Monte Carlo integration

Course announcements

- Programming assignment 2 posted, due Friday 2/23 at 23:59.
- How many of you have looked at/started/finished it?
- Any questions?
- Take-home quiz 4 posted, make sure to download the updated version.
- Make-up lecture tomorrow, 11 am, in NSH 3002.

Overview of today's lecture

- Leftover from BRDFs.
- Monte Carlo integration.
- Sampling techniques.
- Importance sampling.
- Ambient occlusion.

Slide credits

Most of these slides were directly adapted from:

- Wojciech Jarosz (Dartmouth).

Numerical Integration - Motivation

For very, very simple integrals, we can compute the solution analytically

$$
\int_{0}^{1} \frac{1}{3} x^{2} \mathrm{~d} x=\left[x^{3}\right]_{0}^{1}=1
$$

But ours are a bit more complicated:

$$
L_{r}\left(\mathbf{x}, \vec{\omega}_{r}\right)=\int_{\mathrm{H}^{2}} f_{r}\left(\mathbf{x}, \vec{\omega}_{i}, \vec{\omega}_{r}\right) L_{i}\left(\mathbf{x}, \vec{\omega}_{i}\right) \cos \theta_{i} \mathrm{~d} \vec{\omega}_{i}
$$

Typical quadrature: Trapezoid rule

Approximate integral of $f(x)$ by assuming function is piecewise linear For equal length segments: $\quad h=\frac{b-a}{n-1}$

Typical quadrature: Trapezoid rule

Consider cost and accuracy as $n \rightarrow \infty$ (or $h \rightarrow 0$)
Work: $O(n)$
Error can be shown to be: $\quad O\left(h^{2}\right)=O\left(\frac{1}{n^{2}}\right)$ second derivative)

What about a 2D function?

Multidimensional integrals \& Fubini's theorem

$\int_{X \times Y \times Z} f(x, y, z) \mathrm{d}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\int_{X}\left(\int_{Y}\left(\int_{Z} f(x, y, z) \mathrm{d} x\right) \mathrm{d} y\right) \mathrm{d} z$
Apply the trapezoid rule repeatedly

Multidimensional integrals \& Fubini's theorem

$\int_{X \times Y \times Z} f(x, y, z) \mathrm{d}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\int_{X}\left(\int_{Y}\left(\int_{Z} f(x, y, z) \mathrm{d} x\right) \mathrm{d} y\right) \mathrm{d} z$
Apply the trapezoid rule repeatedly
Can show that:

- Errors add, so error still: $O\left(h^{2}\right)$
- But work is now: $O\left(n^{2}\right)(n \times n$ set of measurements)

Multidimensional integrals \& Fubini's theorem

$\int_{X \times Y \times Z} f(x, y, z) \mathrm{d}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\int_{X}\left(\int_{Y}\left(\int_{Z} f(x, y, z) \mathrm{d} x\right) \mathrm{d} y\right) \mathrm{d} z$
Apply the trapezoid rule repeatedly
Can show that:

- Errors add, so error still: $O\left(h^{2}\right)$
- But work is now: $O\left(n^{2}\right)(n \times n$ set of measurements)

Must perform much more work in 2D to get same error bound!

Curse of Dimensionality

How much does it cost to apply the trapezoid rule as we go up in dimension?

- 1D: $O(n)$
- 2D: $O\left(n^{2}\right)$
- kD: $O\left(n^{k}\right)$

Curse of Dimensionality

How much does it cost to apply the trapezoid rule as we go up in dimension?

- 1D: $O(n)$
- 2D: $O\left(n^{2}\right)$
- kD: $O\left(n^{k}\right)$

Deterministic quadrature does not scale to higher dimensions! Need a fundamentally different approach...

Monte Carlo Integration

Monte Carlo vs Las Vegas

Random variation creeps into the results

Always gives the correct answer, e.g., a randomized sorting algorithm

Monte Carlo History

Use random numbers to solve numerical problems
Early use during development of atomic bomb
Von Neumann, Ulam, Metropolis
Named after the casino in Monte Carlo

Playing Solitaire

Lose

Win

Win

Lose

What's the chance of winning with a properly shuffled deck?

Playing Solitaire

$$
\begin{gathered}
P_{n}=\frac{1}{n} \sum_{i=1}^{n} \begin{cases}1, & \text { game } i \text { is won }, \\
0, & \text { game } i \text { is lost }\end{cases} \\
P=\lim _{n \rightarrow \infty} P_{n}
\end{gathered}
$$

Monte Carlo Integration

Estimate value of integral using random sampling of function

- Value of estimate depends on random samples used
- But algorithm gives the correct value "on average"

Monte Carlo Integration Advantages

Only requires function to be evaluated at random points on its domain

- Applicable to functions with discontinuities, functions that are impossible to integrate directly

Error is independent of dimensionality of integral!

- $O\left(n^{-0.5}\right)$

Review: random variables

X: random variable. Represents a distribution of potential outcomes. Assigns a value of each outcome.

Two types: discrete vs. continuous

Discrete Random Variables

Discrete Random Variable: countable set of outcomes

Discrete Random Variables

Discrete Random Variable: countable set of outcomes

 Probability mass function (pmf) of X :- $p_{X}\left(x_{i}\right)=P\left(X=x_{i}\right)$, or simply $p_{i}=p\left(x_{i}\right)=P\left(X=x_{i}\right)$
- $p\left(x_{i}\right) \geq 0$
- Sums to one: $\sum_{a} p(a)=1$

Probability mass function

Probability mass function

Cumulative distribution function (CDF)

Cumulative pmf: $\quad P(j)=\sum_{i=1}^{j} p(i)$ where: $0 \leq P(i) \leq 1$

$$
P_{n}=1
$$

Continuous Random Variables

Probability density function (pdf) of $X: p(x)$

- $p(x) \geq 0$
- No restriction that $p(x)<1$ (Not a probability!)

