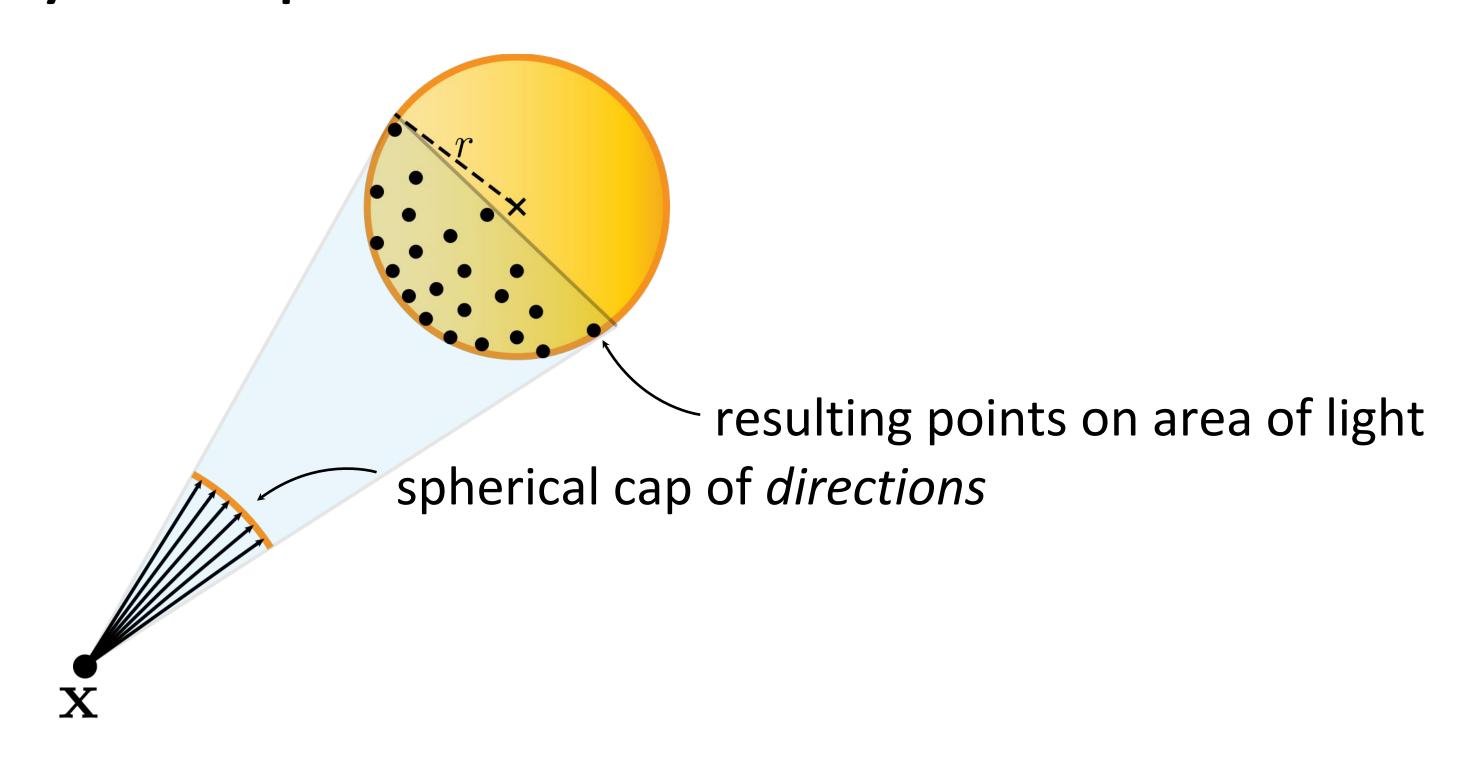
How to sample points on the sphere light?

Approach 3 (even better): uniformly sample <u>solid angle</u> subtended by the sphere



How to sample points on the sphere light?

Approach 3 (even better): uniformly sample <u>solid angle</u> subtended by the sphere



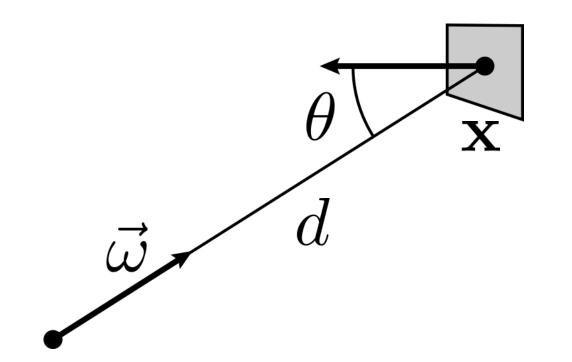
How to sample points on the sphere light?

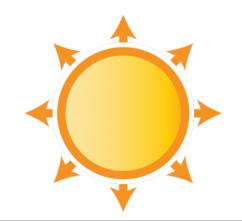
Caution!

- Approaches use PDFs defined wrt different measures
- Make sure to convert the PDF into the measure of the integral!

$$p_A(\mathbf{x}) = \frac{\cos \theta}{d^2} p_{\Omega}(\vec{\omega})$$

$$p_{\Omega}(\vec{\omega}) = \frac{d^2}{\cos \theta} p_A(\mathbf{x})$$





How to sample points on the sphere light?

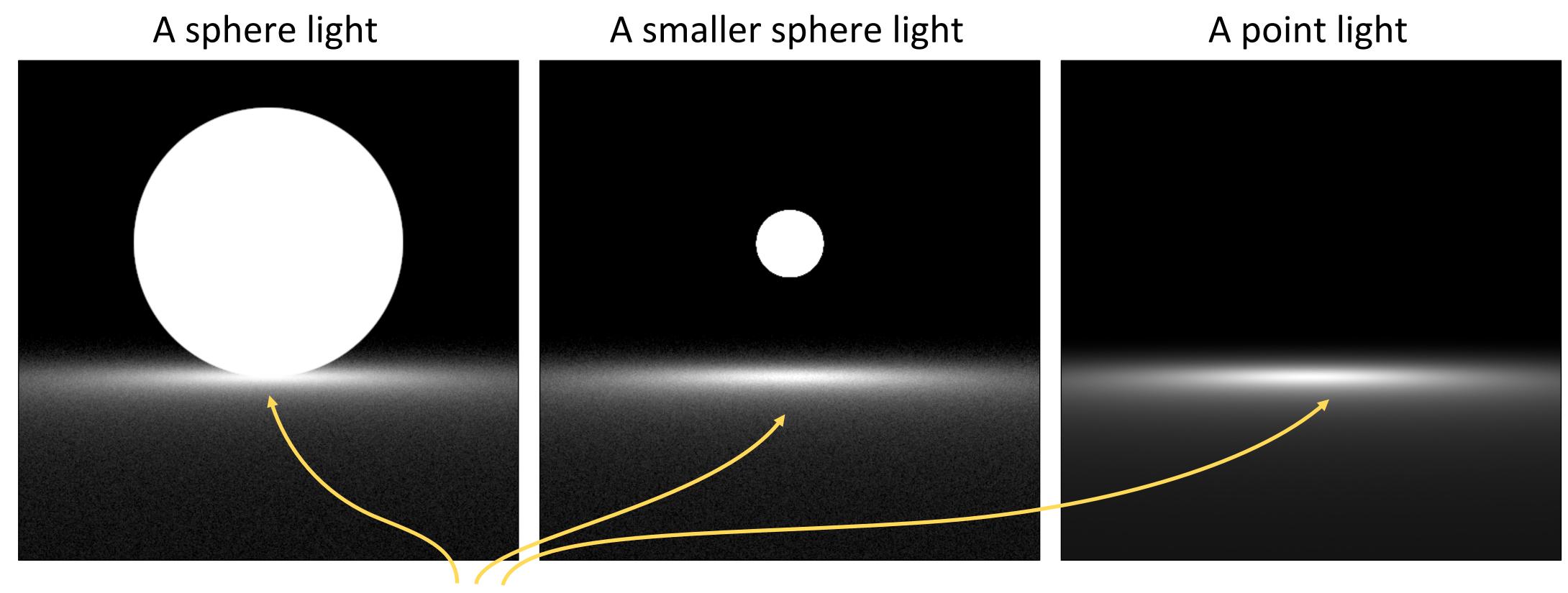
Caution!

- Approaches use PDFs defined wrt different measures
- Make sure to convert the PDF into the measure of the integral!
- Example: using approach 1 for MC integration of the hemispherical formulation of the reflection eq.

$$\langle L_r(\mathbf{x}, \vec{\omega}_r) \rangle = \frac{1}{N} \sum_{k=1}^{N} \frac{f_r(\mathbf{x}, \vec{\omega}_{i,k}, \vec{\omega}_r) L_i(\mathbf{x}, \vec{\omega}_{i,k}) \cos \theta_{i,k}}{p_{\Omega}(\vec{\omega}_{i,k})}$$
$$p_A(\mathbf{y}) = \frac{1}{4\pi r^2} \qquad p_{\Omega}(\vec{\omega}_i) = \frac{\|\mathbf{x} - \mathbf{y}\|^2}{|-\omega_i \cdot \mathbf{n_y}| 4\pi r^2}$$

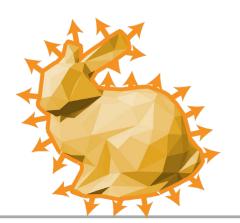
Validation: irradiance is independent of radius

(assuming it emits always the same power & no occluders)



Identical irradiance profiles

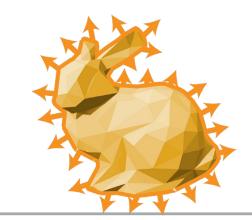
Mesh Light



An emissive mesh where every surface point emits given radiance L_{e}

Total area: $\sum A(k)$

Mesh Light



How to importance sample?

