Monte Carlo integration

http://graphics.cs.cmu.edu/courses/15-468

15-468, 15-668, 15-868 Physics-based Rendering Spring 2025, Lecture 8

Course announcements

Programming assignment 2 will be posted on Friday. •

2

Overview of today's lecture

- Leftover from BRDFs. \bullet
- Monte Carlo integration. \bullet
- Sampling techniques.
- Importance sampling. •
- Ambient occlusion. \bullet

3

Slide credits

Most of these slides were directly adapted from:

• Wojciech Jarosz (Dartmouth).

Numerical Integration - Motivation

analytically

$$\int_{0}^{1} \frac{1}{3} x^{2} dx$$

But ours are a bit more complicated:

$$L_r(\mathbf{x},\vec{\omega}_r) = \int_{H^2} f_r(\mathbf{x},\mathbf{x},\mathbf{x}) f_r(\mathbf{x},\mathbf{x},\mathbf{x})$$

For very, very simple integrals, we can compute the solution

- $, \vec{\omega}_i, \vec{\omega}_r) L_i(\mathbf{x}, \vec{\omega}_i) \cos \theta_i \, \mathrm{d} \vec{\omega}_i$

Typical quadrature: Trapezoid rule

<u>Approximate</u> integral of f(x) by assuming function is piecewise linear

For equal length segments:

Typical quadrature: Trapezoid rule

Consider cost and accuracy as $n \to \infty$ (or $h \to 0$) Work: O(n)

Error can be shown to be:

 $O(h^2) = O\left(\frac{1}{n^2}\right)$ (for f(x) with continuous second derivative)

What about a 2D function?

f(x,y)

How should we approximate the area (volume) underneath?

Re

Multidimensional integrals & Fubini's theorem

 $\int_{X \times Y \times Z} f(x, y, z) d(x, y, z) = \int_X \left(\int_Y \left(\int_Z f(x, y, z) \, dx \right) \, dy \right) \, dz$

Apply the trapezoid rule repeatedly

Multidimensional integrals & Fubini's theorem

 $\int_{X \times Y \times Z} f(x, y, z) d(x, y, z) = \int_X \left(\int_Y \left(\int_Z f(x, y, z) dx \right) dy \right) dz$

Apply the trapezoid rule repeatedly Can show that:

- Errors add, so error still: $O(h^2)$

Multidimensional integrals & Fubini's theorem

 $\int_{X \times Y \times Z} f(x, y, z) d(x, y, z) = \int_X \left(\int_Y \left(\int_Z f(x, y, z) dx \right) dy \right) dz$

Apply the trapezoid rule repeatedly Can show that:

- Errors add, so error still: $O(h^2)$

Must perform much more work in 2D to get same error bound!

Curse of Dimensionality

How much does it cost to apply the trapezoid rule as we go up in dimension?

- 1D: O(n)
- 2D: $O(n^2)$
- kD: $O(n^k)$

. . .

12

Curse of Dimensionality

How much does it cost to apply the trapezoid rule as we go up in dimension?

- 1D: O(n)
- 2D: $O(n^2)$

Deterministic quadrature does not scale to higher dimensions! Need a fundamentally different approach...

Monte Carlo Integration

Random variation creeps into the results

Monte Carlo vs Las Vegas

Always gives the correct answer, e.g., a randomized sorting algorithm

Monte Carlo History

Use random numbers to solve numerical problems

- Early use during development of atomic bomb
- Von Neumann, Ulam, Metropolis
- Named after the casino in Monte Carlo

Playing Solitaire

Lose

What's the chance of winning with a properly shuffled deck?

Win Lose

Playing Solitaire

 $P_n = \frac{1}{n} \sum_{i=1}^n \begin{cases} 1, & \text{game } i \text{ is won,} \\ 0, & \text{game } i \text{ is lost} \end{cases}$

 $P = \lim_{n \to \infty} P_n$

Monte Carlo Integration

Estimate value of integral using *random* sampling of function

- Value of estimate depends on random samples used
- But algorithm gives the correct value "on average"

Monte Carlo Integration Advantages

Only requires function to be evaluated at random points on its domain

- impossible to integrate directly
- Error is independent of dimensionality of integral!
- $O(n^{-0.5})$

- Applicable to functions with discontinuities, functions that are

21

Review: random variables

X: random variable. Represents a distribution of potential outcomes. Assigns a value of each outcome.