Continuous Random Variables

Probability density function (pdf) of $X: p(x)$

- $p(x) \geq 0$
- No restriction that $p(x)<1$ (Not a probability!)

Cumulative distribution function (cdf): $P(x)$

$$
\begin{aligned}
P(x) & =\int_{0}^{x} p\left(x^{\prime}\right) \mathrm{d} x^{\prime} \\
P(x) & =\operatorname{Pr}(X<x) \\
\operatorname{Pr}(a \leq X \leq b) & =\int_{a}^{b} p\left(x^{\prime}\right) \mathrm{d} x^{\prime} \\
& =P(b)-P(a)
\end{aligned}
$$

Continuous Random Variables

Canonical uniform random variable

$$
p(x)= \begin{cases}1 & x \in[0,1] \\ 0 & \text { otherwise }\end{cases}
$$

Ingredient: Uniform variates

Need: realizations of a uniformly distributed variable on the interval [0.0, 1.0]

Desired properties:

- sequence should pass statistical tests of randomness
- sequence should have a long period
- efficient to compute, requires only little storage
- repeatability: always produce the same sequence (different compilers, operating systems, processors)

Sources of randomness

3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067982148086 51328230664709384460955058223172535940812848111745028410270193852110555964462294895493038196442881097566593344 61284756482337867831652712019091456485669234603486104543266482133936072602491412737245870066063155881748815209 20962829254091715364367892590360011330530548820466521384146951941511609433057270365759591953092186117381932611 79310511854807446237996274956735188575272489122793818301194912983367336244065664308602139494639522473719070217 98609437027705392171762931767523846748184676694051320005681271452635608277857713427577896091736371787214684409 01224953430146549585371050792279689258923542019956112129021960864034418159813629774771309960518707211349999998 37297804995105973173281609631859502445945534690830264252230825334468503526193118817101000313783875288658753320 83814206171776691473035982534904287554687311595628638823537875937519577818577805321712268066130019278766111959 (1820 9216420198938095257201065485863278865936153381827968230301952035301852968995773622599413891249721775283479131 (15020俗 047521620569660405803815019511253382430035587640247496473263914199272604269922796782354781636009341721641219 92458631503028618297455570674983850549458858692699569092721079750930295532116534498720275596023648066549911988 18347977535663698074265425278625518184175746728909777727938000816470600161452491921732172147723501414419735685 48161361157352552133475741849468438523323907394143334547762416862518983569485562099219222184272550254256887671 79049460165346680498862723279178608578438382796797668145410095388378636095068006422512520511739298489608412848 86269456042419652850222106611863067442786220391949450471237137869609563643719172874677646575739624138908658326 45995813390478027590099465764078951269468398352595709825822620522489407726719478268482601476990902640136394437 45530506820349625245174939965143142980919065925093722169646151570985838741059788595977297549893016175392846813 82686838689427741559918559252459539594310499725246808459872736446958486538367362226260991246080512438843904512 44136549762780797715691435997700129616089441694868555848406353422072225828488648158456028506016842739452267467 67889525213852254995466672782398645659611635488623057745649803559363456817432411251507606947945109659609402522 88797108931456691368672287489405601015033086179286809208747609178249385890097149096759852613655497818931297848 1682998948722658804857564014270477555132379641451523746234364542858444795265867821051141354735739523113427166 2168299894872265880485756401427047751520 0213596953623144295248493718711014576540359027993440374200731057853906219838744780847848968332144571386875194
 514
 39057962685610055081066587969981635747363840525714591028970641401109712062804390397595156771577004203378699360 07230558763176359421873125147120532928191826186125867321579198414848829164470609575270695722091756711672291098 16909152801735067127485832228718352093539657251210835791513698820914442100675103346711031412671113699086585163 98315019701651511685171437657618351556508849099898599823873455283316355076479185358932261854896321329330898570 64204675259070915481416549859461637180270981994309924488957571282890592323326097299712084433573265489382391193 25974636673058360414281388303203824903758985243744170291327656180937734440307074692112019130203303801976211011 00449293215160842444859637669838952286847831235526582131449576857262433441893039686426243410773226978028073189 15441101044682325271620105265227211166039666557309254711055785376346682065310989652691862056476931257058635662 01855810072936065987648611791045334885034611365768675324944166803962657978771855608455296541266540853061434443 18586769751456614068007002378776591344017127494704205622305389945613140711270004078547332699390814546646458807 97270826683063432858785698305235808933065757406795457163775254202114955761581400250126228594130216471550979259 23099079654737612551765675135751782966645477917450112996148903046399471329621073404375189573596145890193897131 11790429782856475032031986915140287080859904801094121472213179476477726224142548545403321571853061422881375850

A Million Random Digits

A modern example: PCG32

```
struct pcg32_random_t { uint64_t state; uint64_t inc; };
uint32_t pcg32_random_r(pcg32_random_t* rng) {
        uint64_t oldstate = rng->state;
    rng->state = oldstate * 6364136223846793005ULL + (rng->inc | 1);
    uint32_t xorshifted = ((oldstate >> 18u) ^ oldstate) >> 27u;
        uint32_t rot = oldstate >> 59u;
        return (xorshifted >> rot) | (xorshifted << ((-rot) & 31));
}
[http://www.pcg-random.org/]
```


Expected value

Intuition: what value does the random variable take, on average?

Expected value

Intuition: what value does the random variable take, on average?

- e.g., consider a fair coin where heads $=1$, tails $=0$
- Equal probability ($1 / 2$ both)
- Expected value is then (1/2) $\times 1+(1 / 2) \times 0=1 / 2$

Expected value

Intuition: what value does the random variable take, on average?

