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Course announcements

• Programming assignment 2 posted, due Friday 2/23 at 23:59.
- How many of you have looked at/started/finished it?
- Any questions?
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Overview of today’s lecture
• Stratified sampling.

• Uncorrelated jitter.

• N-rooks.

• Multi-jittered sampling.

• Poisson disk sampling.

• Discrepancy.

• Quasi-Monte Carlo.

• Low-discrepancy sequences.
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Slide credits

Most of these slides were directly adapted from:

• Wojciech Jarosz (Dartmouth).
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Strategies for Reducing Variance

Reduce the variance of Y
- Importance sampling

Relax assumption of uncorrelated samples
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remember, this assumed uncorrelated samples



Quick aside: our approach so far
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To estimate an integral
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Equivalent view: primary sample space
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To estimate an integral

𝐼𝐼 = �
𝑆𝑆
𝑓𝑓 𝑥𝑥 d𝑥𝑥

1. we make a change of variables 𝑥𝑥 = 𝑔𝑔 𝑢𝑢 , and rewrite the integral as

𝐼𝐼 = �
0,1 𝐷𝐷

𝑓𝑓 𝑔𝑔 𝑢𝑢 𝐽𝐽𝑢𝑢
𝑔𝑔 𝑢𝑢 d𝑢𝑢

2. we draw uniform random variates 𝑢𝑢𝑖𝑖 ∈ 0,1 𝐷𝐷, 

3. we form the Monte Carlo estimate of the rewritten integral: 

𝐼𝐼 =
1
𝑁𝑁
�𝑓𝑓 𝑔𝑔 𝑢𝑢𝑖𝑖 𝐽𝐽𝑢𝑢

𝑔𝑔 𝑢𝑢𝑖𝑖

This is called the 
primary sample space
reparameterization

Same result as before!



Equivalent view: primary sample space
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No matter what integral we are estimating, we can focus our attention on 
sampling canonical uniform random variables in the hypercube.

This is the approach we take in this lecture.



Independent Random Sampling
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Trivially extends to higher dimensions

Trivially progressive and memory-less

✘Big gaps

✘Clumping

for (int k = 0; k < num; k++)
{

samples(k).x = randf();
samples(k).y = randf();

}



Regular Sampling
for (uint i = 0; i < numX; i++)

for (uint j = 0; j < numY; j++)
{

samples(i,j).x = (i + 0.5)/numX;
samples(i,j).y = (j + 0.5)/numY;

}
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Extends to higher dimensions, but…

✘Curse of dimensionality

✘Aliasing



Jittered/Stratified Sampling
for (uint i = 0; i < numX; i++)

for (uint j = 0; j < numY; j++)
{

samples(i,j).x = (i + randf())/numX;
samples(i,j).y = (j + randf())/numY;

}
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Provably cannot increase variance

Extends to higher dimensions, but…

✘Curse of dimensionality

✘Not progressive



Monte Carlo (16 random samples)
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Monte Carlo (16 jittered samples)
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Stratifying in Higher Dimensions
Stratification requires O(Nd) samples
- e.g. pixel (2D) + lens (2D) + time (1D) = 5D

• splitting 2 times in 5D = 25 = 32 samples

• splitting 3 times in 5D = 35 = 243 samples!

Inconvenient for large d
- cannot select sample count with fine granularity

14



2D 2D

4D

“Padding” 2D points (Uncorrelated Jitter)
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[Cook 86]
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Slide after Gurprit Singh



Depth of Field (4D)
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Reference Random Sampling Uncorrelated Jitter

Image source: PBRTe2 [Pharr & Humphreys 2010]



Like uncorrelated jitter, but using 1D point sets
- for 5D: 5 separate 1D jittered point sets

- combine dimensions
in random order

Uncorrelated Jitter ➔ Latin Hypercube
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Like uncorrelated jitter, but using 1D point sets
- for 5D: 5 separate 1D jittered point sets

- combine dimensions
in random order

Uncorrelated Jitter ➔ Latin Hypercube
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Like uncorrelated jitter, but using 1D point sets
- for 2D: 2 separate 1D jittered point sets

- combine dimensions
in random order

N-Rooks = 2D Latin Hypercube [Shirley 91]
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Latin Hypercube (N-Rooks) Sampling

20Image source: Michael Maggs, CC BY-SA 2.5

[Shirley 91]

https://commons.wikimedia.org/w/index.php?curid=3318748


// initialize the diagonal
for (uint d = 0; d < numDimensions; d++)

for (uint i = 0; i < numS; i++)
samples(d,i) = (i + randf())/numS;

// shuffle each dimension independently
for (uint d = 0; d < numDimensions; d++)

shuffle(samples(d,:));

Latin Hypercube (N-Rooks) Sampling
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Initialize



Latin Hypercube (N-Rooks) Sampling
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Shuffle rows

// initialize the diagonal
for (uint d = 0; d < numDimensions; d++)

for (uint i = 0; i < numS; i++)
samples(d,i) = (i + randf())/numS;

// shuffle each dimension independently
for (uint d = 0; d < numDimensions; d++)

shuffle(samples(d,:));



