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Course announcements

• Programming assignment 2 posted, due Friday 2/23 at 23:59.
- How many of you have looked at/started/finished it?
- Any questions?

• Take-home quiz 4 posted, make sure to download the updated version.

• Make-up lecture tomorrow, 11 am, in NSH 3002.
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Overview of today’s lecture

• Leftover from BRDFs.

• Monte Carlo integration.

• Sampling techniques.

• Importance sampling.

• Ambient occlusion.
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Slide credits

Most of these slides were directly adapted from:

• Wojciech Jarosz (Dartmouth).
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Numerical Integration - Motivation
For very, very simple integrals, we can compute the solution 
analytically

But ours are a bit more complicated:

5



Typical quadrature: Trapezoid rule
Approximate integral of f(x) by assuming function is piecewise linear

For equal length segments: 



Typical quadrature: Trapezoid rule
Consider cost and accuracy as               (or            )
Work: O(n)
Error can be shown to be: (for f(x) with continuous 

second derivative)



What about a 2D function?

How should we 
approximate the area 
(volume) underneath?



Multidimensional integrals & Fubini’s theorem
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Apply the trapezoid rule repeatedly



Multidimensional integrals & Fubini’s theorem
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Apply the trapezoid rule repeatedly

Can show that:

- Errors add, so error still: 

- But work is now:              (n x n set of measurements)



Multidimensional integrals & Fubini’s theorem
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Apply the trapezoid rule repeatedly

Can show that:

- Errors add, so error still: 

- But work is now:              (n x n set of measurements)

Must perform much more work in 2D to get same error bound!



Curse of Dimensionality
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How much does it cost to apply the trapezoid rule as we go up in 
dimension?
- 1D: O(n)

- 2D: O(n2)

- …

- kD: O(nk)



Curse of Dimensionality
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How much does it cost to apply the trapezoid rule as we go up in 
dimension?
- 1D: O(n)

- 2D: O(n2)

- …

- kD: O(nk)

Deterministic quadrature does not scale to higher dimensions!

Need a fundamentally different approach…



Monte Carlo 
Integration



Monte Carlo   vs    Las Vegas
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Always gives the correct answer,
e.g., a randomized sorting algorithm

Random variation creeps 
into the results



Monte Carlo History
Use random numbers to solve numerical problems

Early use during development of atomic bomb

Von Neumann, Ulam, Metropolis

Named after the casino in Monte Carlo
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Playing Solitaire

17

Lose Win Win Lose

…

What’s the chance of winning with a 
properly shuffled deck? 



Playing Solitaire
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Monte Carlo Integration
Estimate value of integral using random sampling of function
- Value of estimate depends on random samples used

- But algorithm gives the correct value “on average”
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Monte Carlo Integration Advantages
Only requires function to be evaluated at random points on its 
domain
- Applicable to functions with discontinuities, functions that are 

impossible to integrate directly

Error is independent of dimensionality of integral!
- O(n-0.5)
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Review: random variables
X: random variable. Represents a distribution of potential 
outcomes. Assigns a value of each outcome.

Two types: discrete vs. continuous
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Discrete Random Variables
Discrete Random Variable: countable set of outcomes
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Discrete Random Variables
Discrete Random Variable: countable set of outcomes

Probability mass function (pmf) of X:
- pX(xi) = P(X = xi), or simply pi = p(xi) = P(X = xi)

- p(xi) ≥ 0

- Sums to one:
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Probability mass function

pX(xi)

xi
1 2 3 4 5 6



Probability mass function

pZ(zi)

zi



Cumulative distribution function (CDF)
Cumulative pmf: 

where:
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Continuous Random Variables
Probability density function (pdf) of X: p(x)
- p(x) ≥ 0

- No restriction that  p(x) < 1 (Not a probability!)
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Continuous Random Variables
Probability density function (pdf) of X: p(x)
- p(x) ≥ 0

- No restriction that  p(x) < 1 (Not a probability!)