Two types: discrete vs. continuous

Discrete Random Variables

Discrete Random Variable: countable set of outcomes

Discrete Random Variables

Discrete Random Variable: countable set of outcomes

- **Probability mass function** (pmf) of X:
- $p_X(x_i) = P(X = x_i)$, or simply $p_i = p(x_i) = P(X = x_i)$
- $p(x_i) \geq 0$

- Sums to one: $\sum p(a) = 1$

Probability mass function

 $p_X(x_i)$

Probability mass function

Cumulative distribution function (CDF)

Cumulative pmf: $P(j) = \sum p(i)$ where: $0 \leq P(i) \leq 1$ $P_n = 1$

 x_i

Continuous Random Variables

Probability density function (pdf) of X: p(x)

- $p(x) \ge 0$
- No restriction that p(x) < 1 (Not a probability!)

Uniform distribution

(for random variable X defined on [0,1] domain)

0

Continuous Random Variables

Probability density function (pdf) of X: p(x)

- $p(x) \ge 0$
- No restriction that p(x) < 1 (Not a probability!)

Cumulative distribution function (cdf): P(x)

$$P(x) = \int_0^x p(x') \, dx'$$
$$P(x) = \Pr(X < x)$$
$$\Pr(a \le X \le b) = \int_a^b p(x') \, dx'$$
$$= P(b) - P(a)$$

Continuous Random Variables

Canonical uniform random variable

$$p(x) = \begin{cases} 1 & x \in [0, 1], \\ 0 & \text{otherwise.} \end{cases}$$

Ingredient: Uniform variates

Need: realizations of a uniformly distributed variable on the interval [0.0, 1.0]

Desired properties:

- sequence should pass statistical tests of randomness
- sequence should have a long period
- efficient to compute, requires only little storage
- repeatability: always produce the same sequence (different compilers, operating systems, processors)

Sources of randomness

3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067982148086 **35587640247496473263914199272**604269922796782354781636009341721641219 **58858692699569092721079750930295**532116534498720275596023648066549911988 **175746728909777727938000816470600**161452491921732172147723501414419735685 **3323**90739**414**333454776**2416**862518983569485562099219222184272550254256887671 **784**3838279**679**766814541**0095**388378636095068006422512520511739298489608412848 **42**78622039**194**945047123**7137**869609563643719172874677646575739624138908658326 **259**57098258**2262**0522489407726719478268482601476990902640136394437 **509**37221696**4615**1570985838741059788595977297549893016175392846813 **2524**68084598**7273**6446958486538367362226260991246080512438843904512 **9486**85558484**0635**3422072225828488648158456028506016842739452267467 **4886**230577456**4980**3559363456817432411251507606947945109659609402522 **1792**868092087**4760**9178249385890097149096759852613655497818931297848 **59027**9934403742**00731**057853**90**6219838744780847848968332144571386875194 **2781911**9793995206**1419663428754**4406437451237181921799983910159195618146 **026054**1466592520149**74428507**3251866600213243408819071048633173464965145 **840**52571459102897064**1401**109712062804390397595156771577004203378699360

A Million Random Digits

Top positive review See all 468 positive reviews >

1,842 people found this helpful ★★★★☆ almost perfect

By a curious reader on October 26, 2006

Such a terrific reference work! But with so many terrific random digits, it's a shame they didn't sort them, to make it easier to find the one you're looking for.

	ALIANA LANDA VALLA SALAR VALLA VILLA	
the line and a second distance of the second		

Top critical review

See all 191 critical reviews >

849 people found this helpful

★★★☆☆ Wait for the audiobook version

By R. Rosini on October 19, 2006

While the printed version is good, I would have expected the publisher to have an audiobook version as well. A perfect companion for one's lpod.

A modern example: PCG32

struct pcg32_random_t { uint64_t state; uint64_t inc; };

uint32_t pcg32_random_r(pcg32_random_t* rng) { uint64_t oldstate = rng->state; rng->state = oldstate * 6364136223846793005ULL + (rng->inc | 1); uint32_t xorshifted = ((oldstate >> 18u) ^ oldstate) >> 27u; uint32_t rot = oldstate >> 59u; return (xorshifted >> rot) | (xorshifted << ((-rot) & 31));</pre> }

[http://www.pcg-random.org/]

Expected value

Intuition: what value does the random variable take, on average?

Expected value

Intuition: what value does the random variable take, on average?

- e.g., consider a fair coin where heads = 1, tails = 0
- Equal probability (1/2 both)
- Expected value is then $(1/2) \times 1 + (1/2) \times 0 = 1/2$

Expected value

Intuition: what value does the random variable take, on average?