- e.g., consider a fair coin where heads $=1$, tails $=0$
- Equal probability ($1 / 2$ both)
- Expected value is then (1/2) $\times 1+(1 / 2) \times 0=1 / 2$

Discrete

expected value of random number of possible

Expected value

Intuition: what value does the random variable take, on average?

- e.g., consider a fair coin where heads $=1$, tails $=0$
- Equal probability ($1 / 2$ both)
- Expected value is then (1/2) $\times 1+(1 / 2) \times 0=1 / 2$

Discrete

expected value of random number of possible

Expected value

Intuition: what value does the random variable take, on average?

- e.g., consider a fair coin where heads $=1$, tails $=0$
- Equal probability ($1 / 2$ both)
- Expected value is then (1/2) $\times 1+(1 / 2) \times 0=1 / 2$

Discrete

expected value of random number of possible
 value of i-th outcome

Expected value

Intuition: what value does the random variable take, on average?

- e.g., consider a fair coin where heads $=1$, tails $=0$
- Equal probability ($1 / 2$ both)
- Expected value is then (1/2) $\times 1+(1 / 2) \times 0=1 / 2$

Discrete

expected value of random number of possible
 value of i-th outcome

Continuous

$$
E[X]=\int_{\mathbb{R}} p(x) x \mathrm{~d} x
$$

Variance

Intuition: how far are the samples from the average, on average?

Variance

Intuition: how far are the samples from the average, on average?
Definition: $V[X]=E\left[(X-E[X])^{2}\right]$

Variance

Intuition: how far are the samples from the average, on average?
Definition: $V[X]=E\left[(X-E[X])^{2}\right]$

Q: Which of these has higher variance?

Variance

Intuition: how far are the samples from the average, on average?
Definition: $V[X]=E\left[(X-E[X])^{2}\right]$
Q:Which of these has higher variance?

Monte Carlo Integration

Motivation: want to compute the integral

$$
F=\int_{D} f(x) \mathrm{d} x
$$

Could we approximate F by averaging a number of realizations x_{i} of a random process?

$$
\frac{1}{N} \sum_{i=1}^{N} f\left(x_{i}\right)
$$

Monte Carlo Integration

$$
\begin{array}{rlr}
E\left[\frac{1}{N} \sum_{i=1}^{N} f\left(X_{i}\right)\right]= & \frac{1}{N} \sum_{i=1}^{N} E\left[f\left(X_{i}\right)\right] & \\
= & E\left[f\left(X_{i}\right)\right] & \\
= & \int_{D} f(x) p_{X_{i}}(x) \mathrm{d} x \quad \begin{array}{l}
\text { Aside: why can we do this? } \\
\\
\\
\\
\\
\\
\\
\text { (oops, that's not } \\
\text { what we wanted!) }
\end{array} \quad \begin{array}{l}
\text { Law of the unconscious } \\
\text { statistician (LOTUS) }
\end{array}
\end{array}
$$

Monte Carlo Integration

Motivation: want to compute the integral

$$
F=\int_{D} f(x) \mathrm{d} x
$$

Solution: Approximate F by averaging realizations of a random variable X, and explicitly accounting for its PDF:

$$
F \approx \frac{1}{N} \sum_{i=1}^{N} \frac{f\left(x_{i}\right)}{p\left(x_{i}\right)}
$$

Monte Carlo Integration

$$
E\left[\frac{1}{N} \sum_{i=1}^{N} \frac{f\left(X_{i}\right)}{p\left(X_{i}\right)}\right]=\frac{1}{N} \sum_{i=1}^{N} E\left[\frac{f\left(X_{i}\right)}{p\left(X_{i}\right)}\right]
$$

Monte Carlo integration is correct on average.

$$
\begin{aligned}
& =E\left[\frac{f\left(X_{i}\right)}{p\left(X_{i}\right)}\right] \\
& =\int_{D} \frac{f\left(X_{i}\right)}{p\left(X_{i}\right)} p\left(X_{i}\right) \mathrm{d} x \\
& =\int_{D} f\left(X_{i}\right) \mathrm{d} x=F
\end{aligned}
$$

- This property is called unbiasedness.

Monte Carlo Integration

Requirement (why?)

$$
f(x) \neq 0 \Rightarrow p(x)>0
$$

Domain D might be: plane, sphere, hemisphere, surface of an object

Reasonable default for $p(x)$: uniform distribution

Monte Carlo Integration

$$
f(x)=e^{\sin \left(3 x^{2}\right)}
$$

Monte Carlo Integration

$$
F=\int_{0}^{1} e^{\sin \left(3 x^{2}\right)} d x
$$

Monte Carlo Integration

$$
\begin{aligned}
& F=\int_{0}^{1} e^{\sin \left(3 x^{2}\right)} d x \approx F_{N}=\frac{1}{N} \sum_{i=1}^{N} \frac{f\left(x_{i}\right)}{p\left(x_{i}\right)} \Rightarrow \frac{1}{N} \sum_{i=1}^{N} f\left(x_{i}\right) \\
& \text { double integrate }(\text { int } N) \\
& \{ \\
& \quad \text { double } \mathrm{x}, \operatorname{sum}=0.0 ; \\
& \quad \text { for }(\text { int } i=0 ; i<N ;++\mathbf{i})\left\{\quad p\left(x_{i}\right)=1\right. \\
& \quad x=\operatorname{randf}() ; \\
& \quad \text { sum + }=\exp (\sin (3 \star \mathrm{x} \star \mathrm{x})) ;
\end{aligned}
$$