Cumulative distribution function (cdf): P(x)
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Continuous Random Variables
Canonical uniform random variable

36



Ingredient: Uniform variates
Need: realizations of a uniformly distributed variable on the 
interval [0.0, 1.0]

Desired properties:
- sequence should pass statistical tests of randomness

- sequence should have a long period

- efficient to compute, requires only little storage

- repeatability: always produce the same sequence (different 
compilers, operating systems, processors)
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Sources of randomness



A Million Random Digits
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A modern example: PCG32

40

struct pcg32_random_t { uint64_t state; uint64_t inc; };

uint32_t pcg32_random_r(pcg32_random_t* rng) {
uint64_t oldstate = rng->state;

rng->state = oldstate * 6364136223846793005ULL + (rng->inc | 1);
uint32_t xorshifted = ((oldstate >> 18u) ^ oldstate) >> 27u;

uint32_t rot = oldstate >> 59u;
return (xorshifted >> rot) | (xorshifted << ((-rot) & 31));

}

[http://www.pcg-random.org/]



Expected value
Intuition: what value does the random variable take, on average?
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Expected value
Intuition: what value does the random variable take, on average?
- e.g., consider a fair coin where heads = 1, tails = 0
- Equal probability (1/2 both)
- Expected value is then (1/2) x 1 + (1/2) x 0 = 1/2

42



Expected value
Intuition: what value does the random variable take, on average?
- e.g., consider a fair coin where heads = 1, tails = 0
- Equal probability (1/2 both)
- Expected value is then (1/2) x 1 + (1/2) x 0 = 1/2

43

expected value of random 
variable X

number of possible 
outcomes

value of i-th outcomeprobability of i-th outcome

Discrete



Expected value
Intuition: what value does the random variable take, on average?
- e.g., consider a fair coin where heads = 1, tails = 0
- Equal probability (1/2 both)
- Expected value is then (1/2) x 1 + (1/2) x 0 = 1/2
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value of i-th outcomeprobability of i-th outcome

Continuous
expected value of random 

variable X
number of possible 

outcomes

Discrete



Expected value
Intuition: what value does the random variable take, on average?
- e.g., consider a fair coin where heads = 1, tails = 0
- Equal probability (1/2 both)
- Expected value is then (1/2) x 1 + (1/2) x 0 = 1/2
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value of i-th outcomeprobability of i-th outcome

PropertiesContinuous
expected value of random 

variable X
number of possible 

outcomes

Discrete



Expected value
Intuition: what value does the random variable take, on average?
- e.g., consider a fair coin where heads = 1, tails = 0
- Equal probability (1/2 both)
- Expected value is then (1/2) x 1 + (1/2) x 0 = 1/2
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value of i-th outcomeprobability of i-th outcome

PropertiesContinuous
expected value of random 

variable X
number of possible 

outcomes

Discrete



Variance
Intuition: how far are the samples from the average, on average?
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Variance
Intuition: how far are the samples from the average, on average?
Definition:
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Variance
Intuition: how far are the samples from the average, on average?
Definition:
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Variance
Intuition: how far are the samples from the average, on average?
Definition:
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Properties

only if uncorrelated!



Monte Carlo Integration
Motivation: want to compute the integral

Could we approximate F by averaging a number of realizations 
xi of a random process?
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Monte Carlo Integration
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(oops, that’s not
what we wanted!)

Aside: why can we do this?
Law of the unconscious 
statistician (LOTUS)



Monte Carlo Integration
Motivation: want to compute the integral

Solution: Approximate F by averaging realizations of a random 
variable X, and explicitly accounting for its PDF:

53



Monte Carlo Integration
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Monte Carlo integration is correct 
on average.

• This assumes that 𝑝𝑝 𝑋𝑋𝑖𝑖 ≠ 0
when 𝑓𝑓 𝑋𝑋𝑖𝑖 ≠ 0.

• This property is called 
unbiasedness.



Monte Carlo Integration
Requirement (why?)