Preprocess:

- build a discrete PDF, p_{Δ} , for choosing polygons (triangles) proportional to their area:

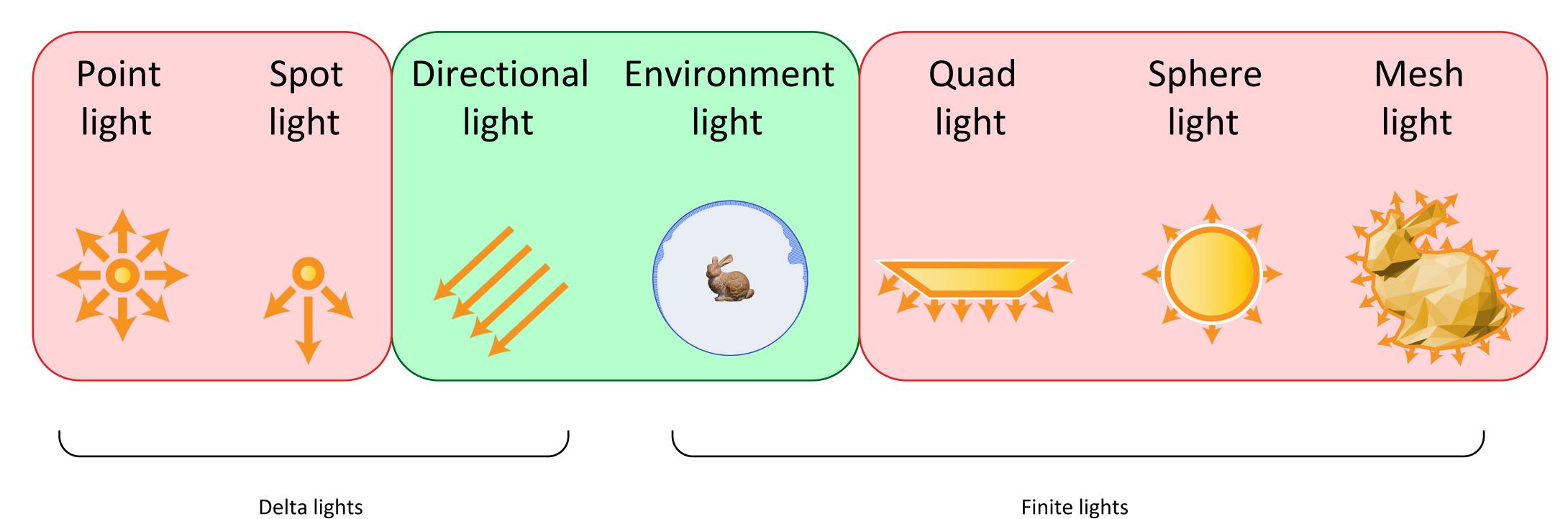
$$p_{\Delta}(i) = \frac{A(i)}{\sum_{k} A(k)}$$

Run-time:

- sample a polygon $oldsymbol{i}$ and a point ${f x}$ on $oldsymbol{i}$
- compute the PDF of choosing the point:

$$p_A(\mathbf{x}) = p_{\Delta}(i)p_A(\mathbf{x}|i) = \frac{1}{\sum A(k)}$$

Light Sources



Delta lights

(create hard shadows)

(create soft shadows)

- sample using surface integral form
- sample using hemispherical integral form

typically, but not always

Reflection Equation

$$L_r(\mathbf{x}, \vec{\omega}_r) = \int_{H^2} f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) L_i(\mathbf{x}, \vec{\omega}_i) \cos \theta_i \, d\vec{\omega}_i$$

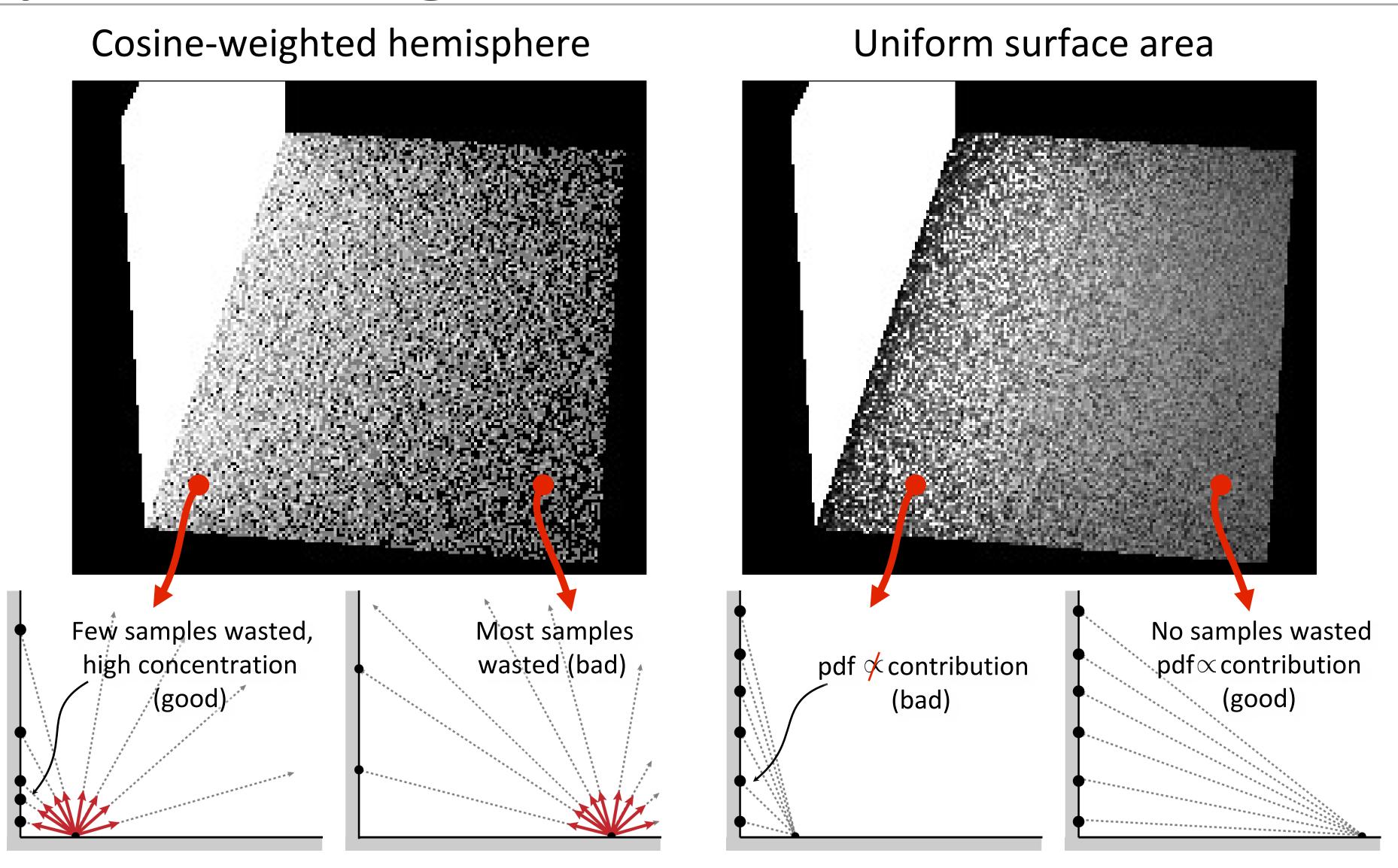
What terms can we importance sample?

- BRDF
- incident radiance
- cosine term

What terms should we importance sample?

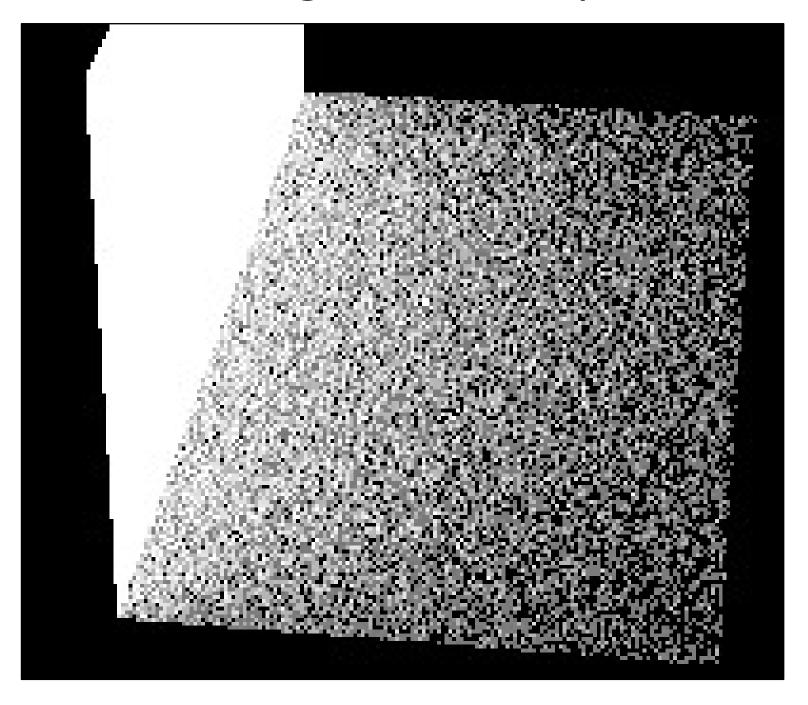
- depends on the context, hard to make a general statement