- e.g., consider a fair coin where heads = 1, tails = 0
- Equal probability (1/2 both)
- Expected value is then $(1/2) \times 1 + (1/2) \times 0 = 1/2$

Expected value

- Intuition: what value does the random variable take, on average? - e.g., consider a fair coin where heads = 1, tails = 0
- Equal probability (1/2 both)
- Expected value is then $(1/2) \times 1 + (1/2) \times 0 = 1/2$

Continuous

 $E[X] = \int_{-\infty} p(x) x \, \mathrm{d}x$

Expected value

Intuition: what value does the random variable take, on average?

- e.g., consider a fair coin where heads = 1, tails = 0
- Equal probability (1/2 both)
- Expected value is then $(1/2) \times 1 + (1/2) \times 0 = 1/2$

Continuous

Properties $E[X_1 + X_2] = E[aX] =$

$$= \int_{\mathbb{R}} p(x) x \, \mathrm{d} x$$

Expected value

Intuition: what value does the random variable take, on average?

- e.g., consider a fair coin where heads = 1, tails = 0
- Equal probability (1/2 both)
- Expected value is then $(1/2) \times 1 + (1/2) \times 0 = 1/2$

Continuous

Properties $E[X_1 + X_2] = E[X_1] + E[X_2]$ E[aX] = aE[X]

$$= \int_{\mathbb{R}} p(x) x \, \mathrm{d}x$$

Intuition: how far are the samples from the average, on average?

Intuition: how far are the samples from the average, on average? Definition: $V[X] = E\left[(X - E[X])^2\right]$

Intuition: how far are the samples from the average, on average? Definition: $V[X] = E\left[(X - E[X])^2\right]$

Q: Which of these has higher variance?

Intuition: how far are the samples from the average, on average? Definition: $V[X] = E\left[(X - E[X])^2\right]$ **Properties** Q: Which of these has higher variance? V[X] = $V[X_1 + X_2] = V[aX] =$ $p(x_i)$ $p(x_i)$ $x_1 \, x_2 \, x_3 \, x_4 \, x_5 \, x_6 \, x_7$ $x_1 \ x_2 \ x_3 \ x_4 \ x_5 \ x_6 \ x_7$ only if uncorrelated!

Monte Carlo Integration Motivation: want to compute the integral $F = \int_{D} f(x) \, \mathrm{d}x$ Could we approximate F by averaging a number of realizations x_i of a random process?

 $\frac{1}{N} \sum_{i=1}^{N} f(x_i)$

 $E\left[\frac{1}{N}\sum_{i=1}^{N}f(X_{i})\right] = \frac{1}{N}\sum_{i=1}^{N}E[f(X_{i})]$

 $= E[f(X_i)]$

$$\int_D f(x) \, p_{X_i}(x) \, \mathrm{d}x$$

(oops, that's not what we wanted!) Aside: why can we do this? Law of the unconscious statistician (LOTUS)

Monte Carlo Integration Motivation: want to compute the integral $F = \int_{D} f(x) \, \mathrm{d}x$

Solution: Approximate F by averaging realizations of a random variable X, and explicitly accounting for its PDF:

$$F \approx \frac{1}{N} \sum_{i=1}^{N} \frac{f(x_i)}{p(x_i)}$$

Monte Carlo integration is correct on average.

- This assumes that $p(X_i) \neq 0$ when $f(X_i) \neq 0$.
- This property is called unbiasedness.

 $E\left|\frac{1}{N}\sum_{i=1}^{N}\frac{f(X_i)}{p(X_i)}\right| = \frac{1}{N}\sum_{i=1}^{N}E\left[\frac{f(X_i)}{p(X_i)}\right]$ $= E \left| \frac{f(X_i)}{p(X_i)} \right|$ $= \int_{\Sigma} \frac{f(X_i)}{p(X_i)} p(X_i) dx$ $\int f(X_i) \mathrm{d}x = F$

Requirement (why?)

Domain D might be: plane, sphere, hemisphere, surface of an object

Reasonable default for p(x): uniform distribution

$f(x) \neq 0 \Rightarrow p(x) > 0$

 $f(x) = e^{\sin(3x^2)}$

$$F = \int_0^1 e^{\sin(3x^2)} dx \approx F_N$$

double integrate(int N) double x, sum=0.0; for (int i = 0; i < N; ++i) {

sum $+= \exp(sin(3*x*x));$

}

{

return sum / double(N);

 $f = \frac{1}{N} \sum_{i=1}^{N} \frac{f(x_i)}{p(x_i)} \Rightarrow \frac{1}{N} \sum_{i=1}^{N} f(x_i)$