Monte Carlo Integration

```
\[
F=\int_{a}^{b} e^{\sin \left(3 x^{2}\right)} d x \approx F_{N}=\frac{1}{N} \sum_{i=1}^{N} \frac{f\left(x_{i}\right)}{p\left(x_{i}\right)}
\]
double integrate(int N, double a, double b)
\[
\{
\]
\[
\text { double } x, \text { sum=0.0; }
\]
\[
\text { for (int } i=0 ; i<N ;++i)\{
\]
\[
x=\operatorname{randf}() ;
\]
\[
\text { sum }+=\exp (\sin (3 * x * x)) \text {; }
\]
\[
\}
\]
return sum / double(N);
\[
\}
\]
```


Monte Carlo Integration

$$
F=\int_{a}^{b} e^{\sin \left(3 x^{2}\right)} d x \approx F_{N}=\frac{1}{N} \sum_{i=1}^{N} \frac{f\left(x_{i}\right)}{p\left(x_{i}\right)}
$$

```
double integrate(int N, double a, double b)
```

\{
double x, sum=0.0;
for (int $\mathbf{i}=0 ; i<N ;++i)$ \{
$x=a+\operatorname{randf}() *(b-a) ;$
sum $+=\exp (\sin (3 * x * x))$;
$p\left(x_{i}\right)=\frac{1}{b-a}$
\}
return sum / double(N);
\}

Monte Carlo Integration

$$
F=\int_{a}^{b} e^{\sin \left(3 x^{2}\right)} d x \approx F_{N}=\frac{1}{N} \sum_{i=1}^{N} \frac{f\left(x_{i}\right)}{p\left(x_{i}\right)}
$$

double integrate(int N, double a, double $b)$ \{
double x, sum=0.0;

$$
\text { for (int } i=0 ; i<N ;++i)\{
$$

$$
x=a+\operatorname{randf}() \star(b-a) ;
$$

$$
\text { sum }+=\exp (\sin (3 * x * x)) /(1 /(b-a)) ;
$$

$$
p\left(x_{i}\right)=\frac{1}{b-a}
$$

$$
\}
$$

return sum / double(N);

Monte Carlo Integration

$$
f(x)=e^{\sin \left(3 x^{2}\right)}
$$

\boldsymbol{N}	F_{N}
1	2.75039
10	1.9893
100	1.79139
1000	1.75146
10000	1.77313
100000	1.77862

True value: $1.760977217585905 .$.

Monte Carlo Integration

Remarkable thing about this: Dimension doesn't matter

Monte Carlo Error

$$
\begin{aligned}
E\left[\left\|F_{N}-F\right\|^{2}\right] & =E\left[F_{N}^{2}-2 F_{N} F+F^{2}\right] \\
& =E\left[F_{N}^{2}\right]-E\left[2 F_{N} F\right]+E\left[F^{2}\right]
\end{aligned}
$$

For an unbiased estimator,

$$
=E\left[F_{N}^{2}\right]-2 E\left[F_{N}\right] F+F^{2}
$$

$$
=E\left[F_{N}^{2}\right]-2 F F+F^{2}
$$

$$
\begin{aligned}
& =E\left[F_{N}^{2}\right]-F^{2} \\
& =E\left[F_{N}^{2}\right]-E\left[F_{N}\right]^{2}=V\left[F_{N}\right]
\end{aligned}
$$

Monte Carlo error

Variance:

$$
\begin{aligned}
V\left[\left\langle F^{N}\right\rangle\right] & =V\left[\frac{1}{N} \sum_{i=0}^{N-1} \frac{f\left(X_{i}\right)}{\operatorname{pdf}\left(X_{i}\right)}\right] \text {-assume uncorreated samples } \\
& =\frac{1}{N^{2}} \sum_{i=0}^{N-1} V\left[\frac{f\left(X_{i}\right)}{\operatorname{pdf}\left(X_{i}\right)}\right] \\
& =\frac{1}{N^{2}} \sum_{i=0}^{N-1} V\left[Y_{i}\right] \\
& =\frac{1}{N} V[Y]
\end{aligned}
$$

Monte Carlo error

Variance:

$$
\begin{aligned}
& V\left[\left\langle F^{N}\right\rangle\right]=V\left[\frac{1}{N} \sum_{i=0}^{N-1} \frac{f\left(X_{i}\right)}{\operatorname{pdf}\left(X_{i}\right)}\right]- \\
&=\frac{1}{N^{2}} \sum_{i=0}^{N-1} V\left[\frac{f\left(X_{i}\right)}{\operatorname{pdf}\left(X_{i}\right)}\right] \quad \begin{array}{l}
\text { What hape uncoreated sampes } \\
\text { samples are correlated? }
\end{array} \\
&=\frac{1}{N^{2}} \sum_{i=0}^{N-1} V\left[Y_{i}\right] \quad \begin{array}{l}
\text { Error scaling is independent } \\
\\
=\frac{1}{N} V[Y]
\end{array} \\
& \text { of dimensionality! } \\
& \text { Error converges to zero as } \\
& N \rightarrow \infty .
\end{aligned}
$$

Std. deviation: $\sigma\left[\left\langle F^{N}\right\rangle\right]=\frac{1}{\sqrt{N}} \sigma[Y]$

- This property is called consistency.

Unbiasedness and consistency

Both are desirable, but different, properties of an estimator.

- An estimator can be consistent but not unbiased.

Unbiasedness: You can reduce error by averaging rendered images from independent finite-sample rendering runs. As the number of images grows infinite, the error goes to zero.

Consistency: You can reduce error by increasing the number of samples in a single rendering run. As the number of samples grows infinite, the error goes to zero.