// initialize the diagonal
for (uint d = 0; d < numDimensions; d++)

for (uint i = 0; i < numS; i++)
samples(d,i) = (i + randf())/numS;

// shuffle each dimension independently
for (uint d = 0; d < numDimensions; d++)

shuffle(samples(d,:));

Latin Hypercube (N-Rooks) Sampling
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Shuffle rows



Latin Hypercube (N-Rooks) Sampling
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Shuffle columns

// initialize the diagonal
for (uint d = 0; d < numDimensions; d++)

for (uint i = 0; i < numS; i++)
samples(d,i) = (i + randf())/numS;

// shuffle each dimension independently
for (uint d = 0; d < numDimensions; d++)

shuffle(samples(d,:));



Latin Hypercube (N-Rooks) Sampling
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// initialize the diagonal
for (uint d = 0; d < numDimensions; d++)

for (uint i = 0; i < numS; i++)
samples(d,i) = (i + randf())/numS;

// shuffle each dimension independently
for (uint d = 0; d < numDimensions; d++)

shuffle(samples(d,:));



Latin Hypercube (N-Rooks) Sampling
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Latin Hypercube (N-Rooks) Sampling
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Latin Hypercube (N-Rooks) Sampling
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Evenly distributed in each 
individual dimension

Unevenly distributed in 
n-dimensions



Multi-Jittered Sampling
Kenneth Chiu, Peter Shirley, and Changyaw Wang. “Multi-
jittered sampling.” In Graphics Gems IV, pp. 370–374. 
Academic Press, May 1994.
– combine N-Rooks and Jittered stratification constraints

29



Multi-Jittered Sampling

30



Multi-Jittered Sampling
// initialize
float cellSize = 1.0 / (resX*resY);
for (uint i = 0; i < resX; i++)

for (uint j = 0; j < resY; j++)
{

samples(i,j).x = i/resX + (j+randf()) / (resX*resY);
samples(i,j).y = j/resY + (i+randf()) / (resX*resY);

}

// shuffle x coordinates within each column of cells
for (uint i = 0; i < resX; i++)

for (uint j = resY-1; j >= 1; j--)
swap(samples(i, j).x, samples(i, randi(0, j)).x);

// shuffle y coordinates within each row of cells
for (unsigned j = 0; j < resY; j++)

for (unsigned i = resX-1; i >= 1; i--)
swap(samples(i, j).y, samples(randi(0, i), j).y);
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Multi-Jittered Sampling
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Shuffle x-coordsInitialize



Multi-Jittered Sampling
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Shuffle x-coords



Multi-Jittered Sampling
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Shuffle x-coords



Multi-Jittered Sampling
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Shuffle x-coords



Multi-Jittered Sampling
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Shuffle x-coordsShuffle y-coords



Multi-Jittered Sampling
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Shuffle y-coords



Multi-Jittered Sampling
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Shuffle y-coords



Multi-Jittered Sampling
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Shuffle y-coords



Multi-Jittered Sampling
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Shuffle y-coords



Multi-Jittered Sampling (Projections)
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Multi-Jittered Sampling (Projections)
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Multi-Jittered Sampling (Projections)
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Multi-Jittered Sampling (Projections)
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Evenly distributed in each 
individual dimension

Evenly distributed in 2D!



Multi-Jittered Sampling (Sudoku)

45[Boulos et al. 2006]



Poisson-Disk/Blue-Noise Sampling
Enforce a minimum distance between points

Poisson-Disk Sampling:
- Mark A. Z. Dippé and Erling Henry Wold. “Antialiasing through 

stochastic sampling.” ACM SIGGRAPH, 1985.

- Robert L. Cook. “Stochastic sampling in computer graphics.” ACM 
Transactions on Graphics, 1986.

- Ares Lagae and Philip Dutré. “A comparison of methods for generating 
Poisson disk distributions.” Computer Graphics Forum, 2008.
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Random Dart Throwing
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Random Dart Throwing
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Random Dart Throwing
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Stratified Sampling
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“Best Candidate” Dart Throwing
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Blue-Noise Sampling (Relaxation-based)
1. Initialize sample positions (e.g. random)

2. Use an iterative relaxation to move samples away from 
each other.
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Discrepancy
Previous stratified approaches try to minimize “clumping”

“Discrepancy” is another possible formal definition of clumping: 
D*(x1,…,xn)
- for every possible subregion compute the maximum absolute 

difference between: 

• fraction of points in the subregion

• volume of containing subregion
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Discrepancy
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Discrepancy
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Discrepancy

56



Discrepancy
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Discrepancy
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Koksma-Hlawka inequality
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Low-Discrepancy Sampling
Deterministic sets of points specially crafted to be evenly 
distributed (have low discrepancy).

Entire field of study called Quasi-Monte Carlo (QMC)
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The Radical Inverse
A positive integer value n can be expressed in a base b with a 
sequence of digits dm...d2d1

The radical inverse function Φb in base b converts a nonnegative 
integer n to a floating-point value in [0, 1) by reflecting these 
digits about the decimal point:

Subsequent points “fall into biggest holes”
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The Van der Corput Sequence
Radical Inverse Φb in base 2

Subsequent points “fall into 
biggest holes”
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k Base 2 Φb

1 1 .1 = 1/2

2 10 .01 = 1/4

3 11 .11 = 3/4

4 100 .001 = 1/8

5 101 .101 = 5/8

6 110 .011 = 3/8

7 111 .111 = 7/8

...