 $p(x_i) = 1$

$$F = \int_{a}^{b} e^{\sin(3x^2)} dx \approx F_N$$

double integrate(int {

double x, sum=0.0;

for (int i = 0; i < N; ++i) {

x = randf();

sum += exp(sin(3*x*x));

} return sum / double(N);

 $=\frac{1}{N}\sum_{i=1}^{N}\frac{f(x_i)}{p(x_i)}$

$$F = \int_{a}^{b} e^{\sin(3x^{2})} dx \approx F_{N}$$

{

- double x, sum=0.0;

for (int i = 0; i < N; ++i) {</pre> x = a + randf() * (b-a); $sum += exp(sin(3 \times x \times x));$

} return sum / double(N);

 $=\frac{1}{N}\sum_{i=1}^{N}\frac{f(x_i)}{p(x_i)}$

double integrate(int N, double a, double b)

 $p(x_i) = \frac{1}{h \cdot a}$

$$F = \int_{a}^{b} e^{\sin(3x^2)} dx \approx F_N$$

{

- double x, sum=0.0;
- for (int i = 0; i < N; ++i) {</pre>
 - x = a + randf()*(b-a);

} return sum / double(N);

 $=\frac{1}{N}\sum_{i=1}^{N}\frac{f(x_i)}{p(x_i)}$

double integrate(int N, double a, double b)

$p(x_i) = \frac{1}{b-a}$ sum += exp(sin(3*x*x)) / (1/(b-a));

True value: 1.760977217585905...

 $= e^{\sin(3x^2)}$

F _N
2.75039
1.9893
1.79139
1.75146
1.77313
1.77862

Monte Carlo Error

 $E[||F_N - F||^2] = E[F_N^2 - 2F_NF + F^2]$ $= E[F_N^2] - E[2F_NF] + E[F^2]$ $= E[F_N^2] - 2E[F_N]F + F^2$ $= E[F_N^2] - 2FF + F^2$ $= E[F_N^2] - F^2$ $= E[F_N^2] - E[F_N]^2 = V[F_N]$

For an unbiased estimator, its average error is equal to its variance!

Monte Carlo error

Variance:

 $V\left[\left\langle F^N\right\rangle\right] = V$

=

=

=

$$V\left[\frac{1}{N}\sum_{i=0}^{N-1}\frac{f(X_i)}{\mathrm{pdf}(X_i)}\right] \text{--assume uncorrelated samples}$$
$$\frac{1}{N^2}\sum_{i=0}^{N-1}V\left[\frac{f(X_i)}{\mathrm{pdf}(X_i)}\right]$$
$$\frac{1}{N^2}\sum_{i=0}^{N-1}V\left[Y_i\right]$$
$$\frac{1}{N}V\left[Y\right]$$

Monte Carlo error

Variance: $V\left[\left\langle F^N\right\rangle\right] = V\left[\frac{1}{N}\right]$

Std. deviation: $\sigma\left[\left\langle F^{N}\right\rangle\right] = \left|\frac{1}{\sqrt{N}}\sigma\left[Y\right]\right|$

$$= V \left[\frac{1}{N} \sum_{i=0}^{N-1} \frac{f(X_i)}{\mathrm{pdf}(X_i)} \right]$$
$$= \frac{1}{N^2} \sum_{i=0}^{N-1} V \left[\frac{f(X_i)}{\mathrm{pdf}(X_i)} \right]$$
$$= \frac{1}{N^2} \sum_{i=0}^{N-1} V \left[Y_i \right]$$

 $=\frac{1}{N}V\left[Y\right]$

assume uncorrelated samples

What happens if samples are correlated?

- Error scaling is independent of dimensionality!
- Error converges to zero as $N \to \infty$.
- This property is called *consistency*.

Unbiasedness and consistency

Both are desirable, but different, properties of an estimator.

• An estimator can be consistent but not unbiased.

images grows infinite, the error goes to zero.

Consistency: You can reduce error by increasing the number of infinite, the error goes to zero.

Unbiasedness: You can reduce error by averaging rendered images from independent finite-sample rendering runs. As the number of

samples in a single rendering run. As the number of samples grows

Monte Carlo Methods

Pros

- Flexible
- Easy to implement
- Easily handles complex integrands
- Efficient for high dimensional integrands
- Unbiased estimator
- Cons
- Variance (noise)
- pretty fast at higher dimensions]

- "Slow" convergence* [but independent of dimension, so it's actually

Remaining Agenda

Main practical issues:

- How to choose p(x)
- How to generate x_i according to p(x)**Ambient Occlusion**

$$L_r(\mathbf{x}, \vec{\omega}_r) = \int_{H^2} f_r(\mathbf{x}, \vec{\omega}_r)$$

 $\vec{\omega}_i, \vec{\omega}_r) L_i(\mathbf{x}, \vec{\omega}_i) \cos \theta_i \, d\vec{\omega}_i$

Sampling Random Variables

Sampling the function domain:

- Uniform unit interval (0,1)
- Uniform interval (a,b)
- Circle?
- Sphere?
- Hemisphere?
- More complex domains?