Monte Carlo Methods

Pros

- Flexible
- Easy to implement
- Easily handles complex integrands
- Efficient for high dimensional integrands
- Unbiased estimator

Cons

- Variance (noise)
- "Slow" convergence* [but independent of dimension, so it's actually pretty fast at higher dimensions]

$$
O(1 / \sqrt{N})
$$

Monte Carlo Integration Summary

Goal: evaluate integral $\int_{a}^{b} f(x) d x$
Random variable $\quad X_{i} \sim p(x)$
Monte Carlo Estimator $\quad F_{N}=\frac{1}{N} \sum_{i=1}^{N} \frac{f\left(X_{i}\right)}{p\left(X_{i}\right)}$
Expectation

$$
E\left[F_{N}\right]=\int_{a}^{b} f(x) d x
$$

Remaining Agenda

$$
F_{N}=\frac{1}{N} \sum_{i=1}^{N} \frac{f\left(X_{i}\right)}{p\left(X_{i}\right)}
$$

Main practical issues:

- How to choose $p(x)$
- How to generate x_{i} according to $p(x)$

Ambient Occlusion

$$
L_{r}\left(\mathbf{x}, \vec{\omega}_{r}\right)=\int_{H^{2}} f_{r}\left(\mathbf{x}, \vec{\omega}_{i}, \vec{\omega}_{r}\right) L_{i}\left(\mathbf{x}, \vec{\omega}_{i}\right) \cos \theta_{i} d \vec{\omega}_{i}
$$

Sampling Random Variables

Sampling the function domain:

- Uniform unit interval $(0,1)$
- Uniform interval (a,b)
- Circle?
- Sphere?
- Hemisphere?
- More complex domains?

Example: uniformly sampling a disk

Uniform probability density on a unit disk

$$
p(x, y)= \begin{cases}\frac{1}{\pi} & x^{2}+y^{2}<1 \\ 0 & \text { otherwise }\end{cases}
$$

Goal: draw samples X_{i}, Y_{i} that are distributed as:

$$
\left(X_{i}, Y_{i}\right) \sim p(x, y)
$$

Problem: pseudo-random number generator only allows us to draw samples from a canonical uniform distribution

Rejection Sampling in a Disk

Vector2 v;
do
\{
v.x $=1-2$ *randf();
$\mathrm{v} . \mathrm{y}=1-2 \star \operatorname{randf}()$;
\} while $(\operatorname{dot}(v, v)>1)$

- Similar technique for sampling a sphere

Rejection Sampling in a Sphere

Rejection Sampling on a Sphere

Vector3 v;
do
\{
v.x $=1-2 *$ randf();
$\mathrm{v} . \mathrm{y}=1-2$ *randf();
$v . z=1-2 \star \operatorname{randf}() ;$
$\}$ while(dot(v, v) > 1)
// Project onto sphere $\mathrm{v}=\mathrm{v} /$ length (v) ;

Rejection Sampling a Hemisphere

Rejection Sampling a Hemisphere

Vector3 v ;
do
\{
v.x $=1-2 *$ randf();
$\mathrm{v} . \mathrm{y}=1-2 \star \operatorname{randf}() ;$
$v . z=1-2 \star \operatorname{randf}() ;$
$\}$ while(dot(v,v) > $1 \mid$

$$
v . z<0)
$$

Rejection Sampling a Hemisphere

Rejection Sampling a Hemisphere

Rejection Sampling a Hemisphere

- Or, just generate in canonical orientation, and then rotate

Rejection Sampling

More complex shapes

Pros:

- Flexible

Cons:

- Inefficient

- Difficult/impossible to combine with stratification or quasi-Monte Carlo

Directly sampling a disk?

Idea: transform samples to polar coordinates:

- pick two uniform random variables ξ_{1}, ξ_{2}
- select point at (r, ϕ) with $r=\xi_{1}$ and $\phi=2 \pi \xi_{2}$
- This algorithm does not produce the desired uniform sampling of the disk. Why?

Wrong!

Samples are uniform in (θ, r), but non-uniform in (x, y) !

Right!
Samples are non-uniform in (θ, r), but uniform in (x, y) !

This can be corrected by choosing r nonuniformly!

$$
\theta=2 \pi \xi_{1}
$$

$$
r=\sqrt{\xi_{2}}
$$

Transforming Between Distributions

Given a random variable $X_{i} \sim p(x)$
$Y_{i}=T\left(X_{i}\right)$ is also a random variable

- but what is its probability density?

$$
p_{y}(y)=p_{y}(T(x))=\frac{p_{x}(x)}{\left|J_{T}(x)\right|}
$$

- where $\left|J_{T}(x)\right|$ is the absolute value of the determinant of the Jacobian of T

Polar coordinate parameterization

$$
\begin{gathered}
T(r, \phi) \mapsto\left[\begin{array}{c}
r \cos \phi \\
r \sin \phi
\end{array}\right] \\
J_{T}(r, \phi)=\left[\begin{array}{ll}
\frac{\partial T_{x}}{\partial r} & \frac{\partial T_{x}}{\partial \phi} \\
\frac{\partial T_{y}}{\partial r} & \frac{\partial T_{y}}{\partial \phi}
\end{array}\right]=\left[\begin{array}{cc}
\cos \phi & -r \sin \phi \\
\sin \phi & r \cos \phi
\end{array}\right] \\
\left|\operatorname{det} J_{T}(r, \phi)\right|=r
\end{gathered}
$$

Account for parameterization

Desired distribution on target domain

$$
p(x, y)= \begin{cases}\frac{1}{\pi}, & x^{2}+y^{2}<1 \\ 0, & \text { otherwise }\end{cases}
$$

If we sample in spherical coordinates:

$$
\overbrace{p(x, y)}^{\text {target domain }}=p(T(r, \phi))=\frac{\overbrace{p(r, \phi)}^{\text {sampling domain }}}{\left|\operatorname{det} J_{T}(r, \phi)\right|}
$$

Thus, need this distribution on source domain:

$$
p(r, \phi)=\underbrace{p(T(r, \phi))}_{=1 / \pi} \cdot \underbrace{\left|\operatorname{det} J_{T}(r, \phi)\right|}_{=r}=\frac{r}{\pi}
$$