Domain D might be: plane, sphere, hemisphere, surface of an 
object

Reasonable default for p(x): uniform distribution
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Monte Carlo Integration
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Monte Carlo Integration
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Monte Carlo Integration
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double integrate(int N)
{

double x, sum=0.0;
for (int i = 0; i < N; ++i) {

x = randf();
sum += exp(sin(3*x*x));

}
return sum / double(N);

}



Monte Carlo Integration
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double integrate(int N, double a, double b)
{

double x, sum=0.0;
for (int i = 0; i < N; ++i) {

x = randf();
sum += exp(sin(3*x*x));

}
return sum / double(N);

}



Monte Carlo Integration
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double integrate(int N, double a, double b)
{

double x, sum=0.0;
for (int i = 0; i < N; ++i) {

x = a + randf()*(b-a);
sum += exp(sin(3*x*x));

}
return sum / double(N);

}



Monte Carlo Integration
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double integrate(int N, double a, double b)
{

double x, sum=0.0;
for (int i = 0; i < N; ++i) {

x = a + randf()*(b-a);
sum += exp(sin(3*x*x)) / (1/(b-a));

}
return sum / double(N);

}



Monte Carlo Integration
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N FN

1 2.75039

10 1.9893

100 1.79139

1000 1.75146

10000 1.77313

100000 1.77862

True value: 1.760977217585905…



Monte Carlo Integration
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N FN

1 2.75039

10 1.9893

100 1.79139

1000 1.75146

10000 1.77313

100000 1.77862

True value: 1.760977217585905…

Remarkable thing about this: 
Dimension doesn’t matter



Monte Carlo Error
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𝐸𝐸 𝐹𝐹𝑁𝑁 − 𝐹𝐹 2 = 𝐸𝐸 𝐹𝐹𝑁𝑁2 − 2𝐹𝐹𝑁𝑁𝐹𝐹 + 𝐹𝐹2

= 𝐸𝐸 𝐹𝐹𝑁𝑁2 − 𝐸𝐸 2𝐹𝐹𝑁𝑁𝐹𝐹 + 𝐸𝐸 𝐹𝐹2

= 𝐸𝐸 𝐹𝐹𝑁𝑁2 − 2𝐸𝐸 𝐹𝐹𝑁𝑁 𝐹𝐹 + 𝐹𝐹2

= 𝐸𝐸 𝐹𝐹𝑁𝑁2 − 2𝐹𝐹𝐹𝐹 + 𝐹𝐹2

= 𝐸𝐸 𝐹𝐹𝑁𝑁2 − 𝐹𝐹2

= 𝐸𝐸 𝐹𝐹𝑁𝑁2 − 𝐸𝐸 𝐹𝐹𝑁𝑁 2 = 𝑉𝑉 𝐹𝐹𝑁𝑁

For an unbiased estimator, 
its average error is equal 

to its variance!



Monte Carlo error
Variance:

65

assume uncorrelated samples



Monte Carlo error
Variance:

Std. deviation:
66

assume uncorrelated samples

• Error scaling is independent 
of dimensionality!

• Error converges to zero as 
𝑁𝑁 → ∞.

• This property is called 
consistency.

What happens if 
samples are correlated?



Unbiasedness and consistency
Both are desirable, but different, properties of an estimator.
• An estimator can be consistent but not unbiased.

Unbiasedness: You can reduce error by averaging rendered images 
from independent finite-sample rendering runs. As the number of 
images grows infinite, the error goes to zero.

Consistency: You can reduce error by increasing the number of 
samples in a single rendering run. As the number of samples grows 
infinite, the error goes to zero.