Example: uniformly sampling a disk

Uniform probability density on a unit disk

 $p(x,y) = \begin{cases} \frac{1}{\pi} & x^2 + y^2 < 1\\ 0 & \text{otherwise} \end{cases}$

- Goal: draw samples X_i , Y_i that are distributed as: (X_i, Y_i)
- draw samples from a canonical uniform distribution

$$f_i) \sim p(x, y)$$

Problem: pseudo-random number generator only allows us to

Rejection Sampling in a Disk

Rejection Sampling in a Sphere

Vector3 v; do { v.x = 1-2*randf(); v.y = 1-2*randf(); v.z = 1-2*randf(); } while(dot(v,v) > 1)

Rejection Sampling on a Sphere


```
Vector3 v;
do
{
     v.x = 1-2*randf();
     v.y = 1-2*randf();
     v.z = 1-2*randf();
} while(dot(v,v) > 1)
```



```
Vector3 v;
do
{
     v.x = 1-2*randf();
     v.y = 1-2*randf();
     v.z = 1-2*randf();
} while(dot(v,v) > 1 ||
     v.z < 0)</pre>
```


Vector3 v; do { v.x = 1-2*randf(); v.y = 1-2*randf(); v.z = 1-2*randf(); } while(dot(v,v) > 1 || v.z < 0)</pre>

Arbitrary orientation?

Arbitrary orientation?

Rejection Sampling a Hemisphere

• Or, just generate in canonical orientation, and then rotate

Rejection Sampling

More complex shapes

- Pros:
- Flexible
- Cons:

- Inefficient
- Difficult/impossible to combin Carlo

- Difficult/impossible to combine with stratification or quasi-Monte

Directly sampling a disk?

Idea: transform samples to polar coordinates:

- pick two uniform random variables ξ_1, ξ_2
- select point at (r, ϕ) with $r = \xi_1$ and $\phi = 2\pi\xi_2$
- This algorithm **does not** produce the desired uniform sampling of the disk. — Why?

Wrong!

Samples are uniform in (θ, r) , but non-uniform in (x,y)!

This can be corrected by choosing *r* nonuniformly!

 $\theta = 2\pi\xi_1$

 $r = \xi_2$

Right! Samples are non-uniform in (θ, r) , but uniform in (x,y)!

 $\theta = 2\pi\xi_1$

 $r = \sqrt{\xi_2}$

Transforming Between Distributions

Given a random variable $X_i \sim p(x)$

- $Y_i = T(X_i)$ is also a random variable
- but what is its probability density?

$$p_y(y) = p_y(y)$$

- where $|J_T(x)|$ is the absolute value of the determinant of the Jacobian of T

$(T(x)) = \frac{p_x(x)}{|I_T(x)|}$

Polar coordinate parameterization

 $T(r,\phi) \mapsto$

$$J_T(r,\phi) = \begin{bmatrix} \frac{\partial T_x}{\partial r} & \frac{\partial T_x}{\partial \phi} \\ \frac{\partial T_y}{\partial r} & \frac{\partial T_y}{\partial \phi} \end{bmatrix} = \begin{bmatrix} \cos\phi & -r\sin\phi \\ \sin\phi & r\cos\phi \end{bmatrix}$$

det

$$\neq \begin{bmatrix} r \cos \phi \\ r \sin \phi \end{bmatrix}$$

$$|J_T(r,\phi)| = r$$

Account for parameterization

Desired distribution on target domain

- $p(x,y) = \begin{cases} \frac{1}{\pi}, & x^2 + y^2 < 1\\ 0, & \text{otherwise} \end{cases}$
- If we sample in spherical coordinates:

target domain

Thus, need this distribution on source domain:

 $p(r,\phi) = p(T(r,\phi))$ $= 1/\pi$

sampling domain

- $\overbrace{p(x,y)}^{\text{rget domain}} = p(T(r,\phi)) = \frac{\overbrace{p(r,\phi)}^{\text{rget domain}}}{|\det J_T(r,\phi)|}$

$$(p)) \cdot |\det J_T(r,\phi)| = \frac{r}{\pi}$$
$$= r$$

Sampling 2D Distributions

Draw samples (X, Y) from a 2D distribution p(x, y)