Sampling 2D Distributions

Draw samples (X, Y) from a 2D distribution $p(x, y)$
If $p(x, y)$ is separable, i.e., $p(x, y)=p(x) p(y)$, we can independently sample $p(x)$, and $p(y)$

Otherwise, compute the marginal density function:

$$
p(x)=\int p(x, y) d y
$$

and, the conditional density:

$$
p(y \mid x)=\frac{p(x, y)}{p(x)}
$$

Procedure: first sample $X_{i} \sim p(x)$, then $Y_{i} \sim p\left(y \mid X_{i}\right)$

Account for parameterization

Thus: need this distribution on source domain

$$
p(r, \phi)=\underbrace{p(T(r, \phi))}_{=1 / \pi} \cdot \underbrace{\left|\operatorname{det} J_{T}(r, \phi)\right|}_{=r}=\frac{r}{\pi}
$$

Step 1: generate φ proportional to

$$
p_{1}(\phi)=\frac{1}{2 \pi} \quad(\phi \in[0,2 \pi])
$$

Step 2: generate r proportional to

$$
p_{2}(r) \propto r=2 r \quad(r \in[0,1])
$$

Constant PDF in φ, linearly increasing PDF in r

Sampling arbitrary distributions

The inversion method:

1. Compute the CDF

$$
P(x)=\int_{0}^{x} p\left(x^{\prime}\right) d x^{\prime}
$$

2. Compute its inverse $P^{-1}(y){ }_{0}$
3. Obtain a uniformly distributed random number ξ
4. Compute $X_{i}=P^{-1}(\xi)$

Sampling a linear ramp

Goal: sample with PDF:

$$
p(r)=2 r
$$

Step 1: $\quad P(r)=r^{2}$

Step 2: $\quad P^{-1}(y)=\sqrt{y}$
Step 3: $\quad r_{i}=\sqrt{\xi}$

Uniformly Sampling a Disk

Pick two uniform random variables ξ_{1}, ξ_{2}
Sample in polar coordinates with:

$$
(r, \phi)=\left(\xi_{1}, 2 \pi \xi_{2}\right)
$$

$$
(r, \phi)=\left(\sqrt{\xi_{1}}, 2 \pi \xi_{2}\right)
$$

Recipe

1. Express the desired distribution in a convenient coordinate system
2. Account for distortion by coordinate system

- Requires computing the determinant of the Jacobian

3. Compute marginal and conditional 1D PDFs
4. Sample 1D PDFs using the inversion method

Directly Sampling on a Sphere

Can we use this?
Given a random variable $X_{i} \sim p(x)$
$Y_{i}=T\left(X_{i}\right)$ is also a random variable

- but what is its probability density?

$$
p_{y}(y)=p_{y}(T(x))=\frac{p_{x}(x)}{\left|J_{T}(x)\right|}
$$

- where $\left|J_{T}(x)\right|$ is the absolute value of the determinant of the Jacobian of T

Directly Sampling on a Sphere

Different transformation rule:

$$
p_{x}(\boldsymbol{x}(u, v))=\frac{p_{(u, v)}(u, v)}{\left\|\boldsymbol{x}_{u}(u, v) \times \boldsymbol{x}_{v}(u, v)\right\|}
$$

Where does this come from?

- Expression for differential area (e.g., as in area integral):

$$
\mathrm{d} A(\boldsymbol{x})=\left\|\boldsymbol{x}_{u}(u, v) \times \boldsymbol{x}_{v}(u, v)\right\| \mathrm{d} u \mathrm{~d} v
$$

Directly Sampling on a Sphere

Pick two uniform random variables ξ_{1}, ξ_{2}
Idea: select point at (θ, φ) with $\theta=\pi \xi_{1}$ and $\varphi=2 \pi \xi_{2}$

- Problem: not uniform with respect to surface area!

Correct solution: $\theta=\cos ^{-1}\left(2 \xi_{1}-1\right)$ and $\varphi=2 \pi \xi_{2}$

$$
\begin{aligned}
\text { Algorithm } \\
\quad \begin{aligned}
\theta & =\cos ^{-1}\left(2 \xi_{1}-1\right) \\
\phi & =2 \pi \xi_{2} \\
\vec{\omega}_{x} & =\sin \theta \cos \phi \\
\vec{\omega}_{y} & =\sin \theta \sin \phi \\
\vec{\omega}_{z} & =\cos \theta
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
\text { Better } & \\
\vec{\omega}_{z} & =2 \xi_{1}-1 \\
r & =\sqrt{1-\vec{\omega}_{z}^{2}} \\
\phi & =2 \pi \xi_{2} \\
\vec{\omega}_{x} & =r \cos \phi \\
\vec{\omega}_{y} & =r \sin \phi
\end{aligned}
$$

Archimedes' Hat-Box Theorem

The surface area of a sphere between any two horizontal planes is equal to the corresponding area on the circumscribing cylinder.

- i.e.: uniform areas on a cylinder map to uniform areas on a sphere
- What is $\left|J_{T}\right|$ for cylindrical mapping?

Archimedes' Hat-Box Theorem

The surface area of a sphere between any two horizontal planes is equal to the corresponding area on the circumscribing cylinder.

- i.e.: uniform areas on a cylinder map to uniform areas on a sphere

$$
\begin{aligned}
\vec{\omega}_{z} & =2 \xi_{1}-1 \\
r & =\sqrt{1-\vec{\omega}_{z}^{2}} \\
\phi & =2 \pi \xi_{2} \\
\vec{\omega}_{x} & =r \cos \phi \\
\vec{\omega}_{y} & =r \sin \phi
\end{aligned}
$$

- What is $\left|J_{T}\right|$ for cylindrical mapping?
- point on unit cylinder
- projection onto sphere

Directly Sampling a Hemisphere

Just like a sphere
Use Hat-Box theorem with shorter cylinder

More Random Sampling

Other useful sampling domains:

- triangles
- 1- or 2-D discrete PDFs (e.g. environment maps)

Much more!