Multiple Strategies

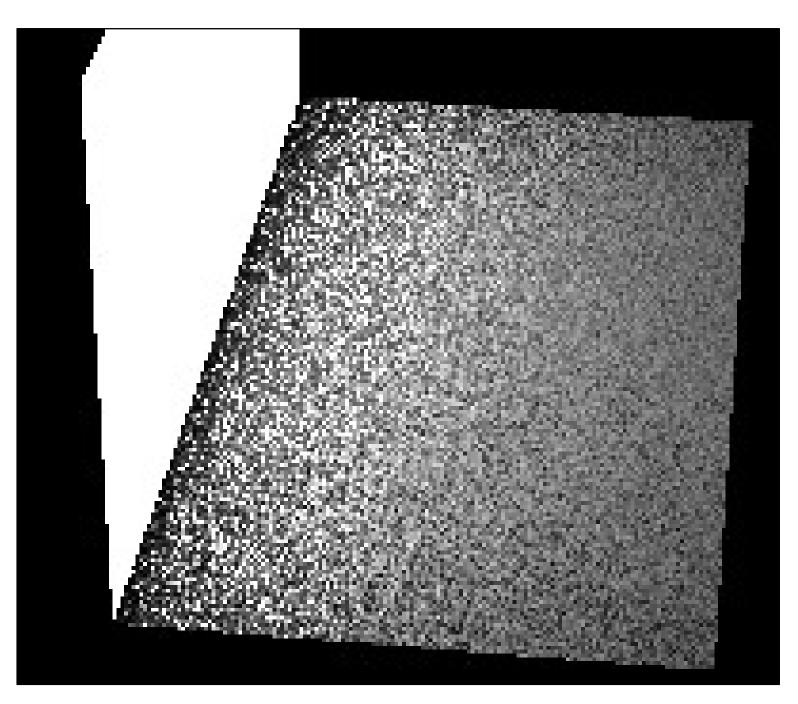


Combining Multiple Strategies

Cosine-weighted hemisphere



Uniform surface area

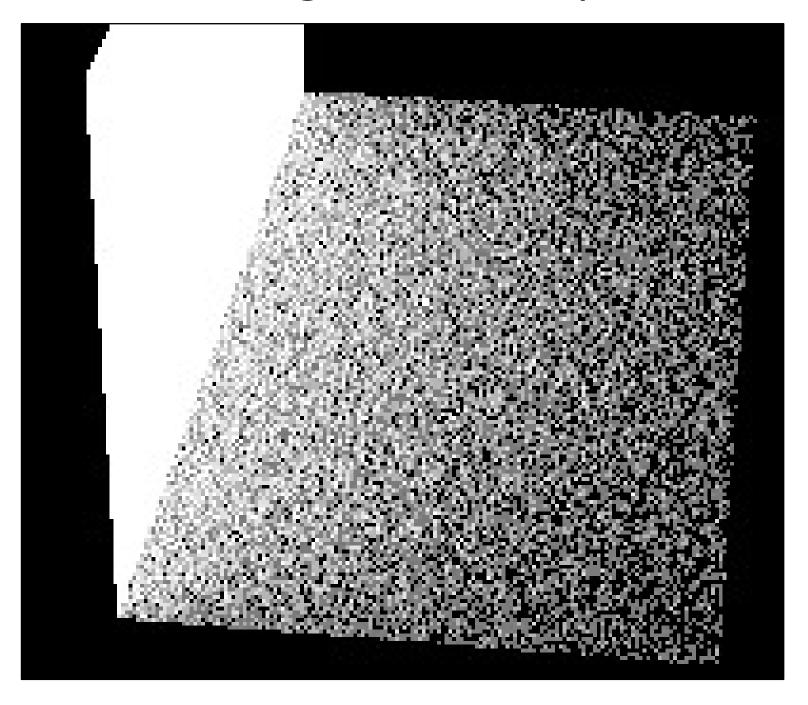


$$p_1(\vec{\omega}) = \frac{\cos \theta}{\pi}$$

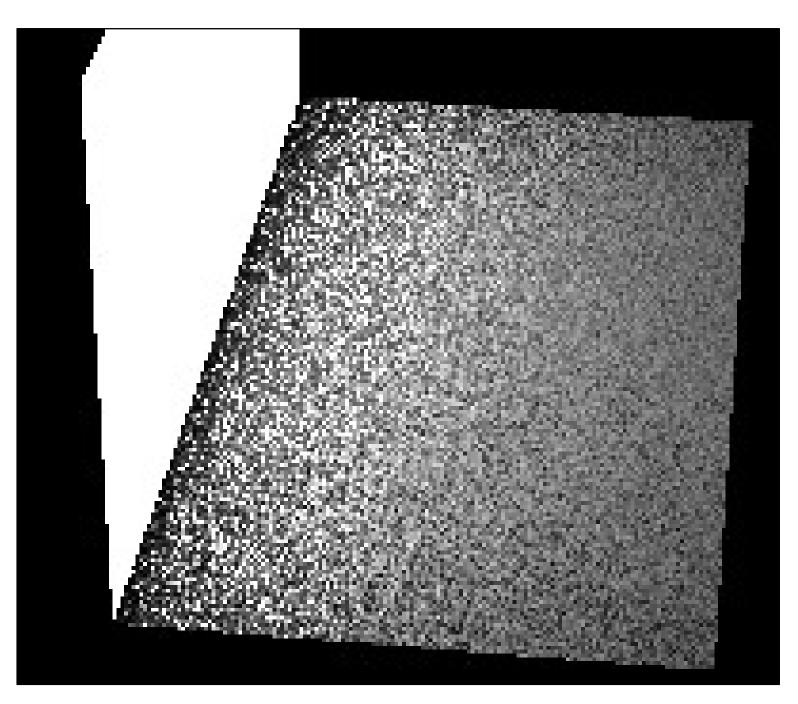
$$p_2(\mathbf{x}) = \frac{1}{A}$$

Combining Multiple Strategies

Cosine-weighted hemisphere



Uniform surface area



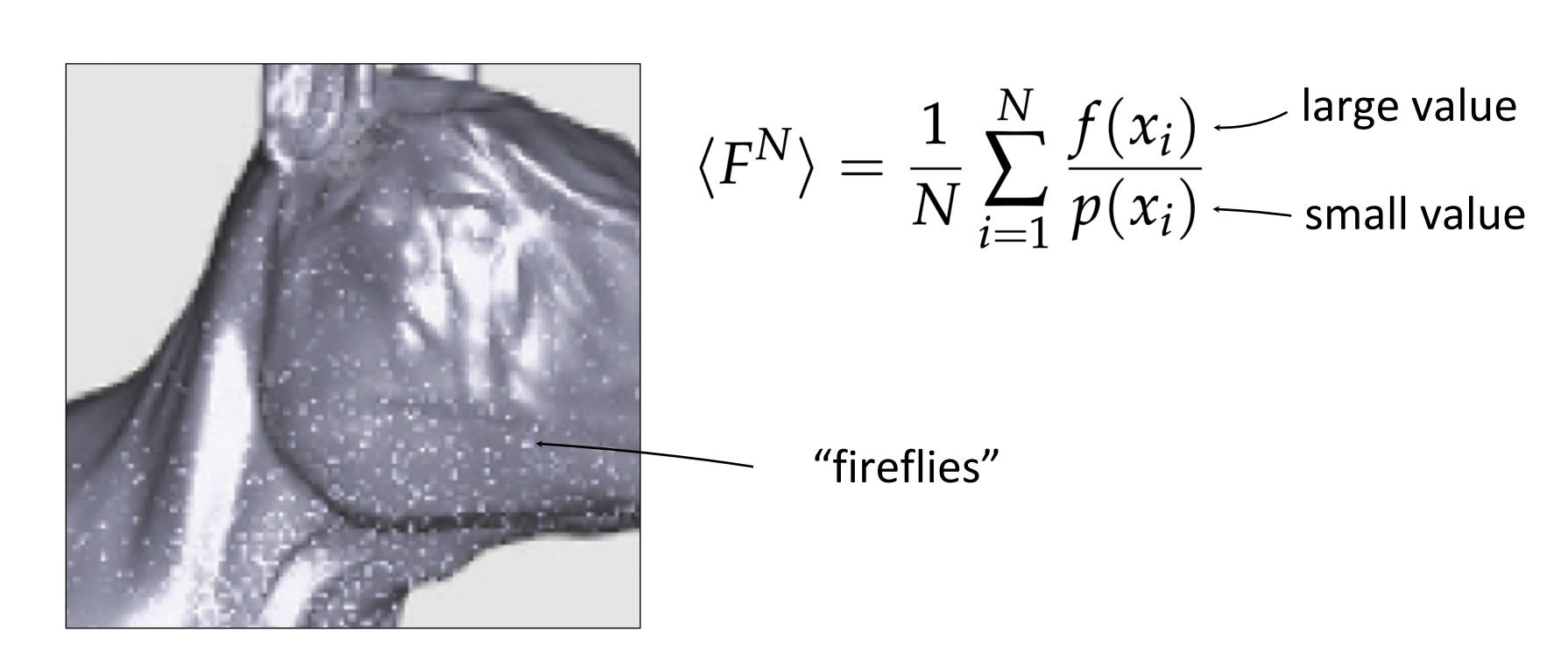
$$p_1(\vec{\omega}) = \frac{\cos \theta}{\pi}$$

$$p_2(\mathbf{x}) = \frac{1}{A} \quad p_2(\vec{\omega}) = \frac{1}{A} \frac{d^2}{\cos \theta}$$

Fireflies

In MC integration, variance is high when the PDF is not proportional to the integrand

Worst case: rare samples with huge contributions



Motivation

In MC integration, variance is high when the PDF is not proportional to the integrand

Worst case: rare samples with huge contributions

$$\langle F^N \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f(x_i)}{p(x_i)}$$
 — small value

We often have multiple sampling strategies

If at least one covers each part of the integrand well, then combining them should reduce fireflies

Mixture sampling and multiple importance sampling (MIS)

Combining Multiple Strategies

Could just average two different estimators:

$$\frac{0.5}{N_1} \sum_{i=1}^{N_1} \frac{f(x_i)}{p_1(x_i)} + \frac{0.5}{N_2} \sum_{i=1}^{N_2} \frac{f(x_i)}{p_2(x_i)}$$

 doesn't really help if weights independent of sample: variance is additive

Mixture sampling

Instead of averaging multiple estimators

$$\frac{0.5}{N_1} \sum_{i=1}^{N_1} w_1(x_i) \frac{f(x_i)}{p_1(x_i)} + \frac{0.5}{N_2} \sum_{i=1}^{N_2} w_2(x_i) \frac{f(x_i)}{p_2(x_i)}, \qquad N_1 + N_2 = N$$

sample from the average PDF

$$\frac{1}{N} \sum_{i=1}^{N} \frac{f(x_i)}{0.5(p_1(x_i) + p_2(x_i))}$$

You are given two sampling functions and their corresponding pdfs:

```
float sample1(float rnd); float pdf1(float x);
float sample2(float rnd); float pdf2(float x);
Create a new function:
float sampleAvg(float rnd);
which has the corresponding pdf:
float pdfAvg(float x)
   return 0.5 * (pdf1(x) + pdf2(x));
```

```
float sampleAvg(float rnd)
float Prob1 = 0.5;
                                      These need to be
if (rnd < Prob1)
                                      uniform random
                                      numbers in [0..1)
return sample1(rnd);
else
return sample2(rnd);
                           0.5
```

```
float sampleAvg(float rnd)
float Prob1 = 0.5;
                                      These need to be
if (rnd < Prob1)
                                     uniform random
                                     numbers in [0..1)
return sample1(rnd);
else
return sample2(rnd);
```

```
float sampleAvg(float rnd)
float Prob1 = 0.5;
if (rnd < Prob1)
return sample1(rnd/Prob1);
else
return sample2(rnd);
```

```
float sampleAvg(float rnd)
float Prob1 = 0.5;
if (rnd < Prob1)
return sample1(rnd/Prob1);
else
return sample2((rnd-Prob1) / (1-Prob1));
                                                     1
```