- If p(x, y) is separable, i.e., p(x, y) = p(x) p(y), we can independently sample p(x), and p(y)
- Otherwise, compute the marginal density function:
 - p(x) =
- and, the conditional density:
 - $p(\boldsymbol{y} \mid \boldsymbol{x})$
- Procedure: first sample $X_i \sim p(x)$

$$\int p(x,y) \, dy$$

$$= \frac{p(x,y)}{p(x)}$$

), then $Y_i \sim p(y \mid X_i)$

Account for parameterization

Thus: need this distribution on source domain

$$p(r,\phi) = \underbrace{p(T(r,\phi))}_{= 1/\pi} \cdot \underbrace{|\det J_T(r,\phi)|}_{= r} = \frac{r}{\pi}$$

Step 1: generate φ proportional to

Step 2: generate r proportional to

$$p_2(r) \propto r =$$

- $p_1(\phi) = \frac{1}{2\pi} \quad (\phi \in [0, 2\pi])$

 - $2r \quad (r \in [0,1])$
- Constant PDF in φ , linearly increasing PDF in r

Sampling arbitrary distributions

The inversion method:

- 3. Obtain a uniformly distributed random number ξ
- 4. Compute $X_i = P^{-1}(\xi)$

1. Compute the CDF $P(x) = \int_0^x p(x') dx'$ 2. Compute its inverse $P^{-1}(y)$

Sampling a linear ramp

Goal: sample with PDF:

Step 1: $P(r) = r^2$ Step 2: $P^{-1}(y) = \sqrt{y}$

Step 3:
$$r_i = \sqrt{\xi}$$

p(r) = 2r

Uniformly Sampling a Disk

Pick two uniform random variables ξ_{1}, ξ_{2}

Sample in polar coordinates with:

$$(r,\phi)=(\xi_1,\,2\pi\xi_2)$$

iables ξ₁, ξ₂

Recipe

- Express the desired distrib system
- 2. Account for distortion by coordinate system
- Requires computing the determinant of the Jacobian
- 3. Compute marginal and conditional 1D PDFs
- 4. Sample 1D PDFs using the inversion method

1. Express the desired distribution in a convenient coordinate

Directly Sampling on a Sphere

Can we use this?

Given a random variable $X_i \sim p(x)$ $Y_i = T(X_i)$ is also a random variable but what is its probability density? -Jacobian of T

$p_y(y) = p_y(T(x)) = \frac{p_x(x)}{|I_T(x)|}$

- where $|J_T(x)|$ is the absolute value of the determinant of the

Directly Sampling on a Sphere

Different transformation rule:

$$p_{\boldsymbol{x}}(\boldsymbol{x}(u,v)) = \frac{p_{(u,v)}(u,v)}{\|\boldsymbol{x}_{u}(u,v) \times \boldsymbol{x}_{v}(u,v)\|}$$

Where does this come from?

• Expression for differential area (e.g., as in area integral):

 $dA(\mathbf{x}) = \|\mathbf{x}_u(u, v) \times \mathbf{x}_v(u, v)\| du dv$

Directly Sampling on a Sphere

Pick two uniform random variables ξ_1, ξ_2

- Idea: select point at (θ, φ) with θ
- **Problem**: not uniform with respect to surface area!
- **Correct solution**: $\theta = \cos^{-1}(2\xi_1 1)$ and $\varphi = 2\pi\xi_2$

$$\theta = \pi \xi_1$$
 and $\varphi = 2\pi \xi_2$

Archimedes' Hat-Box Theorem

The surface area of a sphere between any two horizontal planes is equal to the corresponding area on the circumscribing cylinder.

- i.e.: uniform areas on a cylinder map to uniform areas on a sphere
- What is $|J_T|$ for cylindrical mapping?

Weisstein, Eric W. "Archimedes' Hat-Box Theorem." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/ArchimedesHat-BoxTheorem.html

Archimedes' Hat-Box Theorem

The surface area of a sphere between any two horizontal planes is equal to the corresponding area on the circumscribing cylinder.

- i.e.: uniform areas on a cylinder map to uniform areas on a sphere
- What is $|J_T|$ for cylindrical mapping?

- point on unit cylinder
- projection onto sphere

Weisstein, Eric W. "Archimedes' Hat-Box Theorem." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/ArchimedesHat-BoxTheorem.html

Directly Sampling a Hemisphere

Just like a sphere

Use Hat-Box theorem with shorter cylinder

More Random Sampling

Other useful sampling domains:

- triangles
- 1- or 2-D discrete PDFs (e.g. environment maps)

Much more!