Sampling Various Distributions

Target space	Density	Domain	Transformation
Eadius R disk	$p\left(r_{n}, \theta\right)=\frac{1}{\pi R^{2}}$	$\begin{aligned} & \theta \in[0,2 \pi] \\ & r \in[0, R] \end{aligned}$	$\begin{aligned} & \theta=2 \pi u \\ & r=R \sqrt{v} \end{aligned}$
Sector of radius R disk	$p\left(r_{r} \theta\right)=\frac{2}{\left(\theta_{1}-\theta_{1}\right)\left(r_{2}^{2}-r_{1}^{2}\right)}$	$\begin{aligned} & \theta \in\left[\theta_{1}, \theta_{2}\right] \\ & r \in\left[r_{1}, r_{2}\right] \end{aligned}$	$\begin{aligned} & \theta=\theta_{1}+u\left(\theta_{2}-\theta_{1}\right) \\ & r=\sqrt{r_{1}^{2}+v\left(r_{i n}^{3}-r_{1}^{3}\right)} \end{aligned}$
Phong density exponent n	$p(\theta, \phi)=\frac{n+1}{2 \pi} \cos ^{m} \theta$	$\begin{aligned} & \theta \in\left[0, \frac{\pi}{2}\right] \\ & \phi \in[0,2 \pi] \end{aligned}$	$\begin{aligned} & \theta=\arccos \left((1-u)^{1 /(\pi+1)}\right) \\ & \phi=2 \pi v \end{aligned}$
Separated triangle filter	$p(x, y)(1-\|x\|)(1-\|y\|)$	$x \in[-1,1]$ $y \in[-1,1]$	$\begin{aligned} & x= \begin{cases}1-\sqrt{2(1-u)} & \text { if } u \geq 0.5 \\ -1+\sqrt{2 u} & \text { if } u<0.5\end{cases} \\ & y= \begin{cases}1-\sqrt{2(1-v)} & \text { if } v \geq 0.5 \\ -1+\sqrt{2 v} & \text { if } t<0.5\end{cases} \end{aligned}$
Triangle with vertices $a_{0 n} a_{4}, a_{2}$	$p(a)=\frac{1}{\text { area }}$	$\begin{aligned} & s \in[0,1] \\ & i \in[0,1-s] \end{aligned}$	$\begin{aligned} & s=1-\sqrt{1-u} \\ & t=(1-s) v \\ & a=a_{0}+s\left(a_{1}-a_{0}\right)+t\left(a_{2}-a_{0}\right) \end{aligned}$
Surface of unit sphere	$p(\theta, \phi)-\frac{1}{4 \pi}$	$\begin{aligned} & \theta \in[0, \pi] \\ & \phi \in[0,2 \pi] \end{aligned}$	$\begin{aligned} & \theta=\arccos (1-2 u) \\ & \phi=2 \pi v \end{aligned}$
Sector on surface of unit sphere	$\begin{aligned} & p(\theta, \phi) \\ & \quad=\frac{1}{\left(\phi_{2}-\phi_{1}\right)\left(\cos \theta_{1}-\cos \theta_{2}\right)} \end{aligned}$	$\begin{aligned} & \theta \in\left[\theta_{1}, \theta_{2}\right] \\ & \phi \in\left[\phi_{1+} \phi_{2}\right] \end{aligned}$	$\begin{aligned} \theta= & \arccos \left[\cos \theta_{1}\right. \\ & \left.+u\left(\cos \theta_{2}-\cos \theta_{1}\right)\right] \\ \phi= & \phi_{1}+v\left(\phi_{2}-\phi_{1}\right) \end{aligned}$
Interior of radius R sphere	$p=\frac{3}{4 \pi R^{3}}$	$\begin{aligned} & \theta \in[0, \pi] \\ & \phi \in[0,2 \pi] \\ & R \in[0, R] \end{aligned}$	$\begin{aligned} & \theta=\arccos (1-2 u) \\ & \phi=2 \pi v \\ & r=w^{1 / 3} R \end{aligned}$

${ }^{a}$ The symbols $u_{n} v$, and w represent instances of uniformly distributed random variables ranging over [0, 1].

Ambient Occlusion

Consider diffuse objects illuminated by an ambient overcast sky

$$
L_{r}\left(\mathbf{x}_{r}, \vec{\mu}_{r}\right) \equiv \oint_{H} f_{H^{2}} f_{r}\left(\mathbf{x}\left(\vec{\omega}_{i}, \overrightarrow{\omega_{i}}, \vec{\omega}_{i}\right) \cos L_{i}\left(\mathbf{x}_{i}, \vec{\mu}_{\mu_{i}}\right) \cos \theta_{i} d \vec{\omega}_{i}\right.
$$

Ambient Occlusion

Consider diffuse objects illuminated by an ambient overcast sky

$$
L_{r}(\mathbf{x})=\frac{\rho}{\pi} \int_{H^{2}} V\left(\mathbf{x}, \vec{\omega}_{i}\right) \cos \theta_{i} d \vec{\omega}_{i}
$$

Ambient Occlusion

Consider diffuse objects illuminated by an ambient overcast sky

$$
L_{r}(\mathbf{x})=\frac{\rho}{\pi} \int_{H^{2}} V\left(\mathbf{x}, \vec{\omega}_{i}\right) \cos \theta_{i} d \vec{\omega}_{i} \approx \frac{\rho}{\pi} \frac{V\left(\mathbf{x}, \vec{\omega}_{i}\right) \cos \theta_{i}}{p\left(\vec{\omega}_{i}\right)}
$$

Hemispherical Sampling (1 Sample)

Hemispherical Sampling (4 Samples)

Hemispherical Sampling (9 Samples)

Hemispherical Sampling (16 Samples)

Hemispherical Sampling (256 Samples)

Hemispherical Sampling (1024 Samples)

Strategies for reducing variance

The standard MC estimator:

$$
\begin{aligned}
F & =\int_{\mu(x)} f(x) \mathrm{d} \mu(x) \\
\left\langle F^{N}\right\rangle & =\frac{1}{N} \sum_{i=0}^{N-1} \frac{f\left(X_{i}\right)}{\operatorname{pdf}\left(X_{i}\right)} \\
\sigma\left[\left\langle F^{N}\right\rangle\right] & =\frac{1}{\sqrt{N}} \sigma[Y]
\end{aligned}
$$

How do we reduce the variance of Y ?