Sample from Weighted Average

```
float sampleWeightedAvg(float rnd)
float Prob1 = 0.25;
                                  Still works, just change Prob1
if (rnd < Prob1)
return sample1(rnd/Prob1);
else
return sample2((rnd-Prob1)/(1-Prob1));
float pdfWeightedAvg(float x)
    return 0.25 * pdf1(x) + 0.75 * pdf2(x);
```

Combination of 2 strategies using sample-dependent weights:

$$\langle F^{\text{MIS}} \rangle = w_1(x_1) \frac{f(x_1)}{p_1(x_1)} + w_2(x_2) \frac{f(x_2)}{p_2(x_2)}$$

- where:

$$w_1(x) + w_2(x) = 1$$

Combination of M strategies with sample-dependent weights:

$$\langle F^{\sum N_s} \rangle = \sum_{s=1}^{M} \frac{1}{N_s} \sum_{i=1}^{N_s} w_s(x_i) \frac{f(x_i)}{p_s(x_i)}$$

- where:

$$\sum_{s=1}^{M} w_s(x) = 1$$

How to choose the weights?

Balance heuristic (provably good):

$$w_s(x) = \frac{p_s(x)}{\sum_j p_j(x)}$$

 $w_s(x) = \frac{p_s(x)}{\sum_j p_j(x)}$ Power heuristic (more aggressive, can be better):

$$w_s(x) = \frac{p_s(x)^{\beta}}{\sum_i p_i(x)^{\beta}}$$

Other heuristics exist

- e.g. cutoff heuristic, maximum heuristic, ...

Multi-sample model: deterministically allocate N_{ς} samples to s-th strategy

$$\langle F^{\sum N_s} \rangle = \sum_{s=1}^{M} \frac{1}{N_s} \sum_{i=1}^{N_s} w_s(x_i) \frac{f(x_i)}{p_s(x_i)}$$

What if we want to draw just one sample?

One-sample model: randomly select to use s-th strategy

$$\langle F^1 \rangle = w_s(x) \frac{f(x)}{q_s p_s(x)}$$

where q_s is the probability of using strategy s, and $\sum_{s=1}^{n} q_s = 1$

$$\sum_{s=1}^{N} q_s = 1$$

Interpreting the Balance Heuristic

Balance heuristic for the one-sample model:

$$w_s(x) = \frac{q_s p_s(x)}{\sum_j q_j p_j(x)}$$

Plugged into the one-sample model:

$$\langle F^1 \rangle = w_s(x) \frac{f(x)}{q_s \, p_s(x)} = \frac{q_s \, p_s(x)}{\sum_j q_j \, p_j(x)} \frac{f(x)}{q_s \, p_s(x)} = \frac{f(x)}{\sum_j q_j \, p_j(x)}$$

One-sample model with balance heuristic samples from average PDF (mixture sampling)

Multiple Importance Sampling with Balance Heuristic

Multi-sample model: Equivalent to mixture sampling with stratification (deterministic allocation of samples per strategy).

$$\langle F^{\sum N_s} \rangle = \sum_{s=1}^{M} \frac{1}{N_s} \sum_{i=1}^{N_s} w_s(x_i) \frac{f(x_i)}{p_s(x_i)}$$

One-sample model: Equivalent to mixture sampling.

$$\langle F^1 \rangle = w_s(x) \frac{f(x)}{q_s p_s(x)}$$

where q_s is the probability of using strategy s, and $\sum_{s=1}^{n} q_s = 1$

$$\sum_{s=1}^{N} q_s = 1$$

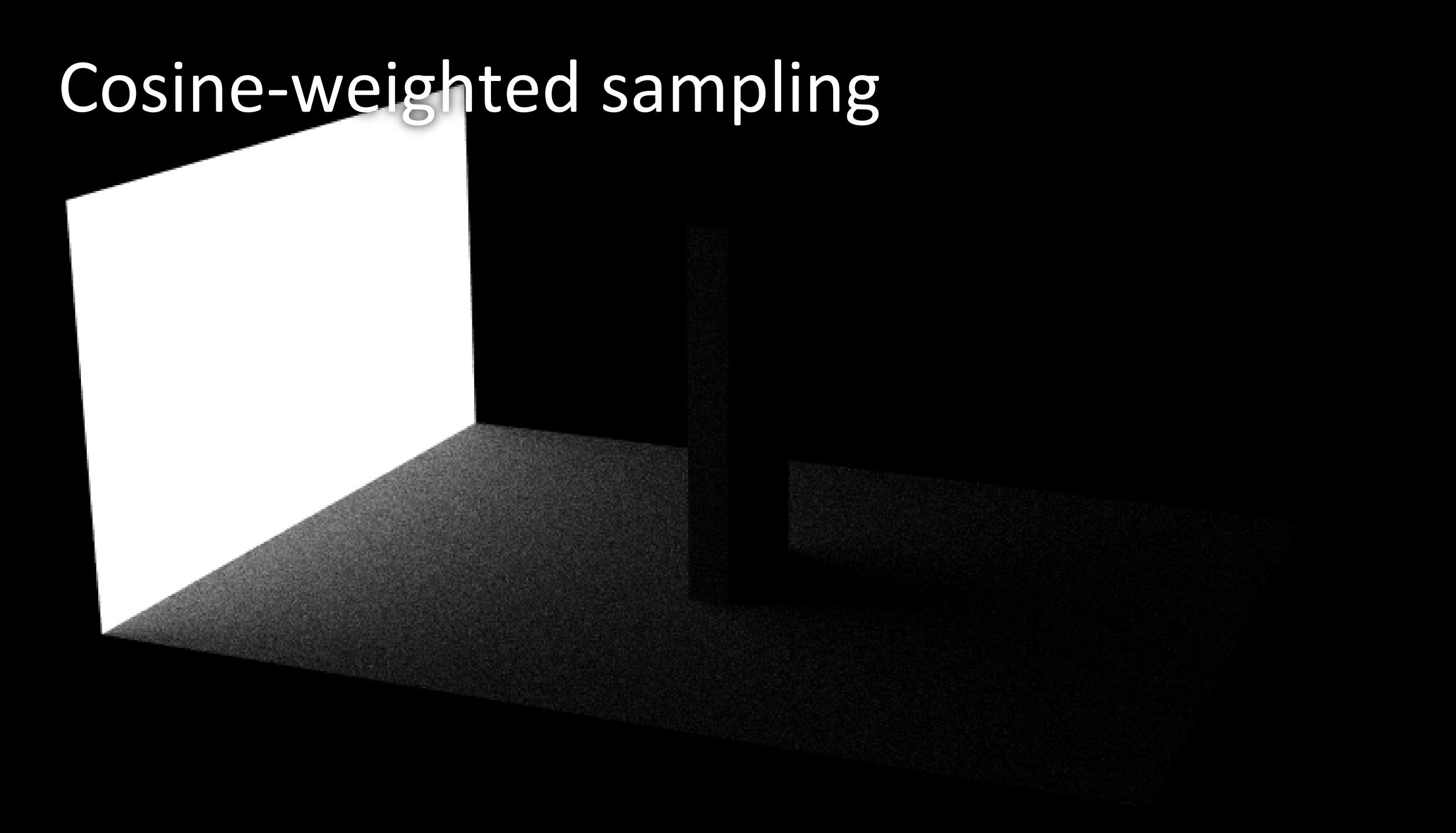
Why Does it Work?

Using a single strategy:

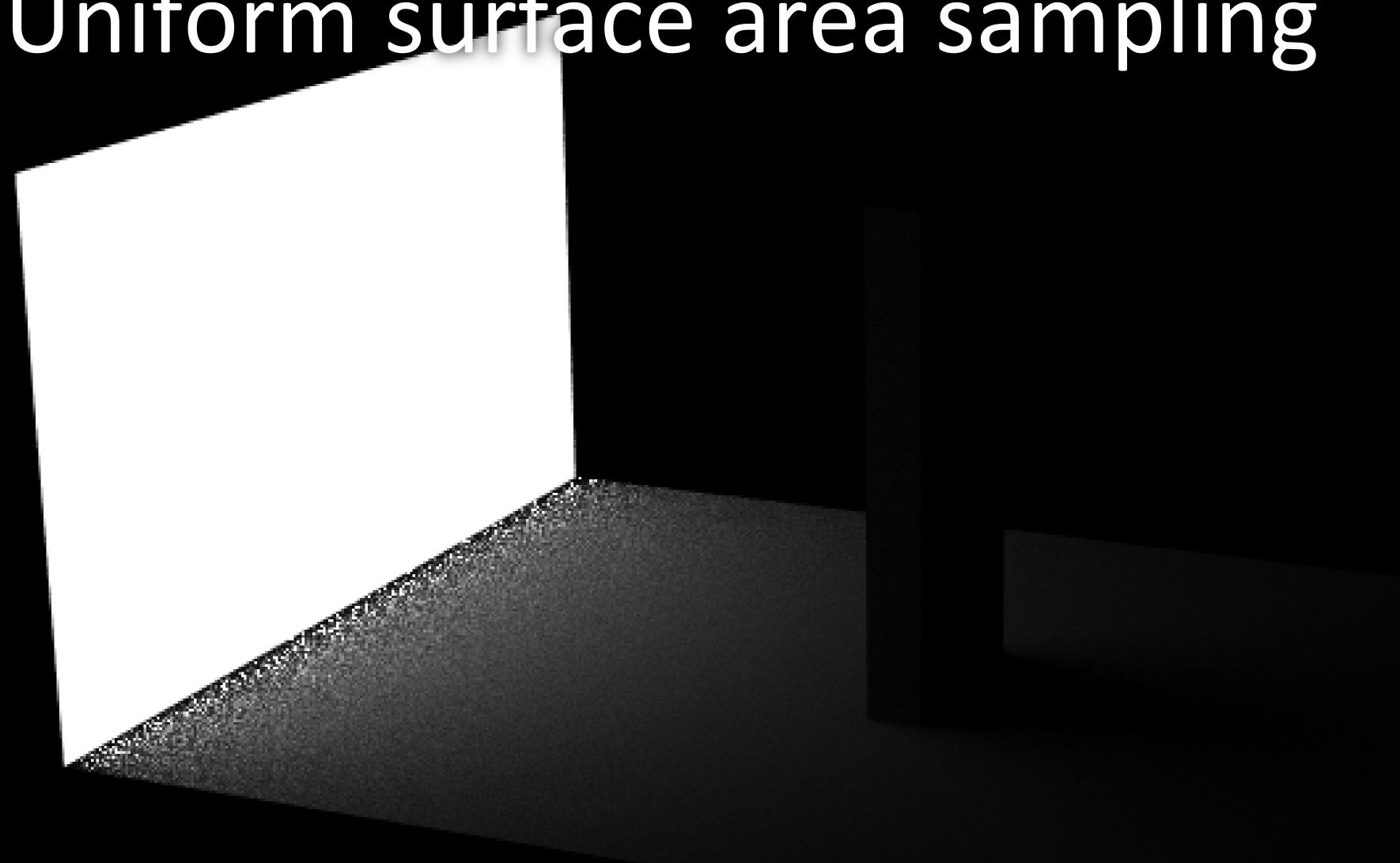
$$\langle F^N \rangle = \frac{1}{N} \sum_{i=1}^N \frac{f(x_i)}{p(x_i)} - \frac{1}{\sum_{i=1}^N f(x_i)} - \frac{1}{\sum_{i=1}^N f(x_i)$$

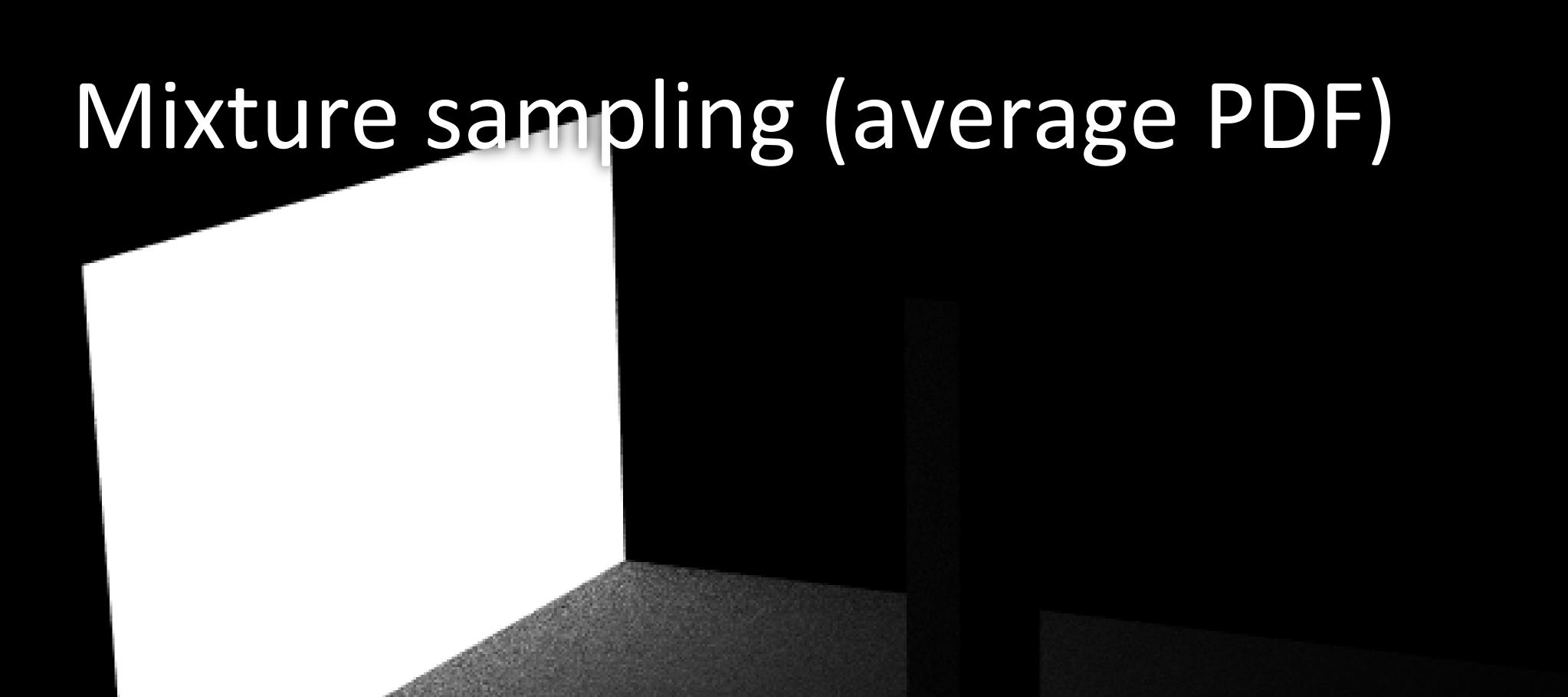
Combining multiple strategies using balance heuristic (MIS or mixture sampling):

$$\langle F^N \rangle = \frac{1}{N} \sum_{i=1}^N \frac{f(x_i)}{\sum_j q_j p_j(x_i)} \frac{}{} - \frac{}{} \text{relatively large value}$$
 (as long as at least one PDF is large)