Monte Carlo Methods
Pros
- Flexible
- Easy to implement
- Easily handles complex integrands
- Efficient for high dimensional integrands
- Unbiased estimator
Cons
- Variance (noise)
- "Slow" convergence* [but independent of dimension, so it’s actually 

pretty fast at higher dimensions]
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Monte Carlo Integration Summary
Goal: evaluate integral

Random variable

Monte Carlo Estimator

Expectation
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Remaining Agenda

Main practical issues:
– How to choose p(x)
– How to generate xi according to p(x)

Ambient Occlusion
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Sampling Random Variables
Sampling the function domain:
- Uniform unit interval (0,1)

- Uniform interval (a,b)

- Circle?

- Sphere?

- Hemisphere?

- More complex domains?
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Example: uniformly sampling a disk
Uniform probability density on a unit disk

Goal: draw samples Xi,Yi that are distributed as:

Problem: pseudo-random number generator only allows us to 
draw samples from a canonical uniform distribution

72



Rejection Sampling in a Disk
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Vector2 v;
do
{

v.x = 1-2*randf();
v.y = 1-2*randf();

} while (dot(v,v) > 1)

– Similar technique for 
sampling a sphere



Rejection Sampling in a Sphere

74

Vector3 v;
do
{

v.x = 1-2*randf();
v.y = 1-2*randf();
v.z = 1-2*randf();

} while(dot(v,v) > 1)



Rejection Sampling on a Sphere
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Vector3 v;
do
{

v.x = 1-2*randf();
v.y = 1-2*randf();
v.z = 1-2*randf();

} while(dot(v,v) > 1)

// Project onto sphere
v = v/length(v);



Rejection Sampling a Hemisphere
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Vector3 v;
do
{

v.x = 1-2*randf();
v.y = 1-2*randf();
v.z = 1-2*randf();

} while(dot(v,v) > 1)



Rejection Sampling a Hemisphere
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Vector3 v;
do
{

v.x = 1-2*randf();
v.y = 1-2*randf();
v.z = 1-2*randf();

} while(dot(v,v) > 1 ||
v.z < 0)



Rejection Sampling a Hemisphere
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• Arbitrary orientation?

Vector3 v;
do
{

v.x = 1-2*randf();
v.y = 1-2*randf();
v.z = 1-2*randf();

} while(dot(v,v) > 1 ||
v.z < 0)



Rejection Sampling a Hemisphere
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• Arbitrary orientation?

Vector3 v;
do
{

v.x = 1-2*randf();
v.y = 1-2*randf();
v.z = 1-2*randf();

} while(dot(v,v) > 1 ||
dot(v,n) < 0)



Rejection Sampling a Hemisphere
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• Or, just generate in canonical orientation, and then rotate 



Rejection Sampling
More complex shapes

Pros:
- Flexible

Cons:
- Inefficient

- Difficult/impossible to combine with stratification or quasi-Monte 
Carlo
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Directly sampling a disk?
Idea: transform samples to polar coordinates:

- pick two uniform random variables

- select point at           with              and

- This algorithm does not produce the desired uniform sampling of the disk.
Why?

82

not equi-areal



This can be 
corrected by 

choosing r non-
uniformly!

Wrong!
Samples are uniform in (θ, r),

but non-uniform in (x,y)!

Right!
Samples are non-uniform in (θ, r),

but uniform in (x,y)!



Transforming Between Distributions
Given a random variable Xi ~ p(x)
Yi = T(Xi) is also a random variable
- but what is its probability density?

- where |JT(x)| is the absolute value of the determinant of the 
Jacobian of T
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Polar coordinate parameterization
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Account for parameterization
Desired distribution on target domain

If we sample in spherical coordinates:

Thus, need this distribution on source domain:
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Sampling 2D Distributions
Draw samples (X, Y) from a 2D distribution p(x, y)
If p(x, y) is separable, i.e., p(x, y) = p(x) p(y), we can independently 
sample p(x), and p(y)
Otherwise, compute the marginal density function:

and, the conditional density:

Procedure: first sample Xi ~ p(x), then Yi ~ p(y|Xi)
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Account for parameterization
Thus: need this distribution on source domain