- Importance sampling

Importance sampling

Importance sampling

$$
\int f(x) d x \quad F_{N}=\frac{1}{N} \sum_{i=1}^{N} \frac{f\left(X_{i}\right)}{p\left(X_{i}\right)}
$$

assume

$$
\begin{aligned}
p(x)= & c f(x) \\
& \int p(x) d x=1 \quad \rightarrow \quad c=\frac{1}{\int f(x) d x}
\end{aligned}
$$

estimator

$$
\frac{f\left(X_{i}\right)}{p\left(X_{i}\right)}=\frac{1}{c}=\int f(x) d x \quad \text { zero variance }!
$$

Importance sampling

$p(x)=c f(x)$ requires knowledge of the integral we are trying to compute in the first place!

But: If PDF is similar to integrand, variance can be significantly reduced

Common strategy: sample according to part of the integrand

Ambient occlusion

$$
L_{r}(\mathbf{x})=\frac{\rho}{\pi} \int_{H^{2}} V\left(\mathbf{x}, \vec{\omega}_{i}\right) \cos \theta_{i} d \vec{\omega}_{i}
$$

What terms can we importance sample?

- incident radiance
- cosine term

Ambient occlusion

$$
L_{r}(\mathbf{x})=\frac{\rho}{\pi} \int_{H^{2}} V\left(\mathbf{x}, \vec{\omega}_{i}\right) \cos \theta_{i} d \vec{\omega}_{i}
$$

What terms can we importance sample?

- incident radiance
- cosine term

Ambient Occlusion

$$
L_{r}(\mathbf{x}) \approx \frac{\rho}{\pi N} \sum_{k=1}^{N} \frac{V\left(\mathbf{x}, \vec{\omega}_{i, k}\right) \cos \theta_{i, k}}{p\left(\vec{\omega}_{i, k}\right)}
$$

Uniform hemispherical sampling

$$
p\left(\vec{\omega}_{i, k}\right)=1 / 2 \pi
$$

$$
L_{r}(\mathbf{x}) \approx \frac{2 \rho}{N} \sum_{k=1}^{N} V\left(\mathbf{x}, \vec{\omega}_{i, k}\right) \cos \theta_{i, k}
$$

Cosine-weighted importance sampling

$$
p\left(\vec{\omega}_{i, k}\right)=\cos \theta_{i, k} / \pi
$$

$$
L_{r}(\mathbf{x}) \approx \frac{\rho}{N} \sum_{k=1}^{N} V\left(\mathbf{x}, \vec{\omega}_{i, k}\right)
$$

Cosine-weighted Hemispherical Sampling

Could proceed as before: compute marginal and conditional densities, then use inversion method.

It turns out that:

- Generating points uniformly on the disc, and then project these points vertically onto the hemisphere produces the desired distribution.

Cosine-weighted Hemispherical Sampling

Generate points on sphere
(unit directions)

Cosine-weighted Hemispherical Sampling

Cosine-weighted Hemispherical Sampling

Generate points on sphere (unit directions)

Add unit normal
normalize
unit normal

Uniform hemispherical sampling

1 sample/pixel

Cosine-weighted importance sampling

Uniform hemispherical sampling

 importance sampling
Uniform hemispherical

 samplingCosine-weighted importance sampling

Uniform hemispherical 1024 sample/pixel sampling

Cosine-weighted importance sampling

Strategies for reducing variance

The standard MC estimator:

$$
\begin{aligned}
F & =\int_{\mu(x)} f(x) \mathrm{d} \mu(x) \\
\left\langle F^{N}\right\rangle & =\frac{1}{N} \sum_{i=0}^{N-1} \frac{f\left(X_{i}\right)}{\operatorname{pdf}\left(X_{i}\right)} \\
\sigma\left[\left\langle F^{N}\right\rangle\right] & =\frac{1}{\sqrt{N}} \sigma[Y]
\end{aligned}
$$

How do we reduce the variance of Y ?

- Importance sampling

Equal-sample versus equal-time comparisons

$$
\sigma\left[\left\langle F^{N}\right\rangle\right]=\frac{1}{\sqrt{N}} \sigma[Y]
$$

- Importance sampling improves the $\sigma[Y]$ term
- But an importance sampling technique may be more expensive to run than naive uniform sampling, reducing the N term given fixed runtime.

Cost of an estimator:
time to draw one sample for a

$$
C=N \cdot T \text { - given sampling technique }
$$

$<$ number of samples

- Equal-sample (fixed N) comparisons can be misleading.
- Equal-time comparisons (fixed total runtime, which is equivalent to fixed cost C) are more representative of performance.
- At equal time, a naive sampling technique that draws very many bad samples can result in less variance than a sophisticated technique that draws very few great samples.

More Integration Dimensions

Anti-aliasing (image space)
Light visibility (surface of area lights)
Depth-of-field (camera aperture)
Motion blur (time)
Many lights
Multiple bounces of light
Participating media (volume)