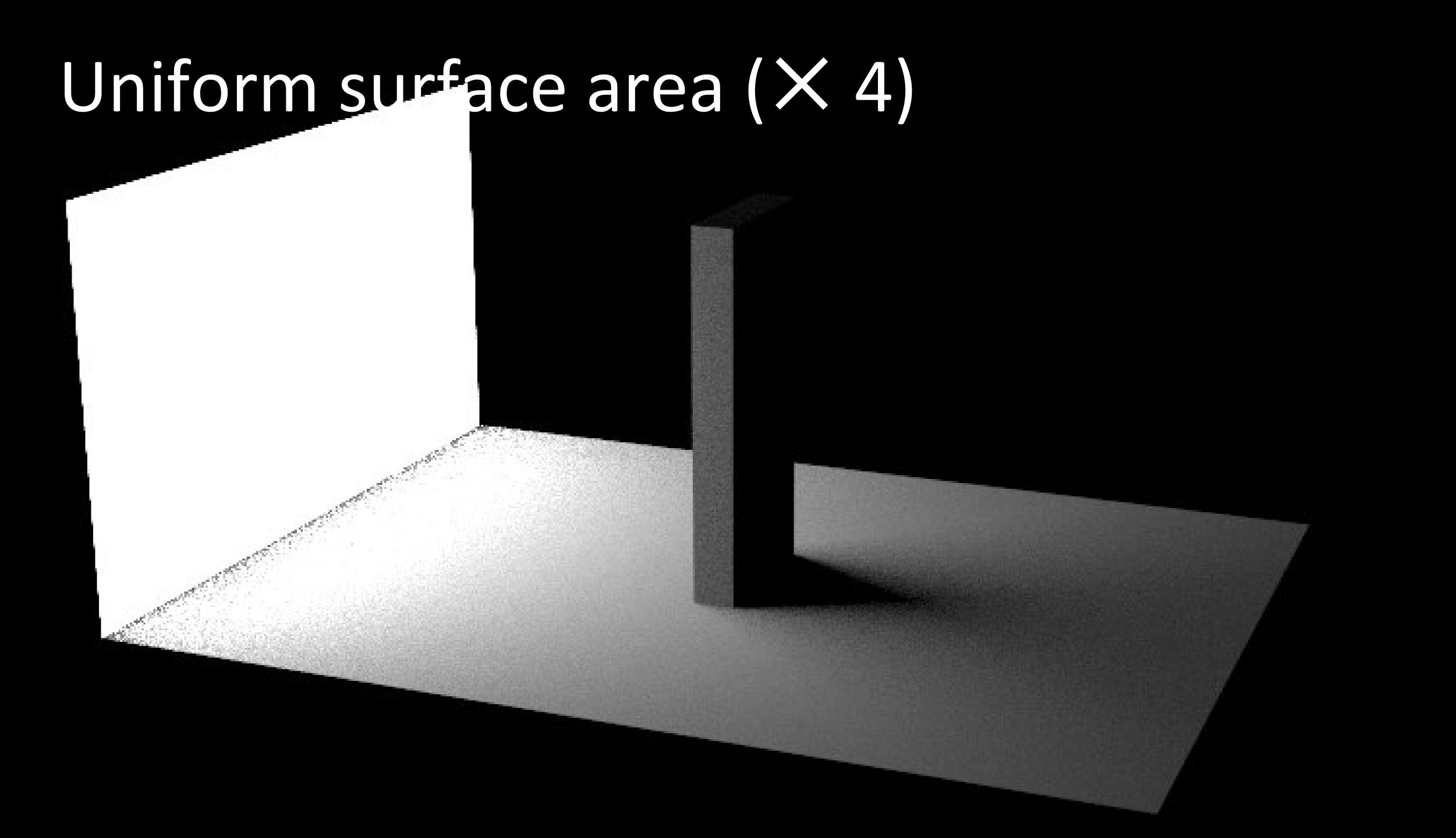


Uniform surface area sampling





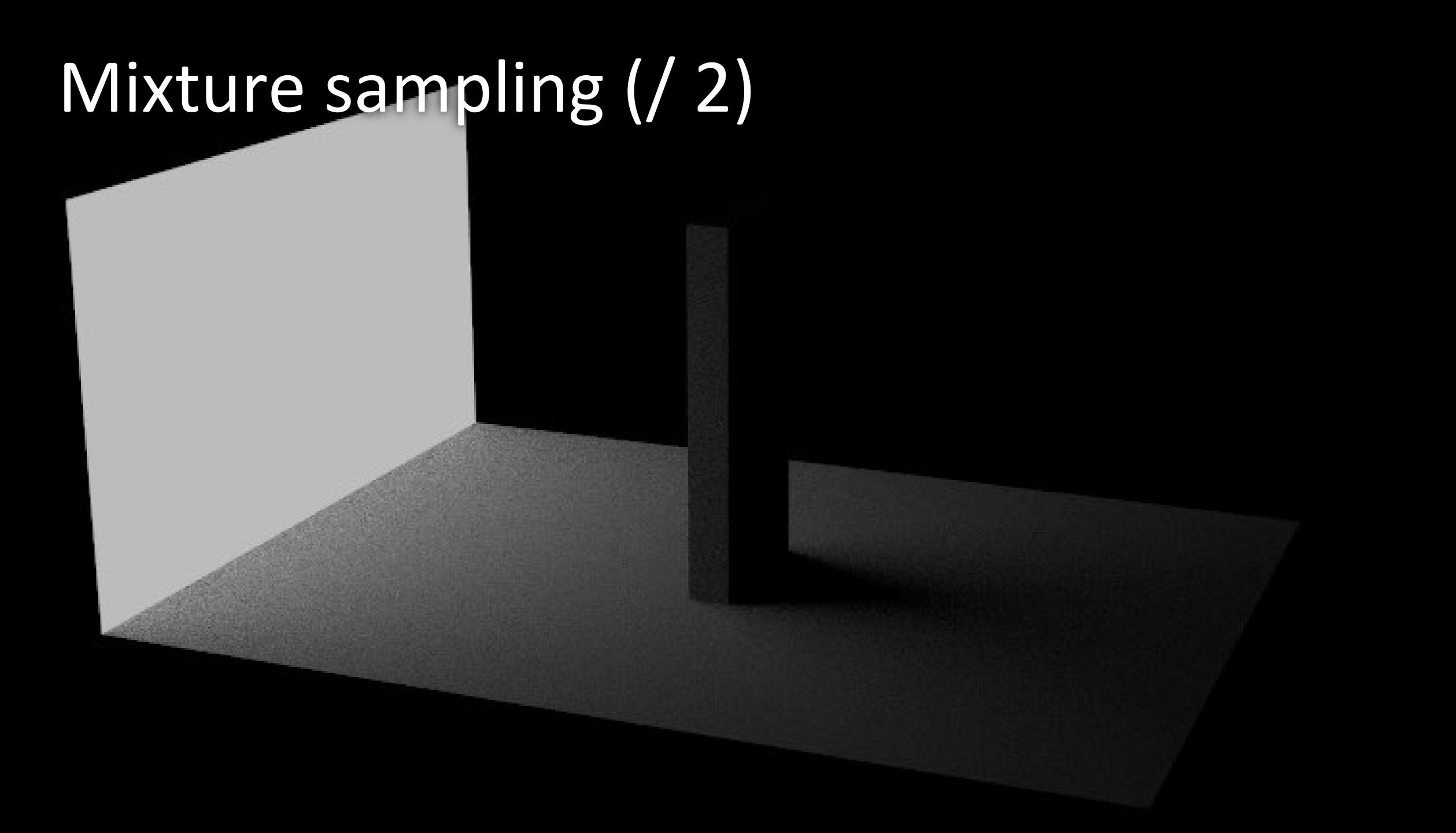
Cosine-weighted sampling (X4)

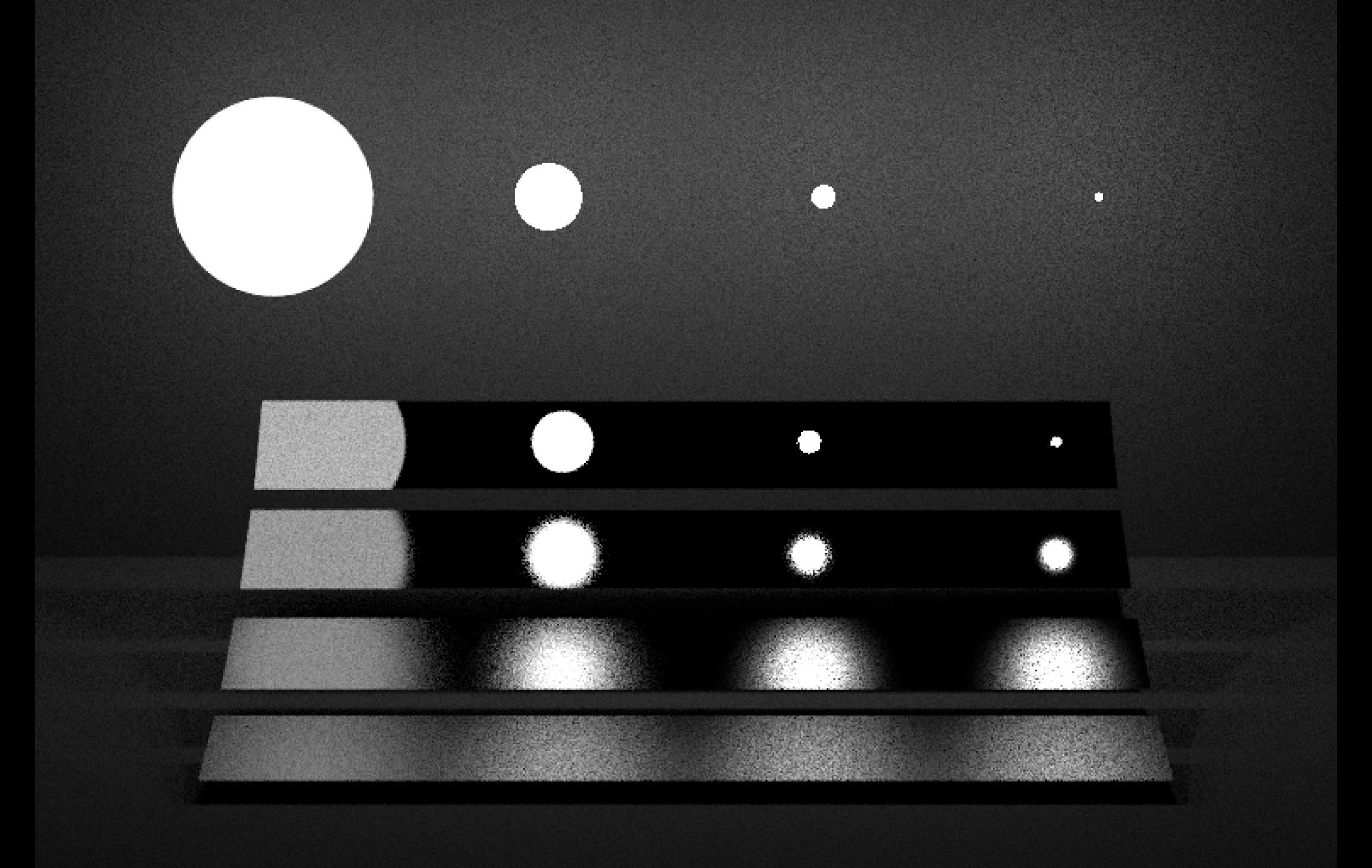


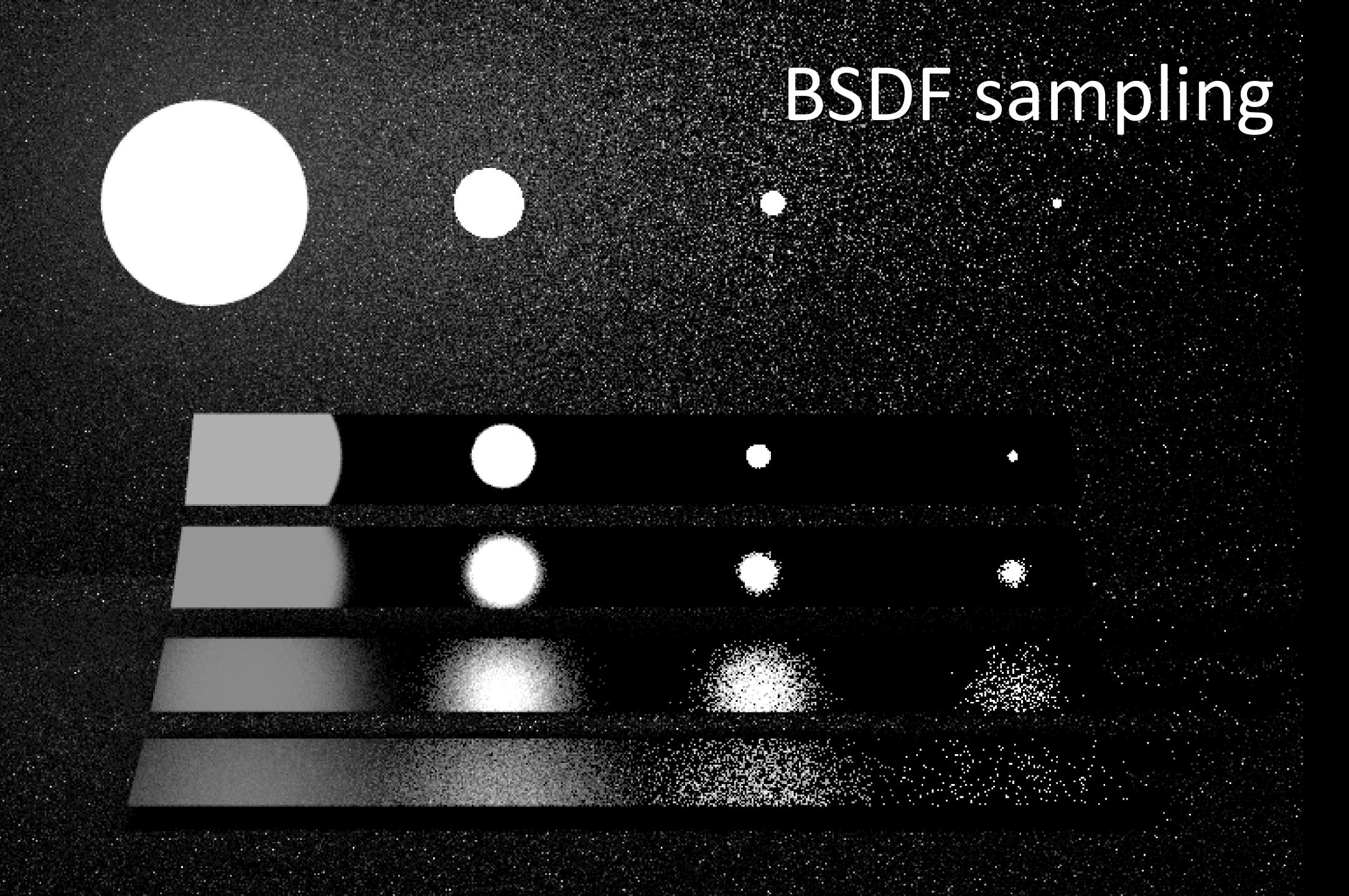
Mixture sampling (X4)