The Radical Inverse
float radicalInverse(int n, int base, float inv)
{

float v = 0.0f;
for (float p = inv; n != 0; p *= inv, n /= base)

v += (n % base) * p;
return v;

}

float radicalInverse(int n, int base)
{

return radicalInverse(n, base, 1.0f / base);
}
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More efficient version available for base 2



The Radical Inverse (Base 2)
float vanDerCorputRIU(uint n)
{

n = (n << 16) | (n >> 16);
n = ((n & 0x00ff00ff) << 8) | ((n & 0xff00ff00) >> 

8);
n = ((n & 0x0f0f0f0f) << 4) | ((n & 0xf0f0f0f0) >> 

4);
n = ((n & 0x33333333) << 2) | ((n & 0xcccccccc) >> 

2);
n = ((n & 0x55555555) << 1) | ((n & 0xaaaaaaaa) >> 

1);
return n / float (0x100000000LL);

}
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Halton: Radical inverse with different base for each dimension:

- The bases should all be relatively prime.

- Incremental/progressive generation of samples

Hammersley: Same as Halton, but first dimension is k/N:

- Not incremental, need to know sample count, N, in advance

Halton and Hammersley Points
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The Hammersley Sequence
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1 sample in each “elementary interval”



The Hammersley Sequence
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1 sample in each “elementary interval”



The Hammersley Sequence
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1 sample in each “elementary interval”



The Hammersley Sequence
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1 sample in each “elementary interval”



The Hammersley Sequence
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1 sample in each “elementary interval”



The Hammersley Sequence
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1 sample in each “elementary interval”



(0,2)-Sequences
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1 sample in each “elementary interval”



(0,2)-Sequences
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1 sample in each “elementary interval”



(0,2)-Sequences
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1 sample in each “elementary interval”



(0,2)-Sequences
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1 sample in each “elementary interval”



(0,2)-Sequences
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1 sample in each “elementary interval”



(0,2)-Sequences
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1 sample in each “elementary interval”



More info on QMC in Rendering
S. Premoze, A. Keller, and M. Raab.
Advanced (Quasi-) Monte Carlo Methods for Image Synthesis. In 
SIGGRAPH 2012 courses.
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Many more...
Sobol

Faure

Larcher-Pillichshammer

Folded Radical Inverse

(t,s)-sequences & (t,m,s)-nets

Scrambling/randomization

much more...

79



Challenges
LD sequence identical for multiple runs
- cannot average independent images!

- no “random” seed

Quality decreases in higher dimensions
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Dimensions 1 and 2 Dimensions 32 and 33

Halton Sequence



Randomized/Scrambled Sequences
Random permutations: compute a permutation table for the 
order of the digits and use it when computing the radical 
inverse
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Dimensions 1 and 2 Dimensions 32 and 33

Without scrambling

Dimensions 1 and 2 Dimensions 32 and 33

With scrambling



Randomized/Scrambled Sequences
Random permutations: compute a permutation table for the 
order of the digits and use it when computing the radical 
inverse
- Can be done very efficiently for base 2 with XOR operation

See PBRe2 Ch7 for details
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Scrambled Radical Inverse (Base 2)
float vanDerCorputRIU(uint n, uint scramble = 0)
{

n = (n << 16) | (n >> 16);
n = ((n & 0x00ff00ff) << 8) | ((n & 0xff00ff00) >> 

8);
n = ((n & 0x0f0f0f0f) << 4) | ((n & 0xf0f0f0f0) >> 

4);
n = ((n & 0x33333333) << 2) | ((n & 0xcccccccc) >> 

2);
n = ((n & 0x55555555) << 1) | ((n & 0xaaaaaaaa) >> 

1);
n ^= scramble;
return n / float (0x100000000LL);

}
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Monte Carlo (16 random samples)
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Monte Carlo (16 stratified samples)
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Quasi-Monte Carlo (16 Halton samples)
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Scrambled Quasi-Monte Carlo
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scrambled Larcher-Pillichshammer sequence



Implementation tips
Using QMC can often lead to unintuitive, difficult-to-debug 
problems.
- Always code up MC algorithms first, using random numbers, to 

ensure correctness

- Only after confirming correctness, slowly incorporate QMC into 
the mix
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How do you add this to your renderer?
Lots of details in the book

Read about the Sampler interface
- Basic idea: replace global randf with a Sampler class that produces 

random (or stratified/quasi-random) numbers

- Also better for multi-threading
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How can we predict error from these?
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N-Rooks Sampling
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Samples Expected power spectrum Radial mean



Multi-Jittered Sampling
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Samples Expected power spectrum Radial mean



Jittered Sampling
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Samples Radial meanExpected power spectrum



Poisson Disk Sampling
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Samples Radial meanExpected power spectrum
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