Step 1: generate φ proportional to

Step 2: generate r proportional to

Constant PDF in φ, linearly increasing PDF in r
88



Sampling arbitrary distributions
The inversion method:
1. Compute the CDF
2. Compute its inverse
3. Obtain a uniformly distributed random number
4. Compute 
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Sampling a linear ramp
Goal: sample with PDF:
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0 1

2

r

p(
r)

Step 1:

Step 2:

Step 3:



Uniformly Sampling a Disk
Pick two uniform random variables ξ1, ξ2

Sample in polar coordinates with:

91

equi-areanot equi-area



Recipe
1. Express the desired distribution in a convenient coordinate 

system

2. Account for distortion by coordinate system
- Requires computing the determinant of the Jacobian

3. Compute marginal and conditional 1D PDFs

4. Sample 1D PDFs using the inversion method
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Directly Sampling on a Sphere
Can we use this?

Given a random variable Xi ~ p(x)
Yi = T(Xi) is also a random variable

- but what is its probability density?

- where |JT(x)| is the absolute value of the determinant of the 
Jacobian of T



Directly Sampling on a Sphere
Different transformation rule:

𝑝𝑝𝒙𝒙 𝒙𝒙 𝑢𝑢, 𝑣𝑣 =
𝑝𝑝 𝑢𝑢,𝑣𝑣 𝑢𝑢, 𝑣𝑣

𝒙𝒙𝑢𝑢 𝑢𝑢, 𝑣𝑣 × 𝒙𝒙𝑣𝑣 𝑢𝑢, 𝑣𝑣

Where does this come from?

• Expression for differential area (e.g., as in area integral):

d𝐴𝐴(𝒙𝒙) = 𝒙𝒙𝑢𝑢 𝑢𝑢, 𝑣𝑣 × 𝒙𝒙𝑣𝑣 𝑢𝑢, 𝑣𝑣 d𝑢𝑢d𝑣𝑣



Directly Sampling on a Sphere

BetterAlgorithm

Pick two uniform random variables ξ1, ξ2

Idea: select point at (θ, φ) with θ = πξ1 and φ = 2πξ2

- Problem: not uniform with respect to surface area!

Correct solution: θ = cos-1(2ξ1 - 1) and φ = 2πξ2



Archimedes' Hat-Box Theorem
The surface area of a sphere between any two 
horizontal planes is equal to the corresponding area 
on the circumscribing cylinder.
- i.e.: uniform areas on a cylinder map to uniform areas 

on a sphere

- What is |JT| for cylindrical mapping?

96
Weisstein, Eric W. "Archimedes' Hat-Box Theorem." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/ArchimedesHat-BoxTheorem.html

http://mathworld.wolfram.com/about/author.html
http://mathworld.wolfram.com/
http://mathworld.wolfram.com/ArchimedesHat-BoxTheorem.html


Archimedes' Hat-Box Theorem

97

• point on unit cylinder
• projection onto sphere

The surface area of a sphere between any two 
horizontal planes is equal to the corresponding area 
on the circumscribing cylinder.
- i.e.: uniform areas on a cylinder map to uniform areas 

on a sphere

- What is |JT| for cylindrical mapping?

Weisstein, Eric W. "Archimedes' Hat-Box Theorem." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/ArchimedesHat-BoxTheorem.html

http://mathworld.wolfram.com/about/author.html
http://mathworld.wolfram.com/
http://mathworld.wolfram.com/ArchimedesHat-BoxTheorem.html


Directly Sampling a Hemisphere
Just like a sphere

Use Hat-Box theorem with shorter cylinder
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More Random Sampling
Other useful sampling domains:
- triangles

- 1- or 2-D discrete PDFs (e.g. environment maps)

Much more!
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Sampling Various Distributions

from: Peter Shirley. “Nonuniform random point sets via warping.” Graphics Gems III, 1992.