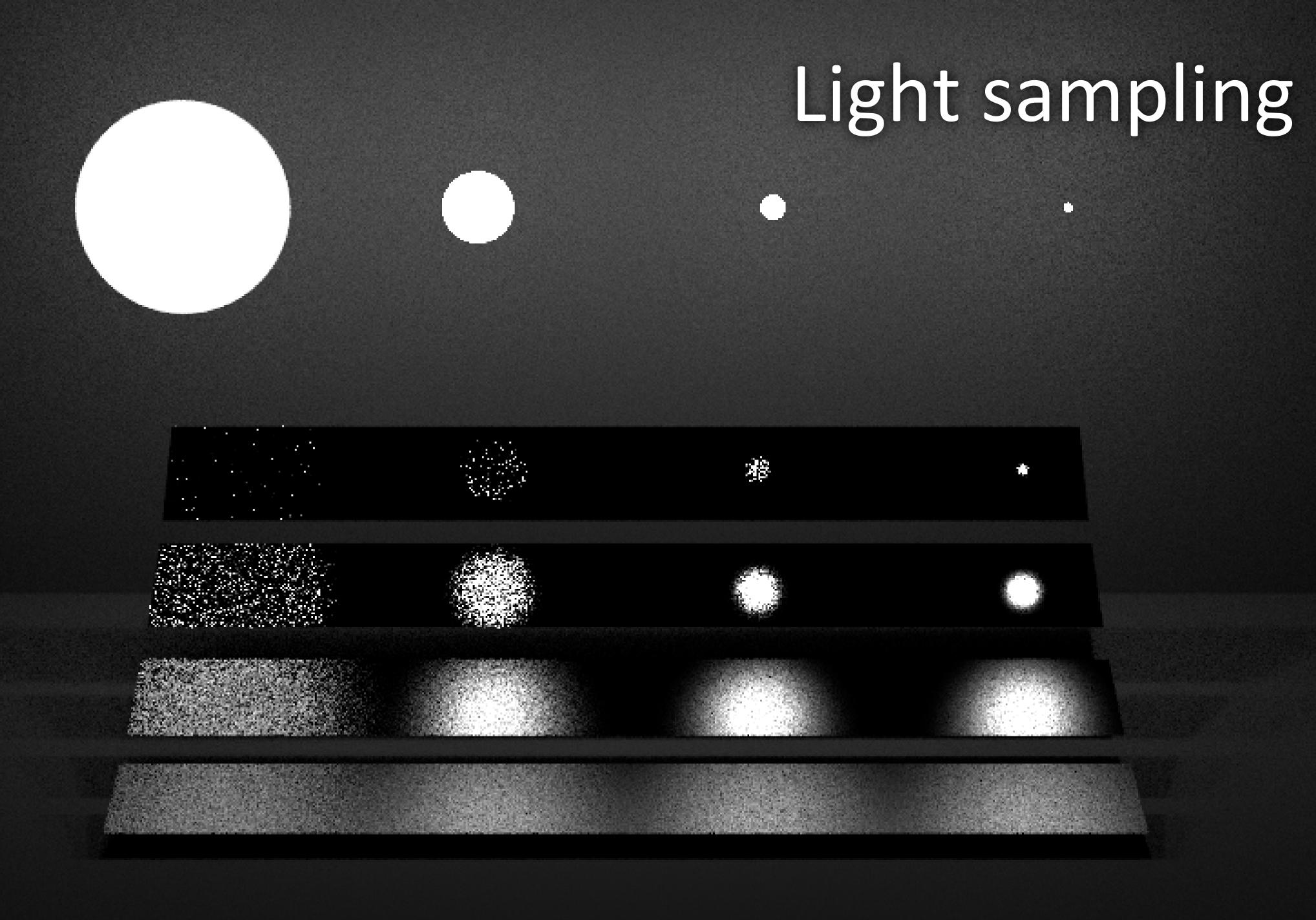
Cosine-weighted sampling (/ 2)

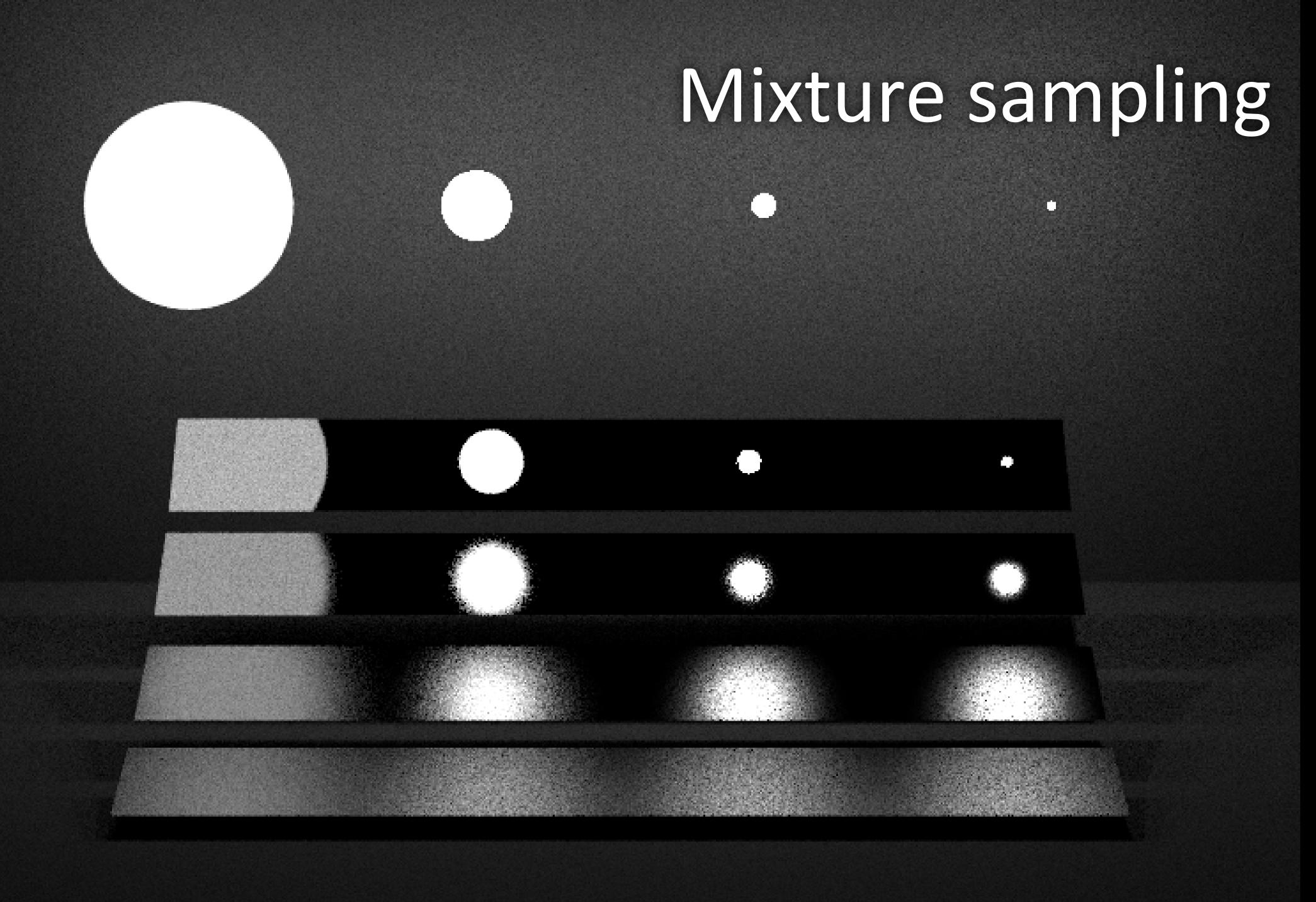
Uniform surface area (/ 2)