Sampling Various Distributions

Target space	Density	Domain	Transformation
Radius R disk	$p(r,\theta) = \frac{1}{\pi R^2}$	$\theta \in [0, 2\pi]$ $r \in [0, R]$	$\begin{array}{l} \theta = 2\pi u \\ r = R\sqrt{v} \end{array}$
Sector of radius R disk	$p(r,\theta) = \frac{2}{(\theta_2 - \theta_1)(r_2^2 - r_1^2)}$	$\boldsymbol{\theta} \in \left[\theta_1, \theta_2 \right]$ $\boldsymbol{r} \in \left[r_1, r_2 \right]$	$\begin{aligned} \theta &= \theta_1 + u \big(\theta_2 - \theta_1 \big) \\ r &= \sqrt{r_1^2 + v \big(r_2^2 - r_1^2 \big)} \end{aligned}$
Phong density exponent n	$p(\theta,\phi) = \frac{n+1}{2\pi} \cos^n \theta$	$\theta \in \left[0, \frac{\pi}{2}\right]$ $\phi \in \left[0, 2\pi\right]$	$\theta = \arccos((1-u)^{1/(n+1)})$ $\phi = 2\pi v$
Separated triangle filter	p(x, y)(1 - x)(1 - y)		$x = \begin{cases} 1 - \sqrt{2(1 - u)} & \text{if} \\ -1 + \sqrt{2u} & \text{if} \end{cases}$
		$y \in [-1,1]$	$y = \begin{cases} 1 - \sqrt{2(1-v)} & \text{if} \\ -1 + \sqrt{2v} & \text{if} \end{cases}$
Triangle with vertices a_0, a_1, a_2	$p(a) = \frac{1}{\text{area}}$	$s \in [0, 1]$ $t \in [0, 1 - s]$	$s = 1 - \sqrt{1 - u}$ t = (1 - s)v $a = a_0 + s(a_1 - a_0) + t(s_1)$
Surface of unit sphere	$p(\theta,\phi) = \frac{1}{4\pi}$	$\theta \in [0, \pi]$ $\phi \in [0, 2\pi]$	$\theta = \arccos(1 - 2u)$ $\phi = 2\pi v$
Sector on surface of unit sphere	$p(\theta, \phi) = \frac{1}{(\phi_2 - \phi_1)(\cos \theta_1 - \cos \theta_2)}$	$\begin{split} \boldsymbol{\theta} &\in \left[\boldsymbol{\theta}_1, \boldsymbol{\theta}_2 \right] \\ \boldsymbol{\phi} &\in \left[\boldsymbol{\phi}_1, \boldsymbol{\phi}_2 \right] \end{split}$	$\theta = \arccos[\cos \theta_1 \\ + u(\cos \theta_2 - \cos \theta_2)] \\ \phi = \phi_1 + v(\phi_2 - \phi_1)$
Interior of radius <i>R</i> sphere	$p = \frac{3}{4\pi R^3}$	$\theta \in [0, \pi]$ $\phi \in [0, 2\pi]$ $R \in [0, R]$	$\begin{array}{l} \theta = \arccos(1-2u) \\ \phi = 2\pi v \\ r = w^{1/2}R \end{array}$

^a The symbols u, v, and w represent instances of uniformly distributed random variables ranging over [0, 1].

·**)

if u ≥ 0.5 if **κ** < 0.5

if $v \ge 0.5$

if v < 0.5

 $t(a_2 - a_0)$

from: Peter Shirley. "Nonuniform random point sets via warping." Graphics Gems III, 1992.

Ambient Occlusion

sky

$$L_r(\mathbf{x}, \vec{\omega}_r) \equiv \int_{\pi} f_r(\mathbf{x}) \int_{H^2} f_r(\mathbf{x}) dr$$

Consider diffuse objects illuminated by an ambient overcast

 $\left(\mathbf{x}_{i}, \vec{\omega}_{i}, \vec{\omega}_{i}\right) L_{i}\left(\mathbf{x}_{i}, \vec{\omega}_{i}\right) \cos \theta_{i} d\vec{\omega}_{i} \cos \theta_{i} d\vec{\omega}_{i}$

integral over hemisphere

Ambient Occlusion

sky

Consider diffuse objects illuminated by an ambient overcast

Ambient Occlusion

Consider diffuse objects illum sky

Consider diffuse objects illuminated by an ambient overcast

Hemispherical Sampling (1 Sample)

Hemispherical Sampling (4 Samples)

Hemispherical Sampling (9 Samples)

Hemispherical Sampling (16 Samples)

Hemispherical Sampling (256 Samples)

Hemispherical Sampling (1024 Samples)

Cclusio bient AA

Strategies for reducing variance

The standard MC estimator:

$$\sigma\left[\left\langle F^{N}\right\rangle\right] =$$

How do we reduce the variance of Y?