http://books.google.ch/books?id=xmW_u3mQLmQC&pg=PA80&lpg=PA80&dq=shirley+graphics+gems+nonuniform+random+point+sets+via+warping&source=bl&ots=Z6X0NLL6Fe&sig=ItKmQx-S-BzrIsiWCCfHb8kqgrs&hl=en&sa=X&ei=kvxTT-TvBMiUOrbHmKEK&ved=0CCkQ6AEwAQ%23v=onepage&q&f=false


Ambient Occlusion
Consider diffuse objects illuminated by an ambient overcast 
sky

integral over hemisphere
101



Ambient Occlusion
Consider diffuse objects illuminated by an ambient overcast 
sky

102

V = 0, zero contribution



Ambient Occlusion
Consider diffuse objects illuminated by an ambient overcast 
sky

103

V = 0, zero contribution

Uniform sampling:



Hemispherical Sampling (1 Sample)
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Hemispherical Sampling (4 Samples)
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Hemispherical Sampling (9 Samples)
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Hemispherical Sampling (16 Samples)
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Hemispherical Sampling (256 Samples)
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Hemispherical Sampling (1024 Samples)
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http://www.3dluvr.com/marcosss/ http://www.3dluvr.com/marcosss/

Wojciech Jarosz
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http://www.3dluvr.com/marcosss/
http://www.3dluvr.com/marcosss/


Strategies for reducing variance

How do we reduce the variance of Y?
- Importance sampling

112

The standard MC estimator:



Importance sampling

assume 

estimator

113

zero variance!

Importance sampling



Importance sampling
requires knowledge of the integral we are trying to 

compute in the first place!

But: If PDF is similar to integrand, variance can be significantly 
reduced

Common strategy: sample according to part of the integrand

114

uniform sampling importance sampling



Ambient occlusion

What terms can we importance sample?
- incident radiance

- cosine term
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Ambient occlusion

What terms can we importance sample?
- incident radiance

- cosine term
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Ambient Occlusion

Uniform hemispherical 
sampling

Cosine-weighted
importance sampling



Cosine-weighted Hemispherical Sampling
Could proceed as before: compute marginal and conditional 
densities, then use inversion method.

It turns out that:
- Generating points uniformly on the disc, and then project these 

points vertically onto the hemisphere produces the desired 
distribution.
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Cosine-weighted Hemispherical Sampling
Generate points on sphere

(unit directions)



Cosine-weighted Hemispherical Sampling
Generate points on sphere

(unit directions)

Add unit normal

unit normal



Cosine-weighted Hemispherical Sampling
Generate points on sphere

(unit directions)

Add unit normal
normalize

unit normal



Uniform hemispherical 
sampling

Cosine-weighted
importance sampling

1 sample/pixel



Uniform hemispherical 
sampling

Cosine-weighted
importance sampling

4 sample/pixel



Uniform hemispherical 
sampling

Cosine-weighted
importance sampling

16 sample/pixel



Uniform hemispherical 
sampling

Cosine-weighted
importance sampling

1024 sample/pixel



Strategies for reducing variance

How do we reduce the variance of Y?
- Importance sampling

127

The standard MC estimator:



• Importance sampling improves the 𝜎𝜎[𝑌𝑌] term
• But an importance sampling technique may be more expensive to run than naive 

uniform sampling, reducing the 𝑁𝑁 term given fixed runtime.
Cost of an estimator: 

𝐶𝐶 = 𝑁𝑁 ⋅ 𝑇𝑇

• Equal-sample (fixed 𝑁𝑁) comparisons can be misleading.
• Equal-time comparisons (fixed total runtime, which is equivalent to fixed cost 𝐶𝐶) 

are more representative of performance.
o At equal time, a naive sampling technique that draws very many bad samples can result 

in less variance than a sophisticated technique that draws very few great samples.
128

Equal-sample versus equal-time comparisons

time to draw one sample for a 
given sampling technique

number of samples



More Integration Dimensions
Anti-aliasing (image space)

Light visibility (surface of area lights)

Depth-of-field (camera aperture)

Motion blur (time)

Many lights

Multiple bounces of light

Participating media (volume)

129
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