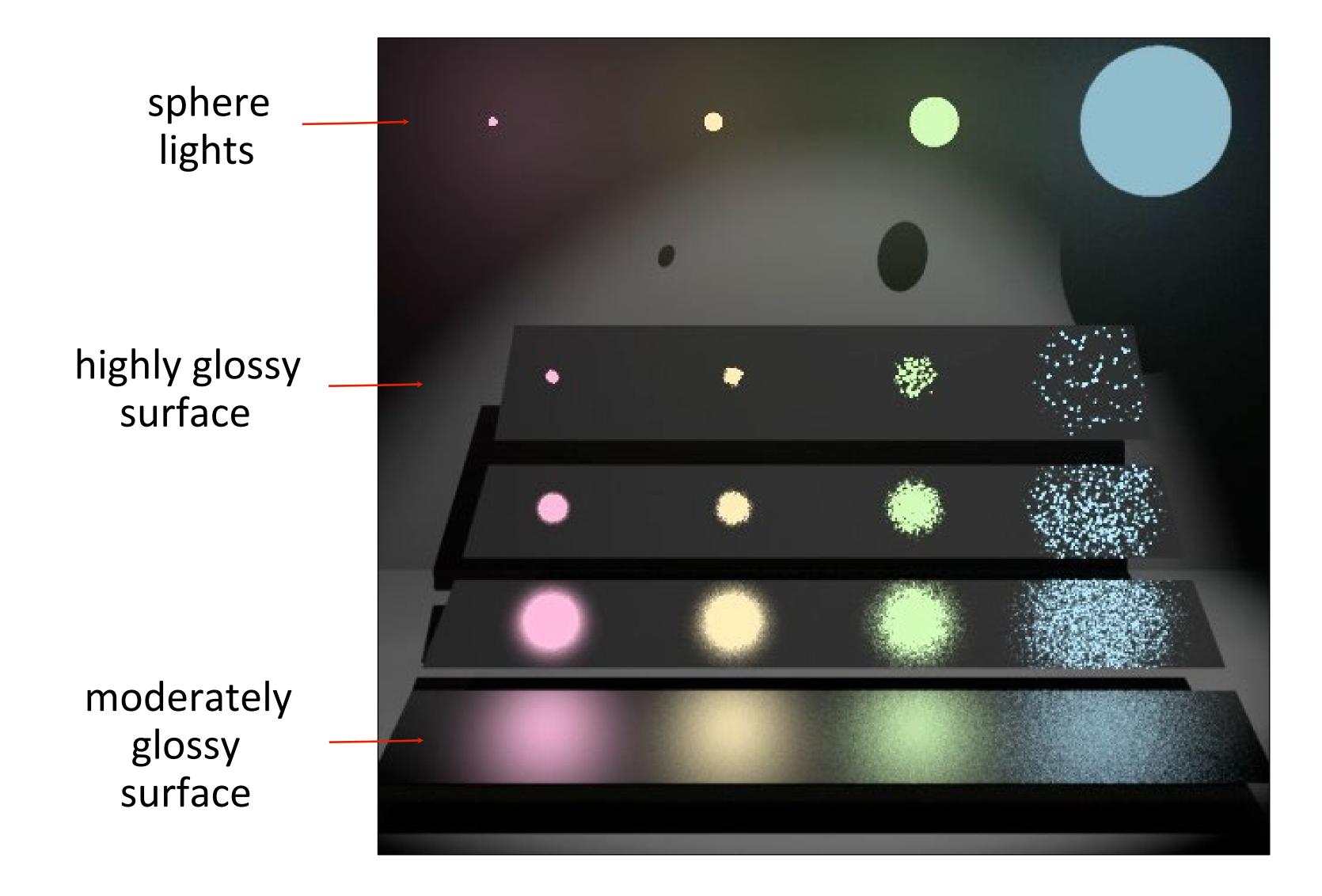




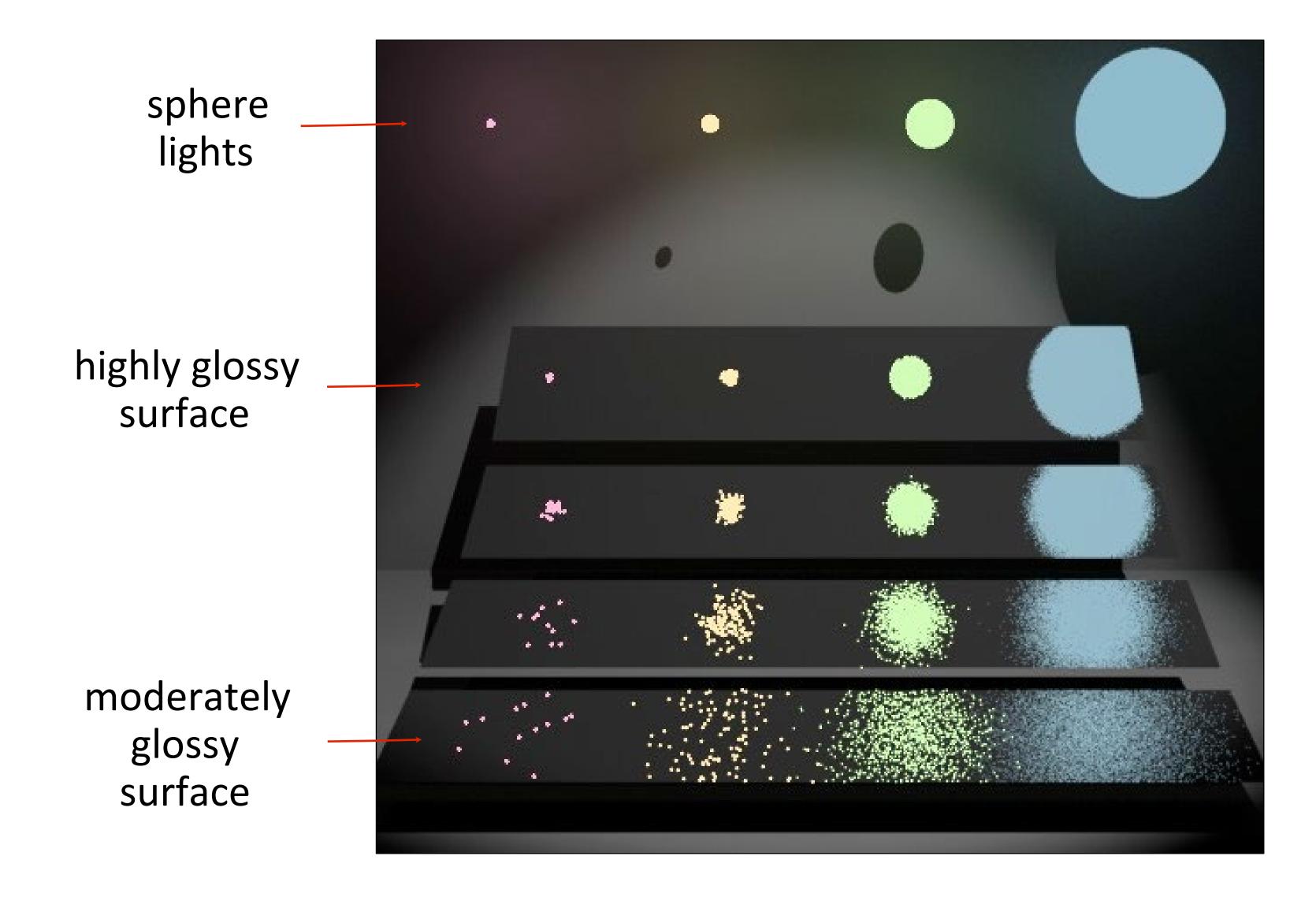


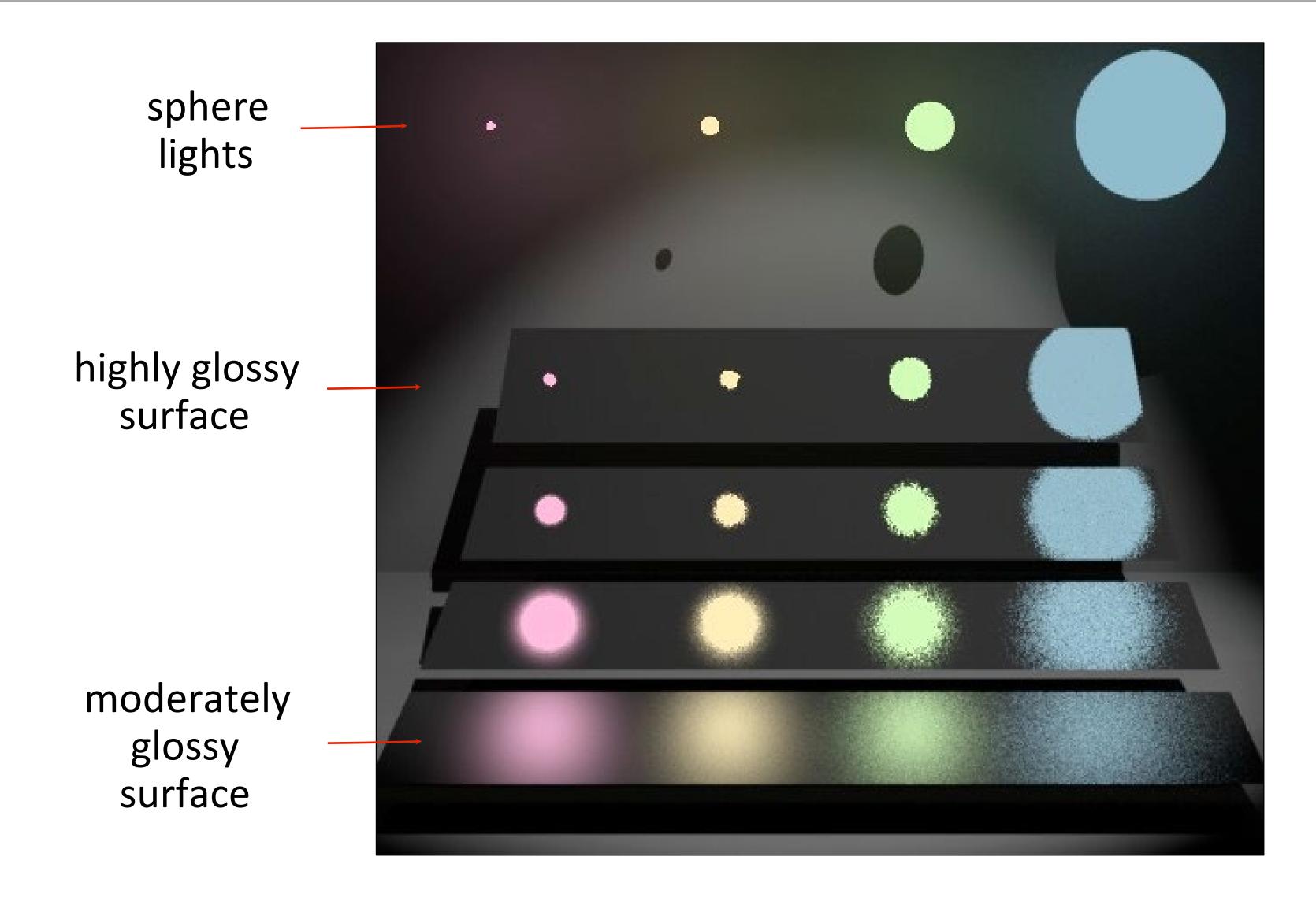


Sampling the Light



Sampling the BRDF





See PBRe3 13.10.1 for more details