- Importance sampling

 $F = \int_{\mu(x)} f(x) \, \mathrm{d}\mu(x)$

 $\langle F^N \rangle = \frac{1}{N} \sum_{i=0}^{N-1} \frac{f(X_i)}{\mathrm{pdf}(X_i)}$

 $\frac{1}{\sqrt{N}}\sigma\left[Y\right]$

112

Importance sampling

Importance sampling

 $\int f(x)dx$

assume

p(x) = cf(x)

 $\int p(x)dx = 1$

estimator

 $\frac{f(X_i)}{p(X_i)} = \frac{1}{c} = \int f(x)dx$

 $F_{N} = \frac{1}{N} \sum_{i=1}^{N} \frac{f(X_{i})}{p(X_{i})}$

$$\rightarrow \quad c = \frac{1}{\int f(x) dx}$$

zero variance!

Importance sampling

p(x) = cf(x)requires knowledge of the integral we are trying to compute in the first place!

But: If PDF is similar to integrand, variance can be significantly reduced

Common strategy: sample according to part of the integrand

114

Ambient occlusion

 $L_r(\mathbf{x}) = \frac{\rho}{\pi} \int_{H^2} V(\mathbf{x}, \vec{\omega}_i) \cos \theta_i \, d\vec{\omega}_i$

What terms can we importance sample?

- incident radiance
- cosine term

Ambient occlusion

 $L_r(\mathbf{x}) = \frac{\rho}{\pi} \int_{H^2} V(\mathbf{x}, \vec{\omega}_i) \cos \theta_i d\vec{\omega}_i$

What terms can we importance sample?

- incident radiance
- cosine term

117

Ambient Occlusion

Uniform hemispherical sampling

 $L_r(\mathbf{x}) \approx \frac{\rho}{\pi N} \sum_{k=1}^{N} \frac{V(\mathbf{x}, \vec{\omega}_{i,k}) \cos \theta_{i,k}}{p(\vec{\omega}_{i,k})}$

Could proceed as before: compute marginal and conditional densities, then use inversion method.

It turns out that:

points vertically onto the hemisphere produces the desired distribution.

- Generating points uniformly on the disc, and then project these

119

Generate points on sphere

(unit directions)

Generate points on sphere

(unit directions)

unit normal

Add unit normal

Generate points on sphere

(unit directions)

unit normal

Add unit normal

normalize

Uniform hemispherical 1 sample/pixel sampling

Uniform hemispherical 4 sampling

4 sample/pixel

Uniform hemispherical 16 sample/pixel sampling

102040619

Uniform hemispherical 1024 sample/pixel sampling

Strategies for reducing variance

The standard MC estimator:

$$\sigma\left[\left\langle F^{N}\right\rangle\right] =$$

How do we reduce the variance of Y?

- Importance sampling

 $F = \int_{\mu(x)} f(x) \, \mathrm{d}\mu(x)$

 $\langle F^N \rangle = \frac{1}{N} \sum_{i=0}^{N-1} \frac{f(X_i)}{\mathrm{pdf}(X_i)}$

 $\frac{1}{\sqrt{N}}\sigma\left[Y\right]$

Equal-sample versus equal-time comparisons

 $\sigma\left[\left\langle F^{N}\right\rangle\right]$

- Importance sampling improves the $\sigma[Y]$ term \bullet
- But an importance sampling technique may be more expensive to run than naive uniform sampling, reducing the N term given fixed runtime.
- Cost of an estimator:

- Equal-sample (fixed N) comparisons can be misleading.
- are more representative of performance.
 - At equal time, a naive sampling technique that draws very many bad samples can result Ο in les's variance than a sophisticated technique that draws very few great samples.

$$\left[f \right] = \frac{1}{\sqrt{N}} \sigma \left[Y \right]$$

- time to draw one sample for a
- $C = N \cdot T \leftarrow$ given sampling technique

number of samples

Equal-time comparisons (fixed total runtime, which is equivalent to fixed cost C)

More Integration Dimensions Anti-aliasing (image space) Light visibility (surface of area lights) Depth-of-field (camera aperture) Motion blur (time) Many lights Multiple bounces of light Participating media (volume)

